
Server-side
Web Programming

Lecture 14:
Efficient and Safe Database

Access on Web Servers

Synchronized Database Access

• Many database updates can occur “simultaneously” on busy sites

• Can interfere with one another

• Example: Quantity update after purchase
– Query for previous quantity

– Subtract 1

– Update database with new quantity

Synchronized Database Access

• Java runs separate clients as “parallel” threads which execute
“simultaneously”
– Processor swaps back and forth between threads

• Problem if following sequence occurs:
– Current quantity = 100

– Client 1 code to get current quantity executes (value = 100)

– Processor swaps to client 2 thread

– Client 2 code to get current quantity (value still = 100)

– Client 2 code sets new quantity to 99 and stores in database

– Processor swaps back to client 1 thread

– Client 1 code also sets new quantity to 99 and stores in database!

Synchronized Database Access

Get quantity

Quantity = 100

Client 1
thread

Get quantity

Quantity = 100

Client 2
thread Set quantity = 99

Store 99 in
database

Set quantity = 99

Store 99 in
database

Problem: this code should not be interrupted!

Synchronized Database Access

• Can declare sections of code to be synchronized
– Only one thread may execute it at a time

– Another thread cannot start the code until the first has finished it

• Syntax: synchronized(object) { code }

Only one thread at a time should be able to execute this code on this object

Synchronized Database Access

Efficiency in Database Access

• Database access most time consuming part of most e-commerce
transactions

• Most costly parts:
– Creating new connections to database

– Creating new statements using those connections

• Idea:
Do as much as possible in advance
– Prepared statements

– Connection pooling

Prepared Statements

• Executing a statement takes time for database server
– Parses SQL statement and looks for syntax errors

– Determines optimal way to execute statement
• Particularly for statements involving loading multiple tables

• Most database statements are similar in form

• Example: Adding books to database
– Thousands of statements executed

– All statements of form:
"SELECT * FROM books WHERE productCode = ____“
"INSERT INTO books (productCode, title, price)

VALUES (_____, _____, ______)"

Prepared Statements

• Tell database server about basic form of statements in advance
– Database server can do all work for that type of statement once

• “Fill in blanks” for actual values when actually execute statement
– Hard work already done

• Syntax:
– Define PreparedStatement object instead of Statement

PreparedStatement check = null;
PreparedStatement insert = null;

Prepared Statements

• Define prepared statement using connection.prepareStatement

• Place ‘?’ where actual values will be inserted

check = connection.prepareStatement("SELECT * FROM
books WHERE productCode = ?");

insert = connection.prepareStatement("INSERT INTO
books (productCode, title, price)
VALUES (?, ?, ?)");

Prepared Statements

• Use setType (index, value) to insert values into the statement

productCode = request.getParameter("productCode");

title = request.getParameter("title");

price = Double.parseDouble(request.getParameter("price"));

check.setString(1, productCode);

insert.setString(1, productCode);

insert.setString(2, title);

insert.setDouble(3, price);

Type of field (like get method in ResultSet)
Which ‘?’ to insert the value into

Insert productCode into first
(and only) ‘?’ in check

Insert productCode, title, and
price into first, second, and
third ‘?’s respectively in insert

Note that price is inserted as
double

Prepared Statements

• Execute statements as before
– No parameters for SQL, since form already set

Connection Pooling

• Every time client sends request, new connection to database created
– May be many current connections (one per thread)

– Most time consuming part of process

Solution:

• Create pool of connections in advance
– No overhead when actual requests made later by clients

web container

database

Connection pool database server

Connection Pooling

• When connection requested:

– Get unused connection from pool

web container

database

Connection pool database server
JSP/servlet

JSP/servlet

New
JSP/servlet

Connections currently
in use

Free unused
connection

Request for new
connection

Connection Pooling

• When connection requested:

– Connection used by servlet/JSP

web container

database

Connection pool database server
JSP/servlet

JSP/servlet

New
JSP/servlet

Connections currently
in use

Free unused
connection

Reference to unused
connection returned

Connection Pooling

• When finished, JSP/servlet returns the connection back to the pool

– Now free for use by another

web container

database

Connection pool database server
JSP/servlet

JSP/servlet

New
JSP/servlet

Connections currently
in use

Free unused
connection

Return to pool

Connection Pooling

• Unlike prepared statement, no built in Java methods/classes
– Write your own

• http://java.sun.com/developer/onlineTraining/Programming
/JDCBook/conpool.html

– Third party classes
• dbConnectionBroker, etc.

– Build components directly into web.xml/context.xml files
• Page 466 of text

• Not well supported by Tomcat

Connection Pooling

• Usually static object
– Automatically constructs connections first time getConnection called

• Usually provide following methods:
– ConnectionPool.getInstance()

– freeConnection()

• Example:

Connection connection = ConnectionPool.getInstance();

// Code that creates statement, executes queries, etc.

connection.freeConnection();

Connection Pooling

• Required parameters:
– Driver name

• "com.mysql.jdbc.Driver“

– Url, name, and password
• "jdbc:mysql://localhost/bookstore",
“root", “sesame"

– Number of initial connections to create
• Usually a few hundred to a few thousand

– Timeout for idle connections
• Time after which idle connections are returned to pool automatically

• Important to prevent pool running out!

Necessary so
connection pool can
connect to database

