
Server-side
Web Programming

Lecture 9:
Shopping Carts and the Model-

View-Control Architecture

Modeling the Business Process

• What information should a session deal with?
– What information must be gathered via forms?

• Items to purchase

• Customer information, etc.

– What information must be displayed to the user in response
pages?

• Shopping cart contents, etc.

– What information must be stored long term?
• Throughout session

• Longer (in databases, etc.)

• Model of business process
– Defined by organization you develop site for

Model-View-Control Architecture

• Model = software classes that store/manipulate
information gathered in session
– Usually separate from servlets/JSPs

– Servlets/JSPs interact with those classes

– Often interact with databases

request Control
servlet

View
JSP

response

View
JSP

View
JSP

Classes that
model
business
process

Store data

Access and
display data

Database

All session data

Model Classes and Session

• Bad design:
Store all session information as separate attributes
– May be dozens of attributes

– Servlet/JSP responsible for manipulating each individually

Session ID =
fieh4K39Rdk

…

… …

…

Session data

name

email

“Fred”

“fred@aolrock”

All session data

Model Classes and Session

• Better design:
Create classes for blocks of information
– Store objects as session attributes

– Use class methods to store/access/manipulate data in object

Session ID =
fieh4K39Rdk

…

… …

…

Session data

customerInfo

cart

Customer object

Cart object

Model Class Properties

• State variables for all information stored
• setVariable methods for each variable

– Takes value as parameter and stores it in state variable

– Usually called by servlet to store data from parameters

• getVariable methods for each variable
– Returns current state variable

– Usually called by JSP to display data stored earlier

These model classes often created by other programmers
– Business logic specialists create model

– Server programming specialists create servlets/JSPs

Example Customer Class

Creating Support Classes

• File New File

• Choose category Java, type class

Creating Support Classes

• As before, enter name

• Tomcat requires support classes to be in a package
– “Library” of related classes

– Can define one at this point (added to drop down in future)

Using Model Classes

• Must include package name at top of file
package packagename;

• Other classes that use class must import the package
– Servlets use import statement

– JSPs use <@ page import tag

Using Model Classes

In servlet:
• Construct a new instance of the model object

• Use its set methods to store parameters from form

• Store the object as a session attribute

Using Model Classes

In JSP:
• Retrieve the object from the session attributes

– Must cast back to its original type

• Use its get methods to retrieve data

• Display the data on the page

Business Model Objects

Key idea:

• Methods in model objects should implement business
model
– Methods to validate values

– Methods to perform computations

– Methods to store information in database

Goal:

• Separate web programming and business knowledge as
much as possible

Business Model Example

• Order class
– Methods to set/get quantity

– Method to get total cost of order
• Computed from quantity here instead of in JSP/servlet

– Method to check whether quantity valid in terms of
business model

• Servlet makes sure quantity is a number

• Business model class makes sure quantity is at least 1

Order Class

Validation in Servlet

Getting Cost in JSP

Shopping Carts

• Usually list of items
– List = Vector or ArrayList type in Java

– Has methods to add new element to end, get ith element, and
remove ith element

• Each list element is business model object
– Has fields for all relevant data about item purchased

• Set and get methods for each

• One field should be unique identifier (key field)

• Some fields populated by database lookup

– May have way to set quantity purchased
• Not all models have quantity – course registration, for example

Example “Bookstore” Cart

• Cart: list of Item objects

• Each customer has own Cart
object stored in their session

• Each Item has a unique code
– Given a code, should look up

other fields in database
– title and price

– Not implemented yet!

Cart object

Session ID: 98A6F401BC6393

Item object
Code: 0001
Title: Murach's Java Servlets

and JSP
Price: $31.19
Quantity: 1

Item object
Code: 0003
Title: HTML and XHTML

Pocket Reference
Price: $10.39
Quantity: 2

“Bookstore” Cart Methods

Usual methods:
• void addItem(code)

– add a new item to the cart with the given ID

• Item lookup(code)
– Lookup and return the Item in the list with the given ID

• void removeItem(code)
– Lookup and delete the Item in the list with the given ID

• void getItem(int)
– Return the ith Item in the list

• void size()
– Return the number of Items in the list

Used together to
loop through and
show all Items on
“shopping cart” page

“B
ookstore”

C
art M

ethods
“Bookstore” Item Methods

Usual methods:
• Item(code)

– construct a new item

– Look up rest of fields in database based on code

• String get______()
– Return the value of the given field

– For bookstore: code, title, price, cost

• void setQuantity(int)
int getQuantity()
– Since can order multiple copies, need ways to change quantity

“Bookstore” Item Methods

Displaying Cart Contents

• Get cart from session

• Inside of a table:
– Get number of items in cart

– Use loop to get each item in sequence
• Number of items = length of loop

• Get the ith Item object from the Cart

– Get desired fields of that item

– Create new table row showing those fields

Inside table

Size of loop

Get ith item object

Get its fields

Inside loop, create new table
row showing those fields

Displaying Cart Contents

Displaying Cart Contents

Adding to the Cart in a Servlet

• Get current Cart object from session using getAttribute
– If null, no Cart exists yet

– In that case, construct one

Adding to the Cart in a Servlet

• Get data from request and pass to Cart
– Cart will construct and store a new Item

– Will need to validate request first

• Will need to check whether item already in Cart
– Need to avoid duplicate entries in Cart

– Business model defines how handled
• Error message

• Change quantity,

• Add to quantity, etc.

Adding to the Cart in a Servlet

Adding to the Cart in a Servlet

• Can use servlet to modify Cart in other ways
– Example: Remove from Cart if quantity = 0

• Store modified Cart to session using setAttribute

Embedded Forms in Cart Pages

• Often embed buttons and other form elements into the
rows of a Cart page
– Example: simple REMOVE button and quantity updates

Embedded Forms in Cart Pages

• Must nest entire form inside a <td> element
– Action = servlet to handle desired change to the cart

– Contains SUBMIT button to send request

– Contains form element with data to submit with request

Simple Removal Servlet

Hidden Form Elements

• Must submit product code for remove to work
• Product code not displayed on page inside a form

element
– Common for most ecommerce pages

Can use hidden form element
• Not shown by browser
• Can store product code or other information that we

need to send to server

<input type=“hidden”
name=“parametername”
value=“<%= product code %>”

Hidden Form Elements

productCode read in from
Cart in session and stored in
hidden element inside
removal form

Quantity Update Example

Quantity Update Example

Pass productCode as hidden field so
servlet knows which Item to change

Also pass new quantity
entered by user

Passing Data using Links

• Many web sites use html links instead of forms

• Question: How can form information (such as product
code) be passed if no form is used?

Passing Data using Links

• Can append “form data” directly to URL in link
– Result similar to “get” method in form

• Syntax:

– Note: will need to use response.encodeURL to insure this works
if cookies not enabled

<a href =
“<%=response.encodeURL(‘servleturl?name=value&…’)%>”>

Submit request to the servlet

The ‘?’ indicates form
parameters

Each passed as a name=value
pair separated by ‘&’

Passing Data using Links

