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Summary The objective of the paper is to investigate and compare the performance of
some of the unit root tests in micropanels, which have been suggested in the literature.
The framework is a first-order autoregressive panel data model allowing for heterogeneity
in the intercept but not in the autoregressive parameter. The tests are all based on usual
t-statistics corresponding to least squares estimators of the autoregressive parameter resulting
from different transformations of the observed variables. The performance of the tests is
investigated and compared by deriving the local power of the tests when the autoregressive
parameter is local-to-unity. The results show that the assumption concerning the initial values
is extremely important in this matter. The outcome of a simulation experiment demonstrates
that the local power of the tests provides a good approximation to their actual power in finite
samples.
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1. INTRODUCTION

In this paper, we investigate unit root inference in panel data models where the cross-section
dimension is much larger than the time-series dimension. So we consider traditional micropanels.
At present there is a large econometric literature dealing with unit root testing in panel data
models which has developed during the last 10 years. Contrary to the previous literature on
dynamic panel data models, a large part of this new literature considers macropanels where the
cross-section and time-series dimensions are similar in magnitude. Banerjee (1999), Baltagi and
Kao (2000) and Breitung and Pesaran (2008) review many of the contributions to the literature
on unit root testing in panel data models. Reviews of the literature on dynamic micropanels are
provided in Hsiao (1986), Baltagi (1995) and Arellano (2003) of which only the latter discusses
the issue of unit roots.

The analysis in this paper is done within the framework of a first-order autoregressive
panel data model allowing for individual-specific levels. This means that we are testing the
null hypothesis of each time-series process being a random walk without drift against the
alternative hypothesis of each time-series process being stationary with individual-specific levels
but the same autoregressive parameter for all cross-section units. In the autoregressive panel
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data model there are two sources of persistency. One is the autoregressive mechanism which is
the same for all cross-section units and the other is the unobserved individual-specific means.
Everything else being equal, a high value of the autoregressive parameter means that more
persistency is attributed to the autoregressive mechanism. The null hypothesis means that the
effect of unanticipated shocks will persist over time, whereas the alternative hypothesis means
that the effect will eventually disappear as time goes by. The hypothesis is of interest since many
economic variables at the individual level, such as income of individuals and firm-level variables,
are found to be highly persistent over time.

The main contribution of the paper is to provide analytical results about the performance of
some of the unit root tests which have been suggested in the literature. This is done by deriving
the limiting distributions of the corresponding test statistics under local alternatives when the
autoregressive parameter is local-to-unity. The results are used to compare the performance of
the different tests in terms of their local power. In addition, the results reveal how the local power
of the tests is affected by the nuisance parameters of the data-generating process (DGP). So far
the power properties of unit root tests in micropanels have been investigated and compared in
simulation studies; see, for example, Bond et al. (2002) and Hall and Mairesse (2005). However,
the outcome of these might depend on the particular choice of nuisance parameters in the
simulation set-up in a non-transparent way. Therefore, it seems to be a useful contribution within
this research area. The paper by Breitung (2000) is related to this paper as it compares the local
power of some of the unit root tests in macropanels.

We consider three different unit root tests. They are all based on t-statistics corresponding
to different least-squares (LS) estimators of the autoregressive parameter. The reason that this is
not a trivial testing problem is the presence of the individual-specific (incidental) intercepts.
Without the presence of these parameters standard testing theory implies that the t-statistic
based on the OLS estimator of the autoregressive parameter in the original model gives a test
which is optimal asymptotically. This is the first test we consider and we would expect it to
perform well in terms of having high power when there is no or little variation in the individual-
specific intercepts. On the other hand, when the variation in the individual-specific intercepts
is high the OLS estimator has a substantial positive asymptotic bias and therefore the OLS
unit root test is expected to have low power in this case. The other two tests we consider are
both invariant with respect to adding an individual-specific constant to all variables but they
differ in terms of the way in which the invariance with respect to this type of transformation is
obtained. In other words, they use different ways of removing the individual-specific means
from the variables. One subtracts the initial values from all variables and is suggested by
Breitung and Meyer (1994) and the other subtracts the respective individual-specific time-series
means of the variables from both sides of the equation and is suggested by Harris and Tzavalis
(1999). The Breitung–Meyer test and the Harris–Tzavalis test are panel data versions of the
unit root tests in single time series suggested by Schmidt and Phillips (1992) and Dickey and
Fuller (1979), respectively. The Breitung–Meyer estimator of the autoregressive parameter is
consistent under the null hypothesis whereas the Harris–Tzavalis estimator (the within-group
estimator) is inconsistent and therefore a bias adjustment is necessary. Both estimators are
inconsistent under the alternative hypothesis meaning that the removal of the individual-specific
means that cause the inconsistency of the OLS estimator leads to new sources of asymptotic
bias.

From the description above, it is not straightforward to determine which test is best in terms
of having the highest power. It turns out that the initial values are crucial for the performance of
the tests in terms of asymptotic power under local alternatives. In general it is always important
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to be aware of the power properties when applying a statistical test in practice and if there are
several tests to choose from it is especially important to understand how their performance is
affected by nuisance parameters in order to choose the best testing procedure. Even if it is
not the case that one test outperforms the others for all values of the nuisance parameters it
is important to understand under which assumptions the tests are likely to have high or low
power. The importance of the initial values when testing the unit root hypothesis in micropanels
is a result which is also found for single time series and macropanels; see Müller and Elliott
(2003) and Harris et al. (2008), respectively.

An important finding is that under mean stationary alternatives the local power of the
Breitung–Meyer test is always higher than the local power of the Harris–Tzavalis test. This
result is similar to findings in Moon et al. (2007) where they derive the power envelope of
unit tests in macropanels. In the case with individual-specific intercepts they find that within
the class of tests that are invariant with respect to individual-specific constants the macropanel
version of the Breitung–Meyer test has asymptotic power equal to the power envelope whereas
the macropanel version of the Harris–Tzavalis test suggested by Levin et al. (2002) has lower
asymptotic power than the power envelope. This result is different from the findings for single
time-series versions of these unit root tests where the Schmidt–Phillips test is close to being
optimal for values of the autoregressive parameter close to unity whereas the Dickey–Fuller test
is close to being optimal for values of the autoregressive parameter close to zero; see Hwang and
Schmidt (1996). An important difference is that in macropanels it is possible to find tests that are
uniformly most powerful, whereas this is not possible in single time series. In addition, we find
that when there is no or little variation in the individual-specific means the local power of the
OLS test is higher than the local power of the Breitung–Meyer test. This result implies that the
estimation of the individual-specific means causes a decrease in local power since the number of
observations over time which contains information about the individual-specific means remains
constant and hence it makes a difference whether or not the individual-specific means are
estimated.

The paper is organized as follows. In Section 2, the basic model is specified. In Section 3, we
investigate and compare the different unit root tests described above. This is done by deriving the
limiting distributions of the corresponding test statistics under local alternatives. In Section 4, the
analytical results are illustrated in a simulation study. In Section 5, we provide some concluding
remarks. Proofs are provided in the Appendix.

2. THE MODEL AND ASSUMPTIONS

We consider the first-order autoregressive panel data model with individual-specific intercepts
defined by

yit = ρyit−1 + (1 − ρ)αi + εit for i = 1, . . . , N and t = 1, . . . , T , (2.1)

where −1 < ρ ≤ 1 and for every i = 1, . . . , N the sequence {εit}∞t=1 is white noise. For
notational convenience we assume that the initial values yi0 are observed such that the actual
number of observations over time equals T + 1. The model provides a framework for testing
the null hypothesis of each time-series process being a random walk against the alternative
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hypothesis of each time-series process being stationary with an individual-specific level. To
specify the model further the assumptions below are imposed.

ASSUMPTION 2.1. εit is independent across i, t with E(εit) = 0, E(ε2
it) = σ 2

iε and E(ε4
it) =

E(ε4
is) for all t, s = 1, . . . , T . In addition, εit is independent of αi and yi0.

ASSUMPTION 2.2. αi is i.i.d. across i with E(αi) = 0, E(α2
i ) = σ 2

α and E(α4
i ) < ∞.

ASSUMPTION 2.3. For −1 < ρ ≤ 1 the initial values satisfy yi0 = αi + √
τεi0, where εi0 is

independent of αi and independent across i with E(εi0) = 0 and E(ε2
i0) = σ 2

iε.

ASSUMPTION 2.4. The following hold: (i) E|εit|4+δ < K < ∞ for some δ > 0 and all i =
1, . . . , N, t = 0, 1, . . . , T . (ii) 1

N

∑N
i=1 σ 2

iε → σ2ε > 0 as N → ∞. (iii) 1
N

∑N
i=1 σ 4

iε → σ4ε as

N → ∞. (iv) 1
N

∑N
i=1 E(ε4

it) → m4 as N → ∞.

Assumption 2.1 states that the errors εit are independent over cross-section units and time
and allowed to be heteroscedastic over cross-section units but not over time. Further, they
are independent of the individual-specific term αi and the initial value yi0. The assumption
about independency over time is stronger than the usual assumption about εit being serially
uncorrelated. It is a simplifying assumption made in order to derive the asymptotic properties
of the test statistics in Section 3. Assumption 2.2 states that the αi’s are i.i.d. across cross-
section units and again it is made in order to simplify the derivation of the results in the next
section. Note that the assumption that E(αi) = 0 means that we interpret the model in (2.1) as
describing the behaviour of the observed variables after having subtracted the overall or the time-
specific means. In practice, it means that as a starting point we subtract either the overall or the
time-specific sample means from all observed variables. This type of transformation maintains
the asymptotic properties of LS estimators and related statistics such that we can consider the
model in (2.1) with i.i.d. mean zero terms as the starting point after having subtracted the
cross-section sample means from all variables. A similar result is shown in detail in Madsen
(2005) within the framework of a pure cross-section analysis. Assumption 2.3 specifies the
initial values and implies that they are such that the time-series processes for yit become mean
stationary that is E(yit|αi) = αi for all t = 0, 1, 2, . . . . It implies that it is possible to remove
the individual-specific means from the observed variables by simple linear transformations. The
parameter τ describes the dispersion of the initial deviation from the stationary level. If the initial
values are such that the time-series processes are covariance stationary then τ = 1/(1 − ρ2).
This condition is only meaningful when −1 < ρ < 1. We see that as ρ approaches unity then
the parameter τ tends to infinity such that all variables are dominated by the initial deviation
from the individual-specific mean. In the next section we will formalize this property as it
turns out to be important for the results in this paper. Note that εit is independent of εi0

by Assumption 2.1. Finally, Assumption 2.4 is a technical assumption which enables us to
derive the asymptotic properties of the statistics of interest by applying standard asymptotic
theory. The assumption states that the innovations εit have uniformly bounded moments of
order slightly greater than four and that the cross-section average of their variances, squared
variances and fourth-order moments have well-defined limits as the cross-section dimension N
tends to infinity. Note that when the errors εit are homoscedastic across units then σ4ε = σ 2

2ε.
Assumption 2.4(iv) is only required in relation to the test statistic suggested by Harris and
Tzavalis (1999), as this is the only statistic of the ones considered in this paper which depends on
fourth-order moments. Also note that σ4ε − σ 2

2ε = limN→∞ 1
N

∑N
i=1(σ 2

iε − σ2ε)2 ≥ 0 and

m4 − σ4ε = limN→∞ 1
N

∑N
i=1 E((ε2

it − σ 2
iε)2) ≥ 0 such that σ 2

2ε ≤ σ4ε ≤ m4.
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3. THE TEST STATISTICS AND THEIR ASYMPTOTIC PROPERTIES

We consider the testing problem where the null hypothesis and the alternative hypothesis are
given by

H0 : ρ = 1 HA : |ρ| < 1. (3.1)

In the following, we consider local alternatives where ρ is modelled as being local-to-unity. More
specifically, we consider local-to-unity sequences for ρ defined by

ρN = 1 − c

Nk
for k, c > 0. (3.2)

This means that as the sample size N increases, the value of the parameter ρ is in an N−k

neighbourhood of unity. So instead of deriving asymptotic representations based on ρ being
constant as N increases we derive asymptotic representations based on c = (1 − ρN )Nk being
constant as N increases. The idea is that these representations will provide good approximations
to the actual distributions of the relevant statistics. With one exception the LS estimators of ρ

considered in this paper converge weakly to normal distributions at the rate
√

N and therefore
we consider local-to-unity sequences for ρ with k = 1

2 . In one situation, the LS estimator must
be normalized differently in order to converge weakly to a non-degenerate distribution under
the local alternative and the local-to-unity sequence is defined accordingly. Note that c = 0
corresponds to the null hypothesis of ρ being unity.

In the next section we show that the local power of the different unit root tests that we consider
depend on c and possibly the other parameters in the model. For a test that has non-trivial power
against a local alternative where ρN = 1 − c/

√
N this means that when reducing (1 − ρ) by half

(for example, from ρ = 0.950 to ρ = 0.975) the number of observations in the cross-section
dimension N must be four times as large in order to attain the same level of local power. On the
other hand, when a test has power against a local alternative where ρN = 1 − c/N this means
that when reducing (1 − ρ) by half the number of observations in the cross-section dimension N
only has to be twice as large in order to attain the same level of local power.

It turns out that the assumption being made about the variation of the initial deviation from
the mean stationary level is crucial for the limiting distributions of the different statistics under
the local alternative defined by (3.2). We consider the following two situations:

(i) : τ is fixed, (3.3)

(ii) : τ = κ
1

1 − ρ2
for κ > 0. (3.4)

(i) means that the initial deviation from the stationary level is described by a parameter τ that
remains constant as ρ approaches unity. (ii) means that the variance of the initial deviation from
the stationary level is proportional to the variance of the autoregressive process. The specification
in (ii) contains the case where the time-series processes are covariance stationary (κ = 1) which
in particular implies that the variances of the observed variables are constant over time. In (ii) τ

depends on ρ and goes to infinity as ρ approaches unity and it is not defined for ρ equal to unity.
This means that the two formulations are fundamentally different.
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Under the local-to-unity sequence for ρ given by ρN = 1 − c/Nk the formulations in (3.3)–
(3.4) correspond to

(i) : τN = τ for τ ≥ 0, (3.5)

(ii) : τN = bNk + o(Nk) for k, b > 0. (3.6)

Note that (3.6) is more general than (3.4) since b and c might take values independently of
each other. Equation (3.4) corresponds to (3.6) with b = κ/(2c), see Lemma A.1 in Section
A.1 of the Appendix, implying that the parameters b and c are not independent of each other
but are on a specific path in the parameter space. In (3.5) τ is a fixed parameter such that the
term

√
τεi0 is of the same order of magnitude as the remaining terms in the expression for the

variables yit. On the other hand, in (3.6) this term dominates the behaviour of the variables yit

asymptotically as N tends to infinity since then we have
√

τεi0 = OP (Nk/2). The interpretation
is that the behaviour of the observed variables yi0, . . . , yiT is dominated by the initial deviation
from the mean stationary level (yi0 − αi) = √

τεi0. In a time-series framework the assumption
about the initial values being such that the time series become covariance stationary seems
very natural as it implies that the initial values are of the same order of magnitude as the
remaining term describing the observed variables as the number of observations over time
goes to infinity. In a panel data framework this is not the case since it implies that the initial
values are of a higher order of magnitude. This also means that the results about how the
initial values affect the test statistics in single time series might not carry over to macro- and
micropanels.

In this paper, we will focus on the cases where τ is fixed (corresponding to b = 0) and
covariance stationarity (corresponding to b = 1/(2c)). It could be the case that b = κ/(2c) (the
variance of the initial values is proportional to the variance of the autoregressive process) or
b > 0 and independent of c (the variance of the initial values is very high but does not depend
on the value of the autoregressive parameter) and we shortly discuss how this affects our
results.

3.1. OLS

The equation in (2.1) can be rewritten as the following regression model:

yit = ρyit−1 + vit

vit = (1 − ρ)αi + εit
for i = 1, . . . , N and t = 1, . . . , T .

The OLS estimator of the autoregressive parameter ρ is defined by

ρ̂OLS =
(

N∑
i=1

y ′
i,−1yi,−1

)−1 (
N∑

i=1

y ′
i,−1yi

)
, (3.7)

where yi = (yi1, . . . , yiT )′ and yi,−1 = (yi0, . . . , yiT −1)′. The estimator is consistent when ρ = 1
whereas inconsistent when |ρ| < 1. In the latter case, the inconsistency is attributable to the term
αi which appears in both the regressor yit−1 and the regression error vit. As αi appears with the
factor (1 − ρ) in vit the covariance between the regressor and the regression error is positive
and decreases towards zero as ρ approaches unity. Now the regressor yit−1 can be expressed as
the sum of the two independent terms αi and (yit−1 − αi) which are the stationary level and the
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deviation from the stationary level, respectively. If the variability of the two terms are of similar
order as ρ approaches unity, the asymptotic bias of ρ̂OLS is positive and decreases towards zero
as ρ approaches unity. This describes the situation where the variance of the initial deviation
from the mean stationary level is fixed. On the other hand, if the behaviour of yit−1 is dominated
by the term (yit−1 − αi) as ρ approaches unity, the asymptotic bias of ρ̂OLS will be zero when ρ

approaches unity. This describes the situation where the initial values are such that the time-series
processes become covariance stationary.

The discussion above is formalized by the results given in Proposition 3.1 below. The
proposition provides the limiting distribution of the OLS estimator ρ̂OLS under both the null
hypothesis when ρ is unity and local alternatives when ρ is local-to-unity. We consider different
local alternatives depending on the assumption being made about the initial values as given by
equations (3.5)–(3.6).

PROPOSITION 3.1. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τ is fixed, the limiting distribution of the OLS estimator

ρ̂OLS is given by

√
N (ρ̂OLS − ρN )

w→ N

(
c

σ 2
α

σ 2
α + (

τ + T −1
2

)
σ2ε

,
1

T

σ 2
ασ2ε + (

τ + T −1
2

)
σ4ε(

σ 2
α + (

τ + T −1
2

)
σ2ε

)2

)
as N → ∞.

(3.8)

Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by ρN = 1 − c/N for
c ≥ 0 and when τN = bN + o(N ) for b > 0, the limiting distribution of the OLS estimator ρ̂OLS

is given by

N (ρ̂OLS − ρN )
w→ N

(
0,

1

T

σ4ε

bσ 2
2ε

)
as N → ∞. (3.9)

The proposition shows that in the unit root case when c = 0 and τ is fixed, the estimator ρ̂OLS

is
√

N -consistent and its limiting variance is decreasing in τ, T and σ 2
2ε/σ4ε. Under the local

alternative the estimator ρ̂OLS has an asymptotic bias of order 1/
√

N which is always positive
and increasing in c and σ 2

α /σ2ε and decreasing in τ and T . The limiting variance of ρ̂OLS is
decreasing in τ, T and σ 2

2ε/σ4ε and increasing in σ 2
α /σ2ε and does not depend on the location

parameter c. On the other hand, when the variables are dominated by the initial deviation from
the mean stationary level the estimator ρ̂OLS is N-consistent for all values of c. In this case
ρ̂OLS estimates the parameter ρ very precisely also when its true value is close to unity. Further,
the limiting variance of ρ̂OLS is decreasing in b, T and σ 2

2ε/σ4ε. The covariance stationary local
alternative corresponds to b = 1/(2c) such that the limiting variance is increasing in c. This rather
surprising result is explained as follows. Under this assumption about the initial values that in
particular holds under covariance stationarity the behaviour of yit for t = 0, . . . , T is dominated
by the initial deviation from the stationary level (yi0 − αi). More specifically, the variation of
(yi0 − αi) is of order N under the local-to-unity sequence for ρ given by 1 − c/N for c > 0, see
the result in (3.6), whereas the variation of the remaining terms in yit is bounded as N tends to
infinity. This implies that the numerator in (3.7) must be normalized by N in order to converge
in distribution and the denominator in (3.7) must be normalized by N2 in order to converge in
probability. The consistency is a result of the term (yi0 − αi), which dominates the behaviour of
the regressor, being independent of the term αi . This indicates that the asymptotic representation
in (3.9) is only appropriate when the variances of αi and εit are much smaller than the variance
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of (yi0 − αi). Once the variances are of similar magnitude, the asymptotic representation in (3.8)
is expected to provide a better approximation to the actual distribution of ρ̂OLS.

The unit root test based on the usual t-statistic is obtained by normalizing (ρ̂OLS − 1)
appropriately. For this purpose we need a consistent estimator of the limiting variance of ρ̂OLS

and we use White’s heteroscedastic-consistent estimator; see White (1980). Under the covariance
stationary local alternative this estimator must be normalized differently in order to be consistent.
Letting k = 1

2 and k = 1 refer to the situations where ρ̂OLS converges in distribution at the rate√
N and N, respectively, White’s heteroscedastic-consistent estimator of the limiting variance of

ρ̂OLS is given by the following expression:

V̂OLS(k) =
(

1

N2k

N∑
i=1

y ′
i,−1yi,−1

)−1
1

N2k

N∑
i=1

y ′
i,−1v̂i v̂

′
iyi,−1

(
1

N2k

N∑
i=1

y ′
i,−1yi,−1

)−1

,

where the vector of residuals is v̂i = yi − ρ̂OLSyi,−1. The t-statistic is then defined as

tOLS = V̂OLS (k)−
1
2 Nk (ρ̂OLS − 1) .

Note that V̂OLS(k)−
1
2 Nk does not depend on k since the normalization factors cancel out. This

means that the test statistic tOLS and also asymptotic confidence intervals do not depend on the
actual normalization. This is a desirable feature since we might not know which assumption is
appropriate for the initial values. The proposition below provides the limiting distribution of the
t-statistic.

PROPOSITION 3.2. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τ is fixed, the limiting distribution of the OLS t-statistic

tOLS is given by

tOLS
w→ N

⎛
⎝−c

(
τ + T − 1

2

)√(
σ 2

α

σ2ε

+
(

τ + T − 1

2

)
σ4ε

σ 2
2ε

)−1

T , 1

⎞
⎠ as N → ∞.

(3.10)

Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by ρN = 1 − c/N for
c ≥ 0 and when τN = bN + o(N ) for b > 0, the limiting distribution of the OLS t-statistic tOLS

is given by

tOLS
w→ N

⎛
⎝−c

√
b
σ 2

2ε

σ4ε

T , 1

⎞
⎠ as N → ∞. (3.11)

The proposition shows that in both cases under the null hypothesis of a unit root the t-
statistic tOLS is asymptotically standard normal. So unit root inference is carried out by employing
critical values from the standard normal distribution. Furthermore, the proposition shows that
when τ is fixed, the local power is increasing in c, τ, T and σ 2

2ε/σ4ε (the location parameter
is shifted to the left-hand side when these parameters increase) and decreasing in σ 2

α/σ2ε (the
location parameter is shifted to the right-hand side when σ 2

α/σ2ε increases). Under the covariance
stationary alternative when b = 1/(2c), the local power only depends on c, T and σ 2

2ε/σ4ε and
is increasing in these parameters. When b > 0 and independent of the value of c we find that for
a fixed value of c the local power is increasing in b. This result is similar to the finding in single
time series where the local power of the Dickey–Fuller unit root test turns out to be an increasing
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function of the initial value and in addition is an optimal test when the initial values are high;
see Müller and Elliott (2003). The reason why we obtain a similar result here for a test statistic,
which is not invariant with respect to individual-specific constants, is that in a single time series
the estimation of a constant does not affect the test statistics asymptotically as the time-series
dimension goes to infinity. Note that as discussed above, the limiting distribution in (3.11) will
only provide a good approximation to the actual distribution of the t-statistic when the behaviour
of yit is dominated by the initial deviation from the mean stationary level.

To explore the results of the proposition in more detail let us consider the case where T + 1 =
5 and the following values of the nuisance parameters: σ 2

2ε/σ4ε = 1 and σ 2
α/σ2ε = 1. For τ = 1

and ρ = 0.95 then N must be approximately 150 in order for the OLS unit root test to obtain
a power level of 0.5 for a one-sided alternative at the nominal level of 5%. As explained in
the previous section this immediately implies that for τ = 1 and ρ = 0.975 then N must be
approximately 600 in order to attain the power level of 0.5. The numbers for N in this example
would be higher if σ 2

α /σ 2
ε > 1. Under the covariance stationary alternative we find that N must

only be approximately 30 and 60, respectively, in order for this test to attain the power level of
0.5 in the alternatives ρ = 0.95 and ρ = 0.975, respectively. So the test is very powerful against
this alternative.

Altogether, the advantage of using the OLS unit root test is that it is expected to have high
power under the covariance stationary alternative and when the variation in the initial deviation
from the stationary levels are very high even for values of ρ very close to unity. However, if this
is not the case the power of the test for values of ρ close to unity is expected to be low when
σ 2

α /σ2ε is high. This will be most evident for small values of T .

3.2. Breitung–Meyer

Subtracting the initial value yi0 from both sides of the equation in (2.1) yields the following
regression model:

yit − yi0 = ρ (yit−1 − yi0) + ṽit

ṽit = (ρ − 1) (yi0 − αi) + εit
for i = 1, . . . , N and t = 1, . . . , T .

The LS estimator of ρ obtained from this regression equation is defined by

ρ̂0 =
(

N∑
i=1

ỹ ′
i,−1ỹi,−1

)−1 (
N∑

i=1

ỹ ′
i,−1ỹi

)
, (3.12)

where ỹi = yi − yi0ιT , ỹi,−1 = yi,−1 − yi0ιT and ιT is a T × 1 vector of ones. Again the
estimator is consistent when ρ = 1, whereas inconsistent when |ρ| < 1. In the latter case, its
asymptotic bias equals 1

2 (1 − ρ) under the assumption about covariance stationarity; see Breitung
and Meyer (1994). As an example, this means that the asymptotic bias equals 0.050, 0.025 and
0.005 when ρ equals 0.90, 0.95 and 0.99, respectively. The inconsistency is attributable to the
term (yi0 − αi) as it appears in both the regressor (yit−1 − yi0) and the regression error v̄it. The
covariance between the regressor and the regression error decreases towards zero as ρ approaches
unity when the variance of (yi0 − αi) is kept constant. However, the decrease might be offset if
the variance of (yi0 − αi) increases as ρ approaches unity. This is exactly what happens when
the initial values are such that the time-series processes become covariance stationary.
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Proposition 3.3 below provides the limiting distribution of the Breitung–Meyer estimator ρ̂0

under both the null hypothesis when ρ is unity and the mean stationary local alternative when ρ

is local-to-unity. In this case, the local alternatives are the same irrespective of the assumption
about the dispersion of the initial deviation from the stationary level.

PROPOSITION 3.3. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τN = b

√
N + o(

√
N ) for b ≥ 0, the limiting distribution

of the Breitung–Meyer estimator ρ̂0 is given by

√
N (ρ̂0 − ρN )

w→ N

(
c2b,

σ4ε

σ 2
2ε

2

T (T − 1)

)
as N → ∞. (3.13)

The proposition shows that in the unit root case and under the mean stationary local
alternative when τ is fixed ρ̂0 is

√
N -consistent. Under the covariance stationary local alternative

ρ̂0 has a positive asymptotic bias of order 1/
√

N . The limiting variance of ρ̂0 does not depend
on the assumption being made about the initial values and it is a simple function of T and
σ 2

2ε/σ4ε and decreasing in both. As indicated above, the results follow by using that when the
variance of (yi0 − αi) is of order less than

√
N , the asymptotic bias disappears under the local

alternative. This is the case when τ is fixed. On the contrary, under covariance stationarity
this is not the case, as the variance of (yi0 − αi) in this case is of order

√
N ; see the result

in (3.6).
As before, White’s heteroscedastic-consistent estimator of the limiting variance of ρ̂0 is given

by the following expression:

V̂0 =
(

1

N

N∑
i=1

ỹ ′
i,−1ỹi,−1

)−1
1

N

N∑
i=1

ỹ ′
i,−1

ˆ̃vi
ˆ̃v
′
i ỹi,−1

(
1

N

N∑
i=1

ỹ ′
i,−1ỹi,−1

)−1

,

where the vector of residuals is ˆ̃vi = ỹi − ρ̂0ỹi,−1. The t-statistic is then defined as

t0 = V̂
− 1

2
0

√
N (ρ̂0 − 1) .

When the errors εit are homoscedastic across units such that σ4ε = σ 2
2ε, the limiting variance of

ρ̂0 is a function of T only. Therefore, it is possible to use a normalized coefficient statistic when
testing the unit root hypothesis. The statistic is defined in the following way:

t̄0 =
√

T (T − 1)

2

√
N (ρ̂0 − 1).

The proposition below provides the limiting distributions of the test statistics defined above.

PROPOSITION 3.4. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τN = b

√
N + o(

√
N ) for b ≥ 0, the limiting distribution

of the Breitung–Meyer t-statistic t0 is given by

t0
w→ N

⎛
⎝−c (1 − cb)

√
σ 2

2ε

σ4ε

T (T − 1)

2
, 1

⎞
⎠ as N → ∞. (3.14)

C© The Author(s). Journal compilation C© Royal Economic Society 2010.



Unit root inference in panel data models where the time-series dimension is fixed 73

The limiting distribution of the normalized coefficient statistic t̄0 is given by

t̄0
w→ N

(
−c (1 − cb)

√
T (T − 1)

2
,
σ4ε

σ 2
2ε

)
as N → ∞. (3.15)

The proposition shows that under the null hypothesis of a unit root, the t-statistic t0 is
asymptotically standard normal. So again unit root inference is carried out by employing
critical values from the standard normal distribution. Further, the proposition shows that the
local power of the test is increasing in c, T and σ 2

2ε/σ4ε when b < 1/c. In particular, this
means that the local power is monotonically increasing in c when b = 0 (τ is fixed) and when
b = 1/(2c) (covariance stationarity). When σ 2

2ε/σ4ε = 1 the local power of a one-sided test at the
nominal 5% level against these two alternatives is given by 
(−1.645 + c

√
T (T − 1)/2) and


(−1.645 + c/2
√

T (T − 1)/2), respectively, where 
(·) denotes the cdf of the standard normal
distribution. This means that for a specific value of ρ we need four times as many cross-section
observations in the covariance stationary alternative as in the fixed τ alternative in order to obtain
the same level of local power. When b > 1/c then the local power of the test is monotonically
decreasing in c and the local power is in fact less than the nominal size of the test for all values
of c. This would be the case when the variance of the initial deviation from the stationary level
is more than two times σ 2

iε/(1 − ρ2). Also we see that for a fixed value of c the local power
is decreasing in b. These findings are similar to the results in Müller and Elliott (2003) and
Harris et al. (2008) for unit root tests in single time series and macropanels, respectively. Note
that for a fixed value of b > 0 which is not linked to the value of c then the local power is a
non-monotonic function of c that tends to zero as c goes to infinity. Figure 1 shows the local
power as a function of c for different values of b when T + 1 = 5 and σ 2

2ε/σ4ε = 1 and we
see the findings described above. Also note that there is a power loss associated with having
cross-sectional heterogeneity in the error terms since a test based on yit/σiε would have higher
power.

The test based on the normalized coefficient statistic t̄0 is asymptotically equivalent to the
test based on the t-statistic t0 when σ4ε = σ 2

2ε. When this is not the case, the test based on
the normalized coefficient statistic will be distorted when employing critical values from the
standard normal distribution. In a one-sided test it will reject the null hypothesis of a unit root
too often since σ 2

2ε < σ4ε. So unless there is any prior knowledge about the error terms being
homoscedastic over cross-section units the unit root test should be based on the t-statistic. Note,
that if σ 2

2ε < σ4ε such that there is a difference between the local power of the two tests, this
difference decreases as T increases. However, the size distortion is not affected by T and hence
it remains as T increases.

The advantage of using the Breitung–Meyer unit root test is that the local power only depends
on one nuisance parameter. Further, under mean stationarity the test is invariant with respect to
the individual-specific levels. This means that the size of the test is invariant with respect to the
initial values and the power of the test is invariant with respect to the individual-specific term
αi . On the other hand, the test is sensitive to the assumptions on the initial values through the
initial deviation from the stationary level and the local power can be quite low if the variation in
this term is very high. This is in contrast to the OLS unit root test where we found the opposite
result.
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Figure 1. The local power of the Breitung–Meyer unit root test.

3.3. Harris–Tzavalis

The within-group transformation of the original model is obtained by subtracting the individual
time series means from the variables in equation (2.1). This yields the following regression
model:

yit − 1

T

T∑
t=1

yit = ρ

(
yit−1 − 1

T

T∑
t=1

yit−1

)
+ wit

wit = εit − 1

T

T∑
t=1

εit

for i = 1, . . . , N and t = 1, . . . , T .

The within-group estimator of ρ is then defined by

ρ̂WG =
(

N∑
i=1

y ′
i,−1QT yi,−1

)−1 (
N∑

i=1

y ′
i,−1QT yi

)
, (3.16)

where QT is a T × T symmetric and idempotent matrix defined as QT = IT − 1
T
ιT ι′T , where

IT is the T × T identity matrix and ιT ι′T is a T × T matrix of ones. It is well-known that
this estimator is inconsistent when −1 < ρ < 1. The asymptotic bias is often referred to as the
Nickell-bias since Nickell (1981) is the first to provide an analytical expression for it. Under the
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assumption about the time-series processes being covariance stationary, the asymptotic bias is a
function of ρ and T which is always negative when 0 < ρ < 1 and decreases numerically as T
increases. Harris and Tzavalis (1999) show that the asymptotic bias of the within-group estimator
equals −3/(T + 1) when ρ = 1. As this expression does not depend on any nuisance parameters,
their idea is to base a unit root test on the bias adjusted within-group estimator. Proposition 3.5
below provides the limiting distribution of ρ̂WG under both the null hypothesis of a unit root and
the mean stationary local alternative when ρ is local-to-unity.

PROPOSITION 3.5. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τN = b

√
N + o(

√
N ) for b ≥ 0, the limiting distribution

of the adjusted within-group estimator ρ̂WG is given by

√
N

(
ρ̂WG − ρN + 3

T + 1

)
w→N

(
−c

T − 2

2 (T + 1)
+ c2b

3T

2 (T + 1)
,
k1m4 + k2σ4ε

σ 2
2ε

)
as N → ∞,

(3.17)

where

k1 = 12(T − 2)(2T − 1)

5T (T − 1) (T + 1)3 k2 = 3(17T 3 − 44T 2 + 77T − 24)

5T (T − 1) (T + 1)3 .

The proposition shows that except in the unit root case, the adjusted within-group estimator
has an asymptotic bias of order 1/

√
N under the local alternative. The bias is negative when τ

is fixed and positive under covariance stationarity. This means that the adjustment is respectively
too big and too small. The limiting variance of ρ̂WG is the same in the unit root case and under
the local alternatives. It depends on fourth-order moments of the errors εit through the term
m4. As k1 < k2 the fourth-order moments receive less weight than the squared second-order
moments.

Harris and Tzavalis (1999) assume that the errors εit are i.i.d. normally distributed across i
such that σ4ε = σ 2

2ε and m4 = 3σ 2
2ε. In this case, the limiting variance of ρ̂WG only depends on T

and is given by the following expression:

ṼWG = 3k1 + k2 = 3(17T 2 − 20T + 17)

5(T − 1)(T + 1)3
.

Therefore, Harris and Tzavalis (1999) suggest using the normalized coefficient statistic as a unit
root test statistic. It is defined as follows:

t̄WG = Ṽ
− 1

2
WG

√
N

(
ρ̂WG − 1 + 3

T + 1

)
.

However, as before it is also possible to use the usual t-statistic as a test statistic. White’s
heteroscedasticity-consistent estimator of the limiting variance of the bias adjusted within-group
estimator is given by the following expression:

V̂WG =
(

1

N

N∑
i=1

y ′
i,−1QT yi,−1

)−1
1

N

N∑
i=1

y ′
i,−1QT ω̂iω̂

′
iQT yi,−1

(
1

N

N∑
i=1

y ′
i,−1QT yi,−1

)−1

,
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where the vector of residuals is ŵi = QT yi − ρ̂WGQT yi,−1. The bias-adjusted within-group
t-statistic is then defined in the following way:

tWG = V̂
− 1

2
WG

√
N

(
ρ̂WG − 1 + 3

T + 1

)
.

The limiting distributions of these test statistics are given in Proposition 3.6 below.

PROPOSITION 3.6. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by
ρN = 1 − c/

√
N for c ≥ 0 and when τN = b

√
N + o(

√
N ) for b ≥ 0, the limiting distribution

of the adjusted within-group t-statistic tWG is given by

tWG
w→ N

(
−c (1 − cb)

3T

2 (T + 1)
σ2ε

√
(k1m4 + k2σ4ε)−1, 1

)
as N → ∞. (3.18)

The limiting distribution of the Harris–Tzavalis normalized coefficient statistic t̄WG is given by

t̄WG
w→ N

(
−c (1 − cb)

3T

2 (T + 1)

√
5(T − 1) (T + 1)3

3
(
17T 2 − 20T + 17

) ,
k̃1m4 + k̃2σ4ε

σ 2
2ε

)
as N → ∞,

(3.19)

where

k̃1 = 4(T − 2)(2T − 1)

T (17T 2 − 20T + 17)
k̃2 = 17T 3 − 44T 2 + 77T − 24

T (17T 2 − 20T + 17)
.

Once again unit root inference based on the adjusted t-statistic tWG can be carried out by
employing critical values from the standard normal distribution. We also note that the parameters
c and b appear in a similar manner as in the limiting distribution of Breitung–Meyer test statistic
and therefore the results here are similar to the results in Section 3.2. In particular, we find
that the local power of the Harris–Tzavalis test is increasing in c, T , σ 2

2ε/σ4ε and σ 2
2ε/m4 when

b < 1/c. This means that the local power is monotonically increasing in c when b = 0 (τ is fixed)
and when b = 1/(2c) (covariance staionarity). Also as in Section 3.2 the location parameter in
the first case is twice as large as in the second case such that four times as many cross-section
observations are necessary when b = 1/(2c) in order to obtain the same level of local power as
when b = 0 for a specific value of ρ. The unit root test based on the Harris–Tzavalis normalized
coefficient statistic t̄WG is asymptotically equivalent to the test based on the t-statistic tWG when
the errors εit are normally distributed and homoscedastic across units. If at least one of these
assumptions is violated, the test is likely to be distorted when employing critical values from the
standard normal distribution. The test will reject the null hypothesis too often when σ 2

2ε < σ4ε

and when the excess kurtosis of εit is positive, i.e. m4 > 3σ 2
2ε. Therefore, the Harris–Tzavalis

normalized coefficient statistic should not be used for unit root inference unless the underlying
assumptions have been verified.

As with the Breitung–Meyer unit root test, the Harris–Tzavalis unit root test is invariant
with respect to the individual-specific levels. However, the local power of the Harris–Tzavalis
test depends on more nuisance parameters. A more serious disadvantage of this test is that the
bias adjustment of the within-group estimator ρ̂WG depends crucially on the errors εit being
homoscedastic over time. If this assumption is violated, the Harris–Tzavalis unit root test is
likely to be distorted. To avoid this problem, Kruiniger and Tzavalis (2001) suggest using an
estimator of the asymptotic bias in the adjustment of ρ̂WG. In the unit root case, the estimator of
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the asymptotic bias is consistent. However, in this paper we only investigate the performance of
the unit root tests when the errors εit are homoscedastic over time. Therefore, we do not consider
this different bias adjustment in detail but we note that it is available.

3.4. Comparison of the tests

Below we list the main findings about the local power of the tests. They follow immediately from
the results in Proposition 3.2, 3.4 and 3.6.

(1) When b ≤ 1/c the local power of the Breitung–Meyer test is always higher than the local
power of the Harris–Tzavalis test. This follows by using that σ4ε ≤ m4 such that (k1m4 +
k2σ4ε)−1 ≤ σ−1

4ε (k1 + k2)−1 = σ−1
4ε

5T (T −1)(T +1)3

51T 3−108T 2+171T −48 ≤ σ−1
4ε

5T (T −1)(T +1)3

51T 3−108T 2+171T −48 . This

gives ( 3T
2(T +1) )

2(k1m4 + k2σ4ε)−1 ≤ σ−1
4ε

T (T −1)
2 · 45T 2(T +1)

2(51T 3−108T 2+171T −48) ≤ σ−1
4ε

T (T −1)
2 since

0 < 45T 2(T +1)
2(51T 3−108T 2+171T −48) < 1.

(2) When τ is fixed the local power of the OLS test is higher than the local power of the

Breitung–Meyer test when σ 2
α

σ2ε

< σ4ε

σ 2
2ε

τ (1 + 2τ
T −1 ).

(3) When τ = 1
1−ρ2 (covariance stationarity) the local power of the OLS test is higher than the

local power of the Breitung–Meyer test when ρ > T −5
T −1 .

(4) When τ is fixed, σ 2
2ε/σ4ε = 1 and m4 = 3σ 2

2ε the local power of the OLS test is higher than

the local power of the Harris–Tzavalis test when σ 2
a

σ2ε
< ( 4(17T 2−20T +17)

15T (T −1)(T +1) (τ + T −1
2 ) − 1)(τ +

T −1
2 ).

Figure 2 below illustrates some of these results. In each figure, the local power of one-sided
tests at the 5% nominal level based on the t-statistics is graphed as a function of c = (1 − ρ)

√
N .

It is calculated for the following parameter values: τ = 1, σ 2
2ε/σ4ε = 1 and m4 = 3σ 2

2ε. The
figures correspond to the value of T + 1 being 5 or 10 and the value of σ 2

α/σ2ε being 1 or 10. For
this choice of parameters, the local power of the Breitung–Meyer test and the Harris–Tzavalis
test only depends on T . As an example, the local power of the Breitung–Meyer test is obtained as

(−1.645 + c

√
T (T − 1)/2) where 
 denotes the cdf of the standard normal; see Proposition

3.4. The figures show that the local power of the Breitung–Meyer test is higher than the local
power of the Harris–Tzavalis test for all values of c. When σ 2

α /σ2ε = 1 the local power of the
OLS test is highest for all values of c, whereas when σ 2

α /σ2ε = 10 the local power of the OLS
test is lowest for all values of c. More specifically, when σ 2

α /σ2ε = 1 and T + 1 = 5 then in
order to attain a local power level equal to 0.5 for a given value of ρ we need approximately
1.2 (Breitung–Meyer test) and 1.6 (Harris–Tzavalis test) as many cross-section observations in
order to do so compared to when using the OLS test. When σ 2

α/σ2ε = 10 and T + 1 = 5 we need
approximately 1.4 (Harris–Tzavalis test) and 3.0 (OLS test) as many cross-section observations
compared to when using the Breitung–Meyer test in order to attain a local power level of 0.5.

4. SIMULATION EXPERIMENTS

In this section the analytical results obtained in Section 3 are illustrated in a simulation
experiment. The simulated model is the following:

yi0 = αi + εi0,

yit = ρyit−1 + (1 − ρ)αi + εit,
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Figure 2. Comparison of the local power under mean stationarity.

with

εit ∼ i.i.d.N (0, 1) αi ∼ i.i.d.N
(
0, σ 2

α

)
εi0 ∼ i.i.d.N (0, τ ) .

We consider different values of T , N and ρ which are T + 1 = 5, 10, 15, N = 100, 250, 500
and ρ = 0.90, 0.95, 0.99, 1.00. The results are based on 5000 replications of the model. In
Tables 1 and 2, we report the empirical rejection probabilities of one-sided unit root tests based on
the t-statistics with the critical value taken from the standard normal distribution at the nominal
5% significance level. For comparison the analytical rejection probabilities (i.e. the local power)
are reported in parentheses. We consider different simulation set-ups where the value of σ 2

α is
either 1 or 10. This parameter will only affect the OLS test as the two other tests do not depend
on this parameter under the alternatives considered here. Further, the simulation set-ups depend
on the variance of initial error term τ . Table 1 corresponds to the unit root case with τ = 1 and
Table 2 corresponds to the covariance stationary alternative with τ = 1/(1 − ρ2).

In Table 1, we see that the empirical size of all tests is close to the nominal size of 0.05 and
the empirical power is quite high even for values of ρ close to unity such as ρ = 0.95. Further,
the increase in power can be quite dramatic when increasing T + 1 from 5 to 10. For example,
when ρ = 0.99 and N = 500 the power of the Breitung–Meyer test increases from 0.15 to 0.37,
the power of the Harris–Tzavalis test increases from 0.13 to 0.25, and the power of the OLS test
increases from 0.15 to 0.38 when σ 2

α = 1 and from 0.09 to 0.21 when σ 2
α = 10. When comparing
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Table 1. Empirical and analytical (in brackets) rejection probabilities when τ = 1.

ρ T + 1 N OLS, σ 2
α = 1 OLS, σ 2

α = 10 Breitung–Meyer Harris–Tzavalis

0.900 5 100 0.803 (0.848) 0.370 (0.409) 0.684 (0.790) 0.562 (0.667)

0.900 5 250 0.989 (0.995) 0.666 (0.723) 0.957 (0.987) 0.865 (0.949)

0.900 5 500 1.000 (1.000) 0.896 (0.935) 0.999 (1.000) 0.991 (0.999)

0.900 10 100 1.000 (1.000) 0.943 (0.987) 0.999 (1.000) 0.947 (0.998)

0.900 10 250 1.000 (1.000) 0.999 (1.000) 1.000 (1.000) 1.000 (1.000)

0.900 10 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.900 15 100 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 0.998 (1.000)

0.900 15 250 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.900 15 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.950 5 100 0.369 (0.379) 0.184 (0.174) 0.318 (0.337) 0.277 (0.272)

0.950 5 250 0.650 (0.680) 0.282 (0.299) 0.572 (0.615) 0.463 (0.498)

0.950 5 500 0.887 (0.910) 0.452 (0.475) 0.823 (0.863) 0.694 (0.750)

0.950 10 100 0.880 (0.922) 0.567 (0.615) 0.855 (0.912) 0.620 (0.723)

0.950 10 250 0.998 (0.999) 0.886 (0.922) 0.997 (0.999) 0.910 (0.971)

0.950 10 500 1.000 (1.000) 0.989 (0.996) 1.000 (1.000) 0.995 (1.000)

0.950 15 100 0.996 (0.999) 0.891 (0.956) 0.993 (0.999) 0.856 (0.962)

0.950 15 250 1.000 (1.000) 0.999 (1.000) 1.000 (1.000) 0.996 (1.000)

0.950 15 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.990 5 100 0.097 (0.084) 0.078 (0.066) 0.094 (0.081) 0.092 (0.075)

0.990 5 250 0.115 (0.111) 0.081 (0.078) 0.111 (0.104) 0.103 (0.094)

0.990 5 500 0.150 (0.148) 0.091 (0.092) 0.145 (0.136) 0.128 (0.119)

0.990 10 100 0.171 (0.151) 0.119 (0.104) 0.157 (0.148) 0.131 (0.116)

0.990 10 250 0.257 (0.249) 0.155 (0.151) 0.242 (0.243) 0.178 (0.174)

0.990 10 500 0.380 (0.391) 0.213 (0.218) 0.367 (0.381) 0.253 (0.260)

0.990 15 100 0.253 (0.248) 0.175 (0.165) 0.253 (0.245) 0.177 (0.168)

0.990 15 250 0.434 (0.451) 0.275 (0.280) 0.426 (0.446) 0.273 (0.286)

0.990 15 500 0.677 (0.694) 0.419 (0.442) 0.665 (0.687) 0.418 (0.454)

1.000 5 100 0.057 (0.050) 0.057 (0.050) 0.062 (0.050) 0.063 (0.050)

1.000 5 250 0.054 (0.050) 0.054 (0.050) 0.054 (0.050) 0.059 (0.050)

1.000 5 500 0.055 (0.050) 0.055 (0.050) 0.055 (0.050) 0.057 (0.050)

1.000 10 100 0.064 (0.050) 0.064 (0.050) 0.062 (0.050) 0.064 (0.050)

1.000 10 250 0.056 (0.050) 0.056 (0.050) 0.060 (0.050) 0.061 (0.050)

1.000 10 500 0.055 (0.050) 0.055 (0.050) 0.049 (0.050) 0.056 (0.050)

1.000 15 100 0.055 (0.050) 0.055 (0.050) 0.058 (0.050) 0.063 (0.050)

1.000 15 250 0.058 (0.050) 0.058 (0.050) 0.053 (0.050) 0.056 (0.050)

1.000 15 500 0.050 (0.050) 0.050 (0.050) 0.048 (0.050) 0.053 (0.050)
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Table 2. Empirical and analytical (in brackets) rejection probabilities when τ = 1/(1 − ρ2).

ρ T + 1 N OLS, σ 2
α = 1 OLS, σ 2

α = 10 Breitung–Meyer Harris–Tzavalis

0.900 5 100 0.997 (0.998) 0.883 (0.998) 0.336 (0.337) 0.301 (0.272)

0.900 5 250 1.000 (1.000) 0.997 (1.000) 0.604 (0.615) 0.519 (0.498)

0.900 5 500 1.000 (1.000) 1.000 (1.000) 0.851 (0.863) 0.760 (0.750)

0.900 10 100 1.000 (1.000) 0.998 (1.000) 0.888 (0.912) 0.737 (0.723)

0.900 10 250 1.000 (1.000) 1.000 (1.000) 0.998 (0.999) 0.976 (0.971)

0.900 10 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 0.999 (1.000)

0.900 15 100 1.000 (1.000) 1.000 (1.000) 1.000 (0.999) 0.965 (0.962)

0.900 15 250 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.900 15 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 1.000 (1.000)

0.950 5 100 0.934 (0.935) 0.759 (0.935) 0.167 (0.151) 0.157 (0.130)

0.950 5 250 1.000 (1.000) 0.981 (1.000) 0.258 (0.249) 0.231 (0.205)

0.950 5 500 1.000 (1.000) 1.000 (1.000) 0.383 (0.391) 0.325 (0.314)

0.950 10 100 1.000 (0.999) 0.979 (0.999) 0.431 (0.442) 0.320 (0.299)

0.950 10 250 1.000 (1.000) 1.000 (1.000) 0.759 (0.766) 0.559 (0.549)

0.950 10 500 1.000 (1.000) 1.000 (1.000) 0.947 (0.956) 0.809 (0.804)

0.950 15 100 1.000 (1.000) 0.999 (1.000) 0.744 (0.770) 0.556 (0.525)

0.950 15 250 1.000 (1.000) 1.000 (1.000) 0.976 (0.983) 0.867 (0.855)

0.950 15 500 1.000 (1.000) 1.000 (1.000) 1.000 (1.000) 0.986 (0.985)

0.990 5 100 0.427 (0.409) 0.379 (0.409) 0.078 (0.064) 0.074 (0.062)

0.990 5 250 0.722 (0.723) 0.668 (0.723) 0.080 (0.073) 0.082 (0.069)

0.990 5 500 0.933 (0.935) 0.888 (0.935) 0.094 (0.085) 0.090 (0.079)

0.990 10 100 0.695 (0.683) 0.632 (0.683) 0.101 (0.089) 0.096 (0.078)

0.990 10 250 0.957 (0.956) 0.931 (0.956) 0.130 (0.121) 0.105 (0.098)

0.990 10 500 0.998 (0.999) 0.996 (0.999) 0.162 (0.165) 0.130 (0.126)

0.990 15 100 0.860 (0.842) 0.809 (0.842) 0.133 (0.121) 0.118 (0.096)

0.990 15 250 0.994 (0.994) 0.988 (0.994) 0.193 (0.187) 0.145 (0.135)

0.990 15 500 1.000 (1.000) 1.000 (1.000) 0.269 (0.282) 0.195 (0.189)

the different tests we see the results described in Section 3.4. To summarize, the power of the
Breitung–Meyer test is always higher than the power of the Harris–Tzavalis test, and the OLS
test has the highest (lowest) power of the three tests when σ 2

α = 1 (σ 2
α = 10). Finally, we see that

the empirical rejection probabilities are quite close to the analytical rejection probabilities. This
demonstrates that the local power provides a good approximation to the actual power.

In Table 2, the most striking result is that the OLS test has very high power even for values
of ρ very close to unity such as ρ = 0.99. According to the analytical results in Section 3.1, this
will be the case unless the variability of the variable of interest is dominated by the variability of
the individual-specific term. This is also the main conclusion from the simulation studies in the
papers by Bond et al. (2002) and Hall and Mairesse (2005) where the time-series processes
are covariance stationary in the simulation set-ups. The empirical power of the OLS test is
always higher than that of the Breitung–Meyer test and the Harris–Tzavalis test. In addition,
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the empirical power of the Breitung–Meyer test is always higher that of the Harris–Tzavalis
test and compared to Table 1 the empirical power of these tests is lower. These findings are all
in accordance with the analytical results in Section 3. Again, we see that the empirical power
is quite close to the analytical power except for the OLS test with σ 2

α = 10. As explained in
Section 3.1, this is to be expected.

5. CONCLUSIONS

In this paper, we have investigated the performance of some of the unit root tests in micropanels
which have been suggested in the literature. To do this we have derived the asymptotic power
of the tests under local alternatives. One of the main findings is that the initial values are very
important for the performance of the tests. This result also holds for unit root tests in single time
series and macropanels. The results show that the OLS unit root test is very powerful when the
variation of the initial deviation from the mean stationary level is high and in fact the local power
is increasing in the parameter describing this feature. However, this test is not invariant with
respect to adding individual-specific means to all variables and the results show that its power
can be very low when the variation in the individual-specific means is high. The Breitung–Meyer
test and the Harris–Tzavalis test are invariant with respect to this type of transformation and
another main finding is that the local power of the Breitung–Meyer test is always higher than
the local power of the Harris–Tzavalis test. Since the Harris–Tzavalis test relies on rather strong
assumptions such as the error terms having homoscedastic variances in order to perform the
bias adjustment the results show that the Breitung–Meyer test is to be preferred. This result is
confirmed by findings from macropanels; see Moon et al. (2007).

In future research it would be interesting to investigate whether and under which conditions
the tests considered in this paper are optimal by deriving the local power of optimal tests. This
could be done in a more general framework where the AR parameter can differ across cross-
section units under the alternative hypothesis. Results from macropanels suggest that in this case
some of the tests considered here might be optimal (the OLS test without incidental intercepts
and the Breitung–Meyer test with incidental intercepts); see Moon et al. (2007). These results are
also interesting in relation to the type of panel data unit root test suggested by Im et al. (2003).
Their test statistic is based on the cross-section average of individual-specific Dickey–Fuller test
statistics as opposed to the pooled test statistics considered here in this paper. In macropanels the
Im–Pesaran–Shin test appears to have substantially lower power than the optimal tests and that
might also be the case in micropanels.
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APPENDIX: PROOFS OF RESULTS

This appendix contains the proofs of the propositions in Section 3. The proofs are all based on standard

asymptotic theory; see for example White (2001). The notation ‘XN
as= YN ’ means that XN − YN

P→ 0 as
N → ∞, i.e. XN and YN , are asymptotically equivalent as N → ∞. We start out with some results that will
be used in the following.

A.1. Preliminary lemmas and results

LEMMA A.1. Under the local-to-unity sequence for ρ given by ρN = 1 − c/Nk for k, c > 0, the following
hold:

ρt
N = 1 − t

c

Nk
+ o(N−k), (A.1)

1

1 − ρ2
N

= Nk

2c
+ o(Nk). (A.2)

Proof: The binomial formula yields

ρt
N =

(
1 − c

Nk

)t

= 1 − t
c

Nk
+ t(t − 1)

2!

c2

N 2k
− t(t − 1)(t − 2)

3!

c3

N 3k
+ · · · + (−c)t

Nkt

and the results follow directly. �

For −1 < ρ ≤ 1, the following expression for yit is obtained by recursive substitution in (2.1):

yit = (1 − ρt )αi + ρtyi0 + ρt−1εi1 + · · · + εit for t = 1, . . . , T .

Inserting the expression for the initial value given in Assumption 2.3 yields

yit = αi + ρt
√

τεi0 + ρt−1εi1 + · · · + εit for t = 0, . . . , T .

Using stacked notation, equation (2.1) can be expressed as

yi = ρyi,−1 + vi .

Expressions for the regressor yi,−1 and the regression error vi are given by

yi,−1 = αiιT + CT (ρ)εi + AT (ρ)
√

τεi0, (A.3)

vi = (1 − ρ)αiιT + εi, (A.4)

where ιT is a T × 1 vector of ones and CT (ρ) is the T × T matrix and AT (ρ) is the T × 1 vector defined as

CT (ρ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

1 0 · · ·
...

...

ρ
. . .

. . .
...

...

...
. . .

. . . 0
...

ρT −2 · · · ρ 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AT (ρ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

ρ

ρ2

...

ρT −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

C© The Author(s). Journal compilation C© Royal Economic Society 2010.



84 E. Madsen

Note that CT (ρN ) = CT (1) + O(N−k) and AT (ρN ) = ιT + O(N−k) when ρN = 1 − c/Nk according to
Lemma A.1.

In the following, we will use notation like yi,−1(ρ) and ui(ρ) to indicate that these variables depend on
the value of the parameter ρ. In Lemma A.2 below we provide results that are used to prove the propositions
in Sections 3.1–3.3.

LEMMA A.2. Consider the sequence {xi(ρ), ui(ρ)}N
i=1 of independent variables where xi(ρ) and ui(ρ) are

k × 1 variables with mean zero and finite fourth-order moments for all values of ρ. PART A: If the following
hold for the sequence ρN

1

N

N∑
i=1

E(xi(1)′xi(1)) → mXX as N → ∞, (A.5)

E((xi(ρN ) − xi(1))′xi(ρN )) = o(1), (A.6)

E((xi(ρN ) − xi(1))′xi(1)) = o(1), (A.7)

then

1

N

N∑
i=1

xi(ρN )′xi(ρN )
P→ mXX as N → ∞.

PART B: If the following hold for the sequence ρN

E(xi(1)′ui(1)) = 0, (A.8)

1

N

N∑
i=1

Var(xi(1)′ui(1)) → � as N → ∞, (A.9)

1√
N

N∑
i=1

E(xi(ρN )′(ui(ρN ) − ui(1))) → μ1 as N → ∞, (A.10)

Var(xi(ρN )′(ui(ρN ) − ui(1))) = o(1), (A.11)

1√
N

N∑
i=1

E((xi(ρN ) − xi(1))′ui(1)) → μ2 as N → ∞, (A.12)

Var((xi(ρN ) − xi(1))′ui(1)) = o(1), (A.13)

then

1√
N

N∑
i=1

xi(ρN )′ui(ρN )
w→ N (μ1 + μ2, �) as N → ∞.

PART C: Let ρN be a sequence such that
√

N (ρN − 1) = O(1) and let ρ̂ be a sample statistic such
that

√
N (ρ̂ − ρN ) = OP (1). Then

V̂ (ρ) ≡ 1

N

N∑
i=1

xi(ρ)′ûi(ρ)ûi(ρ)′xi(ρ)
P→ � as N → ∞,
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where

ûi(ρ) = (ρN − ρ̂)xi(ρ)′ + ui(ρ).

Proof: PART A: We have that

1

N

N∑
i=1

xi(ρ)′xi(ρ) = 1

N

N∑
i=1

xi(1)′xi(1) + 1

N

N∑
i=1

(xi(ρ) − xi(1))′xi(1) + 1

N

N∑
i=1

(xi(ρ) − xi(1))′xi(ρ).

The Law of Large Numbers together with the condition in (A.5) imply that the first term in the second line
of the expression above converges in probability to mXX as N → ∞. Together with the assumption about
existence of fourth-order moments the condition in (A.5) is sufficient to give this result. Using the same
arguments the last two terms in the second line of the expression above converge in probability to zero
as N → ∞ since their means converge to zero according to the conditions in (A.6)–(A.7). Altogether this
proves that

1

N

N∑
i=1

xi(ρN )′xi(ρN )
as= 1

N

N∑
i=1

xi(1)′xi(1)
P→ mXX as N → ∞.

PART B: We have that

1√
N

N∑
i=1

xi(ρ)′ui(ρ) = 1√
N

N∑
i=1

xi(1)′ui(1) + 1√
N

N∑
i=1

(xi(ρ) − xi(1))′ui(1)

+ 1√
N

N∑
i=1

xi(ρ)′(ui(ρ) − ui(1)).

The Central Limit Theorem and the Law of Large Numbers together with the conditions in (A.8)–(A.13)
and the existence of fourth-order moments give

1√
N

N∑
i=1

xi(1)′ui(1)
w→ N (0, �) as N → ∞,

1√
N

N∑
i=1

(xi(ρN ) − xi(1))′ui(1)
P→ μ1 as N → ∞,

1√
N

N∑
i=1

xi(ρN )′(ui(ρN ) − ui(1))
P→ μ2 as N → ∞.

In particular, the conditions in (A.10)–(A.11) together with independency across i imply the following as
N → ∞ which give the result in the second equation above:

E

(
1√
N

N∑
i=1

(xi(ρN ) − xi(1))′ui(1)

)
→ μ1,

Var

(
1√
N

N∑
i=1

(xi(ρN ) − xi(1))′ui(1)

)
= 1

N

N∑
i=1

Var((xi(ρN ) − xi(1))′ui(1)) → 0.

Altogether this proves that

1√
N

N∑
i=1

xi(ρN )′ui(ρN )
w→ N (μ1 + μ2, �) as N → ∞.
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PART C: We use the following definitions:

V̂ (ρ) = 1

N

N∑
i=1

xi(ρ)′ûi(ρ)ûi(ρ)′xi(ρ),

V (ρ) = 1

N

N∑
i=1

E(xi(ρ)′ui(ρ)ui(ρ)′xi(ρ)).

We have that

V̂ (ρN ) − V (ρN ) = oP (1).

This follows since the terms xi(ρ) and ui(ρ) have finite fourth-order moments together with the assumption
that (ρ̂ − ρN ) = oP (1). Because that V (ρN ) − V (1) → 0 as N → ∞ this proves the result since

V (1) = 1

N

N∑
i=1

E(xi(1)′ui(1)ui(1)′xi(1)) → � as N → ∞.

�

A.2. Proofs of the propositions in Section 3.1: OLS

Using the equation in (3.7) we have that

Nk(ρ̂OLS − ρ) =
(

1

N 2k

N∑
i=1

y ′
i,−1yi,−1

)−1
1

Nk

N∑
i=1

y ′
i,−1vi for k > 0.

Proposition 3.1 now follows by the results in Lemma A.3 below.

LEMMA A.3. Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρ given by ρN = 1 − c/
√

N

for c ≥ 0 and when τ is fixed, then the following results hold:

1

N

N∑
i=1

y ′
i,−1yi,−1

P→ T

(
σ 2

α +
(

τ + T − 1

2

)
σ2ε

)
as N → ∞, (A.14)

1√
N

N∑
i=1

y ′
i,−1vi

w→ N

(
cT σ 2

α , T

(
σ 2

α σ2ε +
(

τ + T − 1

2

)
σ4ε

))
as N → ∞. (A.15)

Under Assumptions 2.1–2.4 and the local-to-unity sequence for ρN given by ρN = 1 − c/N for c ≥ 0 and
when τN = bN + o(N ) for b > 0, then the following results hold:

1

N 2

N∑
i=1

y ′
i,−1yi,−1

P→ bT σ2ε as N → ∞, (A.16)

1

N

N∑
i=1

y ′
i,−1vi

w→ N (0, bT σ4ε) as N → ∞. (A.17)
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Proof: The following results will be used below:

tr{CT (ρ)} = 0,

AT (1)′AT (1) = ι′T ιT = T ,

tr{CT (1)′CT (1)} = tr
{
CT (1)′CT (1)

} = T (T − 2)

2
,

AT (ρN ) − AT (1) = O(N−k),

CT (ρN ) − CT (1) = O(N−k).

The first part of Lemma A.3 follows by using Lemma A.2 with the following definitions of xi(ρ) and ui(ρ):

xi(ρ) = yi,−1(ρ) = αiιT + AT (ρ)
√

τεi0 + CT (ρ)εi,

ui(ρ) = vi(ρ) = (1 − ρ)αiιT + εi,

where expressions for yi,−1 and ui are given in equations (A.3)–(A.4). This gives that

xi(ρ) − xi(1) = (AT (ρ) − AT (1))
√

τεi0 + (CT (ρ) − CT (1))εi,

ui(ρ) − ui(1) = (1 − ρ)αiιT .

The sequences xi(ρ) and ui(ρ) are both independent across i with finite fourth-order moments.
We prove the result in (A.14) by using Part A in Lemma A.2. We have the following:

1

N

N∑
i=1

E(xi(1)′xi(1)) = 1

N

N∑
i=1

E
(
α2

i

)
ι′T ιT + 1

N

N∑
i=1

σ 2
iετAT (1)′AT (1) + 1

N

N∑
i=1

σ 2
iεtr

{
CT (1)′CT (1)

}

→ σ 2
α T + σ2εT

(
τ + T − 1

2

)
as N → ∞,

where we have used that αi, εi0 and εi are independent of each other with mean zero. We also have that for
all ρ:

E(xi(ρ)′(xi(ρN ) − xi(1))) = σ 2
iετAT (ρ)′(AT (ρN ) − AT (1))

+ σ 2
iε tr {CT (ρ)′(CT (ρN ) − CT (ρN ))} = O(1/

√
N).

This means that the conditions in Part A of Lemma A.2 are satisfied such that

1

N

N∑
i=1

xi(ρN )′xi(ρN )
P→ T

(
σ 2

α +
(

τ + T − 1

2

)
σ2ε

)
as N → ∞.

This proves the result in (A.14).
We prove the result in (A.15) by using Part B in Lemma A.2. The mean and variance of xi(1)′ui(1) are

given by

E(xi(1)′ui(1)) = σ 2
iε tr{CT (1)′} = 0,

Var(xi(1)′ui(1)) = σ 2
iεE(xi(1)′xi(1)) = σ 2

iε

(
T σ 2

α +
(

T τ + T (T − 1)

2

)
σ 2

iε

)
,

such that

1

N

N∑
i=1

Var(xi(1)′ui(1)) → T

(
σ 2

α σ2ε +
(

τ + T − 1

2

)
σ4ε

)
as N → ∞.
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In addition, we have the following results concerning means:

E

(
1√
N

N∑
i=1

xi(ρN )′(ui(ρN ) − ui(1))

)
= 1√

N

N∑
i=1

(1 − ρN )ι′T ιT E
(
α2

i

) = cT σ 2
α ,

E

(
1√
N

N∑
i=1

(xi(ρN ) − xi(1))′ui(1)

)
= 1√

N

N∑
i=1

σ 2
iε tr{CT (ρ) − CT (1)} = 0.

For the variances we have the following:

Var(xi(ρN )′(ui(ρN ) − ui(1))) ≤ O(1/N ),

Var((xi(ρN ) − xi(1))′ui(1)) ≤ O(1/N ).

This holds since

Var(xi(ρN )′(ui(ρN )−ui(1)))≤E
(
(xi(ρN )′xi(ρN ))2

)
1/2E(((ui(ρN )−ui(1))′

(
ui(ρN )−ui(1)))2

)
1/2 =O(1/N ),

where the inequality sign in the expression above follows by Schwarz’s inequality and the equality sign
follows by using that for dui(ρN ) = ui(ρN ) − ui(1) we have that E((dui(ρN )′dui(ρN ))2) = O(1/N 2) and
E((xi(ρN )′xi(ρN ))2) = O(1). The second result follows by using similar arguments. This means that the
conditions in Part B of Lemma A.2 are satisfied such that

1√
N

N∑
i=1

xi(ρN )′ui(ρN )
w→ N

(
cT σ 2

α , T

(
σ 2

α σ2ε +
(

τ + T − 1

2

)
σ4ε

))
as N → ∞.

This proves the result in (A.15).
The second part of Lemma A.3 follows by repeating the steps above but with the following definitions

of xi(ρN ) and ui(ρN ):

xi(ρN ) = AT (ρN )
√

bεi0
as= yi,−1(ρN )/

√
N,

ui(ρN ) = (1 − ρN )ιT αi + εi .

We have that

E(xi(1)′xi(1)) = σ 2
iεbAT (1)′AT (1)′ = σ 2

iεbT ,

E(xi(ρ)′(xi(ρN ) − xi(1))) = σ 2
iεbAT (ρ)′(AT (ρN ) − AT (1)) = O(1/N ).

Such that

1

N 2

N∑
i=1

yi,−1(ρN )′yi,−1(ρN )
as= 1

N

N∑
i=1

xi(ρN )′xi(ρN )
P→ σ2εbT as N → ∞.

This proves the result in (A.16). Using that xi(ρ) and ui(ρ) are independent for all values of ρ we have

E(xi(1)′ui(1)) = 0,

Var(xi(1)′ui(1)) = E
(
(xi(1)′ui(1))2

) = σ 4
iεbT ,

E(xi(ρN )′(ui(ρN ) − ui(1))) = 0,

E((xi(ρN ) − xi(1))′ui(1)) = 0.

Altogether this implies that

1

N

N∑
i=1

yi,−1(ρN )′vi(ρN )
as= 1√

N

N∑
i=1

xi(ρN )′ui(ρN )
w→ N (0, bT σ4ε) as N → ∞,

which proves the result in (A.17). �
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Proof of Proposition 3.2: Part C in Lemma A.2 immediately implies that V̂OLS(k) is a consistent estimator
as N → ∞ of the variance in the limiting distribution of Nk(ρ̂OLS − ρN ) when ρN is local-to-unity. Then
using the expression for tOLS we have that

tOLS = V̂OLS(k)−
1
2 Nk(ρ̂OLS − 1) = V̂OLS(k)−

1
2 Nk(ρ̂OLS − ρN ) − cV̂OLS(k)−

1
2 .

Proposition 3.2 now follows by the results already obtained. �

A.3. Proofs of the propositions in Section 3.2: Breitung–Meyer

Using the expressions for yi,−1 and vi given in (A.3)–(A.4) we have that

ỹi,−1 = yi,−1 − ιT yi0 = (AT (ρ) − ιT )
√

τεi0 + CT (ρ)εi,

ṽi = vi + (ρ − 1)ιT yi0 = (ρ − 1)
√

τ ιT εi0 + εi .

Using the equation in (3.12) we have

√
N (ρ̂0 − ρ) =

(
1

N

N∑
i=1

ỹ ′
i,−1ỹi,−1

)−1
1√
N

N∑
i=1

ỹ ′
i,−1ṽi .

Proof of Proposition 3.3: Follows by the results in Lemma A.4 below. �

LEMMA A.4. Let Assumptions 2.1–2.4 be satisfied. When ρN = 1 − c/
√

N and τN = b
√

N + o(
√

N ) for
b, c ≥ 0, then the following results hold:

1

N

N∑
i=1

ỹ ′
i,−1ỹi,−1

P→ σ2ε

T (T − 1)

2
as N → ∞, (A.18)

1√
N

N∑
i=1

ỹ ′
i,−1ṽi

w→ N

(
c2bσ2ε

T (T − 1)

2
, σ4ε

T (T − 1)

2

)
as N → ∞. (A.19)

Proof: In the following we will use that

AT (ρN ) − AT (1) = (ρN − 1)ÃT + o(1/
√

N ),

ι′T ÃT = T (T − 1)

2
,

where the T × 1 vector ÃT is defined as ÃT = (0, 1, 2, . . . , T − 1)′.
We use the following specifications:

xi(ρ) = ỹi,−1(ρ) = (AT (ρ) − ιT )
√

τεi0 + CT (ρ)εi,

ui(ρ) = ṽi(ρ) = (ρ − 1)
√

τ ιT εi0 + εi,

such that

xi(ρ) − xi(1) = (AT (ρ) − ιT )
√

τεi0 + (CT (ρ) − CT (1))εi,

ui(ρ) − ui(1) = (ρ − 1)
√

τ ιT εi0.

It follows immediately that

1

N

N∑
i=1

E(xi(1)′xi(1)) = 1

N

N∑
i=1

σ 2
iε tr{CT (1)′CT (1)} → σ2ε

T (T − 1)

2
as N → ∞.
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We also have

E((xi(ρN ) − xi(1))′xi(ρN )) = σ 2
iε(τN (AT (ρN ) − ιT )′(AT (ρN ) − ιT ) + tr{(CT (ρN ) − CT (1))′CT (ρN )})

= O(1/
√

N ).

This holds since τN (AT (ρN ) − ιT )′(AT (ρN ) − ιT ) = c2b/
√

NÃ′
T ÃT + o(1/

√
N) = O(1/

√
N ). Altogether

this gives the result in (A.18) according to Part A of Lemma A.2.
In order to prove the result in (A.19) we will show that the conditions in Part B of Lemma A.2 are

satisfied. We have that

E(xi(1)′ui(1)) = σ 2
iε tr{CT (1)′} = 0,

Var(xi(1)′ui(1)) = σ 4
iε

T (T − 1)

2
,

E(xi(ρN )′(ui(ρN ) − ui(1))) = (ρN − 1)τNσ 2
iει

′
T (AT (ρN ) − AT (1)),

E((xi(ρN ) − xi(1))′ui(1)) = 0,

Var(xi(ρN )′(ui(ρN ) − ui(1))) ≤ O(1/
√

N ),

Var((xi(ρN ) − xi(1))′ui(1)) ≤ O(1/
√

N ),

such that

1√
N

N∑
i=1

E(xi(ρN )′(ui(ρN ) − ui(1))) → c2b
T (T − 1)

2
σ2ε as N → ∞,

where we have used that ι′T (AT (ρN ) − AT (1)) = −cι′T ÃT /
√

N + o(1/
√

N ) and (ρN − 1)τN =
−cb + o(

√
N ). Altogether by Part B of Lemma A.2 this proves the result in (A.19). �

Proof of Proposition 3.4: Part C in Lemma A.2 immediately implies that V̂0 is a consistent estimator as
N → ∞ of the variance in the limiting distribution of

√
N (ρ̂0 − ρN ) when ρN is local-to-unity. Then using

the expressions for t0 and t̄0 we have that

t0 = V̂
− 1

2
0

√
N (ρ̂0 − 1) = V̂

− 1
2

0

√
N (ρ̂0 − ρN ) − cV̂

− 1
2

0 ,

t̄0 =
√

T (T − 1)

2

√
N (ρ̂0 − 1) =

√
T (T − 1)

2

√
N(ρ̂0 − ρN ) − c

√
T (T − 1)

2
.

Proposition 3.4 now follows by the results already obtained. �

A.4. Proofs of the propositions in Section 3.3: Harris–Tzavalis

Using the expressions for yi,−1 and vi given in (A.3)–(A.4) and that QT ιT = 0 we have

QT yi,−1 = QT CT (ρ)εi + QT AT (ρ)
√

τεi0,

QT vi = QT εi,

where QT = IT − 1
T
ιT ι′T is symmetric and idempotent. Using the expression for ρ̂WG in (3.16) we have

√
N

(
ρ̂WG − ρ + 3

T + 1

)
=

(
1

N

N∑
i=1

y ′
i,−1QT yi,−1

)−1
1√
N

N∑
i=1

(
y ′

i,−1QT εi + 3

T + 1
y ′

i,−1QT yi,−1

)
.

Proof of Proposition 3.5: Follows by the results in Lemma A.5 below. �
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LEMMA A.5. Let Assumptions 2.1–2.4 be satisfied. When ρN = 1 − c/
√

N and τN = b
√

N + o(
√

N ) for
b, c ≥ 0, then the following results hold:

1

N

N∑
i=1

y ′
i,−1QT yi,−1

P→ σ2ε

(T − 1)(T + 1)

6
as N → ∞, (A.20)

1√
N

N∑
i=1

(
y ′

i,−1QT εi + 3

T + 1
y ′

i,−1QT yi,−1

)
w→ N (−cσ2ε(a1 − cba2), g1m4 + g2σ4ε) as N → ∞,

(A.21)

where

a1 = (T − 1)(T − 2)

12
a2 = T (T − 1)

4
,

and

g1 = (T − 1)(T − 2)(2T − 1)

15T (T + 1)
g2 = (T − 1)(17T 3 − 44T 2 + 77T − 24)

60T (T + 1)
.

Proof: The following results will be used below:

QT AT (1) = QT ιT = 0,

QT AT (ρ) = QT (AT (ρ) − AT (1)),

tr{CT (1)′QT CT (1)} = (T − 1)(T + 1)

6
,

tr{CT (1)′ιT ι′T CT (1)} = T (T − 1)(2T − 1)

6
,

tr{CT (1)′QT } = −T − 1

2
.

The T × T matrix C̃T and the T × 1 vector ÃT are defined as

C̃T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0

0 0 · · ·
...

...

1
. . .

. . .
...

...

...
. . .

. . . 0
...

T − 2 · · · 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ÃT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

1

2

...

T − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We will also use the following results:

(AT (ρN ) − AT (1))′QT AT (ρN ) = (1 − ρN )2Ã′
T QT ÃT + o(1/N ),

tr{CT (1)′C̃T } = T (T − 1)(T − 2)

6
,

ι′T CT (1)′C̃T ιT = T (T − 1)(T − 2)(3T − 1)

24
,

ι′T C̃T
′ιT = T (T − 1)(T − 2)

6
,

Ã′
T QT ÃT = Ã′

T ÃT − 1

T
(Ã′

T ιT )2 = T (T − 1)(T + 1)

12
.
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From above we have the following:

√
N

(
ρ̂WG − ρ + 3

T + 1

)
=

(
1

N

N∑
i=1

xi(ρ)′xi(ρ)

)−1 (
1√
N

N∑
i=1

xi(ρ)′ui(ρ)

)
,

with

xi(ρ) = QT yi,−1(ρ) = QT AT (ρ)
√

τNεi0 + QT CT (ρ)εi,

ui(ρ) = QT εi + 3

T + 1
QT yi,−1(ρ) = QT εi + 3

T + 1

(
QT AT (ρ)

√
τεi0 + QT CT (ρ)εi

)
.

We have that

xi(1) = QT CT (1)εi,

ui(1) = QT εi + 3

T + 1
QT CT (1)εi,

xi(ρ) − xi(1) = QT (AT (ρ) − ιT )
√

τεi0 + QT (CT (ρ) − CT (1))εi,

ui(ρ) − ui(1) = 3

T + 1

(
QT (AT (ρ) − ιT )

√
τεi0 + QT (CT (ρ) − CT (1))εi

)
.

The sequences xi(ρN ) and ui(ρN ) are both independent across i with finite fourth-order moments.
We have the following:

1

N

N∑
i=1

E(xi(1)′xi(1)) = 1

N

N∑
i=1

σ 2
iε tr{CT (1)′QT CT (1)} → σ2ε

(T − 1)(T + 1)

6
as N → ∞,

and also

E((xi(ρN ) − xi(1))′xi(ρN )) = σ 2
iε(tr{(CT (ρN ) − CT (1))′QT CT (ρN )} + τN (AT (ρN ) − AT (1))′QT AT (ρN ))

= O(1/
√

N ).

This holds since τN = b
√

N + o(
√

N ) in combination with (AT (ρN ) − AT (1))′QT AT (ρN ) = O(1/N ).
Altogether this gives the result in (A.20) according to Part A of Lemma A.2.

We prove (A.21) by showing that the conditions in Part B of Lemma A.2 are satisfied. We have the
following:

E(xi(1)′ui(1)) = σ 2
iε

(
tr{CT (1)′QT } + 3

T + 1
tr{CT (1)′QT CT (1)}

)
= 0.

The following results can be found in Harris and Tzavalis (1999):

E
((

ε′
iCT (1)′QT εi

)2
)

= (2T − 1)(T − 1)

6T
E

(
ε4

it

) + (T − 1)(2T 2 − 4T + 3)

6T
σ 4

iε,

E
((

ε′
iCT (1)′QT CT (1)εi

)2
)

= (T 2 − 1)(T 2 + 1)

30T
E

(
ε4

it

) + (T 2 − 1)(T 2 + 1)(T − 2)

20T
σ 4

iε,

E
(
ε′

iCT (1)′QT εiε
′
iCT (1)′QT CT (1)εi

) = − (T 2 − 1)

12
E

(
ε4

it

) − (T 2 − 1)(T − 2)

12
σ 4

iε.
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This gives that

Var(xi(1)′ui(1)) = E
((

ε′
iCT (1)′QT εi

)2
)

+
(

3

T − 1

)2

E
((

ε′
iCT (1)′QT CT (1)εi

)2
)

+ 6

T + 1
E

(
ε′

iCT (1)′QT εiε
′
iCT (1)′QT CT (1)εi

)
= g1E

(
ε4

it

) + g2σ
4
iε,

where g1 and g2 are defined in Lemma A.5. This implies that

1

N

N∑
i=1

Var(xi(1)′ui(1)) → g1m4 + g2σ4ε as N → ∞.

For the first mean term we have that

E ((xi(ρN ) − xi(1))′ui(1)) = σ 2
iε tr

{(
IT + 3

T + 1
CT (1)

)′
QT (CT (ρN ) − CT (1))

}

= σ 2
iε tr

{(
IT + 3

T + 1
CT (1)

)′
QT C̃T

}
(ρN − 1) + o(1/

√
N),

such that as N → ∞:

1√
N

N∑
i=1

E
(
(xi(ρN ) − xi(1))′ui(1)

) = −cσ2ε

(
tr{QT C̃T } + 3

T + 1
tr{CT (1)′QT C̃T }

)
.

For the second mean term we have that

E(xi(ρN )′(ui(ρN ) − ui(1)))

= σ 2
iε

3

T + 1
(tr{CT (ρN )′QT (CT (ρN ) − CT (1))} + τNAT (ρN )′QT (AT (ρN ) − AT (1)))

= σ 2
iε

3

T + 1
(tr{CT (1)′QT C̃T }(ρN − 1) + τN (ρN − 1)2Ã′

T QT ÃT ) + o(1/
√

N),

such that as N → ∞:

1√
N

N∑
i=1

E(xi(ρN )′(ui(ρN ) − ui(1))) → −cσ2ε

3

T + 1
(tr{CT (1)′QT C̃T } − cbÃ′

T QT ÃT ).

For the variance terms we have that

Var((xi(ρN ) − xi(1))′ui(1)) ≤ O(1/
√

N ),

Var(xi(ρN )′ (ui(ρN ) − ui(1))) ≤ O(1/
√

N ).

Altogether this gives the result in (A.21) according to Part B of Lemma A.2 since

−cσ2ε

(
tr{QT C̃T } + 6

T + 1
tr

{
CT (1)′QT C̃T

} − cb
3

T + 1
Ã′

T QT ÃT

)

= −cσ2ε

(
− (T − 1)(T − 2)

6
+ 6(T − 1)(T − 2)

24
− cb

T (T − 1)

4

)

= −cσ2ε

(
(T − 1)(T − 2)

12
− cb

T (T − 1)

4

)
.

�
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Proof of Proposition 3.6: Part C in Lemma A.2 immediately implies that V̂WG is a consistent estimator as
N → ∞ of the variance in the limiting distribution of

√
N(ρ̂WG − ρN + 3/(T + 1)) when ρN is local-to-

unity. Then using the expressions for tWG and t̄WG we have that

tWG = V̂
− 1

2
WG

√
N

(
ρ̂WG − 1 + 3

T + 1

)
= V̂

− 1
2

WG

√
N

(
ρ̂WG − ρN + 3

T + 1

)
− cV̂

− 1
2

WG,

t̄WG = Ṽ
− 1

2
WG

√
N

(
ρ̂WG − 1 + 3

T + 1

)
= Ṽ

− 1
2

WG

√
N

(
ρ̂WG − ρN + 3

T + 1

)
− cṼ

− 1
2

WG.

Proposition 3.6 now follows by the results already obtained. �
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