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Summary The system GMM estimator for dynamic panel data models combines moment
conditions for the model in first differences with moment conditions for the model in levels.
It has been shown to improve on the GMM estimator in the first differenced model in terms
of bias and root mean squared error. However, we show in this paper that in the covariance
stationary panel data AR(1) model the expected values of the concentration parameters in the
differenced and levels equations for the cross-section at time t are the same when the variances
of the individual heterogeneity and idiosyncratic errors are the same. This indicates a weak
instrument problem also for the equation in levels. We show that the 2SLS biases relative to
that of the OLS biases are then similar for the equations in differences and levels, as are the
size distortions of the Wald tests. These results are shown to extend to the panel data GMM
estimators.

Keywords: Dynamic panel data, System GMM, Weak instruments.

1. INTRODUCTION

A commonly employed estimation procedure to estimate the parameters in a dynamic panel
data model with unobserved individual specific heterogeneity is to transform the model into first
differences. Sequential moment conditions are then used where lagged levels of the variables are
instruments for the endogenous differences and the parameters estimated by GMM; see Arellano
and Bond (1991). It has been well documented (see e.g. Blundell and Bond, 1998) that this GMM
estimator in the first differenced (DIF) model can have very poor finite sample properties in terms
of bias and precision when the series are persistent, as the instruments are then weak predictors of
the endogenous changes. Blundell and Bond (1998) proposed the use of extra moment conditions
that rely on certain stationarity conditions of the initial observation, as suggested by Arellano and
Bover (1995). When these conditions are satisfied, the resulting system (SYS) GMM estimator
has been shown in Monte Carlo studies by e.g. Blundell and Bond (1998) and Blundell et al.
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(2000) to have much better finite sample properties in terms of bias and root mean squared error
(rmse) than that of the DIF GMM estimator.

The additional moment conditions of the SYS estimator can be shown to correspond to the
model in levels (LEV), with lagged differences of the endogenous variables as instruments.
Blundell and Bond (1998) argued that the SYS GMM estimator performs better than the DIF
GMM estimator because the instruments in the LEV model remain good predictors for the
endogenous variables in this model even when the series are very persistent. They showed for
an AR(1) panel data model that the reduced form parameters in the LEV model do not approach
0 when the autoregressive parameter approaches 1, whereas the reduced form parameters in the
DIF model do.

Because of the good performance of the SYS GMM estimator relative to the DIF GMM
estimator in terms of finite sample bias and rmse, it has become the estimator of choice in many
applied panel data settings. Among the many examples where the SYS GMM estimator has
been used are the estimation of production functions and technological spillovers using firm
level panel data (see e.g. Levinsohn and Petrin, 2003, and Griffith et al., 2006), the estimation
of demand for addictive goods using consumer level panel data (see e.g. Picone et al., 2004)
and the estimation of growth models using country-level panel data (see e.g. Levine et al., 2000,
and Bond et al., 2001). The country-level panel data in particular are characterized by highly
persistent series (e.g. output or financial data) and a relatively small number of countries and
time periods. The variance of the country effects is furthermore often expected to be quite high
relative to the variance of the transitory shocks. As we show here, these characteristics combined
may lead to a weak instrument problem also for the SYS GMM estimator.

For a simple cross-section linear IV model, a measure of the information content of the
instruments is the so-called concentration parameter (see e.g. Rothenberg, 1984). In this paper,
we calculate the expected concentration parameters for the LEV and DIF reduced form models in
a covariance stationary AR(1) panel data model. We do this per time period, i.e. we consider the
estimation of the parameter using the moment conditions for a single cross-section only for any
given time period. We show that the expected concentration parameters are equal in the LEV and
DIF models when the variance of the unobserved heterogeneity term that is constant over time
(σ 2

η ) is equal to the variance of the idiosyncratic shocks (σ 2
v ). This is exactly the environment

under which most Monte Carlo results were obtained that showed the superiority of the SYS
GMM estimator relative to the DIF GMM estimator. However, the equality in expectation of
the concentration parameters indicates that there is also a weak instrument problem in the LEV
model when the series are persistent.

If the expected concentration parameters are the same, why is it that the extra information
from the LEV moment conditions results in an estimator that has such superior finite sample
properties in terms of bias and rmse? We first of all show that the bias of the OLS estimators
in the DIF and LEV structural models are very different. The (absolute) bias of the LEV OLS
estimator is much smaller than that of the OLS estimator in the DIF model when the series are
very persistent. Using the results of higher-order expansions, we argue and show in Monte Carlo
simulations that the biases of the LEV and DIF cross-sectional 2SLS estimators, relative to the
biases of their respective OLS estimators, are the same when σ 2

η = σ 2
v . Therefore, the absolute

bias of the LEV 2SLS estimator is smaller than that of the DIF 2SLS estimator when the series
are persistent.

Further expansion results as in Morimune (1989) indicate that we can expect the size
distortions of the Wald tests to be similar in the cross-sectional 2SLS DIF and LEV models
when the expected concentration parameters are the same. This is confirmed by a Monte Carlo
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analysis. When the expected concentration parameters are small, which happens when the series
are very persistent, the size distortions of the Wald tests can become substantial. As the SYS
2SLS estimator is a weighted average of the DIF and LEV 2SLS estimators, with the weight on
the LEV moment conditions increasing with increasing persistence of the series, the results for
the SYS estimator mimic that of the LEV estimator quite closely.

The expectation of the LEV concentration parameter is larger than that of the DIF model
when σ 2

η is smaller than σ 2
v , and the relative biases of LEV and SYS 2SLS estimators are smaller

and the associated Wald tests perform better than those of DIF. The reverse is the case when σ 2
η is

larger than σ 2
v . Also, unlike for DIF, the LEV OLS bias increases with increasing variance ratio,

vr = σ 2
η /σ 2

v , and therefore the performances of the LEV and SYS 2SLS estimators deteriorate
with increasing vr. These results are shown to extend to the panel data setting when estimating
the model by GMM and are in line with the finite sample bias approximation results of Bun
and Kiviet (2006) and Hayakawa (2007), and with the findings from an extensive Monte Carlo
study by Kiviet (2007). Furthermore, our theoretical results provide a rationale for the poor
performance of the SYS GMM Wald test when data are persistent, as found by Bond and
Windmeijer (2005).

For the covariance stationary AR(1) panel data model our results therefore show that the
SYS GMM estimator has indeed a smaller bias and rmse than DIF GMM when the series are
persistent, but that this bias increases with increasing vr = σ 2

η /σ 2
v and can become substantial.

The Wald test can be severely size distorted for both DIF and SYS GMM with persistent data,
but the SYS Wald test size properties deteriorate further with increasing vr. These results follow
from the weak instrument problem that is also present in the LEV moment conditions.

The set-up of the paper is as follows. Section 2 introduces the AR(1) panel data model, the
moment conditions and GMM estimators. Section 3 briefly discusses the concentration parameter
in a simple cross-section setting. Section 4 calculates the expected concentration parameters for
the DIF and LEF models for cross-section analysis of the AR(1) panel data model, presents the
OLS biases and some Monte Carlo and theoretical results on (relative) biases and Wald tests size
distortions for the 2SLS estimators. Section 5 presents Monte Carlo and some analytical results
for the GMM panel data estimators. Section 6 concludes.

2. MODEL AND GMM ESTIMATORS

We consider the first-order autoregressive panel data model

yit = αyi,t−1 + uit, i = 1, . . . , n; t = 2, . . . , T ,

uit = ηi + vit,
(2.1)

where it is assumed that ηi and vit have an error components structure with

E(ηi) = 0, E(vit) = 0, E(vitηi) = 0, i = 1, . . . , n; t = 2, . . . , T , (2.2)

E(vitvis) = 0, i = 1, . . . , n and t �= s, (2.3)

and the initial condition satisfies

E(yi1vit) = 0, i = 1, . . . , n; t = 2, . . . , T . (2.4)
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Under these assumptions the following (T − 1)(T − 2)/2 linear moment conditions are valid:

E
(
yt−2

i �uit
) = 0, t = 3, . . . , T , (2.5)

where yt−2
i = (yi1, yi2, . . . , yit−2)′ and �uit = uit − ui,t−1 = �yit − α�yi,t−1.

Defining

Zdi =

⎡
⎢⎢⎢⎣

yi1 0 0 · · · 0 · · · 0

0 yi1 yi2 · · · 0 · · · 0

. . . · · · . · · · .

0 0 0 · · · yi1 · · · yiT −2

⎤
⎥⎥⎥⎦ ; �ui =

⎡
⎢⎢⎢⎢⎣

�ui3

�ui4

...

�uit

⎤
⎥⎥⎥⎥⎦ ,

moment conditions (2.5) can be more compactly written as

E
(
Z′

di�ui

) = 0, (2.6)

and the GMM estimator for α is given by (see e.g. Arellano and Bond, 1991):

α̂d = �y ′
−1ZdW

−1
n Z′

d�y

�y ′
−1ZdW

−1
n Z′

d�y−1
,

where �y = (�y ′
1,�y ′

2, . . . , �y ′
n)′,�yi = (�yi3,�yi4, . . . ,�yit)′,�y−1 the lagged version of

�y,Zd = (Z′
d1, Z

′
d2, . . . , Z

′
dn)′ and Wn is a weight matrix determining the efficiency properties

of the GMM estimator. Clearly, α̂d is a GMM estimator in the differenced model and we refer to it
as the DIF-GMM estimator, and moment conditions (2.5) or (2.6) as the DIF moment conditions.

Blundell and Bond (1998) exploit additional moment conditions from the assumption on the
initial condition (see Arellano and Bover, 1995) that

E(ηi�yi2) = 0, (2.7)

which holds when the process is mean stationary:

yi1 = ηi

1 − α
+ εi, (2.8)

with E(εi) = E(εiηi) = 0. If (2.2), (2.3), (2.4) and (2.7) hold, then the following (T − 1)(T −
2)/2 moment conditions are valid:

E
(
uit�yt−1

i

) = 0, t = 3, . . . , T , (2.9)

where �yt−1
i = (�yi2,�yi3, . . . ,�yit−1)′. Defining

Zli =

⎡
⎢⎢⎢⎣

�yi2 0 0 · · · 0 · · · 0

0 �yi2 �yi3 · · · 0 · · · 0

. . . · · · . · · · .

0 0 0 · · · �yi2 · · · �yiT −1

⎤
⎥⎥⎥⎦ ; ui =

⎡
⎢⎢⎢⎢⎣

ui3

ui4

...

uit

⎤
⎥⎥⎥⎥⎦ ,

moment conditions (2.9) can be written as

E
(
Z′

liui

) = 0, (2.10)
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with the GMM estimator based on these moment conditions given by

α̂l = y ′
−1ZlW

−1
n Z′

ly

y ′
−1ZlW

−1
n Z′

ly−1
,

where we will refer to α̂l as the LEV-GMM estimator, and (2.9) or (2.10) as the LEV moment
conditions.

The full set of linear moment conditions under assumptions (2.2), (2.3), (2.4) and (2.7) is
given by

E
(
yt−2

i �uit
) = 0 t = 3, . . . , T ;

E(uit�yi,t−1) = 0 t = 3, . . . , T ,
(2.11)

or

E
(
Z′

sipi

) = 0, (2.12)

where

Zsi =

⎡
⎢⎢⎢⎢⎣

Zdi 0 · · · 0

0 �yi2 0

. .
. . . .

0 0 · · · �yit

⎤
⎥⎥⎥⎥⎦ ; pi =

[
�ui

ui

]
.

The GMM estimator based on these moment conditions is

α̂s = q ′
−1ZsW

−1
n Z′

sq

q ′
−1ZsW

−1
n Z′

sq−1

with qi = (�y ′
i , y

′
i)

′. This estimator is called the system or SYS-GMM estimator, see Blundell
and Bond (1998), and we refer to moment conditions (2.11) or (2.12) as the SYS moment
conditions.

In most derivations below, we further assume that the initial observation is drawn from the
covariance stationary distribution, implying that E(ε2

i ) = σ 2
v

1−α2 in (2.8).

3. CONCENTRATION PARAMETER

Consider the simple linear cross-section model with one endogenous regressor x and kz

instruments z:

yi = xiβ + ui,

xi = z′
iπ + ξi,

(3.1)

for i = 1, . . . , n, where the (ui, ξi) are independent draws from a bivariate normal distribution
with zero means, variances σ 2

u and σ 2
ξ , and correlation coefficient ρ. The parameter β is estimated

by 2SLS:

β̂ = x ′PZy

x ′PZx
,

where PZ = Z(Z′Z)−1Z′.
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It is well known that when instruments are weak, i.e. when they are only weakly correlated
with the endogenous regressor, the 2SLS estimator can perform poorly in finite samples, see e.g.
Bound et al. (1995), Staiger and Stock (1997), Stock et al. (2002) and Stock and Yogo (2005).
With weak instruments, the 2SLS estimator is biased in the direction of the OLS estimator, and
its distribution is non-normal which affects inference using the Wald testing procedure.

A measure of the strength of the instruments is the concentration parameter, which is defined
as

μ = π ′Z′Zπ

σ 2
ξ

.

When it is evaluated at the OLS, first stage, estimated parameters

μ̂ = π̂ ′Z′Zπ̂

σ̂ 2
ξ

,

it is clear that μ̂ is equal to the Wald test for testing the hypothesis H0 : π = 0, and μ̂/kz equal
to the F-test statistic. Bound et al. (1995) and Staiger and Stock (1997) advocate use of the
first-stage F-test to investigate the strength of the instruments.

Rothenberg (1984) shows how the concentration parameter relates to the distribution of the
IV estimator by means of the following expansion:

β̂ = β + π ′Z′u + ξ ′PZu

π ′Z′Zπ + 2π ′Z′ξ + ξ ′PZξ
, (3.2)

and so

√
μ(β̂ − β) = σu

σξ

A + s√
μ

1 + 2
(

B√
μ

) + S
μ

,

where

A = π ′Z′u

σu

√
π ′Z′Zπ

; B = π ′Z′ξ

σξ

√
π ′Z′Zπ

;

s = ξ ′PZu

σξσu

; S = ξ ′Pξ

σ 2
ξ

.

(A,B) is bivariate normal with zero means, unit variances and correlation coefficient ρ. The
variable s has mean kzρ and variance kz(1 + ρ2) and S has mean kz and variance 2kz. It is clear
that when μ is large,

√
μ(β̂ − β) behaves like the N (0, σ 2

u /σ 2
ξ ) random variable.

The concentration parameter μ is a key quantity in describing the finite sample properties
of the IV estimator. The approximate bias of the 2SLS estimator can be obtained using higher-
order asymptotics based on the expansion in (3.2); see Nagar (1959), Buse (1992) and Hahn
and Kuersteiner (2002). Following Hahn and Kuersteiner (2002), the bias is derived from the
expansion

E(n1/2(β̂2SLS − β)) ≈ E

(
π ′zu

π ′Qπ

)
+ n−1/2

(
E

(
z′
ξQzu

π ′Qπ

)
− 2E

(
(π ′zξ )(π ′zu)

(π ′Qπ )2

))
, (3.3)
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where zu = 1√
n
Z′u, zξ = 1√

n
Z′ξ and Q = E( 1

n
ziz

′
i). It follows that the approximate bias of the

IV estimator can be expressed as

E(β̂2SLS) − β ≈ 1

n

(kz − 2)σuξ

π ′Qπ
= σuξ

σ 2
ξ

(kz − 2)

nE
(

1
n
μ

) . (3.4)

Hence the bias is inversely proportional to the value of the concentration parameter. It does
not only depend on the concentration parameter, but also on the number of instruments kz

and the degree of endogeneity embodied in the covariance σuξ . However, the relevance of the
concentration parameter for finite sample bias becomes even more pronounced when we consider
the absolute bias of the IV estimator, relative to that of the OLS estimator as defined by

RelBias = |E(β̂2SLS) − β|
|E(β̂OLS) − β| ,

see e.g. Bound et al. (1995). The bias of the OLS estimator can be approximated by (see e.g.
Hahn and Hausman, 2002):

E(β̂OLS) − β ≈ σuξ

π ′Qπ + σ 2
ξ

= σuξ

σ 2
ξ

1

E
(

1
n
μ

) + 1
,

which is equal to inconsistency of OLS. The relative bias is then approximately given by

RelBias ≈ (kz − 2)(E
(

1
n
μ

) + 1)

nE
(

1
n
μ

) , (3.5)

i.e. a function of E( 1
n
μ), n and kz only.

The concentration parameter is further an important element in describing size distortions
of t or Wald tests based on the 2SLS estimator. For μ large the standard 2SLS t-ratio for testing
H0 : β = β0 behaves approximately as standard normal. Morimune (1989) derives a higher-order
expansion of this conventional 2SLS t-ratio. Applying theorem 2 of Morimune (1989) we find
for the set-up with one endogenous regressor and no additional exogenous regressors that the
O(n−1/2) and O(n−1) terms in the expansion of the 2SLS t-statistic only depend on μ, kz and
ρuξ . The latter quantity is the correlation coefficient of u and ξ . Moreover, for a two-sided t-test
the O(n−1/2) term cancels in the approximation.

All results discussed above are based on conventional higher-order asymptotics, i.e. assuming
strong identification. Hence, these higher-order approximations may not always be informative
in case of weak instruments. However, regarding the relevance of the concentration parameter,
weak instrument asymptotics as derived by Staiger and Stock (1997) lead to similar conclusions
compared with conventional fixed-parameter higher-order asymptotics. Staiger and Stock
(1997) develop weak instrument asymptotics by setting π = πn = C/

√
n, in which case the

concentration parameter converges to a constant. They then show that 2SLS is not consistent
and has a non-standard asymptotic distribution. These results are of course different from
conventional asymptotics. However, Staiger and Stock (1997) show that the asymptotic bias
of the 2SLS estimator, relative to that of the OLS estimator again only depends on kz and μ.
Furthermore, the distributions of the 2SLS t-ratio and Wald statistic only depend on μ, kz and
ρuξ .

Summarizing, conventional first-order fixed-parameter asymptotics fail to give accurate
approximations in case of weak instruments. Inspired by Bound et al. (1995) and Staiger and
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Stock (1997) we use the concentration parameter to characterize relative bias and size distortions
of Wald tests. One can proceed either with higher-order fixed-parameter asymptotics or consider
weak instrument asymptotics. In the analysis below we have chosen the former approach. In

the panel AR(1) model weak instruments arise when α → 1 and/or
σ 2

η

σ 2
v

→ ∞. Kruiniger (2009)
applies ‘local to unity’ asymptotics and shows that the Staiger and Stock (1997) set-up does not
always apply straightforwardly to dynamic panel data models. More importantly, we find in our

cross-sectional simulations below a weak instrument problem already for α = 0.4 and
σ 2

η

σ 2
v

= 4,
with the relative bias well approximated by (3.5). Expansion (3.3) also allows us to approximate
the bias for less straightforward cases, like the cross-sectional system 2SLS estimator.

4. CROSS-SECTION RESULTS FOR THE AR(1) PANEL DATA MODEL

Although the data are not generated as in the cross-section model (3.1), we can write the
structural equation and the reduced form model for the AR(1) panel data model in first differences
for the cross-section at time t as

�yit = α�yi,t−1 + �uit,

�yi,t−1 = yt−2′
i πdt + di,t−1,

For the general expression of the expected value of the concentration parameter divided by n we
get

E

(
1

n
μdt

)
= π ′

dtE
(
yt−2

i yt−2′
i

)
πdt

σ 2
dt

.

For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit,

yi,t−1 = �yt−1′
i πlt + li,t−1

and the expected concentration parameter is given by

E

(
1

n
μlt

)
= π ′

ltE
(
�yt−1

i �yt−1′
i

)
πlt

σ 2
lt

.

In the Appendix we show that, under covariance stationarity of the initial observation,

E

(
1

n
μdt

)
= (1 − α)2

(
σ 2

v + (t − 3)σ 2
η

)
(1 − α2)σ 2

v + ((t − 1) − (t − 3)α)(1 + α)σ 2
η

and

E

(
1

n
μlt

)
= (t − 2)(1 − α)2σ 2

v

(1 − α2)σ 2
v + ((t − 1) − (t − 3)α)(1 + α)σ 2

η

,
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from which it follows that

E
(

1
n
μdt

)
E

(
1
n
μlt

) =
(
σ 2

v + (t − 3)σ 2
η

)
(t − 2)σ 2

v

= 1

t − 2

(
1 + (t − 3)

σ 2
η

σ 2
v

)
.

Therefore,

E

(
1

n
μdt

)
= E

(
1

n
μlt

)
if t = 3,

and for t > 3

E

(
1

n
μdt

)
> E

(
1

n
μlt

)
if σ 2

η > σ 2
v ,

E

(
1

n
μdt

)
= E

(
1

n
μlt

)
if σ 2

η = σ 2
v ,

E

(
1

n
μdt

)
< E

(
1

n
μlt

)
if σ 2

η < σ 2
v .

Figure 1 graphs the values of E( 1
n
μdt ) and E( 1

n
μlt ) as a function of α for t = 6 and various

values of
σ 2

η

σ 2
v

= { 1
4 , 1, 4}. The values of the concentration parameters decrease with increasing

α. The concentration parameter for the LEV model is much more sensitive to the value of the

variance ratio
σ 2

η

σ 2
v

than the concentration parameter of the DIF model.

4.1. Discussion

The fact that the concentration parameters are the same in expectation for the IV estimators based
on the DIF or LEV moment conditions for t = 3 and for t > 3 when σ 2

η = σ 2
v seems contrary

to the findings in Monte Carlo studies; see e.g. Blundell and Bond (1998) and Blundell et al.
(2000) who use a covariance stationary design with σ 2

η = σ 2
v = 1. In those simulation studies α̂l

outperforms α̂d in terms of bias and rmse, especially when the series become more persistent, i.e.
when α gets larger. The identification problem is apparent in the DIF model, where the reduced
form parameters approach zero when α approaches 1. This is in sharp contrast to the reduced
form parameters in the LEV model that approach 1

2 when α approaches 1. This was the argument
used by Blundell and Bond (1998) to assert the strength of the LEV moment conditions for the
estimation of α for larger values of α.

There are two questions to be addressed. First, why are the behaviours of the two estimators
so different in terms of bias and rmse when they have the same expected concentration
parameter? Second, how does the weak instrument problem in the LEV model manifest itself?

To answer the first question one has to realize that the structural models are different for DIF
and LEV, with different endogeneity problems. Therefore, different biases arise for both OLS
and 2SLS estimators in the two equations. For the DIF model

�yit = α�yi,t−1 + �uit,
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104 M. J. G. Bun and F. Windmeijer

Figure 1. E( 1
n
μ).

the OLS estimator for the cross-section at time t is given by

α̂dOLS = α + �y ′
t−1�ut

�y ′
t−1�yt−1

,

and the limiting bias of the OLS estimator is, again assuming covariance stationarity,

plim(α̂dOLS − α) = −1 + α

2
.

For the LEV model

yit = αyi,t−1 + ηi + vit,

the OLS estimator is given by

α̂lOLS = α + y ′
t−1ut

y ′
t−1yt−1

,

and the limiting bias of the OLS estimator is given by

plim(α̂lOLS − α) = (1 − α)

σ 2
η

σ 2
v

σ 2
η

σ 2
v

+ 1−α
1+α

,
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which reduces to plim(α̂lOLS − α) = (1 − α2)/2 when σ 2
η = σ 2

v . The asymptotic absolute bias of
α̂lOLS is therefore (much) smaller than that of α̂dOLS for high values of α.

Using (3.4) we can approximate the bias of the 2SLS estimator in the DIF model by

E(α̂d ) − α ≈ (kz − 2)
σ�u,d

σ 2
d

÷ E(μd ) = (t − 4)
σ�u,d

σ 2
d

÷ E(μd ), (4.1)

where we have suppressed the subscripts t for ease of exposition, and where

σ�u,d = E
((

�yi,t−1 − yt−2
i πd

)
�uit

) = −σ 2
v .

Therefore,

E(α̂d ) − α ≈ −(t − 4)σ 2
v ÷ nσ 2

v

(1 + α)2

(
1 − α2 − σ 2

η (1 + α)2

σ 2
v + σ 2

η

(
t − 3 + 1+α

1−α

)
)

= −(t − 4)
(1 + α)2

n
(

1 − α2 − σ 2
η (1+α)2

σ 2
v +σ 2

η (t−3+ 1+α
1−α )

) ,

where we have used the expressions for σ 2
d and E(μd ) from the Appendix. Equivalently for the

LEV model we get

E(α̂l) − α ≈ (t − 4)
σu,l

σ 2
l

÷ E(μl) (4.2)

with

σu,l = E
((

yi,t−1 − �yt−1
i πl

)
uit

) = σ 2
η

1 − α
,

and therefore

E(α̂l) − α ≈ (t − 4)σ 2
η

1 − α
÷ n(t − 2)σ 2

v

(1 + α)((t − 1) − (t − 3)α)

= t − 4

t − 2

σ 2
η

σ 2
v

(1 + α)((t − 1) − (t − 3)α)

n(1 − α)
.

Comparing these expressions is somewhat complicated but when σ 2
η = σ 2

v the absolute bias of
the LEV 2SLS estimator will tend to be smaller than that of the DIF estimator. The main reason
for this is that the absolute LEV OLS bias is smaller than the DIF OLS bias.

To answer the second question we now consider relative bias. Combining the results above
on absolute OLS and 2SLS bias we get for the approximate relative absolute bias

RelBiasd = |E(α̂d ) − α|
|E(α̂dOLS − α)| ≈ (t − 4)E

(
1
n
μd

) + 1

E(μd )

= 2(t − 4)
(1 + α)

n
(

1 − α2 − σ 2
η (1+α)2

σ 2
v +σ 2

η (t−3+ 1+α
1−α

)

) ,
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and

RelBiasl = |E(α̂l) − α|
|E(α̂lOLS − α)| ≈ (t − 4)E

(
1
n
μl

) + 1

E(μl)

= t − 4

t − 2

(
σ 2

η

σ 2
v

+ 1−α
1+α

)
(1 + α)((t − 1) − (t − 3)α)

n(1 − α)2
.

When σ 2
η = σ 2

v we have that E( 1
n
μd ) = E( 1

n
μl) and we expect therefore that the relative biases

are the same for the DIF and LEV 2SLS estimators. Indeed this is the case and it amounts to

RelBiasd = RelBiasl ≈ 2(t − 4)

t − 2

((t − 1) − (t − 3)α)

n(1 − α)2
.

Finally, as mentioned in Section 3, the finite sample behaviour of the Wald test depends on the
magnitude of the concentration parameter, the number of instruments and the correlation between
the model errors. It is easily verified that ρ2

�u,d = ρ2
u,l when σ 2

η = σ 2
v and therefore the size

distortions of the Wald test will be expected to be same for the DIF and LEV estimators in that
case. When σ 2

η < σ 2
v we have that both E(μd ) < E(μl) and that ρ2

�u,d > ρ2
u,l , and therefore the

Wald size distortion is expected to be smaller for the LEV estimator in that case. It is expected to
be smaller for the DIF estimator when σ 2

η > σ 2
v as then both E(μd ) > E(μl) and ρ2

�u,d < ρ2
u,l .

4.2. System estimator

For the cross-section at time t the SYS estimator combines the moment conditions of the DIF
and LEV estimators. The OLS estimator in the SYS ‘model’(

�yit

yit

)
= α

(
�yi,t−1

yi,t−1

)
+

(
�uit

uit

)
(4.3)

is given by

α̂sOLS = (
�y ′

t−1�yt−1 + y ′
t−1yt−1

)−1 (
�y ′

t−1�yt + y ′
t−1yt

)
and is clearly a weighted average of the DIF and LEV OLS estimators

α̂sOLS = γ̃ α̂dOLS + (1 − γ̃ )α̂lOLS,

where

γ̃ = �y ′
t−1�yt−1

�y ′
t−1�yt−1 + y ′

t−1yt−1

and

plim(γ̃ ) = 1 − α

3
2 − α + 1

2
σ 2

η

σ 2
v

1+α
1−α

.

The bias of the OLS estimator will therefore behave like the bias of the LEV OLS estimator
when α → 1 and/or σ 2

η /σ 2
v → ∞, as γ̃ → 0 in these cases. The asymptotic bias of α̂sOLS is
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given by

plim(α̂sOLS − α) =
(1 − α2)

(
α − 1 + σ 2

η

σ 2
v

)
(3 − 2α)(1 − α) + σ 2

η

σ 2
v

(1 + α)
.

We can express the limiting bias of the SYS OLS estimator as

plim(α̂sOLS) − α = (σ�u,d + σul)/
(
σ 2

d + σ 2
l

)
E

(
1
n
μs

) + 1
,

where

E

(
1

n
μs

)
= φE

(
1

n
μd

)
+ (1 − φ)E

(
1

n
μl

)

and

φ = σ 2
d(

σ 2
d + σ 2

l

) .

When σ 2
η = σ 2

v , we have then that E( 1
n
μs) = E( 1

n
μd ) = E( 1

n
μl). As

σ�u,d + σul = σ 2
η

1 − α
− σ 2

v

we see that the absolute SYS OLS bias is then (substantially) smaller than the DIF and LEV OLS
biases, and equal to 0 when α = 0.

Figure 2 shows the asymptotic biases of the DIF, LEV and SYS OLS estimators as a function
of α for different values of σ 2

η /σ 2
v = { 1

4 , 1, 4}. It is clear from this picture that the LEV and SYS
OLS biases are much smaller than the DIF OLS bias for higher values of α.

The SYS 2SLS estimator for cross-section t is also a weighted average of the DIF and LEV
cross-sectional 2SLS estimators

α̂s = δ̃α̂d + (1 − δ̃)α̂l,

where

δ̃ = π̂ ′
dZ

′
dZdπ̂d

π̂ ′
dZ

′
dZdπ̂d + π̂ ′

l Z
′
lZlπ̂l

;

see also Blundell et al. (2000); with

plim(δ̃) = E
(

1
n
μd

)
E

(
1
n
μd

) + σ 2
l

σ 2
d

E
(

1
n
μl

)
and again δ̃ → 0 if α → 1 and/or σ 2

η /σ 2
v → ∞. Clearly, the absolute bias of the SYS 2SLS

estimator will be smaller than the maximum of the absolute biases of the DIF and LEV 2SLS
estimators.

Combining the results of the OLS biases, values of the concentration parameters in the DIF
and LEV models and relative weights on the DIF and LEV moment conditions in the SYS 2SLS
estimator, we expect the absolute bias of the SYS estimator to be small for large values of α,
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Figure 2. Asymptotic biases of OLS estimators.

but that this bias is an increasing function of
σ 2

η

σ 2
v

. This happens because the bias of the LEV OLS

estimator is an increasing function of
σ 2

η

σ 2
v

, the LEV concentration parameter a decreasing function

of
σ 2

η

σ 2
v

, and the weight (1 − δ̃) an increasing function in
σ 2

η

σ 2
v

, implying that more weight will be
given to the LEV moment conditions.

The definition of μs above suggest a concentration parameter equivalent for the SYS model
given by

μs = π ′
dZ

′
dZdπd + π ′

l Z
′
lZlπl

σ 2
d + σ 2

l

.

However, in this case the value of μs does not directly convey the magnitude of the bias of the
2SLS estimator, relative to the bias of the OLS estimator. This is due to the additional covariance
terms of the reduced form errors d and l. As in (3.3), consider the approximation

E(n1/2(α̂s − α)) ≈ E

(
π ′

dzd,�u + π ′
l zl,u

π ′
dQdπd + π ′

l Qlπl

)

+ n−1/2E

(
z′
d,dQdzd,�u + z′

l,lQlzl,u

π ′
dQdπd + π ′

l Qlπl

)

− 2n−1/2E

((
π ′

dzd,d + π ′
l zl,l

) (
π ′

dzd,�u + π ′
l zl,u

)
(
π ′

dQdπd + π ′
l Qlπl

)2

)
,
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where za,b = 1√
n
Z′

ab. We then get the approximate bias expression for the SYS 2SLS estimator:

E(α̂s) − α ≈ 1

n

(t − 2)(σ�u,d + σul)

π ′
dQdπd + π ′

l Qlπl

− 2

n

(
σ 2

η /(1 − α)π ′
l Qlπl

) − σ 2
v π ′

dQdπd(
π ′

dQdπd + π ′
l Qlπl

)2

− 2

n
E

((
π ′

dzd,d

) (
π ′

l zl,u

) + (
π ′

l zl,l

) (
π ′

dzd,�u

)
(
π ′

dQdπd + π ′
l Qlπl

)2

)
. (4.4)

We calculate this approximate bias expression and the associated relative bias for the Monte
Carlo simulation example in the next section, where it is shown that the relative bias of the SYS
estimator is smaller than that of the LEV or DIF estimator when σ 2

η = σ 2
v even though in that

case E(μd ) = E(μl) = E(μs).
Clearly, the SYS 2SLS estimator is not efficient as there is heteroscedasticity and correlation

between the errors in model (4.3). We will focus on the 2SLS estimator here in the cross-section
analysis and consider the efficient two-step GMM estimator below when considering the full
panel data analysis.

4.3. Some Monte Carlo results

To investigate the finite sample behaviour of the estimators and Wald test statistics we conduct
the following Monte Carlo experiment. We compute the OLS and 2SLS estimators for LEV, DIF
and SYS for the cross-section t = 6 for the model specification

yi1 = ηi

1 − α
+ εi ;

yit = αyi,t−1 + ηi + vit;

εi ∼ n

(
0,

σ 2
v

1 − α2

)
; ηi ∼ N

(
0, σ 2

η

)
; vit ∼ N

(
0, σ 2

v

)
,

for sample size n = 200; σ 2
v = 1, and different values of α = {0.4, 0.8} and σ 2

η = { 1
4 , 1, 4}. Note

that in this design results depend only on the relative value vr = σ 2
η /σ 2

v , not the total variance
σ 2

η + σ 2
v . There are four instruments for the DIF and LEV 2SLS estimators, whereas the SYS

2SLS estimator is in this cross-sectional case based on the eight combined moment conditions.
Tables 1 and 2 present the estimation results for 10,000 Monte Carlo replications.

The results in Tables 1 and 2 confirm the findings and conjectures stated in the previous
sections. The DIF OLS (absolute) bias is larger than the LEV OLS bias in all cases, especially
when the series are more persistent when α = 0.8. The relative biases of the DIF and LEV 2SLS
estimators are, however, the same when vr = σ 2

η /σ 2
v = 1. These relative biases are equal to 0.052

and 0.057, respectively, when α = 0.4, in which case the expected concentration parameters
are equal to 46.75. The relative biases are larger, 0.310 and 0.312, respectively, when α = 0.8.
For this case the expected concentration parameters are much smaller and equal to 6.35, which
corresponds to a first-stage F-statistic of 6.35/4 = 1.58.

The relative bias of the DIF 2SLS estimator does not vary much with the different values of vr
when α = 0.4, whereas that of the LEV 2SLS estimator does. It is only 0.029 when vr = 1/4, but
increases to 0.169 when vr = 4. These are exactly in line with the larger variation in the values
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Table 1. Cross-section estimation results.

DIF LEV SYS

α vr Coeff. SD Coeff. SD Coeff. SD

0.4 1/4 OLS −0.300 0.067 0.621 0.056 0.224 0.057

2SLS 0.370 0.173 0.406 0.092 0.389 0.081

E(μ) 58.06 132.7

1 OLS −0.301 0.067 0.820 0.041 0.523 0.049

2SLS 0.364 0.189 0.424 0.113 0.404 0.095

E(μ) 46.75 46.75

4 OLS −0.301 0.067 0.942 0.024 0.812 0.029

2SLS 0.360 0.197 0.492 0.157 0.462 0.122

E(μ) 42.31 13.02

0.8 1/4 OLS −0.100 0.070 0.938 0.025 0.824 0.028

2SLS 0.597 0.404 0.815 0.084 0.793 0.083

E(μ) 9.15 20.92

1 OLS −0.100 0.070 0.980 0.014 0.938 0.015

2SLS 0.521 0.464 0.856 0.092 0.834 0.090

E(μ) 6.35 6.35

4 OLS −0.100 0.070 0.995 0.007 0.983 0.007

2SLS 0.484 0.485 0.932 0.085 0.917 0.079

E(μ) 5.45 1.68

Notes: Means and standard deviations (SD) of 10,000 estimates. vr = σ 2
η /σ 2

v . n = 200. t = 6.

Table 2. Bias approximations.

DIF LEV SYS

α vr Bias RelBias Bias RelBias Bias RelBias

0.4 1/4 −0.030 0.043 0.006 0.029 −0.011 0.063

−0.031 0.044 0.006 0.025 −0.012 0.068

1 −0.036 0.052 0.024 0.057 0.004 0.031

−0.037 0.053 0.022 0.053 0.003 0.021

4 −0.039 0.057 0.092 0.169 0.062 0.151

−0.040 0.057 0.089 0.164 0.065 0.157

0.8 1/4 −0.203 0.225 0.015 0.109 −0.007 0.314

−0.206 0.229 0.015 0.106 −0.010 0.403

1 −0.279 0.310 0.056 0.312 0.034 0.243

−0.293 0.325 0.059 0.325 0.033 0.241

4 −0.316 0.351 0.132 0.681 0.117 0.640

−0.339 0.377 0.234 1.203 0.208 1.140

Notes: Mean bias and relative bias from 10,000 estimates. RelBias = | ¯̂α2SLS − α|/| ¯̂αOLS − α|. Higher-order bias
approximations in italics. vr = σ 2

η /σ 2
v . n = 200. t = 6.
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of the expected concentration parameter for the LEV model. They are 132.7 when vr = 1/4 and
13.0 when vr = 4, compared to 58.1 and 42.3, respectively, for the DIF model. The absolute bias
of the DIF 2SLS estimator is smaller than that of the LEV 2SLS one when vr = 4, but larger in
the other cases.

When α = 0.8, there is a similar pattern to the results of the relative biases. For the LEV 2SLS
model it now decreases to 0.11 when vr = 1/4, with the expected concentration parameter equal
to 20.9. It increases to 0.68 when vr = 4 and the expected concentration parameter is only 1.68.
As explained before, we see that the weak instrument problem for the LEV moment conditions,
given α, becomes more severe with increasing vr. As both the OLS bias and the relative bias
increase with increasing vr, so does the absolute bias of the 2SLS estimator. When α = 0.8,
the absolute bias of the LEV 2SLS estimator ranges from 0.015 when vr = 1/4 to 0.132 when
vr = 4.

The SYS 2SLS estimator has a slightly smaller relative bias than the DIF and LEV ones when
vr = 1. It is 0.03 when α = 0.4 and 0.24 when α = 0.8. Unlike the results for the LEV 2SLS
estimator, the relative bias actually increases when vr = 1/4, although the absolute bias is quite
small, especially when α = 0.8. The relative bias is quite large in that case because the bias of
the SYS OLS estimator is very small. When vr = 4 the relative and absolute biases of the SYS
2SLS estimator are similar to that of the LEV 2SLS estimator, albeit slightly smaller.

Table 2 further shows that the higher-order bias and relative 2SLS bias approximations
calculated from (3.4) and (3.5) for DIF and LEV and from (4.4) for SYS are very accurate.
The exception is when the concentration parameter is very small for LEV when α = 0.8 and
vr = 4. Then the bias approximations indicate too high a bias for LEV and SYS.

Figures 3 and 4 display p-value plots for the Wald test for testing H0 : α = α0 with α0 the
true parameter value where vr = σ 2

η /σ 2
v . When vr = 1, the size properties of the Wald tests

based on the DIF and LEV 2SLS estimates are virtually identical, which is as expected as the
concentration parameters are equal in expectation as are the correlation coefficients of the model
errors. It is also clear that when α = 0.8, the size properties of the Wald tests are very poor, with
a large overrejection of the null reflecting the low value of the concentration parameters. The size
properties of the Wald test based on the SYS 2SLS estimation results are better than those based
on the DIF and LEV 2SLS results, but again very poor when α = 0.8. When vr = 1/4 the size
properties of the Wald tests based on the LEV and SYS 2SLS estimation results are quite good,
even when α = 0.8, whereas they are very poor when vr = 4. The Wald test results based on the
DIF 2SLS estimates are not very sensitive to the value of vr. These results are again in line with
expectation given the results of the previous section.

4.4. Mean stationarity only

In all the derivations so far we assumed covariance stationarity of the initial condition. When we
assume mean stationarity only, i.e.

yi1 = ηi

1 − α
+ εi

with E(ε2
i ) = σ 2

ε , we show in the Appendix that for t = 3

E

(
1

n
μl3

)
> E

(
1

n
μd3

)
if σ 2

ε <
σ 2

v

1 − α2
,

E

(
1

n
μl3

)
< E

(
1

n
μd3

)
if σ 2

ε >
σ 2

v

1 − α2
,
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Figure 3. Wald test p-value plots. H0 : α = 0.4.

so that, when t = 3, the expected concentration parameter for the LEV model is larger than
that of the DIF model when the variance of the initial condition is smaller than the covariance
stationary level and vice versa.

5. PANEL DATA ANALYSIS

The concept of the concentration parameter and its relationship to relative bias and size distortion
of the Wald test does not readily extend itself to general GMM estimation; see e.g. Stock and
Wright (2000) and Han and Phillips (2006). Estimation of the panel AR(1) model by 2SLS,
using all available time periods and the full set of sequential moment conditions for the DIF
and SYS models (2.6) and (2.12) will result in a weighted average of the period specific 2SLS
estimates. Weighting by the efficient weight matrix will lead to different results, but we expect
the weak instrument issues as documented in the previous section for the DIF and LEV cross-
sectional estimates to carry over to the linear GMM estimation. This is indeed confirmed by our
Monte Carlo results presented here.

Tables 3 and 4 presents Monte Carlo estimation results for the AR(1) model with normally
distributed ηi and vi , with n = 200, T = 6, α = 0.8 and vr = (0.25, 1, 4). We present 2SLS and
one-step and two-step GMM estimation results. We use for the initial weight matrix for the
one-step GMM DIF estimator Wn = ∑n

i=1 Z′
diAZdi , where A is a (T − 2) square matrix that has

2’s on the main diagonal, −1’s on the first subdiagonals, and zeros elsewhere. This is the efficient
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Figure 4. Wald test p-value plots. H0 : α = 0.8.

weight matrix for the DIF moment conditions when the vit are homoscedastic and not serially
correlated, as is the case here. For the one-step GMM SYS estimator we use the commonly used
initial weight matrix Wn = ∑n

i=1 Z′
siHZsi , where H is a 2(T − 2) square matrix

H =
[

A 0

0 IT −2

]
,

where IT −2 is the identity matrix of order T − 2.
The pattern of results for the 2SLS estimates is quite similar to that found for the t = 6 cross-

section as reported in Table 1. The DIF 2SLS estimator displays somewhat larger relative biases,
whereas the LEV 2SLS estimator has smaller relative biases than in the cross-section. SYS has
smaller relative and absolute biases at vr = 1 and vr = 4, but the direction of the biases remains
the same.

Use of the efficient initial weight matrix reduces the bias of the one-step GMM DIF estimator
significantly. This is due to the fact that the comparison bias is now no longer the OLS bias in
the first differenced model, but the bias of the within groups estimator, which is smaller. There is
no clear pattern to the bias of the SYS one- and two-step GMM estimators in comparison to the
2SLS estimator.

Figure 5 displays the p-value plots of the Wald tests for testing H0 : α = 0.8 based on the DIF
and SYS GMM estimation results when T = 6 with vr = σ 2

η /σ 2
v , where the Wald tests based on
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Table 3. Panel data estimation results.

DIF LEV SYS

Coeff. SD Coeff. SD Coeff. SD

vr = 1/4

OLS −0.100 0.033 0.938 0.011 0.824 0.018

2SLS 0.581 0.162 0.812 0.056 0.779 0.074

One-step 0.734 0.131 0.798 0.067

Two-step 0.734 0.140 0.812 0.060 0.797 0.060

vr = 1

OLS −0.100 0.033 0.980 0.006 0.938 0.009

2SLS 0.469 0.212 0.850 0.068 0.813 0.079

One-step 0.672 0.181 0.830 0.073

Two-step 0.664 0.201 0.844 0.042 0.818 0.068

vr = 4

OLS −0.100 0.033 0.995 0.003 0.983 0.004

2SLS 0.401 0.240 0.924 0.069 0.889 0.075

One-step 0.618 0.213 0.900 0.070

Two-step 0.601 0.241 0.913 0.079 0.884 0.079

Note: Means and standard deviations (SD) of 10,000 estimates. n = 200. T = 6. α = 0.8.

Table 4. Bias and relative bias.

DIF LEV SYS

vr Bias RelBias Bias RelBias Bias RelBias

1/4 −0.219 0.244 0.012 0.086 −0.021 0.887

1 −0.331 0.367 0.050 0.279 0.013 0.093

4 −0.399 0.443 0.124 0.637 0.089 0.488

Notes: Mean and relative bias from 10,000 estimates. RelBias = | ¯̂α2SLS − α|/| ¯̂αOLS − α|. T = 6. α = 0.8.

the two-step GMM results use the Windmeijer (2005) corrected variance estimates. The pattern
of size properties is very similar to that for the cross-section analysis. The Wald test based on
the SYS GMM estimation results has better size properties than that based on the DIF GMM
estimation results when vr = 0.25, especially for the one-step SYS GMM estimator. The size
behaviours are very similar when vr = 1, but the SYS Wald tests size properties are much worse
than that of the DIF Wald tests when vr = 4.

As for the cross-sectional SYS estimator, we can start with the bias of the panel DIF OLS
estimator in order to obtain a suggestion for a concentration parameter.

plim (α̂dOLS) − α = − (T − 2) σ 2
v∑T

t=3 π ′
dtQdtπdt + ∑T

t=3 σ 2
dt

,
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Figure 5. Wald test p-value plots. H0 : α = 0.8.

suggesting a concentration parameter defined as

μd =
∑T

t=3 π ′
dtZ

′
dtZdtπdt∑T

t=3 σ 2
dt

.

For the 2SLS bias we get

E
(
n1/2 (α̂d − α)

) ≈ E

(
π ′

dzd,�u

π ′
dQdπd

)

+ n−1/2

(
E

(
z′
d,dQdzd,�u

π ′
dQdπd

)
− 2E

((
π ′

dzd,d

) (
π ′

dzd,�u

)
(
π ′

dQdπd

)2

))
,

E (α̂d ) − α ≈ −1

n

((T − 1) (T − 2) /2 − 2)σ 2
v

π ′
dQdπd

− 2

n
E

(∑T
t=3

∑
j �=t

(
π ′

dt zd,dt

) (
π ′

dj zd,�uj

)
(
π ′

dQdπd

)2

)
.

As before for the SYS cross-sectional 2SLS estimator, the concentration parameter μd does
not convey all the information concerning the relative bias of the 2SLS estimator, due to the
additional covariance terms in the expansion. Equivalent results can be obtained for the panel
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LEV and panel SYS 2SLS estimators. For the efficient one-step panel DIF GMM estimator,
similar expansions can be derived, but now for the model where the individual data in the model
is premultiplied by A−1/2, but the instruments by A1/2.

5.1. Bias approximations for panel 2SLS estimators

Although the concept of concentration parameter does not automatically extend to panels it is
possible to analyse absolute and relative bias of panel estimators of α. We now consider panel IV
estimators, i.e. exploiting the identity weight matrix in the definitions of α̂d and α̂l . Hence, the
WN matrix is of the simple form Z′Z. We analyse the DIF and LEV panel IV estimators using
results from Alvarez and Arellano (2003) and Hayakawa (2008), respectively. In those studies
probability limits of the DIF and LEV panel IV estimators have been derived assuming both T
and n growing large with T /n → c, 0 ≤ c < ∞. Regarding the panel DIF 2SLS estimator from
theorem 4 of Alvarez and Arellano (2003) we have

plim(α̂d − α) = −1 + α

2

(
c

2 − (1 + α)(2 − c)/2

)
,

while for the panel LEV 2SLS estimator using theorem 3 of Hayakawa (2008) we have

plim(α̂l − α) =
c
2

σ 2
η

σ 2
v

(
1

1−α

)
c
2

σ 2
η

σ 2
v

(
1

1−α

)2 + 1
1−α2

.

Hence, for both T and n large panel IV estimators are inconsistent. Comparing these asymptotic
2SLS biases with the limiting biases of OLS (see Section 4.1 for analytical expressions) we find

that for
σ 2

η

σ 2
v

= 1 relative bias for DIF and LEV is equal and amounts to

c
c
2 (1 + α) + 1 − α

.

Furthermore, relative bias for LEV is larger than DIF when
σ 2

η

σ 2
v

> 1 and vice versa. Hence, these
results for panel IV estimators mimic the cross-sectional results on relative bias as discussed in
Section 4.

Panel 2SLS estimators can be expressed as a weighted average of period specific 2SLS
estimators. This suggests that cross-section-based concentration parameters as derived in the
previous section are also informative about absolute and relative 2SLS bias when exploiting
the whole panel. This conjecture is correct as we will now show. The above results of Alvarez
and Arellano (2003) and Hayakawa (2008) can be interpreted as the 2SLS inconsistency under
many instrument asymptotics. Hence, the bias of panel 2SLS estimators when the number of
instruments is reasonably large can be approximated by

E (α̂d − α) ≈
E

(
�y ′

−1Zd

(
Z′

dZd

)−1
Z′

d�u
)

E
(
�y ′

−1Zd

(
Z′

dZd

)−1
Z′

d�y−1

) ,

E (α̂l − α) ≈
E

(
y ′

−1Zl

(
Z′

lZl

)−1
Z′

lu
)

E
(
y ′

−1Zl

(
Z′

lZl

)−1
Z′

ly−1

) .
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Table 5. Panel data estimation results.

DIF LEV SYS

Coeff. SD Coeff. SD Coeff. SD

vr = 1/4

OLS −0.100 0.019 0.938 0.007 0.824 0.014

2SLS 0.426 0.069 0.828 0.024 0.730 0.041

One-step 0.767 0.034 0.793 0.029

Two-step 0.766 0.039 0.822 0.027 0.796 0.027

vr = 1

OLS −0.100 0.019 0.980 0.003 0.938 0.006

2SLS 0.374 0.075 0.880 0.027 0.776 0.043

One-step 0.757 0.040 0.819 0.031

Two-step 0.754 0.046 0.866 0.032 0.816 0.030

vr = 4

OLS −0.100 0.019 0.995 0.001 0.983 0.002

2SLS 0.355 0.078 0.946 0.023 0.868 0.039

One-step 0.751 0.042 0.882 0.031

Two-step 0.748 0.048 0.935 0.031 0.877 0.033

Notes: Means and standard deviations (SD) of 10,000 estimates. vr = σ 2
η /σ 2

v . n = 200. T = 15. α = 0.8.

Table 6. Panel bias approximations.

DIF LEV SYS

T vr Bias RelBias Bias RelBias Bias RelBias

6 1/4 −0.219 0.244 0.012 0.086 −0.021 0.887

−0.227 0.252 0.023 0.164 −0.017 0.673

1 −0.331 0.367 0.050 0.279 0.013 0.093

−0.339 0.377 0.068 0.377 0.028 0.203

4 −0.399 0.443 0.124 0.637 0.089 0.488

−0.407 0.453 0.134 0.691 0.107 0.583

15 1/4 −0.374 0.416 0.028 0.200 −0.070 2.960

−0.376 0.418 0.031 0.227 −0.069 2.813

1 −0.426 0.473 0.080 0.445 −0.024 0.174

−0.428 0.475 0.086 0.475 −0.020 0.145

4 −0.445 0.495 0.146 0.752 0.068 0.370

−0.447 0.497 0.150 0.770 0.075 0.409

Notes: Mean and relative bias from 10,000 estimates. RelBias = | ¯̂α2SLS − α|/| ¯̂αOLS − α|. Bias approximations in
italics. vr = σ 2

η /σ 2
v . α = 0.8.
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The above expressions are basically an evaluation of the expected value of the leading term
(inconsistency) in an asymptotic expansion of the estimation error under many instruments. In
the Appendix, we show that

E (α̂d − α) ≈ 0.5(T − 1)(T − 2)σ�u,d∑T
t=3 σ 2

dt (E (μdt ) + (t − 2))
,

E (α̂l − α) ≈ 0.5(T − 1)(T − 2)σu,l∑T
t=3 σ 2

lt (E (μlt ) + (t − 2))
.

Indeed cross-section-specific concentration parameters appear in these bias approximations.
Although analytically no tractable expression results it is interesting that regarding relative bias
numerically the same pattern as in the pure cross-section case emerges. In other words, relative
bias for panel DIF is larger than for panel LEV when σ 2

η < σ 2
v and vice versa. And when the

variance ratio σ 2
η /σ 2

v is equal to 1 we have that the relative biases for the estimators are equal.
Regarding the panel SYS 2SLS estimator we can proceed in a similar way and evaluate

E(α̂s − α) ≈ E
(
q ′

−1Zs

(
Z′

sZs

)−1
Z′

sp
)

E
(
q ′

−1Zs

(
Z′

sZs

)−1
Z′

sq−1
) .

In the Appendix, we show that

E (α̂s − α) ≈ 0.5(T − 1)(T − 2)σ�u,d + (T − 2)σu,l∑T
t=3 σ 2

dt (E (μdt ) + (t − 2)) + ∑T
t=3 σ 2

lt (E (μlt ) + 1)
.

We expect the bias approximations of the panel IV estimators to work well when at least T is
moderately large compared with n. Table 5 presents estimation results for the panel data Monte
Carlo exercise when T = 15. Table 6 further presents the bias approximations. As expected, we
now find that the relative biases of the DIF and LEV estimators are virtually identical for T = 15.
We also include those for T = 6. These results corroborate our large T theoretical findings, with
reasonable approximations even when T = 6, especially for DIF.

6. CONCLUSIONS

We have shown that the concentration parameters in the reduced forms of the DIF and LEV cross-
sectional models are the same in expectation when the variances of the unobserved heterogeneity
(σ 2

η ) and idiosyncratic errors (σ 2
v ) are the same in the covariance stationary AR(1) model. The

LEV concentration parameter is smaller than the DIF one if σ 2
η > σ 2

v and it is larger if σ 2
η < σ 2

v .
Therefore, the well-understood weak instrument problem in the DIF model also applies to the
LEV model, especially when σ 2

η ≥ σ 2
v , with both concentration parameters decreasing in value

with increasing persistence of the data series. The weak instrument problem does manifest itself
in the magnitude of the bias of 2SLS relative to that of OLS, which we show are equal for DIF and
LEV when σ 2

η = σ 2
v . The LEV 2SLS estimator has a smaller finite sample performance in terms

of bias though, because the OLS bias of the LEV structural equation is smaller than that of DIF,
especially when the series are persistent. The weak instrument problem further manifests itself in
poor performances of the Wald tests, which we show to have the same size distortions in the DIF
and LEV models when σ 2

η = σ 2
v . Although our theoretical results do not apply automatically to
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GMM-based inference (Kiviet, 2008) we show by simulation that these properties generalize to
the system GMM estimator.

Having established this potential weak instrument problem for the system GMM estimator,
for inference one should therefore consider use of testing procedures that are robust to the
weak instruments problem. The Kleibergen (2005) Lagrange Multiplier test and his GMM
extension of the Conditional Likelihood Ratio test of Moreira (2003) are possible candidates,
as is the Stock and Wright (2000) GMM version of the Anderson–Rubin statistic. Newey and
Windmeijer (2009) show that the behaviours of these test statistics are not only robust to weak
instrument asymptotics, they are also robust to many weak instrument asymptotics, where the
number of instruments grow with the sample size, but with the model bounded away from non-
identification. Newey and Windmeijer (2009) also propose use of the continuous updated GMM
estimator (CUE, Hansen et al., 1996) with a new variance estimator that is valid under many
weak instrument asymptotics. They show that the Wald test using the CUE estimation results
and their proposed variance estimator performs well in a static panel data model estimated in
first differences. As the number of potential instruments in this panel data setting grow quite
rapidly with the time dimension of the panel, this may be a sensible approach also for the system
moment conditions.

As a final remark, the direction of the biases of the DIF (downward) and LEV (upward)
GMM estimators in the AR(1) panel data model are quite specific to this model specification. In
different models these biases may be different and the SYS GMM estimator may have a larger
absolute bias than the DIF GMM estimator. For example, in the static panel data model

yit = xitβ + ηi + vit,

xit = ρxi,t−1 + γ ηi + δvit + wit,

the DIF GMM estimator may have a smaller finite sample bias than the SYS GMM estimator
when the xit series are persistent, but |δ| is small and |γ | is large, as then the endogeneity problem
and OLS bias in the DIF model may be less than that of the LEV model.
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APPENDIX

A.1. Concentration parameters in cross-section analysis

The model in first differences for the cross-section at time t is given by

�yit = α�yi,t−1 + �uit

�yi,t−1 = yt−2′
i πdt + di,t−1.

For the general expression of the expected value of the concentration parameter divided by n we get

E

(
1

n
μdt

)
= π ′

dtE
(
yt−2

i yt−2′
i

)
πdt

σ 2
dt

but as

πdt = [
E

(
yt−2

i yt−2′
i

)]−1
E

(
yt−2

i �yi,t−1

)
and

σ 2
dt = E

((
�yi,t−1 − yt−2′

i πdt

)2
)

we get

E

(
1

n
μdt

)
=

(
E

(
yt−2

i �yi,t−1

))′ [
E

(
yt−2

i yt−2′
i

)]−1
E

(
yt−2

i �yi,t−1

)
E

(
�y2

i,t−1

) − (
E

(
yt−2

i �yi,t−1

))′ [
E

(
yt−2

i yt−2′
i

)]−1
E

(
yt−2

i �yi,t−1

) .

Under covariance stationarity

E
(
yt−2

i yt−2′
i

) = σ 2
η

(1 − α)2 ιt−2ι
′
t−2 + σ 2

v

1 − α2
Gt−2,
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where

Gt−2 =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 α · · · αt−3

α 1
...

...
. . . α

αt−3 · · · α 1

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The inverse of E(yt−2
i yt−2′

i ) is given by (see e.g. Ridder and Wansbeek, 1990):

[
E

(
yt−2

i yt−2′
i

)]−1 = 1

σ 2
v

[
R′

t−2Rt−2 − σ 2
η ht−2h

′
t−2

σ 2
v + σ 2

η

(
t − 3 + 1+α

1−α

)
]

,

where

Rt−2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 −α 0 0

0 1 −α

. . .
. . .

1 −α

0 0
√

1 − α2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

; ht−2 = (1 − α) ιt−2 + α (e1 + et−2)

and ej is the jth unit vector of order t − 2.
We further have that

E
(
yt−2

i �yi,t−1

) = − σ 2
v

1 + α
gt−2,

where

gt−2 =

⎡
⎢⎢⎢⎢⎢⎣

αt−3

...

α

1

⎤
⎥⎥⎥⎥⎥⎦ .

As

Rt−2gt−2 =

⎡
⎢⎢⎢⎢⎢⎣

0

...

0√
1 − α2

⎤
⎥⎥⎥⎥⎥⎦ ; h′

t−2gt−2 = 1 + α

and so (
E

(
yt−1

i �yi,t−1

))′ [
E

(
yt−2

i yt−2′
i

)]−1
E

(
yt−2

i �yi,t−1

)
= σ 2

v

(1 + α)2

(
1 − α2 − σ 2

η (1 + α)2

σ 2
v + σ 2

η

(
t − 3 + 1+α

1−α

)
)

.

Further

E
(
�y2

i,t−1

) = 2σ 2
v

1 + α
.
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Combining these results in

E

(
1

n
μdt

)
=

σ 2
v

(1+α)2

(
1 − α2 − σ 2

η (1+α)2

σ 2
v +σ 2

η

(
t−3+ 1+α

1−α

)
)

2σ 2
v

1+α
− σ 2

v

(1+α)2

(
1 − α2 − σ 2

η (1+α)2

σ 2
v +σ 2

η

(
t−3+ 1+α

1−α

)
)

=
1 − α2 − σ 2

η (1+α)2

σ 2
v +σ 2

η

(
t−3+ 1+α

1−α

)

2 (1 + α) −
(

1 − α2 − σ 2
η (1+α)2

σ 2
v +σ 2

η

(
t−3+ 1+α

1−α

)
)

=
(
1 − α2

) (
σ 2

v + σ 2
η

(
t − 3 + 1+α

1−α

)) − σ 2
η (1 + α)2

(1 + α)2
(
σ 2

v + σ 2
η

(
t − 3 + 1+α

1−α

)) + σ 2
η (1 + α)2

= (1 − α)
(
σ 2

v + (t − 3) σ 2
η

)
(1 + α)

(
σ 2

v + σ 2
η

(
t − 2 + 1+α

1−α

))
= (1 − α)2

(
σ 2

v + (t − 3) σ 2
η

)
(
1 − α2

)
σ 2

v + ((t − 1) − (t − 3) α) (1 + α) σ 2
η

.

For the model in levels we have for the cross-section at time t

yit = αyi,t−1 + ηi + vit,

yi,t−1 = �yt−1′
i πlt + li,t−1,

and the expected concentration parameter is given by

E

(
1

n
μlt

)
=

(
E

(
yi,t−1�yt−1

i

))′ [
E

(
�yt−1

i �yt−1′
i

)]−1
E

(
yi,t−1�yt−1

i

)
E

(
y2

i,t−1

) − (
E

(
yi,t−1�yt−1

i

))′ [
E

(
�yt−1

i �yt−1′
i

)]−1
E

(
yi,t−1�yt−1

i

) .

Again, under covariance stationarity, we have that

E
(
�yt−1

i �yt−1′
i

) = σ 2
v

1 + α
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 α − 1 α (α − 1) · · · αt−4 (α − 1)
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αt−4 (α − 1) · · · α (α − 1) α − 1 2
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and

E
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i

) = σ 2
v

1 + α
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It then follows that

E
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yi,t−1�yt−1

i
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E

(
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(1 + α) ((t − 1) − (t − 3) α)
.
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As

E
(
y2

i,t−1

) = σ 2
η

(1 − α)2 + σ 2
v

1 − α2

we get that

E
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1
n
μlt

) =
(t−2)σ 2

v

(1+α)((t−1)−(t−3)α)

σ 2
η
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v
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− (t − 2) σ 2

v

= (t − 2) (1 − α)2 σ 2
v

((t − 1) − (t − 3) α)
(
(1 + α) σ 2

η + (1 − α) σ 2
v

) − (t − 2) (1 − α)2 σ 2
v

= (t − 2)(1 − α)2σ 2
v

(1 − α2)σ 2
v + ((t − 1) − (t − 3)α)(1 + α)σ 2

η

.

A.2. Mean stationarity only

We now relax the assumption of covariance stationarity, while maintaining mean stationarity, i.e. we specify
the initial condition as

yi1 = ηi

1 − α
+ εi

with E(ε2
i ) = σ 2

ε .
For t = 3, we get in this case

πd3 = E (y1�y2)

E
(
y2

1

) = − (1 − α) σ 2
ε

σ 2
η

(1−α)2 + σ 2
ε

= − (1 − α) σ 2
ε

σ 2
y1

σ 2
d3 = E (�y2)2 − 2πd3E (y1�y2) + π 2

d3E
(
y2

1

)
= σ 2

v + (1 − α)2 σ 2
ε + πd3 (1 − α) σ 2

ε

μd3 = π 2
d3y

′
1y1

σ 2
d3

= π 2
d3

σ 2
v + (1 − α)2 σ 2

ε + πd3 (1 − α) σ 2
ε

y ′
1y1.

E
(

1
n
μd3

) =

(
(1−α)σ 2

ε

σ 2
y1

)2

σ 2
v + (1 − α)2 σ 2

ε − ((1−α)σ 2
ε )2

σ 2
y1

σ 2
y1

=
((1−α)σ 2

ε )2

σ 2
y1

σ 2
v + (1 − α)2 σ 2

ε − ((1−α)σ 2
ε )2

σ 2
y1

.
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For the levels model we get

πl3 = E (y2�y2)

E
(
(�y2)2

)
= σ 2

v − α (1 − α) σ 2
ε

σ 2
v + (1 − α)2 σ 2

ε

and

σ 2
l3 = E

(
y2

2

) − πl3E (y2�y2)

= σ 2
η

(1 − α)2 + σ 2
v + α2σ 2

ε −
(
σ 2

v − α (1 − α) σ 2
ε

)2

σ 2
v + (1 − α)2 σ 2

ε

.

The concentration parameter is therefore given by

μl3 = π 2
l3�y ′

2�y2

σ 2
l3

=
(

σ 2
v −α(1−α)σ 2

ε

σ 2
v +(1−α)2σ 2

ε

)2

σ 2
η

(1−α)2 + σ 2
v + α2σ 2

ε − (σ 2
v −α(1−α)σ 2

ε )2

σ 2
v +(1−α)2σ 2

ε

�y ′
2�y2

and so

E

(
1

n
μl3

)
=

(σ 2
v −α(1−α)σ 2

ε )2

σ 2
v +(1−α)2σ 2

ε

σ 2
η

(1−α)2 + σ 2
v + α2σ 2

ε − (σ 2
v −α(1−α)σ 2

ε )2

σ 2
v +(1−α)2σ 2

ε

.

Calculating these expectations shows that E( 1
n
μl3) > E( 1

n
μd3) if σ 2

ε <
σ 2
v

1−α2 and E( 1
n
μl3) < E( 1

n
μd3) if

σ 2
ε >

σ 2
v

1−α2 , i.e. the expected concentration parameter in the levels model is larger than that of the differenced
model if the variance of the initial condition is smaller than the covariance stationary level and vice versa.

A.3. Bias approximations for panel 2SLS estimators

We will first evaluate the bias approximation for the panel DIF estimator. Note that due to the block-diagonal
structure of the Zdi instrument matrix we have(

Z′
dZd

)−1 = diag
[(

Z′
d3Zd3

)−1
, . . . ,

(
Z′

dT ZdT

)−1
]
,

where the n × (t − 2) matrix Zdt is yt−2 = (yt−2
1 , . . . , yt−2

n )′. Hence, we can write

�y ′
−1Zd

(
Z′

dZd

)−1
Z′

d�y−1 =
T∑

t=3

�y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�yt−1,

�y ′
−1Zd

(
Z′

dZd

)−1
Z′

d�u =
T∑

t=3

�y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�ut .

Exploiting �yt−1 = Zdtπdt + dt−1 and defining Pdt = Zdt (Z′
dtZdt )−1Z′

dt we have

E
(
�y ′

t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�yt−1

)
= π ′

dtE
(
Z′

dtZdt

)
πdt + E

(
d ′

t−1Pdtdt−1

)
= σ 2

dt (E (μdt ) + (t − 2)).
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The expectation of the numerator of the estimation error is

E
(
�y ′

t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�ut

)
= σ�u,d (t − 2).

Combining results we have

E (α̂d − α) ≈
∑T

t=3 σ�u,d (t − 2)∑T

t=3 σ 2
dt (E (μdt ) + (t − 2))

= 0.5(T − 1)(T − 2)σ�u,d∑T

t=3 σ 2
dt (E (μdt ) + (t − 2))

.

The bias approximation for the panel LEV estimator can be derived in the same way. Regarding the
SYS estimator we can write

q ′
−1Zs

(
Z′

sZs

)−1
Z′

sq−1 =
T∑

t=3

�y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�yt−1 +
T∑

t=3

y ′
t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt yt−1,

q ′
−1Zs

(
Z′

sZs

)−1
Z′

sp =
T∑

t=3

�y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�ut +
T∑

t=3

y ′
t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt ut .

It should be noted that only the non-redundant LEV moment conditions have been used in system
estimation. In other words, Zli and, hence, Zlt in system estimation are defined as

Zli =

⎡
⎢⎢⎢⎢⎢⎣

�yi2 0 · · · 0

0 �yi3 · · · 0

. . · · · .

0 0 · · · �yiT −1

⎤
⎥⎥⎥⎥⎥⎦ , Zlt =

⎡
⎢⎢⎢⎢⎢⎣

�y1,t−1

�y2,t−1

.

�yn,t−1

⎤
⎥⎥⎥⎥⎥⎦ ,

hence we exploit one instrument per period only. As a result we have

E
(
y ′

t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt yt−1

)
= π ′

ltE
(
Z′

ltZlt

)
πlt + E

(
l′t−1Plt lt−1

)
= σ 2

lt (E (μlt ) + 1)

and

E
(
�y ′

t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt ut

)
= σu,l .

Combining results we find

E (α̂s − α) ≈
E

(∑T

t=3 �y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�ut + ∑T

t=3 y ′
t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt ut

)
E

(∑T

t=3 �y ′
t−1Zdt

(
Z′

dtZdt

)−1
Z′

dt�yt−1 + ∑T

t=3 y ′
t−1Zlt

(
Z′

ltZlt

)−1
Z′

lt yt−1

)

= 0.5(T − 1)(T − 2)σ�u,d + (T − 2)σu,l∑T

t=3 σ 2
dt (E (μdt ) + (t − 2)) + ∑T

t=3 σ 2
lt (E (μlt ) + 1)

.
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