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§HEC Montréal and CIRPEE, 3000 Cote Sainte Catherine,
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First version received: June 2008; final version accepted: November 2009

Summary ¿We develop a Markov-switching GARCH model (MS-GARCH) wherein the
conditional mean and variance switch in time from one GARCH process to another. The
switching is governed by a hidden Markov chain. We provide sufficient conditions for
geometric ergodicity and existence of moments of the process. Because of path dependence,
maximum likelihood estimation is not feasible. By enlarging the parameter space to include
the state variables, Bayesian estimation using a Gibbs sampling algorithm is feasible. We
illustrate the model on S&P500 daily returns.
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1. INTRODUCTION

The volatility of financial markets has been the object of numerous developments and
applications over the past two decades, both theoretically and empirically. In this respect, the
most widely used class of models is certainly that of GARCH models (see e.g. Bollerslev
et al., 1994, and Giraitis et al., 2007, for a review of more recent developments). These models
usually indicate a high persistence of the conditional variance (i.e. a nearly integrated GARCH
process). Diebold (1986) and Lamoureux and Lastrapes (1990), among others, argue that the
nearly integrated behaviour of the conditional variance may originate from structural changes
in the variance process which are not accounted for by standard GARCH models. Furthermore,
Mikosch and Starica (2004) and Hilebrand (2005) show that estimating a GARCH model on
a sample displaying structural changes in the unconditional variance does indeed create an
integrated GARCH effect. These findings clearly indicate a potential source of misspecification,
to the extent that the form of the conditional variance is relatively inflexible and held fixed
throughout the entire sample period. Hence the estimates of a GARCH model may suffer from a
substantial upward bias in the persistence parameter. Therefore, models in which the parameters
are allowed to change over time may be more appropriate for modelling volatility.
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Indeed, several models based on the idea of regime changes have been proposed. Schwert
(1989) considers a model in which returns can have a high or low variance, and switches
between these states are determined by a two-state Markov process. Cai (1994) and Hamilton
and Susmel (1994) introduce an ARCH model with Markov-switching parameters in order to
take into account sudden changes in the level of the conditional variance. They use an ARCH
specification instead of a GARCH to avoid the problem of path dependence of the conditional
variance which renders the computation of the likelihood function infeasible. This occurs because
the conditional variance at time t depends on the entire sequence of regimes up to time t due to
the recursive nature of the GARCH process. Since the regimes are unobservable, one needs to
integrate over all possible regime paths when computing the sample likelihood, but the number
of possible paths grows exponentially with t, which renders ML estimation intractable. Gray
(1996) presents a tractable Markov-switching GARCH model. In his model, the path dependence
problem is removed by aggregating the conditional variances over all regimes at each time step
in order to construct a single variance term. This term (conditional on the available information,
but not on the regimes) is used to compute the conditional variances in the next time step. A
modification of his model is suggested by Klaassen (2002); see also Dueker (1997), Bollen et al.
(2000), Haas et al. (2004) and Marcucci (2005) for related papers. Stationarity conditions for
some of these tractable models are given by Abramson and Cohen (2007).

The objective of this paper is to develop both the probabilistic properties and the estimation
of a Markov-switching GARCH (MS-GARCH) model that has a finite number of regimes in
each of which the conditional mean is constant and the conditional variance takes the form of
a GARCH(1,1) process. Hence, in our model the conditional variance at each time depends on
the whole regime path. This constitutes the main difference between our model and existing
variants of Gray’s (1996) model mentioned above. We provide sufficient conditions for the
geometric ergodicity and the existence of moments of the proposed model. We find that for
strict stationarity, it is not necessary that the stability condition of Nelson (1990) be satisfied in
all the GARCH regimes but it must be satisfied on average with respect to the unconditional
probabilities of the regimes. Further, for covariance stationarity, the GARCH parameters in some
regimes can be integrated or even explosive. A similar model was proposed by Francq and
Zakoian (2005) who study conditions for second-order stationarity and existence of higher-order
moments.

Concerning the estimation method, we propose a Bayesian Markov chain Monte Carlo
(MCMC) algorithm that circumvents the problem of path dependence by including the state
variables in the parameter space and simulating them by Gibbs sampling. We illustrate by a
repeated simulation experiment that the algorithm is able to recover the parameters of the data-
generating process, and we apply the algorithm to a real data set. For the more simple MS-ARCH
case, Francq et al. (2001) establish the consistency of the ML estimator. Douc et al. (2004)
obtained its asymptotic normality for a class of autoregressive models with Markov regime,
which includes the regime-switching ARCH model as a special case. Bayesian estimation of
a Markov switching ARCH model where only the constant in the ARCH equation can switch, as
in Cai (1994), has been studied and illustrated by Kaufman and Frühwirth-Schnatter (2002) and
Kaufman and Scheicher (2006). Tsay (2005, pp. 588–94) proposed a Bayesian approach for a
simple two-state Markov switching model with different risk premiums and different GARCH
dynamics. Das and Yoo (2004) and Gerlach and Tuyl (2006) propose an MCMC algorithm for the
same model (switch in the constant only) but with a GARCH term and therefore tackle the path
dependence problem, but only the last cited paper contains an application to real data. Finally,
the most comparable work to our paper (for estimation) is that of Henneke et al. (2006) who
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estimate by an MCMC algorithm a Markov-switching ARMA-GARCH model. They apply their
algorithm to the data used by Hamilton and Susmel (1994). Non-Bayesian estimation of MS-
GARCH models is studied by Francq and Zakoian (2005) who propose to estimate the model by
the generalized method of moments. To illustrate our estimation method, we apply it to a time
series of daily returns of the S&P500 index. We find that the MS-ARCH version of the model
does not account satisfactorily for the persistence of the conditional variance, whereas the MS-
GARCH version performs better. Moreover, the latter dominates the former in terms of a model
choice criterion based on the BIC formula.

The paper is organized as follows: in Section 2, we define our version of the MS-GARCH
model and state sufficient conditions for geometric ergodicity and existence of moments. In
Section 3, we explain how the model can be estimated in the Bayesian framework and provide
a numerical example. In Section 4, we apply our approach to financial data. In Section 5, we
conclude and discuss possible extensions. Proofs of the theorems stated in the paper are gathered
in an appendix.

2. MARKOV-SWITCHING GARCH MODEL

The GARCH(1,1) model can be defined by

yt = μt + σtut (2.1)

σ 2
t = ω + αε2

t−1 + βσ 2
t−1, (2.2)

where σt and μt are measurable functions of yt−τ for τ ≤ t − 1, εt = yt − μt , and the error
term ut is i.i.d. with zero mean and unit variance. In order to ensure easily the positivity of
the conditional variance we impose the restrictions ω > 0, α ≥ 0 and β ≥ 0. For simplicity, we
assume that μt is constant. The sum α + β measures the persistence of a shock to the conditional
variance in equation (2.2). When a GARCH model is estimated using daily or higher frequency
data, the estimate of this sum tends to be close to one, indicating that the volatility process
is highly persistent and the second moment of the return process may not exist. However, it
was argued that the high persistence may artificially result from regime shifts in the GARCH
parameters over time; see Diebold (1986), Lamoureux and Lastrapes (1990) and Mikosch and
Starica (2004), among others.

This motivates our idea to estimate a Markov-switching GARCH (MS-GARCH) model that
permits regime switching in the parameters. It is a generalization of the GARCH model and
permits a different persistence in the conditional variance of each regime. Thus, the conditional
variance in each regime accommodates volatility clustering, nesting the GARCH model as a
special case. Let {st } be an ergodic homogeneous Markov chain on a finite set S = {1, . . . , n},
with transition matrix P defined by the probabilities {ηij = P(st = i|st−1 = j )} and invariant
probability measure π = {πi}. We assume the chain is initiated at t = 0, which implies that
{st }t≥1 are independent by definition from {ut }t≥1 since the transition probabilities are fixed over
time. The MS-GARCH model is defined by

yt = μst
+ σtut (2.3)

σ 2
t = ωst

+ αst
ε2
t−1 + βst

σ 2
t−1, (2.4)
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where ωst
> 0, αst

≥ 0, βst
≥ 0 for st ∈ {1, 2, . . . , n}, and εt = yt − μst

. These assumptions on
the GARCH coefficients entail that σ 2

t is almost surely strictly positive. In related papers, Yang
(2000), Yao and Attali (2000), Yao (2001) and Francq and Zakoian (2002) derived conditions
for the asymptotic stationarity of some AR and ARMA models with Markov-switching regimes.
However, these results do not apply in our framework since, although for the GARCH model the
squared residuals follow an ARMA model, the same does not apply for our model. Conditions
for the weak stationarity and existence of moments of any order for the Markov-switching
GARCH(p, q) model with zero means μst

, in which the discrete Markov chain of the latent states
is initiated from its stationary probabilities, have been derived by Francq and Zakoian (2005); see
also Francq et al. (2001). The MS-GARCH process is not a Markov chain. However, the extended
process Zt = (yt , σ 2

t+1, st+1)′ is a Markov chain (see the Appendix). In what follows, we state
mild regularity conditions for which this chain is geometrically ergodic, strictly stationary and
has finite moments. These issues are not dealt with by Francq and Zakoian (2005). Further,
geometric ergodicity implies that it is not necessary for our model to have a stationary solution,
but also that irrespective of the initial conditions it asymptotically behaves as the stationary
version. In this case, the asymptotic analysis can be extended to any solution of the model, and
not only the stationary one. Our results are based on Markov chain theory; see e.g. Chan (1993)
and Meyn and Tweedie (1993). We impose the following assumptions:

ASSUMPTION 2.1. The error term ut is i.i.d. with a density function f (·) that is positive and
continuous everywhere on the real line and is centred on zero. Furthermore, E(|u2

t |δ) < ∞ for
some δ > 0.

ASSUMPTION 2.2. αi > 0, βi > 0, the Markov chain is homogeneous, and ηij ∈ (0, 1) for all
i, j ∈ {1, . . . , n}.
ASSUMPTION 2.3.

∑n
i=1 πiE[log(αiu

2
t + βi)] < 0.

The first assumption is satisfied for a wide range of distributions for the error term, e.g. the
normal and the Student distributions. For δ ≥ 1, we set the variance to unity and, if δ < 1, the
parameters of the conditional scaling factor of the data are estimated. The second assumption
is slightly stronger than the non-negativity conditions of Bollerslev (1986) for the GARCH(1,1)
model. Under this assumption all the regimes are accessible and the discrete Markov chain is
ergodic. These assumptions are needed in order to establish the irreducibility and aperiodicity of
the process. Assumption 2.3 implies that at least one of the regimes is stable. We assume, without
loss of generality throughout that in the first regime (st = 1) the process is strictly stationary, thus
E log(α1u

2
t + β1) < 0. To obtain the results in Theorem 2.1, we observe that it is not necessary

that the strict stationarity requirement of Nelson (1990) be satisfied for all the GARCH regimes
but on average with respect to the invariant probability distribution of the latent states.

THEOREM 2.1. Under Assumptions 2.1–2.3, Zt is geometrically ergodic and if it is initiated
from its stationary distribution, then the process is strictly stationary and β-mixing (absolutely
regular) with exponential decay. Moreover, E(|yt |2p) < ∞ for some p ∈ (0, δ] where the
expectations are taken under the stationary distribution.

The geometric ergodicity ensures not only that a unique stationary probability measure for
the process exists, but also that the chain, irrespective of its initialization, converges to it at a
geometric rate with respect to the total variation norm. Markov chains with this property satisfy
conventional limit theorems such as the law of large numbers and the central limit theorem
for any given starting value given the existence of suitable moments; see Meyn and Tweedie
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(1993, ch. 17) for details. Geometric ergodicity implies that if the process is initiated from its
stationary distribution, it is regular mixing—see Doukhan (1994, sec. 1.1) for the definition—
with exponential decaying mixing numbers. This implies that the autocovariance function of any
measurable function of the data (if it exists) converges to zero at least at the same rate (e.g. the
autocorrelation function of |yt |p decays at exponential rate). Using geometric ergodicity, we can
evaluate the stationary distribution numerically since analytical results are hard to obtain for our
model. For example, Moeanaddin and Tong (1990) propose a conditional density approach by
exploiting the Chapman–Kolmogorov relation for non-linear models; see also Stachurski and
Martin (2008).

For the GARCH(1,1) model, the sum α + β measures the persistence of a shock to the
conditional variance. We note that (2.4) can be rewritten as

σ 2
t = ωst

+ λtσ
2
t−1 + vt , (2.5)

where λt = αst
+ βst

and vt = αst
(ε2

t−1 − σ 2
t−1) is a serially uncorrelated innovation. Let Ak =∏k

j=1 λt−j for k ≥ 1 (A0 ≡ 1), γ = ∑n
i=1 πi log(αi + βi). Assuming γ < 0, by solving (2.5)

recursively, we can express the conditional variance as

σ 2
t =

t−1∑
k=0

Ak(vt−k + ωst−k
) + Atσ

2
0 .

It can be shown that Ak = O(exp(γ̄ k)) for some γ̄ ∈ (γ, 0) with probability one.1 Thus, the
impact of past shocks on the variances declines geometrically at a rate which is bounded by
γ . Hence, γ can serve as a bound on the measure of volatility persistence of our model. As
it approaches zero the persistence of the volatility shocks increases. For γ = 0, the impact of
shocks on the variances does not decay over time. By Jensen’s inequality and the strict concavity
of log(x), it is clear that if γ ≤ 0 Condition 2.3 is satisfied.

Next, we illustrate that Condition 2.3 allows explosive regimes while the global process is
stable. We consider an MS-GARCH model with two regimes. For the first regime we choose
an integrated GARCH(1,1) process with realistic values α1 = 0.1 and β1 = 0.9. We note that
this process is strictly stationary, but not covariance stationary. Let π = η21/(η12 + η21) be the
ergodic probability of the stable regime, and let (α2, β2) be the parameters of the second regime.
Further, define F (α2, β2, π ) = πE log(0.1u2

t + 0.9) + (1 − π )E log(α2u
2
t + β2). In Figure 1, we

show the strict stationarity frontiers F (α2, β2, π ) = 0 which have been evaluated by simulations
in the cases ut ∼ N (0, 1) and π = 0.0, 0.5, 0.75. The strict stationarity regions are the areas
below these curves and above the axes (notice that on the graph β2 ≥ 0.80). We note that when
π = 0 the model has one regime which is strictly stationary and the computed values satisfy the
stability condition of Nelson (1990). However, for π > 0, the parameters of the second regime
imply that it can be explosive. That is, under the non-stable regime the conditional volatility
diverges. Further, the higher the probability of being in the stable regime, the higher the values
that the persistence parameters of the second regime can assume. Therefore, we observe that
our model allows periods in which explosive regimes are operating, giving the impression of
structural instability in the conditional volatility, before the process collapses to its stationary
level.

1 Note that {st } is an ergodic Markov chain, hence for any initial state, 1
k

∑k
j=1 log(αsj + βsj ) → γ a.s.; hence similar

to Nelson (1990, Theorem 2) we can show that there exists a γ̄ ∈ (γ, 0) such that Ak = O(exp(γ̄ k)) with probability one.
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Figure 1. Strict stationarity region for a two-state MS-GARCH process.

In order to establish the existence of higher-order moments, we define the n × n matrix

 =

⎛
⎜⎜⎜⎝

E
(
α1u

2
t + β1

)k
η11 · · · E

(
αnu

2
t + βn

)k
ηn1

...
. . .

...

E
(
α1u

2
t + β1

)k
η1n · · · E

(
αnu

2
t + βn

)k
ηnn

⎞
⎟⎟⎟⎠ .

A similar matrix was first introduced by Yao and Attali (2000) for non-linear autoregressive
models with Markov switching. Let ρ(·) denote the spectral radius of a matrix, i.e. its largest
eigenvalue in modulus. Then, we impose the following conditions:

ASSUMPTION 2.4. E(|u2
t |k) < ∞ for some integer k ≥ 1.

ASSUMPTION 2.5. ρ() < 1.

Assumption 2.5 is similar to the stability condition imposed by Francq and Zakoian (2005)
to establish the existence of a second-order stationary solution for the MS-GARCH model.
However, in our set-up this condition induces not only stationarity but also geometric ergodicity.

THEOREM 2.2. Under Assumptions 2.1–2.2 and 2.4–2.5, the process is geometrically ergodic
and E(|y2

t |k) < ∞ for some integer k ≥ 1, where the expectations are taken under the stationary
distribution.

The spectral radius condition used in Theorem 2.2 is simple to check in the leading case
where k = 1. Let di = αi + βi . If di < 1 for all i ∈ {1, 2, . . . , n}, Assumption 2.5 is satisfied for
this case, since ηij ∈ (0, 1), see Lutkepohl (1996, p. 141, 4(b)), and the resulting MS-GARCH
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Figure 2. Covariance-stationarity region for two-state MS-GARCH.

process is covariance stationary. However, it is not necessary that all the GARCH processes of
each regime be covariance stationary. To illustrate this, we plot in Figure 2 the boundary curve
ρ() = 1 for n = 2 where η11 = η22 = 0.85. The covariance stationarity region is the interior
intersection of the boundary curve and the two axes. We observe that one of the GARCH regimes
does not need to be weakly stationary and can even be mildly explosive, provided that the other
regime is sufficiently stable.

As a special case, we consider a situation where we start the discrete ergodic Markov chain
from its invariant measure π . In this case π = Pπ and our model is equivalent to a regime
switching GARCH model where the probabilities of the regimes are constant over time; see
Bauwens et al. (2006). Under Assumptions 2.1–2.2, it can be shown that a sufficient condition for
geometric ergodicity and existence of moments of order k is given by

∑n
i=1 πiE(αiu

2
t + βi)k < 1.

We observe that the condition derived by Bollerslev (1986) for covariance stationarity under a
single GARCH model needs not hold in each regime but for the weighted average of the GARCH
parameters. Note, that high values of the parameters of the non-stable GARCH processes must
be compensated by low probabilities for their regimes.

The autocorrelation function of ε2
t exists if Assumptions 2.4 and 2.5 are satisfied for k = 2,

and the geometric ergodicity implies that it decreases exponentially. So, our model allows for
short memory in the squared residuals. Now, let ψ be the second largest eigenvalue of P, which
is assumed to be homogeneous in our setting. Kramer (2008) shows that if ρ() < 1 (2.5) and P
is non-homogeneous and depends on the sample size (T ) such that 1 − ψ = O(T −2d ) for some
d > 0 then Var(

∑T
t=1 ε2

t ) = O(T 2d+1). This implies that the process has a long memory in the
squared residuals; see also Diebold and Inoue (2001).
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3. ESTIMATION

Given the current computing capabilities, the estimation of switching GARCH models by the
maximum likelihood method is impossible, since the conditional variance depends on the whole
past history of the state variables. We tackle the estimation problem by Bayesian inference,
which allows us to treat the latent state variables as parameters of the model and to construct the
likelihood function assuming we know the states. This technique is called data augmentation;
see Tanner and Wong (1987) for the basic principle and more details. It is applied for Bayesian
inference on stochastic volatility models, as initially proposed by Jacquier et al. (1994); see
also Bauwens and Rombouts (2004) for a survey including other references. In Section 3.1, we
present the Gibbs sampling algorithm for the case of two regimes, in Section 3.2 we discuss
the relation between identification and the prior, in Section 3.3 we discuss possible extensions
of the algorithm and related issues, and in Section 3.4 we perform a Monte Carlo study using a
realistic data-generating process.

3.1. Bayesian inference

We explain the Gibbs sampling algorithm for an MS-GARCH model with two regimes and
normality of the error term ut . The normality assumption is a natural starting point. A more
flexible distribution, such as the Student distribution, could be considered, although one may
be sceptical that this is needed since Gray (1996) reports large and imprecise estimates of the
degrees of freedom parameters.

For the case of two regimes, the model is given by equations (2.3)–(2.4), st = 1 or 2
indicating the active regime. We denote by Yt the vector (y1 y2 . . . yt ) and likewise St =
(s1 s2 . . . st ). The model parameters consist of η = (η11, η21, η12, η22)′, μ = (μ1, μ2)′ and θ =
(θ ′

1, θ
′
2)′, where θk = (ωk, αk, βk)′ for k = 1, 2. The joint density of yt and st , given the past

information and the parameters, can be factorised as

f (yt , st |μ, θ, η, Yt−1, St−1) = f (yt |st , μ, θ, Yt−1, St−1)f (st |η, Yt−1, St−1). (3.1)

The conditional density of yt is the Gaussian density

f (yt |st , μ, θ, Yt−1, St−1) = 1√
2πσ 2

t

exp

(
− (yt − μst

)2

2σ 2
t

)
, (3.2)

where σ 2
t , defined by equation (2.4), is a function of θ . The marginal density (or probability mass

function) of st is specified by

f (st |η, Yt−1, St−1) = f (st |η, st−1) = ηst st−1 (3.3)

with η11 + η21 = 1, η12 + η22 = 1, 0 < η11 < 1 and 0 < η22 < 1. This specification says that st

depends only on the last state and not on the previous ones and on the past observations of yt , so
that the state process is a first-order Markov chain with no absorbing state.

The joint density of y = (y1, y2, . . . , yT ) and S = (s1, s2, . . . , sT ) given the parameters is
then obtained by taking the product of the densities in (3.2) and (3.3) over all observations:

f (y, S|μ, θ, η) ∝
T∏

t=1

σ−1
t exp

(
− (yt − μst

)2

2σ 2
t

)
ηst st−1 . (3.4)
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Since integrating this function with respect to S by summing over all paths of the state
variables is numerically too demanding, we implement a Gibbs sampling algorithm. The purpose
of this algorithm is to simulate draws from the posterior density. These draws then serve to
estimate features of the posterior distribution, like means, standard deviations and marginal
densities. As the posterior density is not standard we cannot sample from it directly. Gibbs
sampling is an iterative procedure to sample sequentially from the posterior distribution; see
Gelfand and Smith (1990). Each iteration in the Gibbs sampler produces a draw from a Markov
chain, implying that draws are dependent. Under regularity conditions, see e.g Robert and Casella
(2004), the simulated distribution converges to the posterior distribution. Thus a warm-up phase
is needed, such that when a sufficient large number of draws has been generated by the Gibbs
sampler, the draws that are generated after the warm-up phase can be considered as draws from
the posterior distribution. The Markov chain is generated by drawing iteratively from lower
dimensional distributions, called blocks or full conditional distributions, of this joint posterior
distribution. These full conditional distributions are easier to sample from because either they
are known in closed form or simulated by a lower dimensional auxiliary sampler. For the MS-
GARCH model, the blocks of parameters are given by (θ, μ), η and the elements of S. We present
below a sketch of the Gibbs algorithm, followed by a detailed presentation of the corresponding
full conditional densities in three subsections. We explain what are our prior densities for θ, μ

and η in these subsections.

Sketch of Gibbs sampling algorithm: The superscript r on a parameter denotes a draw of the
parameter at the rth iteration of the algorithm. For iteration 1, initial values η0, θ0, μ0 and s0

t for
t = 1, 2, . . . , T must be used. One iteration of the algorithm involves three steps:

(1) Sample sequentially each state variable sr
t for t = 1, 2, . . . , T given ηr−1, μr−1, θ r−1,

sr
t−1, s

r−1
t+1 : see Subsection 3.1.1.

(2) Sample the transition probabilities ηr given sr
t for t = 1, 2, . . . , T : see Subsection 3.1.2.

(3) Sample (θr , μr ) given sr
t for t = 1, 2, . . . , T , and ηr : see Subsection 3.1.3.

These three steps are repeated until the convergence of the Markov chain is achieved, which
can be evaluated by convergence diagnostics. These warm-up draws are discarded, and the steps
are iterated a large number of times to generate draws from which the desired features (means,
variances, quantiles, etc.) of the posterior distribution can be estimated consistently.

3.1.1. Sampling st . To sample st we must condition on st−1 and st+1 (because of the Markov
chain for the states) and on the future state variables (st+1, st+2, . . . , sT ) (because of path
dependence of the conditional variances). The full conditional mass function of state t is

ϕ(st |S�=t , μ, θ, η, y) ∝ η
2−st

1,st−1
η

st−1
2,st−1

η
2−st+1

1,st
η

st+1−1
2,st

T∏
j=t

σ−1
j exp

(
− (yj − μsj

)2

2σ 2
j

)
, (3.5)

where we can replace η2,st−1 by 1 − η1,st−1 and η2,st
by 1 − η1,st

. Since st takes two values (1 or
2) we compute the expression above for each of these values, and divide each evaluation by the
sum of the two to get the normalized discrete distribution of st from which to sample. Sampling
from such a distribution once the probabilities are known is like sampling from a Bernoulli
distribution.
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3.1.2. Sampling η. Given a prior density π (η),

ϕ(η|S,μ, θ, y) ∝ π (η)
T∏

t=1

ηst st−1 , (3.6)

which does not depend on μ, θ and y. For simplicity, we can work with η11 and η22 as free
parameters and assign to each of them a beta prior density on (0, 1). The posterior densities are
then also independent beta densities. For example,

ϕ(η11|S) ∝ η
a11+n11−1
11 (1 − η11)a21+n21−1, (3.7)

where a11 and a21 are the parameters of the beta prior, n11 is the number of times that st = st−1 =
1 and n21 is the number of times that st = 2 and st−1 = 1. A uniform prior on (0, 1) corresponds
to a11 = a21 = 1 and is what we use in our simulations and applications below.

3.1.3. Sampling θ and μ. Given a prior density π (θ, μ),

ϕ(θ, μ|S, η, y) ∝ π (θ, μ)
T∏

t=1

σ−1
t exp

(
− (yt − μst

)2

2σ 2
t

)
, (3.8)

which does not depend on η. We can sample (θ, μ) either by a griddy-Gibbs step or by a
Metropolis step. The griddy-Gibbs step amounts to sampling by numerical inversion each scalar
element of the vector (θ, μ) from its univariate full conditional distribution. Numerical tabulation
of the cdf is needed because no full conditional distribution belongs to a known family (such
as Gaussian). Thus, this step of the Gibbs algorithm that cycles between the states, η and the
remaining parameters can be described as follows at iteration r + 1, given draws at iteration r
denoted by the superscript (r) attached to the parameters:

(1) Using (3.8), compute κ(ω1|S(r), β
(r)
1 , α

(r)
1 , θ

(r)
2 , μ(r), y), the kernel of the conditional

posterior density of ω1 given the values of S, β1, α1, θ2, and μ sampled at iteration r,
over a grid (ω1

1, ω
2
1, . . . , ω

G
1 ), to obtain the vector Gκ = (κ1, κ2, . . . , κG).

(2) By a deterministic integration rule using M points, compute Gf = (0, f2, . . . , fG) where

fi =
∫ ωi

1

ω1
1

κ
(
ω1|S(r), β

(r)
1 , α

(r)
1 , θ

(r)
2 , μ(r), y

)
dω1, i = 2, . . . , G. (3.9)

(3) Generate u ∼ U (0, fG) and invert f (ω1|S(r), β
(r)
1 , α

(r)
1 , θ

(r)
2 , μ(r), y) by numerical inter-

polation to get a draw ω
(r+1)
1 ∼ ϕ(ω1|S(r), β

(r)
1 , α

(r)
1 , θ

(r)
2 , μ(r), y).

(4) Repeat steps 1–3 for ϕ(β1|S(r), ω
(r+1)
1 , α

(r)
1 , θ

(r)
2 , μ(r), y), ϕ(α1|S(r), ω

(r+1)
1 , β

(r+1)
1 , θ

(r)
2 , μ(r),

y), ϕ(ω2|S(r), β
(r)
2 , α

(r)
2 , θ

(r+1)
1 , μ(r), y), etc.

Note that intervals of values for the elements of θ and μ must be defined. The choice of these
bounds (such as ω1

1 and ωG
1 ) needs to be fine-tuned in order to cover the range of the parameter

over which the posterior is relevant. Over these intervals, the prior can be chosen as we wish, and
in practice we choose independent uniform densities for all elements of (θ, μ).

For the Metropolis version of this block of the Gibbs algorithm, we construct a multivariate
Gaussian proposal density for (θ, μ). Its mean and variance–covariance matrix are renewed at
each iteration of the Gibbs algorithm in order to account for the updating of the states sampled
as described in Subsection 3.1.1. Thus, after updating the states, we maximize the likelihood of

C© The Author(s). Journal compilation C© Royal Economic Society 2010.



228 L. Bauwens, A. Preminger and J. V. K. Rombouts

y given the sampled states, defined by the product of (3.2) over all observations. The mean of the
Gaussian proposal is set equal to the ML estimate and the variance–covariance matrix to minus
1 times the inverse-Hessian evaluated at the ML estimate.

3.2. Identification and prior density

In Markov-switching models similar to the model of this paper, one must use some identification
restrictions to avoid the label switching issue. This would occur when the states and the
parameters can be permuted without changing the posterior distribution. There are different
ways to avoid label switching; see Hamilton et al. (2007) for a discussion. In an ML set-up,
an identification restriction can be e.g. that the mean of regime 1 (μ1) is larger than the mean
of regime 2 (μ2), or the same restriction for the variance level (ω) or another parameter of one
GARCH component relative to the other. These restrictions aim at avoiding confusion between
the regimes. They are exact restrictions, holding with probability equal to 1 if we reason in the
Bayesian paradigm. In Bayesian inference, the restrictions need not be imposed with probability
equal to 1. They can be imposed less stringently through the prior density. For example, coming
back to the restriction on means, the prior for μ1 can be uniform on (−0.03,+0.09) and
independent of the prior for μ2 taken as uniform on (−0.09,+0.03). These priors overlap but
not too much, allowing a sufficiently clear a priori separation of the two regimes and avoiding
label switching in the MCMC posterior simulation.

Thus the regimes must be sufficiently separated to be identified; that is, some parameters must
be different between regimes. Our approach to this is to use prior supports for the corresponding
parameters of the two regimes that are partially different. When choosing these prior supports,
we must be careful to avoid two problems: truncating the posterior density (if we use too
narrow supports compared to the likelihood location), or computing the posterior over too wide
a region of the parameter space (if we use too wide prior supports). In the former case, the prior
density will distort the sample information strongly and thus the posterior results will not be
interesting. In the latter case, the posterior computations will be inefficient because the prior will
be multiplied by a quasi-null likelihood value on a big portion of the parameter space.

Thus our approach is to start with wide enough prior intervals, taking care of the need to
separate the regimes, and to narrow these intervals if possible or to widen them if needed,
such that finally the posterior is not significantly truncated and label switching is avoided. If
an ML estimation would be feasible, the analogue procedure would be to impose exactly some
identification constraints and to choose the starting values for the maximization in a portion of
the parameter space where the likelihood value is not very small.

3.3. Extensions

Although we presented the Gibbs sampling algorithm for the case of two states, some extensions
are possible without changing the nature of the algorithm, but they will increase the computation
time. A first extension consists of allowing the mean of the process to switch between two ARMA
processes rather than constant means. Similarly, one can consider GARCH(p, q) specifications
for the regimes with p and q larger than 1. Such extensions are dealt with by redefining the
θ and μ parameter vectors and adapting directly the procedures described in Subsection 3.1.3
to account for the additional parameters. Henneke et al. (2006) describe a slightly different
MCMC algorithm from ours for this more general model, considering also the case of a Student
distribution for the innovation.
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A second extension consists of considering more than two regimes. Again, the algorithm
described for two regimes can in principle be extended. The states must be sampled from
a discrete distribution with three points of support, and the η parameters from Dirichlet
distributions that generalize Beta distributions and can be simulated easily. Finally, the nature
of the third block does not change and can be sampled as for two regimes. In practice, an
increase in the number of regimes increases the number of parameters, which is especially costly
in computing time for the third block (θ and μ), whether one uses a griddy-Gibbs or a Metropolis
step. A related difficulty lies in the identification of the regimes; see the discussion in the previous
subsection. Specifying the prior density for more than two regimes requires more search and it is
obvious that in this case the algorithm will be more complicated. We leave the detailed study of
this type of question for further research.

Another issue that is not yet solved is the computation of the marginal likelihood of the
MS-GARCH model, as recognized in the literature; see e.g. Maheu and He (2009). Because of
the combination of the GARCH (rather than ARCH) structure and the latent variable structure,
we could not find a method to compute the marginal likelihood. Chib (1996) has developed
an algorithm for Markov mixture models. Kaufmann and Frühwirth-Schnatter (2002) use this
algorithm for an MS-ARCH model, and mention that it cannot be extended to the MS-GARCH
case because of the path dependence problem. Equation (3) in Chib (1996) does not hold in
case of path dependence. It would be quite a valuable contribution to solve this issue since
it would allow us to do model selection in a fully Bayesian way. Short of this, we resort to
the following procedure: once the Gibbs sampler has been applied, we compute the posterior
means of the state variables. These are obtained by averaging the Gibbs draws of the states.
These means are smoothed (posterior) probabilities of the states. A mean state close to 1
corresponds to a high probability to be in the second regime. With these means, we can assign
each observation to one regime, by attributing an observation to the regime for which the state has
the highest posterior probability. Once the data are classified in this way, we can compute easily
the Bayesian information criterion (BIC) using the likelihood function defined by the product
over all observations of the contributions given by the densities in (3.2). Given the values of
the state variables, it is easy to evaluate this function (in logarithm) at the posterior means of
the parameters and subtract from it the usual penalty term 0.5p log T , where p is the number
of parameters, to get the BIC value. In large samples, the BIC usually leads to choose the model
also picked by the marginal likelihood criterion; see the discussion in Kass and Raftery (1995).
We use this method in the application (Section 4).

3.4. Monte Carlo study

We have simulated a data-generating process (DGP) corresponding to the model defined by
equations (2.3)–(2.4) for two states, and ut ∼ N (0, 1). The parameter values are reported in
Table 2. The second GARCH equation implies a higher and more persistent conditional variance
than the first one. The other parameter values are inspired by previous empirical results, like in
Hamilton and Susmel (1994), and our results presented in the next section. In particular, the
transition probabilities of staying in each regime are close to unity. All the assumptions for
stationarity and existence of moments of high order are satisfied by this DGP. In Table 1, we
report summary statistics for 1500 observations from this DGP, and in Figure 3 we show the
series, its estimated density and the autocorrelations of the squared data. The mean of the data is
close to zero. The density is skewed to the left, and its excess kurtosis is estimated to be 5.52 (the
excess kurtosis is 1.62 for the first component GARCH and 0.12 for the second). The ACF of
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Table 1. Descriptive statistics for the simulated data.

Mean 0.010 Maximum 6.83

Standard deviation 1.472 Minimum −9.44

Skewness −0.616 Kurtosis 8.52

Note: Statistics for 1500 observations of the DGP defined in Table 2.

the squared data is strikingly more persistent than the ACF of each GARCH component, which
are both virtually at 0 after 10 lags. Said differently, a GARCH(1,1) process would have to be
close to integrated to produce the excess kurtosis and the ACF shown in Figure 3. Thus we can
say that the DGP chosen for illustrating the algorithm is representative of a realistic process for
daily financial returns.

In Table 2, we report the posterior means and standard deviations for the model corresponding
to the DGP, using the simulated data described above. The results are in the last two columns of
the table. In Figure 4, we report the corresponding posterior densities. The prior density of each
parameter is uniform between the bounds reported in Table 2 with the DGP values. Thus, these
bounds were used for the integrations in the griddy-Gibbs sampler (except for η11 and η22 since
they are sampled from beta densities). The number of iterations of the Gibbs sampler was set to
50,000, and the initial 20,000 draws were discarded, since after these the sampler seems to have
converged (based on cumsum diagrams not shown to save space). Thus the posterior moments
are based on 30,000 dependent draws of the posterior distribution. The posterior means are with
few exceptions within less than one posterior standard deviation away from the DGP values,
and the shapes of the posterior densities are not revealing bimodalities that would indicate a
label switching problem. From the Gibbs output, we also computed the posterior means of the
state variables. These are obtained by averaging the Gibbs draws of the states. These means
are smoothed (posterior) probabilities of the states. A mean state close to 1 corresponds to a
high probability to be in the second regime. If we attribute an observation to regime 2 if its
corresponding mean state is above one-half (and to regime 1 otherwise), we find that 96% of the
data are correctly classified.

We repeated the previous experiment 100 times, thus generating 100 samples of size 1500
of the same DGP and repeating the Bayesian estimation for each sample, using the same prior
throughout these 100 repetitions. In columns 4 and 5 of Table 2, we report the means and
standard deviations of the 100 posterior means of each parameter. The posterior mean of each
parameter can be viewed as an estimator (i.e. a function of the sample) of the parameter, and the
difference between the mean of these posterior means and the true value measures the bias of this
estimator, while the standard deviation of these means is a measure of the sampling variability of
the estimator. The reported results show that the bias is not large in general, and that it is larger
for the parameters of the second regime than of the first. The standard deviations are also larger
for the parameters of the second regime. These larger biases and standard deviations are not
surprising since the second regime is less frequently active than the first one. The interpretation
of the posterior mean as an estimator that is not much biased (for samples of 1500 observations)
is of course also conditional on the prior information we have put in the estimation (a non-
informative prior on finite intervals). It should be kept in mind that by changing the location and
precision of the prior, one could induce much more (or less) bias and increase (or decrease) the
variability of the estimator. From a strictly Bayesian viewpoint, the issue of bias and sampling
variability is not relevant. Nevertheless, we can safely conclude from these 100 repetitions that
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Figure 3. Graphs for simulated data for DGP defined in Table 2.
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Table 2. Monte Carlo results.

100 repetitions Single sample

DGP values Prior supports Mean Std. dev. Mean Std. dev.

ω1 0.30 (0.15 0.45) 0.301 (0.043) 0.345 (0.051)

β1 0.20 (0.05 0.40) 0.201 (0.061) 0.192 (0.087)

α1 0.35 (0.10 0.50) 0.355 (0.059) 0.264 (0.051)

ω2 2.00 (0.50 4.00) 2.232 (0.513) 2.136 (0.688)

β2 0.60 (0.35 0.85) 0.556 (0.084) 0.584 (0.106)

α2 0.10 (0.02 0.35) 0.110 (0.043) 0.142 (0.049)

μ1 0.06 (0.02 0.15) 0.056 (0.017) 0.079 (0.016)

μ2 −0.09 (−0.35 0.18) −0.056 (0.085) −0.076 (0.103)

η11 0.98 (0.00 1.00) 0.977 (0.005) 0.987 (0.004)

η22 0.96 (0.00 1.00) 0.951 (0.016) 0.958 (0.012)

Note: Columns 4–5: Mean and standard deviations of posterior means for the MS-GARCH model. Results based on 100
replications, each of which consists of 1500 observations from the DGP defined by equations (2.3)–(2.4) with N (0, 1)
distribution. Columns 6–7: Posterior means and standard deviations for a single sample of 1500 observations.
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Figure 4. Posterior densities for the MS-GARCH model.
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indeed our MCMC algorithm is able to estimate the MS-GARCH model in a reliable way, since
for 100 repetitions it was able to infer the DGP parameters from the data quite satisfactorily.

Finally, let us mention that we also simulated a three-state model by adding a third, more
persistent regime, to those reported in Table 2. The algorithm is also able to recover the DGP.
The detailed results are available on request.

4. APPLICATION

We use the S&P500 daily percentage returns from 19/07/2001 to 20/04/2007 (1500 observations)
for estimation. Figure 5 displays the sample path, the kernel density and the correlogram of
the squared returns. We observe a strong persistence in the squared returns, a slightly positive
skewness and a usual excess kurtosis for this type of data and sample size; see also Table 3.

In Table 4, we report the posterior means and standard deviations from the estimation of two
models using the estimation sample. The estimated models are the two-regime MS-ARCH model
defined by setting β1 = β2 = 0 in equations (2.3)–(2.4), and a restricted version (β1 = α1 = 0)
of the corresponding MS-GARCH model. The marginal posterior densities for these models are
shown in Figures 6 and 7. The intervals over which the densities are drawn are the prior intervals
(except for the transition probabilities). The intervals for the GARCH parameters were chosen
to avoid negative values and truncation. For the MS-GARCH model, we report in the table the
results obtained by using the two versions of the Gibbs algorithm described in Subsection 3.1.3,
one (GG) using the griddy-Gibbs method for sampling the mean and variance equation
parameters, and the other (MH) using a Metropolis–Hastings step for the same parameters. In
all cases, the total Gibbs sample size is equal to 50,000 observations with a warm-up sample
of 20,000, and the prior distribution is the same. The MH version needs 20% more computing
time than the griddy-Gibbs one, and its acceptance rate is 68%, which is a good performance.
However, the number of rejections due to the prior restrictions (finite ranges of the GARCH
parameters) is slightly more than 50%. These rejections are not needed when using the griddy-
Gibbs version. Thus we may conclude that the GG version has a slight advantage in this instance,
but more importantly, it is reassuring that both algorithms give approximately the same posterior
results.

When estimating the MS-ARCH model, we find that in the first regime, which is
characterized by a low volatility level (ω1/(1 − α1) = 0.42 using the posterior means as
estimates, as opposed to 2.24 in the second regime), the ARCH coefficient α1 is close to 0
(posterior mean 0.014, standard deviation 0.012; see also the marginal density in Figure 6). This
is a weak evidence in favour of a dynamic effect in the low volatility regime. The same conclusion
emerges after estimating the MS-GARCH model, with the added complication that the β1

coefficient is poorly identified (since α1 is almost null). Thus we opted to report the MS-GARCH
results with α1 and β1 set equal to 0, and GARCH dynamics only in the high volatility regime.
These results show clearly that the lagged conditional variance should be included in the second
regime. Thus, the MS-ARCH model is not capturing enough persistence of the conditional
variance in the second regime. The second regime in the MS-GARCH model is rather strongly
persistent but stable, with the posterior mean of β2 + α2 equal to 0.973 (0.919 + 0.054). If we
estimate a single regime GARCH model, we find that the persistence is 0.990 (0.942 + 0.048),
which makes it closer to integrated GARCH than the second regime of the MS model. The
estimation results for the MS-GARCH model also imply that compared to the first regime (where
ω1 = 0.31), the second regime is a high volatility regime since ω2/(1 − α2 − β2) = 1.73.
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Figure 5. Graphs for S&P500 daily returns from 19/07/2001 to 20/04/2007.

C© The Author(s). Journal compilation C© Royal Economic Society 2010.



Markov switching GARCH 235

Table 3. Descriptive statistics for S&P500 daily returns.

Mean 0.015 Minimum −5.046

Standard deviation 1.00 Maximum 5.57

Skewness 0.11 Kurtosis 6.37

Note: Sample period: 19/07/2001 to 20/04/2007 (1500 observations).

Table 4. Posterior means and standard deviations (S&P500 daily returns).

MS-ARCH (GG) MS-GARCH (GG) MS-GARCH (MH)

Mean Std. dev. Mean Std. dev. Mean Std. dev.

ω1 0.419 (0.028) 0.308 (0.025) 0.313 (0.027)

β1 – – –

α1 0.014 (0.012) – –

ω2 1.988 (0.175) 0.0467 (0.024) 0.0486 (0.025)

β2 – 0.919 (0.024) 0.917 (0.021)

α2 0.115 (0.042) 0.054 (0.015) 0.055 (0.012)

μ1 0.046 (0.016) 0.071 (0.019) 0.069 (0.020)

μ2 −0.040 (0.044) −0.012 (0.029) −0.012 (0.032)

η11 0.994 (0.003) 0.978 (0.011) 0.979 (0.012)

η22 0.986 (0.006) 0.985 (0.006) 0.986 (0.006)

π1 0.300 0.595 0.600

Note: Sample period: 19/07/2001 to 20/04/2007 (1500 observations). A – symbol means that the parameter was set to 0.
GG: griddy-Gibbs, MH: Metropolis–Hastings. π1: unconditional probability of state 1.

Next, we compare the two models, starting with their BIC values, which are computed as
explained at the end of Subsection 3.3. These values show clearly that the MS-GARCH model
is strongly favoured, with a BIC value of −954.72, compared to the value of −1034.2 for the
MS-ARCH.

Another way to compare the models is through the means of the state variables. These are
obtained by averaging the Gibbs draws of the states. These means are smoothed (posterior)
probabilities of the states. A mean state close to 1 corresponds to a high probability to be in
the second regime. Figures 8 and 9 display the paths of these means. Both figures show, in
conjunction with the sample path of the data (in Figure 5), that high probabilities are associated
with high volatility periods (observations 1 to 500 and some peaks later, which are less strong
for the ARCH than the GARCH model). From the posterior means of the MS-GARCH model,
we can also deduce that the unconditional probabilities of the regimes are, respectively, 0.60
(= (1 − η11)/(2 − η11 − η22)) for the first one and 0.40 for the second one. For the MS-ARCH
model, the steady-state probability of regime 1 is 0.30 only. These proportions correspond
intuitively to the information provided by the plots of the mean states.

Finally, we provide some diagnostics about the estimated models. To compute standardized
residuals, we attribute an observation to regime 2 if the mean of the corresponding state variable
is larger than 0.5 and to regime 1 otherwise, then we standardize the observation by subtracting
its mean and dividing by its conditional standard deviation computed for the attributed state
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Figure 6. Posterior densities for the MS-ARCH model (S&P500 daily returns).

using the posterior means. The Ljung–Box Q(p)-statistics of the residuals of the MS-ARCH
model are Q(10) = 8.19, Q(20) = 14.8 for the residuals and Q(10) = 83.5, Q(20) = 110 for the
squared residuals. For the MS-GARCH model, the corresponding statistics are Q(10) = 10.1,
Q(20) = 16.4 for the residuals and Q(10) = 16.5, Q(20) = 22.1 for the squared residuals. Even
if there is no formal statistical theory that allows us to compare these values to quantiles of
chi-square distributions, the informal evidence from these results is that there is clearly some
misspecification of the conditional variance dynamics in the MS-ARCH model, and not in the
MS-GARCH one. The conditional mean of both models seems correctly specified.

5. CONCLUSION

We establish some theoretical properties of a Markov-switching GARCH model with constant
transition probabilities. We provide simple sufficient conditions for the ergodic stationarity of
the process and the existence of its moments. Since ML estimation is not feasible due to path
dependence, we develop a reliable Bayesian estimation algorithm for this model, and we apply it
to a sample of S&P500 daily returns. Based on residual diagnostics and the Bayesian information
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Figure 7. Posterior densities for the MS-GARCH model (S&P500 daily returns).

criterion we find that the MS-GARCH model with two regimes fits the data much better than the
corresponding ARCH model.

Further research could be oriented in several directions. A first direction could be to refine
the specification by using existing extensions of the simple GARCH(1,1) model, and allowing
an ARMA structure for the conditional mean. A second direction of research is to specify the
transition probabilities as a function of past information as in Gray (1996). All these extensions
would render the algorithm more CPU-time consuming (due to the additional parameters) but
would not complicate it fundamentally. Establishing the geometric ergodicity and existence of
moments of such more richly specified processes would require us to extend and adapt the proofs
presented in the current paper. A second topic would be to compare our MS-GARCH model to
other models like Gray (1996), the MS and finite mixture GARCH models of Haas et al. (2004)
and rank their performance in terms of in-sample fit and out-of-sample forecasting of volatility.
Finally, further research could be focused on estimating the model with other data series, more
regimes and in comparisons with other GARCH models, in a similar way as done by Marcucci
(2005). An open issue of particular relevance would be to find a way to compute the marginal
likelihood of the MS-GARCH model.
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Figure 8. Mean states MS-ARCH.
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Figure 9. Mean states MS-GARCH.
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APPENDIX A: PROOFS OF RESULTS

To prove Theorems 2.1 and 2.2, we write the model in its Markovian state space representation. We use the
notation σ 2

t = ht−1 to make it clear that σt is a function of the information dated at time t − 1 or earlier, not
information dated at t. Let λ and v denote the Lebesgue and the counting measures, respectively.

Proof of Theorem 2.1: There exists a measurable function g : S ×  → S such that st = g(st−1, ξt ),
where the error term ξt is i.i.d. independent of ut and h0. Let s̄t = st+1, ηt = (ut , ξt )′, and Zt be defined on
D ⊂  × + × S where + = (0,+∞). From (2.3) and (2.4), we have

Zt =

⎛
⎜⎜⎝

yt

ht

s̄t

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μs̄t−1 + √
ht−1ut

ωg(s̄t−1,ξt+1) + αg(s̄t−1,ξt+1)ε
2
t + βg(s̄t−1,ξt+1)ht−1

g(s̄t−1, ξt+1)

⎞
⎟⎟⎠

=

⎛
⎜⎜⎜⎝

μs̄t−1 + √
ht−1ut

ωg(s̄t−1,ξt+1) + (
αg(s̄t−1,ξt+1)u

2
t + βg(s̄t−1,ξt+1)

)
ht−1

g(s̄t−1, ξt+1)

⎞
⎟⎟⎟⎠ = F (Zt−1, ηt ),

(A.1)

where F : D × 2 → D. Since ηt is independent of Zt−1 it follows from (A.1) that (yt , ht , s̄t )′ forms a
homogeneous Markov chain.

The process is defined on (D,�, ϕ). The state space of the process is given by D = {(y, h, s) ∈
 × + × S : (y, h) ∈ ⋃n

i=1 Di , s ∈ S}, where Di is the domain of the chain in each regime and is given
by Di = ⋃n

j=1{(y, h) ∈  × + : h ≥ ωi + αi(y − μj )2 + βih̄} and h̄ = minβi<1{ωi/(1 − βi)}. The strict
stationarity of the first regime (E log(α1u

2
t + β1) < 0), implies that β1 < 1 (see Nelson, 1990), hence h̄ is

well defined. Note that h̄ is a lower bound for the volatility, which implies that ht ≥ ωi + αi(yt − μj )2 +
βih̄ a.s. The subsets in  × + × S which are not contained in D are transient sets and are null with respect
to π , the stationary measure of the process, if it exists (see Chan, 1993). Therefore, without loss of generality
our state space excludes such π -null sets (see Zhang et al., 2001). The state space is equipped with �, the
Borel σ -algebra on  × + × S restricted to D.2 The measure ϕ is the product measure λ2 ⊗ v on (D, �).
We use Pm(z0, A) = P(Zt ∈ A|Zt−m = z0) to signify the probability that (yt , ht , s̄t ) moves from (y0, h0, s̄0)
to the set A ∈ � in m steps.

In order to establish geometric ergodicity of the Markov chain, we first show that the process is
ϕ-irreducible. For irreducibility, it is sufficient to show that Pk(z0, A) > 0 for some k ≥ 1, all z0 ∈ D
and any Borel measurable sets A ∈ � with positive ϕ measure (see Chan, 1993). In this case, ϕ is called
an irreducibility measure. Now, since the ϕ measure of the set of all boundary points is zero, for any
non-null set A we can find a close non-null subset A′ which is restricted to be interior to the state
space. Next, we can show that from any (y0, h0, s0) ∈ D, all (y, h, s) ∈ A′ can be reached in a finite
number of steps. We assume that s̄0 = i, s = � and h̄ is achieved in regime q; that is, h̄ = ωq/(1 − βq ).

2 The topology over D is based on the product topology, where we use the discrete topology over S (for which every
subset is open) and the usual topology on 2.
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Let h̃ = [h − ω� − α�(y − μq )2]/β� and ς = h̃ − h̄, since A′ is interior set, ς > 0. Thus, there exists a
positive integer m = min(t ≥ 1 : h̄ + 0.5ς + 0.5β−t

q ς > ωq + βqh0}, such that the point (y, h, s) can be
reached through the following m + 1 intermediate steps3 w = {(yt , ht , s̄t )}m+1

t=1 where s̄t = q, ht = h̄ +
0.5ς + 0.5βt−(m+1)

q ς, y1 = μi + [(h1 − ωq − βqh0)/αq ]0.5 and yt = μq + [0.5ς (1 − βq )/αq ]0.5 for t > 1.
Note that, given (s̄t−1, s̄t , yt , ht−1) from (14) we have that ht = ωs̄t + αs̄t (yt − μs̄t−1 )2 + βs̄t ht−1 which
implies by substitution the value of ht at each step. In the m + 1th step, we get hm+1 = h̃ and by setting
sm+2 = � and ym+2 = y, we get hm+2 = h. For any A′ in the interior of D there exists a small open ball A′′

around z (A′′ ⊂ A′), such that all the points in it can be reached from z0 in m + 2 steps as in our construction
above. This result follows from the definition of m and the continuity of the steps (yt , ht ) with respect to
(y, h). The m + 2th step transition probability is absolutely continuous with respect to the ϕ measure. By
Assumptions 2.1 and 2.2,

pm+2(z0, z) ≥
m+1∏
t=0

f
(
(yt+1 − μs̄t )/h

0.5
t

)
P(s̄t+1|s̄t ) > 0,

which implies that P m+2(z0, A) ≥ P m+2(z0, A
′′) > 0 and hence the chain is ϕ-irreducible. If z0 ∈ C, a

compact set, inf(z0,z)∈C×C pm+2(z0, z) > δ > 0 and for any A ∈ � and z0 ∈ C,

Pm+2(z0, A) ≥ Pm+2(z0, A ∩ C) ≥
∫

A∩C

pm+2(z0, z)dϕ(z) ≥ δϕ(A ∩ C).

Therefore, P(z0, A) is minorised by ϕ(· ∩ C) which implies that all non-null, compact sets in D are small
by definition, see Meyn and Tweedie (1993, p. 111), and can serve as test sets. Using the same arguments
as above, we can show that any small set can be reached in m + 3 steps, therefore the chain is aperiodic;
see Chan (1993).

From (2.4) and the cr inequality,4 we get

h
1/t
t ≤ [

ωs̄t + (
αs̄t u

2
t + βs̄t

)
ht−1

]1/t

≤ (ωs̄t )
1/t + (

αs̄t u
2
t + βs̄t

)1/t
(ωs̄t−1 )1/t + [(

αs̄t u
2
t + βs̄t

) (
αs̄t−1u

2
t−1 + βs̄t−1

)]1/t
h

1/t

t−2

...

≤
t∏

j=1

(
αs̄j u

2
j + βs̄j

)1/t
h1/t+

t−1∑
j=1

(ωs̄t−j
)1/t

j∏
i=1

(
αs̄t−i+1u

2
t−i+1 + βs̄t−i+1

)1/t + (ωs̄t )
1/t .

(A.2)

Since {s̄t } is an ergodic Markov chain, for any initial state, we have that

1

t

t∑
j=1

log
(
αs̄j u

2
j + βs̄j

) →
n∑

i=1

πiE
[
log

(
αiu

2
t + βi

)]
< 0 a.s.; (A.3)

see Chan (1993). This result, Assumption 2.1 and the dominated convergence theorem imply that there
exists t̄ sufficiently large such that δ ≥ 1/t̄ = p, and for all � ∈ S and t̄ ≤ t ,

E

⎛
⎝ t∏

j=1

(
αs̄j u

2
j + βs̄j

)p ∣∣ s̄0 = �

⎞
⎠ ≤ γ < 1. (A.4)

3 The integer ‘m’ ensures that in the first step the term (h1 − ωq − βqh0) is positive, so y1 is well defined in our state
space.

4 The cr inequality: For r > 0, E|X + Y |r ≤ cr (E|X|r + E|Y |r ), where cr = 1 if r ≤ 1 and cr = 2r−1 if r > 1. See
Davidson (1994, p. 140).
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As a drift function we use V (z) = 1 + (η̄/�)y2p + hp , where η̄ = η − γ,� = E|u2p
t |, p = 1/t̄, η is some

positive number which satisfies γ < η < 1 and the test set is given by C = {(y, h, s) ∈ D : h + y2 ≤ c, s ∈
S}, where c > 0 is to be determined below.

From (A.2)–(A.4), we find for some t̄ < t that

E
(
h

p
t

∣∣ z0 = z
) ≤ E

⎛
⎝ t∏

j=1

(
αs̄j u

2
j + βs̄j

)p ∣∣ s̄0 = �

⎞
⎠ hp + M ≤ M + γ hp,

where M = E(
∑t−1

j=1 ω
p
s̄t−j

∏j

i=1 (αs̄t−i+1u
2
t−i+1 + βs̄t−i+1 )p + ω

p
s̄t
|s̄0 = �) and M < ∞ by Assumption 2.1.

Therefore,

E(V (zt )|z0 = z) ≤ 1 + M + γ hp + η̄E
(
h

p

t−1

∣∣z0 = z
)

E
∣∣u2p

t

∣∣)/
�

≤ 2M + 1 + ηhp = hp

(
2M + 1

hp
+ η

)
.

Let M1 = (2M + 1)/(1 − η), c = M
1/p

1 (1 + (�/(η̄η))1/p) and η′ = [(2M + 1)/hp] + η. For h + y2 > c, if
M1 > hp , we get that η′ ∈ (η, 1), hence E(V (zt )|z0 = z) ≤ η′hp < η′V (z) where the last inequality follows
by the definition of the drift function. Otherwise, if M1 ≤ hp , we note that y2 > c − h ≥ c − M

1/p

1 =
((�M1)/(η̄η))1/p , hence M1 < ((η̄η)/�)y2p and for some η′ ∈ (η, 1)

E(V (zt )|z0 = z) ≤ 2M + 1 + ηhp ≤ M1(η + 1 − η) = M1

≤ η(η̄/�)y2p < η′V (z).

Since the Lyapounov function above is bounded on compact sets we have that E(V (zt )|z0 = z) ≤
η′V (z) + a · 1C(z) for some a < ∞ and for all z0 ∈ D, hence the drift criterion is satisfied. We can then
combine Meyn and Tweedie (1993, Theorem 15.0.1) and Tjostheim (1990) to obtain that {Zt } is geometric
ergodic. The finiteness of E(|yt |2p) with respect to the stationary measure follows from Meitz and Saikkonen
(2008, Lemma 6). If the process is initiated from its stationary distribution, it further follows that the process
is α-mixing with geometrically decaying mixing numbers; see Doukhan (1994, p. 89). �

Proof of Theorem 2.2: Let I� be a 1 × n vector that contains 1 on the �th position and zeros elsewhere
and l = (1, . . . , 1) is an n × 1 vector. The matrix  is positive definite, hence the spectral radius is real and
positive and Assumption 2.5 implies that there exists a positive integer t̄ such that for all t̄ ≤ t each element
of t is smaller than 1/n; that is, (t )ij < 1/n (see Lutkepohl, 1996, p. 76, 3(a)). Hence

E

⎛
⎝ t∏

j=1

(
αs̄j u

2
j + βs̄j

)k ∣∣ s̄0 = �

⎞
⎠ = (I�)t−1 ≤ γ < 1. (A.5)

By solving (2.4) recursively and setting h0 = h, we get

ht = [
ωs̄t + (

αs̄t u
2
t + βs̄t

)
ht−1

]
=

t∏
j=1

(
αs̄j u

2
j + βs̄j

)
h +

t−1∑
j=1

(ωs̄t−j
)

j∏
i=1

(
αs̄t−i+1u

2
t−i+1 + βs̄t−i+1

) + ωs̄t . (A.6)

Now, let � = E|u2k
t | and η̄ = η − γ where η is some positive number which satisfies γ < η < 1. We select

a drift function of the form V (y, h, s) = 1 + (η̄/�)y2k + hk and a test set C = {(y, h, s) ∈ D : h + y2 ≤
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c, s ∈ S}. By the binomial theorem, (A.6), Assumption 2.4 and some tedious calculations, we can find for
some t̄ < t , finite positive constants {am},m = 1, . . . , k, independent of h, such that

E(V (yt , ht )|z0 = z) = 1 + E
(
hk

t

∣∣ z0 = z
) + η̄E

(
y2k

t

∣∣ z0 = z
)
/�

≤ 1 +
⎡
⎣E

⎛
⎝ t∏

j=1

(
αsj u

2
j + βsj

)k

⎞
⎠ + η̄

⎤
⎦hk +

k∑
m=1

amhk−m ≤ hk

(
η +

k∑
m=1

amh−m

)
.

Next, by applying the same arguments as in Theorem 2.1, the desired result follows. �
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