
Lecture 2: 
The Jakarta Tomcat Web Container 

and the NetBeans IDE

Server-side Web Development 
and Programming

Client-Server Web Architecture

Client
Browser
www.fit.hcmuaf.edu/
maianhtho/index.htm

Request to 
www.fit.hcmuaf.edu
for index.htm

Server

maianhtho public_html index.htm

port

Response containing index.htm as a long string 
(<html><head>Welcome to my 
HomePage</title></head><body>…)

• Client browser sends request for page to server
• Server sends response page and sends to client

Form Handling

Server must:
– Listen on port for requests
– Parse request to determine values of parameters
– Generate appropriate response page based on 

parameter values
– Send response page back to client

Web Containers

• Program running continuously on server
• Runs code to handle requests
• Built-in methods for parsing requests, 

generating responses
• Handles other important functions:

– Session tracking
– Database access
– Email generation
– Security and encryption



Web Containers

• Jakarta Tomcat
– Written in Java
– NetBeans IDE
– Acts as engine for Java Server Pages and servlets

• Microsoft IIS
– Visual Basic/Visual C++
– Active Server Pages

Downloading the Java SDK

Downloading the Java SDK Downloading the Java SDK



Downloading the Java SDK Downloading the Java SDK

Installing Tomcat

• Detailed Instructions in Chapter 2 (page 31)

• Copy JAR files from Tomcat to Java Runtime Environment
– Necessary for JSPs and servlets to compile

Installing Tomcat

• Tell Tomcat where to look for Java (page 34)
– Edit catalina.bat file in bin directory of Tomcat



Testing Tomcat
• Start Tomcat 

– Execute statup.bat in bin directory

Testing Tomcat

• This will open Tomcat control window

Testing Tomcat

• Tomcat is now listening for requests!
– Listening at port 8080 by default

• Test: enter http://localhost:8080/ in your browser

Tomcat Structure
• Listens on port 8080 for requests
• Retrieves page requested 

– Must be part of its file structure in webapps directory

• Example: http://localhost:8080/
– Sends request to this machine for index.html file in ROOT

subdirectory of webapps



Tomcat Structure
• Another example: 

http://localhost:8080/examples/jsp/simpletag/foo.jsp

Tomcat Structure

• Side point: 
JSPs/servlets can display messages in Tomcat 
window (often used for diagnostics)

Tomcat Structure

• Meaning of this URL:
http://localhost:8080/examples/jsp/simpletag/foo.jsp

Invoke server listening 
on port 8080 of this 
machine

Access this file in this 
subdirectory of the 
tomcat/webapps directory

Tomcat Structure
• Side note: Usually refer to server on another machine 

http://www.hcmuaf.edu.vn/examples/jsp/simpletag/foo.jsp

• For testing, often run client and server on same machine

Invoke server at this 
remote URL

Access this file in this 
subdirectory of the 
tomcat/webapps directory

Port 8080

http://localhost:8080/...
Browser

Tomcatresponse

response

request

request



Tomcat Structure

• If requested page is server page/servlet, executes code
embedded in page to generate corresponding html page

• Final html page sent as response

<HTML>
<HEAD><TITLE>cgi-bin 
response</TITLE></HEAD>
<BODY>
<P>
Thank you for your order of 
<%= request.getParameter(“quantity”) %>
widgets!
</P>
</BODY>
</HTML>

The NetBeans IDE

• Integrated Development Environment for Java 
Programming
– Editing code (with hints)
– Compiling code
– Running code

• Good for JSP/servlet development
– Allows easy development of web applications
– Automatically interacts with Tomcat
– No need to manipulate Tomcat file structure

Adding a Tomcat Server

• Tools Servers

• Press 

Adding a Tomcat Server

• Select Tomcat 6.0



Adding a Tomcat Server

• Enter the directory
where you installed 
Tomcat

• Enter a name and 
a password for a
“manager” role
(we will use this
more later)

Adding a Tomcat Server

• By default, Tomcat listens at port 8080

Creating a Web Application

• In NetBeans: File New Project
• Choose Web and Web Application

Creating a Web Application
• Give your project a name (I called this one “WidgetSite”)
• Give it a location (I have put it in a directory called 6962)
• Make sure it is set as the Main Project



Creating a Web Application

• The final page shows information (such as which server 
this project uses)

• You can press “finish” at this point

Creating a Web Application

NetBeans creates 
an initial web site

Structure shown 
in the project 
window

Creates an 
initial index.jsp
page (default 
home page of 
the new site)

The index.jsp is initially just a 
“Hello world” page

Running a Web Application

• Running the site opens the index.jsp page 
– Can choose browser (and should test with all!)

Building a Web Application
• Modify and add files to create web site

index.jsp
Prompts user for 
number of widgets

reciept.jsp
Displays number of 
widgets purchased



Building a Web Application Adding a JSP

• File New Choose a JSP

Give it a 
name

Running the Site Deploying your Site to Tomcat

• Right-click project and choose “Deploy”
• This copies all web site files into build\web subdirectory  



Deploying your Site to Tomcat

• Copy these files into a subdirectory of webapps in 
Tomcat

Deploying your Site to Tomcat

• Start Tomcat (after closing NetBeans)
• Go to http://localhost:8080/WidgetSite in browser


