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Summary This paper analyses a structural microeconomic relation describing the exact
consumer surplus in a non-parametric setting with endogenous prices. The exact consumer
surplus can be characterized as the solution of a differential equation involving the observed
demand function. The strategy put forward in this paper involves two steps: first, estimate
the demand function with endogeneity using non-parametric IV, second, plug this estimator
into the differential equation to estimate the exact consumer surplus. The rate of convergence
for this estimator is derived and is shown to be faster than the rate for the underlying non-
parametric IV regression estimator. Solving the differential equation smooths the demand
estimator and leads to a faster rate of convergence. The implementation of the methodology is
illustrated through a simulation study.

Keywords: Exact consumer surplus, Inverse problem, Non-parametric instrumental
regression.

1. INTRODUCTION

This paper addresses the issue of evaluating exact consumer surplus in a non-parametric setting.
Consumer surplus is a widely used tool in microeconomics and can be interpreted as a monetary
measure of the impact on consumer welfare of a change in the price of a good. It defines
what income would be necessary for the consumer to maintain his utility level constant for
this price change (Varian, 1992). This quantity was introduced by John Hicks (see Hicks,
1956) and depends on the Hicksian unobserved demand function. Although it could be roughly
approximated by integrating the Marshallian observed demand function (Willig, 1976), Hausman
(1981) shows that we can derive a measure of the exact consumer’s surplus from the observed
demand curve without involving any approximation.

Consider one consumer, define by y his income, q the demand in good and p1 the price of
a unique good. Assume that there exists a price variation from p to p1. The exact consumer
surplus associated with an income level y and denoted by Sy is characterized by the following
relation:
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{
S ′

y(p) = −q(p, y − Sy(p)),

Sy(p1) = 0.
(1.1)

The link between Sy and q is given by this non-linear ordinary differential equation of order 1.
The initial condition Sy(p1) = 0 means that with no variation of price the exact consumer surplus
is equal to 0. The approach classically used to estimate and analyse the function Sy involves two
steps: first, the estimation of the demand function q; second, the resolution of the differential
equation.

To be more precise, consider (Q,P , Y ) a continuously distributed random vector defining
demand, price and income, and a sample (Qi, Yi, Pi)i=1,...,n of observations. The demand
function q can be approximated by the function g defined as the regression of Q given P and
Y: {

Q = g(P , Y ) + U,

E(U |P , Y ) = 0.

Hausman and Newey (1995) propose a semi-parametric estimation of the demand function
with a non-parametric estimation of g, and an additive parametric part including several
exogenous variables such as the year of survey and the city/state of the household. They assume
that the identification assumption E(U |P , Y ) = 0 is satisfied. In a second step, they plug this
demand estimator into the differential equation and solve it numerically. Finally, they analyse its
statistical properties (see also Vanhems, 2006, for the asymptotic properties).

Our work extends this setting by relaxing the exogeneity assumption E(U |P , Y ) = 0 and
considering the case where price can be an endogenous variable. Endogeneity issues occur
frequently in economics, for example if an additional variable causes both independent and
dependent variables and is not included in the regression model. Consider the example of hourly
individual wages explained by the level of education (this example is quoted from Angrist and
Krueger, 2001, Hall and Horowitz, 2005). The error term U may include personal unobserved
characteristics such as individual ability, that would influence both level of education and wage.
Another classical example is given by the Engel curve relationship that describes the expansion
path for commodity demands with respect to household budget. In this setting, the total budget
variable is a choice variable in the consumer’s allocation of income and acts as an endogenous
regressor (see e.g. Blundell et al., 2007).

The price endogeneity issue is also raised in several research articles. Brown and Walker
(1989) argue that the hypothesis of random utility maximization implies that the additive error
U can depend on P (see also Lewbel, 2001, and Matzkin, 2007) and the error term is interpreted
as consumer preference heterogeneity.1 In an industrial organization framework, Berry et al.
(1995) analyse demand and supply in differentiated product markets and highlight the problem
involved by correlation between prices and product characteristics, some of which are observed
by the consumer but not by the econometrician. They use the instrumental variables approach
to estimate the demand system, and apply their techniques to the analysis of equilibrium in the
US automobile industry. Yatchew and No (2001), proposing an analysis of household gasoline
demand in Canada, also raise the problem of price endogeneity. In fact, they observe significant

1 Note however that this literature mainly focuses on heteroscedasticity of U.
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variations in prices within a given urban area, with a 5% higher coefficient of variation, which
lead them to conclude that this heterogeneity in price variation depends on location and may
affect consumers’ choices. The authors suggest that one instruments the observed price variable
with the average price over a relatively small geographical area, such as the average inter-city
price. In general, in any equilibrium determination of market outcomes, prices and demands will
be determined simultaneously.

The purpose of this work is to provide a theoretical analysis of the non-parametric exact
consumer surplus estimator under the assumption of price endogeneity using an instrumental
variable approach to identify the structural demand relationship. The instrumental variable
approach has also been investigated in many recent econometric studies such as Darolles et al.
(2002), Ai and Chen (2003), Newey and Powell (2003), Hall and Horowitz (2005), Blundell
et al. (2007), Chen (2007) and Gagliardini and Scaillet (2007), to name but a few. In this paper,
we apply the purely non-parametric kernel regression model used in Darolles et al. (2002) or
Hall and Horowitz (2005). The regression estimators proposed in the two papers are similar and
we finally adopted the methodology developed in Hall and Horowitz (2005) in order to stick
to the consumer surplus illustration with one common variable Y in the regressors and in the
instruments.2

To implement the instrumental variable approach we introduce some continuously distributed
random variable W , called an instrument, such that E(U |Y ,W ) = 0. The underlying function g

is then defined through a second equation:

E(Q − g(P , Y )|Y ,W ) = 0. (1.2)

As pointed out by recent econometric analysis of non-parametric instrumental regression,
the study of g defined by (1.2) is a difficult ill-posed inverse problem that cannot be solved using
standard tools, and equation (1.2) needs to be stabilized before estimation (see Engl et al., 2000,
for a general overview of ill-posed inverse problems and regularization methods). Both steps of
stabilization and estimation are discussed in detail in the body of the paper. A major property
we find is that the rate of convergence of the estimated exact consumer surplus is improved,
compared to the rate of estimated demand function. Solving the differential equation smooths the
demand estimator and leads to a faster rate of convergence. This smoothing effect is consistent
with the results obtained in the exogenous case (see Vanhems, 2006, for more details) and is
completely driven by the resolution of the differential equation.

The paper proceeds in the following way. In the next section, we set out the notations, give
the main equations to be solved and establish the link with inverse problems theory. We then
present our non-parametric estimator and recall the theoretical properties of each inverse problem
(equations (1.1) and (1.2)). In Section 4, we study the asymptotic behaviour of our estimator and
conclude the analysis with some simulations.

2. MODEL SPECIFICATION

In this section, we set out the notation and link our model with inverse problem theory.

2 Note that other identification methods could have been used such as control function approach (see e.g. Newey et al.,
1999, Blundell and Powell, 2003, or Newey and Imbens, 2009, for a non-parametric setting).
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2.1. The linear equation model

The objective of this part is to set the econometric model defining the demand function q. We
follow the modelling of Hall and Horowitz (2005). Consider (Q,P , Y ,W,U ) a continuously
distributed random vector with all scalar random variables (to simplify the notations and fit with
the microeconomic illustration). P and Y are endogenous and exogenous explanatory variables,
respectively, and W is the instrument. We assume that P , Y and W are supported on [0, 1].3 Let
(Qi, Pi, Yi,Wi, Ui), for 1 ≤ i ≤ n, be observed data independently and identically distributed as
(Q,P , Y ,W,U ).

Let fPYW denote the joint density of (P , Y ,W ), and fY the density of Y . Following Hall
and Horowitz (2005) notations, we define for each y ∈ [0, 1], ty(p1, p2) = ∫ fPYW (p1, y,w)
fPYW (p2, y,w) dw and the operator Ty on L2[0, 1] by (Tyψ)(p, y) = ∫ ty(ξ, p)ψ(ξ, y) dξ .

The solution g of equation (1.2) satisfies:

(Tyg)(p, y) = fY (y)EW |Y {E(Q|Y = y,W )fPYW (p, y,W )|Y = y}, (2.1)

where EW |Y denotes the expectation operator with respect to the distribution of W conditional on
Y . Then, for each y for which T −1

y exists, it may be proved that g(p, y) = fY (y)EW |Y {E(Q|Y =
y,W )(T −1

y fPYW )(p, y,W )|Y = y}.

2.2. The non-linear equation model

Consider a price value p1 ∈ ]0, 1[.4 Our functional parameter of interest Sy is the solution of
the differential equation (1.1) depending on the demand function q. When q is replaced by the
approximation function g, the differential equation to solve is rewritten:{

S ′
y(p) = −g(p, y − Sy(p)),

Sy(p1) = 0,
(2.2)

or equivalently:

Sy(p) =
∫ p1

p

g(t, y − Sy(t)) dt. (2.3)

The definition of Sy involves the function g which depends on the distribution of
(Q,P , Y ,W ). Under standard regularity assumptions on the function g, there exists a unique
local solution to (2.2). The analysis of these two problems (2.1) and (2.2) is closely linked to
inverse problem theory and we recall below the characteristics of each of them.

3 This assumption is directly taken from Hall and Horowitz (2005) and is not a restrictive one as they argue in their
article, p. 2908. Moreover, in our case, we are interested in solutions of differential equations which are by construction
uniquely defined in a neighbourhood of the initial condition Sy (p1) = 0, which will restrict the support of the functions
and random variables.

4 We fix a price value p1 in the interior of ]0, 1[ so that a neighbourhood of p1, on which Sy is defined, can also be
included in [0, 1].
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2.3. Link with inverse problems theory

The methodology used to study Sy is in two steps by solving successively the two equations
(2.1) and (2.2). As we will see below, they have different regularity properties that impact the
way to solve them and the properties of their solutions. Consider first the relation (2.2). The
function Sy is defined implicitly as the solution of this non-linear differential equation, which
can be considered as an inverse problem to solve. The standard issue is to check whether or not
the inverse problem is well-posed, that is if there exists a unique stable solution to (2.2) (see
Tikhonov and Arsenin, 1977, Kress, 1999, or Engl et al., 2000, for a general definition). This
relation is characterized by the differential operator Ay defined by Ay(g, Sy) = S ′

y + g(·, y − Sy)
and solving (2.2) is equivalent to inverting this operator under the initial condition Sy(p1) = 0.
Although the operator is non-linear, it can be proved (see Vanhems, 2006, for details) that this
inverse problem is in fact well-posed and defines a unique local stable solution. Under regularity
assumptions on g (recalled in the next section), there exists a unique solution: Sy(p) = �y[g](p),
where �y is continuous with respect to g.

Consider now the first relation (2.1). This second inverse problem, which defines implicitly
the parameter of interest g, requires to invert the linear integral operator Ty . As recalled in the
introduction, this model is the foundation of many studies, and it was proved (see e.g. Tikhonov
and Arsenin, 1977, or Kress, 1999) that even when the probability distribution of (P , Y ,W ) is
known, the calculation of a solution g from equation (2.1) is an ill-posed inverse problem. In
particular, the solution is not stable and a regularization step is required to solve the problem. In
our case, as in the problems studied by Darolles et al. (2002), Hall and Horowitz (2005), Carrasco
et al. (2007) or Johannes et al. (2010), fPYW is unknown and has to be estimated from a sample of
(P , Y ,W ). The way to proceed is the following: first, equation (2.1) is stabilized using standard
regularization method (recalled in the next section); second, the operator Ty is replaced by an
estimator and the estimated stabilized equation is solved. Under regularity assumptions on the
function g and the operator Ty , there exists a unique regularized solution g.

The purpose of the next section is to recall separately the estimation procedure for the two
equations (2.1) and (2.2) as well as the theoretical properties of their estimated solutions. Both
inverses will then be mixed in Section 4.

REMARK 2.1. A potentially better way to proceed would have been to directly study the
parameter of interest Sy in one step and invert one operator instead of two. However, this one
step approach raises several issues. First, contrary to the operator Ay, Ty depends on the law of
the data set and has to be estimated (which we do in a first step). Second, as we will see in the
next section, it is possible to write an explicit solution to the linear inverse problem, whereas it
turns out to be impossible for the non-linear one. Only a numerical approximation is available.
Due to these two reasons, we decided it preferable not to treat our model as a single inverse
problem.

3. ESTIMATION AND IDENTIFICATION

In this section, we present the non-parametric methodology used as well as the issues of
identification and overidentification for both inverse problems separately. We briefly recall the
results in Hall and Horowitz (2005) and Vanhems (2006) that will be necessary to prove the
asymptotic properties of the final estimated functional parameter Sy .
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3.1. Estimation of consumer demand

We first consider the non-parametric instrumental regression defined in equation (2.1) and present
the methodology developed in Hall and Horowitz (2005). As recalled in the previous section,
solving the relation (2.1) generates a linear ill-posed inverse problem which implies that a
consistent estimator of g is not found by a simple inversion of the estimated operator T̂y . For
the purpose of estimation, we need to replace the inverse of Ty by a regularized version. In what
follows, we use the well-known Tikhonov regularization and replace T̂ −1

y by (T̂y + aI )−1 = T̂ +
y ,

where I is the identity operator and a > 0 (see Engl et al., 2000, for an overview of the main
regularization methods).

3.1.1. Estimation. The function g is estimated using kernel estimation. Consider K a kernel
function of one dimension, centred and separable, h > 0 the bandwidth parameter and Kh(u) =
(1/h)K(u/h). In order to get rid of edge effects, following Hall and Horowitz (2005), we can
introduce some generalized kernel function Kh(·, ·) such that if t is not close to either 0 or 1 then
Kh(u, t) = Kh(u). In what follows, in order to simplify the formulas and notations, we simply
denote it by Kh(u).

To construct an estimator of g(p, y), let hp, hy > 0 be two bandwidth parameters and define:

f̂PYW (p, y,w) = 1

n

n∑
i=1

Khp
(p − Pi)Khy

(y − Yi)Khp
(w − Wi),

f̂
(−i)

PYW (p, y,w) = 1

(n − 1)

n∑
j=1,j �=i

Khp
(p − Pj )Khy

(y − Yj )Khp
(w − Wj ),

t̂y(p1, p2) =
∫

f̂PYW (p1, y,w)f̂PYW (p2, y,w) dw,

(T̂yψ)(p, y) =
∫

t̂y(ξ, p)ψ(ξ, y) dξ.

The non-parametric estimator of g(p, y) is then defined by:

ĝ(p, y) = 1

n

n∑
i=1

(
T̂ +

y f̂
(−i)
PYW

)
(p, y,Wi)QiKhy

(y − Yi). (3.1)

3.1.2. Theoretical properties. In order to derive rates of convergence for ĝ(p, y) it is necessary
to impose regularity conditions on the operator Ty . By construction Ty is linear and we
assume that for each y ∈ [0, 1], Ty is a compact operator. Compactness is a standard and
often used regularity assumption for integral operators that allow in particular to define a
discrete spectrum. We denote by {φy1, φy2, . . .} the orthonormalized sequence of eigenvectors
and λy1 ≥ λy2 ≥ · · · > 0 the respective eigenvalues of Ty . Assume that {φyj } forms an
orthonormal basis on L2[0, 1] and consider the following decompositions on this orthonormal
basis:
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ty(p1, p2) =
∞∑

j=1

λyjφyj (p1)φyj (p2),

fPYW (p, y,w) =
∞∑

j=1

∞∑
k=1

dyjkφyj (p)φyk(w),

g(p, y) =
∞∑

j=1

byjφyj (p).

(3.2)

Under regularity conditions on the density fPYW and the kernel K (fPYW has r continuous
derivatives and K is of order r), on the function g(p, y), and on the rate of decay of the
coefficients byj , λyj and dyjk depending on constants α and β, it is proved in Hall and Horowitz

(2005) that ĝ(p, y) converges to g(p, y) in mean square at the rate n
−τ

2β−1
2β+α with τ = 2r

2r+1 . In
particular, the constants α and β are defined such that, for all j, |byj | ≤ Cj−β, j−α ≤ Cλyj and∑

k≥1 |dyjk| ≤ Cj−α/2, C > 0, uniformly in y ∈ [0, 1].

3.2. Estimation of exact consumer surplus

Consider now the second non-linear inverse problem defined by equation (2.2).
The estimated exact consumer surplus Ŝy(p) is defined as the solution of the estimated

system: {
Ŝ ′

y(p) = −ĝ(p, y − Ŝy(p)),

Ŝy(p1) = 0.
(3.3)

3.2.1. Estimation. The Cauchy–Lipschitz theorem states that under some regularity
assumptions on g, for each y ∈ ]0, 1[, there exists a unique solution Sy defined in a
neighbourhood of the initial condition (p1, 0).5 Again, under regularity conditions on ĝ,
following the Cauchy–Lipschitz theorem, there exists a unique solution Ŝy defined on a
neighbourhood of the initial condition (p1, 0).6

The estimated solution Ŝy can be approximated using numerical implementation. Various
classical algorithms can be used such as the Euler–Cauchy algorithm, Heun’s method or the
Runge–Kutta method (see Ascher and Petzold, 1998, or Collatz, 1960, for a general overview of
these numerical methods). As an illustration, Hausman and Newey (1995) use a Buerlisch–Stoer
algorithm from Numerical recipes and Vartia (1983) details the polygon method. Let us briefly
recall the general methodology. Consider a grid of equidistant points p1, . . . , pn, where pi+1 =
pi + h and p1 = p1. The differential equation (2.2) is transformed into a discretized version
where ĝh is an approximation of ĝ:{

Ŝy(i+1) = Ŝyi − hĝh(pi, y − Ŝyi),

Ŝy0 = 0.
(3.4)

5 We fix y in the interior of [0, 1] for convenience, to make sure that y − Sy (p) still belongs to [0, 1].
6 See e.g. Coddington and Levinson (1955) for a general presentation of the Cauchy–Lipschitz theorem and Vanhems

(2006) for an application in econometrics.
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In the particular case of the Euler algorithm, ĝh = ĝ. These numerical algorithms converge faster
than the non-parametric estimators and hence the numerical approximation of Ŝy does not affect
the theoretical properties of the estimator (as detailed in Vanhems, 2006).

3.2.2. Theoretical properties. Existence and uniqueness of both solutions Sy and Ŝy is proved
under Cauchy–Lipschitz assumptions imposed on both functions g and ĝ. Consider a fixed
income value y ∈ ]0, 1[. Denote I = [p1 − ε1, p

1 + ε1], for ε1 > 0 a closed neighbourhood of
p1, J = [y − ε2, y + ε2] with ε2 > 0 and Dy = I × J . The regularity conditions required to
prove existence and uniqueness for Sy are the following:

ASSUMPTION 3.1. max(p,̃y)∈Dy
|g(p, ỹ)| < ε2/ε1.

ASSUMPTION 3.2. |g(p, y2) − g(p, y1)| ≤ k|y2 − y1|,∀(p, yi) ∈ Dy such that c = kε1 < 1.

Note that the important condition to prove existence and uniqueness of a solution for the
differential equation (2.2) is the second one. Indeed, Assumption 3.1 is just imposed by the
local definition of our solution on I and the Cauchy–Lipschitz theorem proves existence and
uniqueness of a solution defined on I. In particular, if the function g is assumed to be continuous,
this assumption is very easily checked.7 Assumption 3.2 imposes g to be continuous on Dy and
to satisfy the Lipschitz condition. A sufficient condition on g to satisfy this assumption is to
be continuously differentiable of order 1 on Dy . In the next section, in order to derive rates of
convergence for the estimated solution Ŝy , we impose this last stronger condition.

Let us turn now to the existence and uniqueness of a solution Ŝy . Indeed, we study the
exact consumer surplus in a two-step procedure and we also have to take into account the
estimated differential equation (3.3). We use again the Cauchy–Lipschitz theorem and introduce
the parameters ε1n and ε2n, define the neighbourhoods In and Dyn such that ĝ satisfies the two
following assumptions:

ASSUMPTION 3.1′. max(p,̃y)∈Dyn
|̂g(p, ỹ)| < ε2n/ε1n.

ASSUMPTION 3.2′. |̂g(p, y2) − ĝ(p, y1) ≤ kn|y2 − y1|,∀(p, yi) ∈ Dyn such that |cn = knε1n

< 1.

Again, in order to derive rates of convergence in the next section, we will transform these
conditions into regularity conditions on the kernel function used to construct ĝ. At last, in
order to define both solutions Sy and Ŝy on the same neighbourhood Dy , we need an additional
assumption of convergence of the Lipschitz factor kn to k. In other words, under the condition
that ∂

∂e2
ĝ (i.e. the derivative of ĝ with respect to the second variable) converges uniformly to

∂
∂e2

g, both solutions can be defined on a common subset I and the inverse problem is stable and
well-posed (see Vanhems, 2006, for more details).

The main issue of this differential inverse problem is its non-linearity and the next step to
derive rates of convergence is to linearize the relation between Sy and g. The methodology used
to transform the non-linear equation into a linear problem is closely related to the functional
delta method and is similar to Hausman and Newey (1995) and Vanhems (2006). Then, under
the assumptions of existence uniqueness and stability for Ŝy and Sy , it can be proved that:

7 From a practical point of view, it could be interesting to check if the solution can be extended to a larger interval to
take into account larger price variations. Under the same assumptions, it can be proved that a unique maximal solution
exists, which can be constructed by piecing together local solutions if the intersection of their definition intervals is not
empty.

C© 2010 The Author(s). The Econometrics Journal C© 2010 Royal Economic Society.
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∀p ∈ I , Ŝy(p) − Sy(p) = I (p, y) + Rn(p, y), (3.5)

where Rn(p, y) = oP (‖ĝ − g‖) is the residual term and the counterpart in the Taylor expansion.
Under assumptions on the estimated function ĝ, this term converges to zero in probability and
will be neglected in the asymptotics. The first term I (p, y) is linear in ĝ − g and has an explicit
form that will be detailed in the next section.

Note that all the asymptotic results will be given using the L2 norm which will be written
‖ · ‖. In particular, ‖ĝ − g‖2 = ∫

Dy
(̂g − g)2(a, b) dadb. If other norms are used it will be clearly

specified.

4. ASYMPTOTIC BEHAVIOUR OF THE ESTIMATED SOLUTION

The objective of this section is to combine both inverse problems and derive the asymptotic
behaviour of the solution of the differential equation obtained after estimating the regression
function observed in an endogenous setting. We use the delta method to transform the non-
linear differential equation into a linear relation, up to the residual term. We show that, under
assumptions detailed below, we are able to control the residual term and derive the rate of
convergence for the leading linear term.

4.1. Assumptions

In order to prove theoretical properties on the estimated exact consumer surplus Ŝy , we need to
impose a set of regularity conditions. These assumptions are derived from the analysis of each
inverse problem (estimation of consumer demand and estimation of exact consumer surplus) and
are adapted from Hall and Horowitz (2005) and Vanhems (2006). The regularity conditions on
g and ĝ discussed in Section 3.2.2 are given in Assumptions 4.1, 4.5 and 4.7. Assumption 4.1 is
equivalent to equation (1.2). Assumptions 4.2, 4.3 and 4.6 imply that Ty is a compact operator;
Assumption 4.4 describes the sizes of the tuning parameters. Moreover, we also introduce the
generalized Fourier decomposition for the following function:

my(p, t) = 1[p1,p](t) · e
[
∫ t

p
∂

∂e2
g(u,y−Sy (u)) du]

,

=
∞∑

j=1

∞∑
k=1

cyjkφyj (p)φyk(t),

with specific assumptions on the rate of decay of the coefficients cyjk given in Assumption 4.3.8

All the required assumptions are summarized below:

ASSUMPTION 4.1. The data (Qi, Pi, Yi,Wi) are independent and identically distributed as
(Q,P , Y ,W ), where P , Y ,W are supported on [0, 1] and E(Q − g(P , Y )|W,Y ) = 0.

ASSUMPTION 4.2. The distribution of (P , Y ,W ) has a density fPYW with r ≥ 2 derivatives,
each derivative bounded in absolute value by C > 0, uniformly in p and y. The functions

8 The notation of my (p, t) with y as a subscript is arbitrary, in order to follow the initial notation of the operator Ty . We
could as well have written m(p, t, y).
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E(Q2|Y = y,W = w) and E(Q2|P = p, Y = y,W = w) are bounded uniformly by C and
E(Q2) < +∞. The function g is continuously differentiable of order 1 on [0, 1]2.

ASSUMPTION 4.3. The constants α, β, ν satisfy β > 1/2, ν > 1/2, α > 1 and max(β +
ν − 1/2; 2ν − 1) < α < min(2ν; 2β; β + ν). Moreover, |byj | ≤ Cj−β, j−α ≤ Cλyj ,

∑
k≥1

|dyjk| ≤ Cj−α/2 and
∑

k≥1 |cyjk| ≤ Cj−2ν uniformly in y, for all j ≥ 1.

ASSUMPTION 4.4. The parameters a, hp, hy satisfy a � n−ατ/(2β+α), h � n−1/(2r+1) as n goes
to infinity, where τ = 2r/(2r + 1).

ASSUMPTION 4.5. The kernel function K is a bounded and Lebesgue integrable function
defined on [0, 1].

∫
K(u) du = 1 and K is of order r ≥ 2. Moreover, K is continuously

differentiable of order r with derivatives in L2([0, 1]).

ASSUMPTION 4.6. For each y ∈ [0, 1], the function φyj form an orthonormal basis for L2[0, 1]
and suppsupymaxj |φyj (p)| < ∞.

ASSUMPTION 4.7. ∀y ∈ [0, 1], supDy
| ∂
∂e2

ĝ(p, ỹ) − ∂
∂e2

g(p, ỹ)| converges in probability to 0.

REMARK 4.1. (i) In order to estimate the demand function g, a standard kernel function K has
been introduced in Assumption 4.5. As recalled in Section 3.1.1 (see also Hall and Horowitz,
2005), in order to prevent from edge effects, a generalized kernel function or ‘boundary kernel’
has to be used. It corrects in particular for the bad behaviour of the non-parametric estimator
around 0 or 1. However, to simplify the expansions in the proofs, we simply use the notation K.
(ii) Assumption 4.3 specifies a polynomial rate of decay for the coefficients byj , cyjk, dyjk and
λyj . However, other rates of decay could be used, such as exponential rate, which would lead to
different rates of convergence for the non-parametric estimator (see Johannes et al., 2010, for a
general overview).

4.2. Theoretical properties

Consider Assumptions 4.1 to 4.7. Then we can prove the following results.

THEOREM 4.1. For each y ∈ ]0, 1[, there exist unique solutions Sy and Ŝy defined on a common
neighbourhood I of p1.

This first result proves that both solutions Sy and Ŝy exist and are defined in the same
neighbourhood I. It implies that the estimated solution Ŝy is stable and will converge to Sy as
soon as ĝ converges to g. In order to derive rates of convergence, we now need to linearize the
differential equation.

THEOREM 4.2. (i) Linear decomposition. Consider y ∈ ]0, 1[. For any p ∈ I ,

Ŝy(p) − Sy(p) = −
∫

(̂g − g)(t, y − Sy(t)) · my(p, t) dt + Rn(p, y) (4.1)

= I (p, y) + Rn(p, y), (4.2)
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with Rn(p, y) the residual term introduced in equation (3.5), which converges to zero. (ii)
Convergence in mean square. Under the additional property:

supy∈]0,1[

∫
E{I (p, y)}2dp ≤ supy∈[0,1]

∫
E

{∫
(̂g − g)(t, y)my(p, t)dt

}2

dp, (4.3)

we can prove that:

supy∈[0,1]E(‖I (·, y)‖2) = O
(
n

−τ
2(β+ν)−1

2β+α

)
. (4.4)

We give below some comments on this rate of convergence and the condition (4.3) required
to derive it.

REMARK 4.1. Note first that the rate of convergence obtained here is faster than the rate given
in Hall and Horowitz (2005). This finding is consistent with the conclusions in Vanhems (2006):
solving the differential equation improves the regularity of the initial estimator ĝ and the rate
of convergence for Ŝy is expected to be faster. Moreover, compared to the Hall and Horowitz
(2005) result, an additional parameter ν appears in the rate of convergence. In fact, the linear term
I (p, y) can be rewritten using the scalar product in L2[0, 1]: I (p, y) = 〈(̂g − g)(·, y); my(p, ·)〉
and our objective is then to analyse the scalar product of the estimator ĝ with a smooth function
(instead of the function ĝ itself, as in Hall and Horowitz, 2005). Our rate of convergence will
depend on the smoothness of the function my(p, ·) characterized by the parameter ν. This
parameter captures the regularity induced by solving the differential equation. That explains why

the rate of convergence of Ŝy is faster than n
−τ

2β−1
2β+α the rate of convergence for ĝ obtained by Hall

and Horowitz (2005).

REMARK 4.2. In order to derive the rate of convergence in Theorem 4.2, we need an additional
condition, given by the inequality (4.3). This condition is not restrictive as the income value
y is initially fixed in ]0, 1[. Since Sy takes values in a neighbourhood of 0 and ĝ − g are
continuous functions on [0, 1]2, we can conclude that y − Sy(p) also varies in [0, 1], which
proves equation (4.3). From an economic point of view, it acts as if the compensated income
were finally neglected in the surplus equation, as it is in the definition of the observed consumer
surplus, when the demand function is integrated over price with fixed income.

5. SOME SIMULATIONS AND CONCLUDING REMARKS

We present a small Monte Carlo study in order to demonstrate the practical implementation of
the proposed method. The function g is defined as follows: g(p, y) = 0.2y

(p+0.1) . This form fits with
the classical demand function derived from the Cobb–Douglas utility (up to an additive term
0.1 to ensure the function is well-defined on [0, 1]). For fixed values y and p1, the differential
equation can be explicitly solved and Sy is defined by:

Sy(p) = y

(
1 −

(
p + 0.1

p1 + 0.1

)0.2
)

.
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We consider the trigonometric basis in L2[0, 1], that is φ1 = 1, φ2j (·) = √
2cos(2πj.),

φ2j+1(.) = √
2sin(2πj.). The variables P , Y and W are uniformly distributed on [0, 1]

and the joint density of (P , Y ,W ) is defined by fPYW (p, y,w) =∑∞
j=1 λjφj (p)φj (y)φj (w)

with singular values satisfying λ1 = 1 and λj = j−1(2
∑∞

j=1 l−1)−1, j ≥ 2. For computational
purposes, the infinite series were truncated at j = 100. We then generate Q = E[g(P , Y )|W ] +
V , where V is distributed as Normal(0, 0.1).

To compute the exact consumer surplus, the income value is fixed and equal to 0.5 and the
price reference p1 is equal to 1. The estimated solution of the differential equation is calculated
using the Euler algorithm (see Section 3.2.1).

We generate samples of size n = 200, and perform 500 Monte Carlo replications. The
experiments are carried out in R. The kernel function is the Gaussian kernel and the values of the
smoothing parameters are fixed and equal to h = 0.5 and a = 0.05.

Results are illustrated graphically in Figures 1 and 2. The figures show g(p, 0.5) and
S0.5(p) in the solid line, and Monte Carlo approximation to E(̂g(p, 0.5)) and E(Ŝ0.5(p)) in
the dotted line. Performances of both estimators are compared using the average of Monte
Carlo approximations to mean squared error (MSE). The results are the following: MSE(g) =
0.01687601 and MSE(Sy) = 0.0003646748. This illustrates clearly the fact that solving the
differential equation smooths the demand and improve its properties (see Section 4.2), although
the smoothing parameters h and a are not chosen optimally.

To conclude, this article develops a non-parametric estimator of exact consumer surplus
where price is specified to be endogenous. We combine the methodology of the non-
parametric instrumental variable of Hall and Horowitz (2005) with the estimation of solution
of differential equations by Vanhems (2006) in a two-step procedure: first non-parametric
estimation of demand; second, non-parametric estimation of exact consumer surplus. We analyse
the asymptotic property of our estimator and show that the rate derived for the estimated exact
consumer surplus is faster than the rate obtained for the estimated demand (due to the resolution
of the differential equation linking both functions). This result is illustrated via a small Monte
Carlo simulation.
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Figure 1. Graph of functions g (solid line) and E(̂g) (dotted line).
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Figure 2. Graph of functions Sy (solid line) and E(Ŝy) (dotted line).
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APPENDIX A: PROOFS OF RESULTS

Proof of Theorem 4.1: Existence and uniqueness of solutions Sy and Ŝy is proved using the
Cauchy–Lipschitz theorem, under the sufficient condition that both functions g and ĝ are continuously
differentiable of order 1, which is assumed in Assumptions 4.2 and 4.5. Moreover, under Assumption 4.7 of
uniform convergence, we can define a common Lipschitz factor k for both functions g and ĝ and common
neighbourhoods I and Dy (see Vanhems, 2006, proof of Lemma 2.2, on p. 150, for details). �
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Proof of Theorem 4.2: Linear decomposition. This proof is directly adapted from Vanhems (2006)
(proof of Proposition 4.1, p. 151). Under the assumptions of existence and uniqueness, for any y ∈ ]0, 1[
there exists a unique solution to (2.2) Sy(p) = �y[g](p). The objective is to try and characterize the
functional �y that is the exact dependence between Sy and g. Consider the operator Ay defined as
follows:

Ay :

{
C1(Dy) × C1

ε2,0(I ) → C(I ),

(u, v) �→ Ay(u, v),

where C(I ) is the space of continuous functions defined on I, and C1(Dy) the space of functions defined on
Dy and continuously differentiable of order 1. We consider also the space Cε2,0(I ) the space of continuous
functions defined on I and satisfying both Assumptions 3.1 and 3.2 of Section 3.2.1. The space C1

ε2,0(I )
stands for continuously differentiable functions of order 1 belonging to Cε2,0(I ).

Note that both spaces (C1(Dy), ‖ · ‖) and (C(I ), ‖ · ‖) are Banach spaces. Moreover we define the
following norm:

‖·‖′ = max
(‖v‖ ,

∥∥v′∥∥)
on C1

ε2,0(I ). We can easily see that (C1
ε2,0(I ), ‖ · ‖′

) is a Banach space. The use of such a norm allows us to
have the continuity and linearity of the following function:

D :

{(
C1

ε2,0(I ), ‖·‖′)→ (C(I ), ‖·‖) ,

f �−→ f ′.

So, we have: ∀x ∈ I , Ay(u, v)(x) = v′(x) + u(x, y − v(x)). Define an open subset O of C1(Dy) × C1
ε2,0(I )

and (g, Sy) ∈ O. Ay is continuous on O (it is a sum of continuous applications) and Ay(g, Sy) = 0. Let us
check the hypothesis of the implicit function theorem. Ay is in fact continuously differentiable (thanks to
the same argument) so we can take its derivative with the second variable d2Ay(g, Sy). Moreover, we have:

∀h ∈ C1
ε2,0(I ), ∀p ∈ I , d2Ay(g, Sy)(h)(p) = h′(p) + ∂

∂e2
g(p, y − Sy(p)) · h(p).

We have to prove that d2Ay(g, Sy) is a bijection. Let us show first the surjectivity:

∀v ∈ C(I ), ∃?h ∈ C1
ε2,0(I ); ∀p ∈ I , h′(p) + ∂

∂e2
g(p, y − Sy(p)) · h(x) = v(p).

This is a linear differential equation, so we can solve it and find that:

∀p ∈ I , h(p) = −
∫ p

p1

(
v(s) · e

[∫ p
s

∂
∂e2

g(t,y−Sy (t)) dt
])

ds.

Therefore, d2Ay(g, y − Sy) is surjective. Let us now demonstrate the injectivity, that is

Ker(d2Ay(g, y − Sy)) = {0}.
We are going to solve d2Ay(g, y − Sy)h = 0, h ∈ C1

b,0(I ). We find again a linear differential equation
we can solve and find:

∀p ∈ I , h(p) = ce
−∫ p

p1
∂

∂e2
g(t,y−Sy (t)) dt

and h(p1) = 0.

Therefore, we get c = 0. Thus, we have demonstrated that d2Ay(g, Sy) is bijective. Let us now demonstrate
the bi-continuity of d2Ay(g, Sy). In the usual implicit function theorem, this assumption is not required,
but here we consider infinite dimension spaces which is why we need a more general theorem with further
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assumptions to satisfy. The continuity of d2Ay(g, Sy) has already been proved since Ay is continuously
differentiable.

The continuity of the reversible function is given by an application of Baire Theorem: if an application
is linearly continuous and bijective on two Banach spaces, the reversible application is continuous.

Therefore, we can apply the Implicit Function Theorem: ∃U an open subset around g, and V an open
subset around Sy such as:

∀u ∈ U, Ay(u, v) = 0 has a unique solution in V .

Let us note: v = �y[u] this unique solution for u ∈ U .
Now we are going to differentiate the relation: Ay(u,�[u]) = 0, ∀u ∈ U and apply it in (g, Sy =

�y[g]). Let us first differentiate Ay : ∀h ∈ C1(Dy) × C1
ε2,0(I ),

dAy(g, Sy)(h)(p) = d1Ay(g, Sy) dg(h)(p) + d2Ay(g, Sy) dSy(h)(p)

= dg(h)(p, y − Sy(p)) + (dSy(h))′(p) + ∂

∂e2
g(p, y − Sy(p)) dS(h)(p).

The differential of Ay leads to a linear differential equation in dSy(h) that we can solve. Now we apply it
with dg(h) = ĝ − g and dSy(h) = d�y[g](̂g − g) in order to find:

d�y[g](̂g − g)′(p) = − ∂

∂e2
g(p, y − �y[g](p) · d (̂g − g)(p) − (̂g − g)(p, y − �y[g](p)).

Solving it leads us to:

d�y[g](̂g − g)(p) = −
∫ p

p1

(
(̂g − g)(t, y − �y[g](t)) · e

[
∫ s
p

∂
∂e2

g(u,y−�y [g](u)) du]
)

dt

= −
∫ p

p1

(
(̂g − g) (t, y − Sy[g](t)) · e

[
∫ s
p

∂
∂e2

g(u,y−Sy [g](u)) du]
)

dt

= −
∫ p

p1
((̂g − g)(t, y − Sy[g](t)) · v(p, t)) dt.

So the statement is proved. The convergence of the residual term is proved in Hall and Horowitz (2005).

Convergence in mean square. We analyse the following term:
∫

(̂g − g)(t, y)my(p, t) dt . The objective is
to prove that:

supy∈[0,1]

∫
E

{∫
(̂g − g)(t, y)my(p, t) dt

}2

dp = O
(
n

−τ
2(β+ν)−1

2β+α

)
.

The sketch of the proof is very similar to the demonstration in Hall and Horowitz (2005). We decompose
the difference

∫
(̂g − g)(t, y)my(p, t) dt into four terms and analyse the convergence of each one. Define:
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Dny(p) =
∫ {∫

g(x, y)fPYW (x, y, w)T +
y (f̂PYW − fPYW )(t, y, w) dxdw

}
my(p, t) dt,

An1y(p) = 1

n

n∑
i=1

∫ (
T +

y fPYW

)
(t, y, Wi)QiKhy

(y − Yi)my(p, t) dt,

An2y(p) = 1

n

n∑
i=1

∫ {
T +

y

(
f̂

(−i)
PYW − fPYW

)}
(t, y, Wi)QiKhy

(y − Yi)my(p, t) dt − Dny(p),

An3y(p) = 1

n

n∑
i=1

∫ {(
T̂ +

y − T +
y

)
fPYW

}
(t, y,Wi)QiKhy

(y − Yi)my(p, t) dt + Dny(p),

An4y(p) = 1

n

n∑
i=1

∫ {(
T̂ +

y − T +
y

)(
f̂

(−i)
PYW − fPYW

)}
(t, y,Wi)QiKhy

(y − Yi)my(p, t) dt.

Then
∫
ĝ(t, y)my(p, t) dt = An1y(p) + An2y(p) + An3y(p) + An4y(p) and the theorem will follow if we

prove that:

E‖An1y −
∫

g(t, y)my(p, t) dt‖2 = O
(
n

−τ
2(β+ν)−1

2β+α

)
, (A.1)

E‖Anjy‖2 = O
(
n

−τ
2(β+ν)−1

2β+α

)
, forj = 2, 3, 4. (A.2)

We will then carefully detail the proof for equation (A.1) and very briefly indicate the way to prove equ-
ation (A.2) following Hall and Horowitz (2005).

To derive (A.1), we first decompose the bias term.

EAn1y(p) −
∫

g(t, y)my(p, t) dt = I1 + I2,

with

I1 = −a
∑

k

∑
j

byj cyjk(λj + a)−1φyk(p),

I2 = O
(
hr

y

) ∫ [∫ ∫ (
T +

y fPYW

)
(t, y, w)q

∂

∂yr
fQWY (q,w, y) dqdw

]
my(p, t) dt.

Therefore, ‖EAn1y(p) − ∫ g(t, y)my(p, t) dt‖2 ≤ 2(‖I1‖2 + ‖I2‖2) and

‖I1‖2 =
∑

k

⎛⎝a
∑

j

byj cyjk(λj + a)−1

⎞⎠2

≤ C2

⎛⎝a
∑

j

|byj |j−2ν(λj + a)−1

⎞⎠2

.

Using Cauchy–Schwarz inequality, we get:

‖I1‖2 ≤ C2a2

⎛⎝∑
j

j−2ν

⎞⎠⎛⎝∑
j

|byj |2j−2ν(λj + a)−2

⎞⎠
≤ const. a2

⎛⎝∑
j

|byj |2j−2ν(λj + a)−2

⎞⎠ ,
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where here and below “const.” denote a positive constant. We then divide the series up to the sum over
j ≤ J � a−1/α and the complementary part. Following Hall and Horowitz (2005), we bound the right-hand
side by a2

∑
j≤J (byj j

−ν/λj )2 +∑j>J (byj j
−ν)2. Under Assumptions 4.3 and 4.4, we prove that:

‖I1‖2 = O
(
n

−τ
2(β+ν)−1

2β+α

)
. (A.3)

Consider now the second term I2 the statistical bias. We have:

I2 ≤ const. hr
y〈EW |Y

[(
T +

y fPYW

)
(·, y,W )|Y = y

]
; my(p, ·)〉

≤ const. hr
y

∑
j,k,l

dyjkcylj

λyj + a
φyl(p).

Therefore, we get:

‖I2‖2 ≤ const. h2r
y

∑
l

⎛⎝∑
k,j

dyjkcylj

λyj + a

⎞⎠2

≤ const. h2r
y

⎛⎝∑
j

j−2ν−α/2

λyj + a

⎞⎠2

.

Again, we can use Cauchy–Schwarz inequality and divide the series up to the sum over J and the
complementary part to get:

‖I2‖2 ≤ const. h2r
y a

2ν−α−1
α

= O
(
n

−τ
2(β+ν)−1

2β+α

)
and

‖EAn1y(p) −
∫

g(t, y)my(p, t) dt‖2 = O
(
n

−τ
2(β+ν)−1

2β+α

)
. (A.4)

Consider now the variance term. Using Assumption 4.2, we deduce that

nhyvar{An1y(p)} ≤ const. EW |Y

[(∫
(T +

y fPYW )(t, y, W )my(p, t) dt

)2
]

.

Then we prove, from an expansion of T +
y fPYW and my(p, ·) in their generalized Fourier series, that∫

var{An1y(p)}dp ≤ const.
1

nhy

∑
jkiql

dyjkdyiqcylj cyli

(λyj + a)(λyl + a)

≤ const.
1

nhy

∑
l

⎛⎝∑
j

√
λyj cylj

λyj + a

⎞⎠2

≤ const.
1

nhy

⎛⎝∑
j

√
λyj j

−2ν

λyj + a

⎞⎠2

.
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Using again Cauchy–Schwarz and the series decomposition as previously, we prove that:

E‖An1y − EAn1y‖2 =
∫

var{An1y(p)} dp

= O
(
(nhy)−1a−(α+1−2ν)/α

)
= O

(
n

−τ
2(β+ν)−1

2β+α

)
Result (A.1) is implied by this bound and (A.4).

We now present briefly how to handle with the other terms in (A.2). Start with j = 2. We introduce the
additional notations:

Dnyi(p) =
∫ {∫

g(x, y)fPYW (x, y, w)T +
y

(
f̂

(−i)
PYW − fPYW

)
(t, y, w) dxdw

}
my(p, t) dt,

An2y1(p) = 1

n

n∑
i=1

∫ {
T +

y

(
f̂

(−i)
PYW − fPYW

)}
(t, y, Wi)QiKhy

(y − Yi)my(p, t) dt − Dnyi(p),

An2y2(p) = 1

n

n∑
i=1

(Dnyi(p) − Dny(p)),

An2y(p) = An2y1(p) + An2y2(p).

We then study each term ‖An2y1‖2 and ‖An2y2‖2. It may be shown by tedious calculations that E‖An2y1‖2 =
O(n−τ

2(β+ν)−1
2β+α ). Moreover, write

∫
An2y2(p)2dp as a double series and take the expected values of the terms

one by one. We can again show that E‖An2y2‖2 = O(n−τ
2(β+ν)−1

2β+α ).
Next we derive (A.2) for j = 3. Note � = T̂y − Ty and consider the following decomposition T̂ +

y −
T +

y = −(I + T +
y �)−1T +

y �T +
y . We introduce the additional notations:

An3y1(p) = − (I + T +
y �
)−1

T +
y 〈�g(·, y); my(p, ·)〉

An3y2(p) = − (I + T +
y �
)−1

T +
y �

(
An1y(p) − 〈g(·, y); my(p, ·)〉)

An3y(p) = An3y1(p) + An3y2(p).

Following the Hall and Horowitz (2005) argument and using Cauchy–Schwarz inequality, it can be shown
that:

E‖An3y2‖2 ≤ (
E‖(I + T +

y �)−1T +
y �‖4E‖An1y(p) − 〈g(·, y); my(p, ·)〉‖4

)1/2

= O
(
n

−τ
2(β+ν)−1

2β+α

)
.

The second term is again decomposed in several sub-terms, each of them being controlled in the same vein

as for An1y(p). Tedious moment calculus show that E‖An3y1‖2 = (n−τ
2(β+ν)−1

2β+α ).
The last result (A.2) with j = 4 follows with the rates of An2y and An3y . �
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