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Preface

There is universal acceptance of statistics as an essential tool for all types of
research. That acceptance and ever-proliferating areas of research specializa-
tion have led to corresponding increases in the number and diversity of
available statistical procedures. In agricultural research, for example, there are
different statistical techniques for crop and animal research, for laboratory and
field experiments, for genetic and physiological research, and so on. Although
this diversit;’ indicates the availability of appropriate statistical techniques for
most research problems, it also indicates the difficulty oi matching the best
technique to a specific experiment. Obviously, this difficulty increases as more
procedures develop.

Choosing the correct strtistical procedure for a given experiment must be
based on expertise in statistics and in the subject matter of the experiment.
Thorough knowledge of only one of the two is not enough. Such a choice,
therefore, should be made by:

A subject matter specialist with some training in experimental staisstics

+ A statistician with some background and experience in the subject matter of
he experiment

+ The joint effort and cooperation of a statistician and a subject matter
specialist

For most agricultural research institutions in the developing countries, the
presence of trained statisticians is a luxury, Of the already small number of
such statisticians, only a small fraction have the interest and experience i~
agricultural research necessary for effective consultation. Thus, we feel the best
alternative is to give agricultural researchers a statistical background so that
they can correctly choose the statistical technique most appropriate for their
experiment. The major objective of this book is to provide the developing-
couutry researcher that background.

For research institutions in the developed countries, the shortage of trained
statisticians may not be as acute as in the developing countries. Nevertheless,
the subject matter specialist must be able to communicate with the consulting
statistician. Thus, for the developed-country researcher, this volume should
help forge a closer researcher-statistician relationship.

WV



viii  Preface

We have tried to create a book that any subject matter specialist can use.
First, we chose only the simpler and more commonly used statistical proce-
dures in agricultural research, with special emphasis on ficld experiments with
crops. In fact, our examples are mostly concerned with rice, the most im-
portant crop in Asia and the crop most familiar to us. Our examples, however,
have applicability to a wide range of annual crops. In addition, we have used a
minimum of mathematical and statistical theories and jargon and a maximum
of actual examples.

This is a second edition of an International Rice Research Institute publica-
tion with a similar title and we made extensive revisions to aii but three of the
original chapters. We added four new chapters. The primary emphases of the
working chapters are as follows:

Chapters 2 to 4 cover the most commonly used experimental designs for
single-factor, two-factor, and three-or-more-factor experiments. For each de-
sign, the corresponding randomization and analysis of variance procedures are
described in detail.

Chapter 5 gives the procedures for comparing specific treatment means:
LSD and DMRT for pair comparison, and single and multiple d.f. contrast
methods for group comparison.

Chapters 6 to 8 detail the modifications of the procedures described in
Chapters 2 to 4 necessary to handle the following special cases:

+ Experiments with more than one observation per experimental unit

+ Experiments with missing values or in which data violate one or more
assumptions of the analysis of variance

« Experiments that are repeated over time or site

Chapters 9 to 11 give the three most commonly used statistical techniques
for data analysis in agricultural research besides the analysis of variance. These
techniques are regression and correlation, covariance, and chi-square. We also
include a detailed discussion of the common misuses of the regression and
correlation analysis.

Chapters 12 to 14 cover the most important problems commonly encoun-
tered in conducting ficld experiments and the corresponding techniques for
coping with them. The problems are:

» Soil heterogeneity
» Competition effects
» Mechaunical errors

Chapter 15 describes the principles and procedures for developing an
appropriate sampling plan for a replicated field experiment.

Chapter 16 gives the problems and procedures for research in farmers’
fields. In the developing countries where farm yields are much lower than
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experiment-station yields, the appropriate environment for comparing new and
existing technologies is the actual farmers’ fields and not the favorable environ-
ment of the experiment stations. This poses a major challenge to existing
statistical procedures and substantial adjustments are required.

Chapter 17 covers the serious pitfalls and provides guidelines for the
presentation of research results. Most of these guidelines were generated from
actual experience.

We are grateful to the International Rice Research Institute (IRRI) and the
Umiversity of the Philippines at Los Bafios (UPLB) for granting us the study
leaves needed to work on this edition; and the Food Research Institute,
Stanford University, and the College of Natural Resources, University of
California at Berkeley, for being our hosts during our leaves.

Most of the examples were obtained from scientists at IRRI. We are
grateful to them for the use of their data.

We thank the research staff of IRRI's Department of Statistics for their
valuable assistance in searching and processing the suitable examples; and the
secretarial staff' for their excellent typing and patience in proofreading the
manuscript. We are grateful to Walter G. Rockwood who suggested modifica-
tions to make this book more readable,

We appreciate permission from the Literary Executor of the late Sir Ronald
A. Fisher, F.R.S,, Dr. Frank Yates, F R.S., and Longman Group Ltd., London
to reprint Table III, “ Distribution of 1 Probability,” from their book Statistical
Tuables for Biological, Agricultural and Medical Research (6th edition, 1974).

KwANCHAI A. GOMEZ
ARTURO A. GOMEZ

Loy Banas, Philippines
September 1983
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CHAPTER 1
Elements of Experimentation

In the early 1950s, a Filipino journalist, disappointed with the chronic shortage
of rice in his country, decided to test the yield potential of existing rice
cultivars and the opportunity for substantially increasing low yields in farmers’
fields. He planted a single rice seed—from an ordinary farm—on a well-pre-
pared plot and carefully nurtured the developing seedling to maturity. At
harvest, he counted more than 1000 sceds produced by the single plant. The
Journalist concluded that Filipino farmers who normally use 50 kg of grains to
plant a hectare, could harvest 50 tons (0.05 X 1000) from a hectare of land
instead of the disappointingly low nationai average of 1.2 t/ha.

As in the case of the Filipino journalist, agricultural research seeks answers
to key questions in agricultural production whose resolution could lead to
significant changes and improvements in existing agricultural practices. Unlike
the journalist’s experiment, however, scientific research must be designed
precisely and rigorously to answer these key questions.

In agricultural research, the key questions to be answered are gencrally
expressed as a statement of hypothesis that has to be verified or disproved
through experimentation. These hypotheses are usually suggested by past
experiences, observations, and, at times, by theoretical considerations, For
example, in the case of the Filipino journalist, visits to selected farms may have
impressed him as he saw the high yield of some selected rice plants and
visualized the potential for duplicating that high yield uniformly on a farm and
even over many farms. He therefore hypothesized that rice yields in farmers’
fields were way below their potential and that, with better husbandry, rice
yields could be substantially increased.

Another example is a Filipino maize breeder who is apprehensive about the
low rate of adoption of new high-yielding hybrids by farmers in the Province
of Mindanao, a major maize-growing area in the Philippines. He visits the
maize-growing areas in Mindanao and observes that the hybrids are more
vigorous and more productive than the native varieties in disease-free areas.
However, in many fields infested with downy mildew, a destructive and
prevalent maize disease in the area, the hybrids are substantially more severely
diseased than the native varieties. The breeder suspects, and therefore hypothe-

1



2 Elements of Experimentation

sizes, that the new hybrids are not widely grown in Mindanao primarily
because they are more susceptible to downy mildew than the native varieties.

Theoretical considerations may play a major role in arriving at a hypothesis.
For example, it can be shown theoretically that a rice crop removes more
nitrogen from the soil than is naturally replenished during one growing season.
One may, therefore, hypothesize that in order to maintain a high productivity
level on any rice farm, supplementary nitrogen must be added to every crop.

Once a hypothesis is framed, the next step is to design a procedure for its
verification. This is the experimental procedure, which vsually consists of four
phases:

Selecting the appropriate materials to test
Specifying the characters to measure
Selecting the procedure to measure those characters

Specifying the procedure to determine whether the measurements made
support the hypothesis

Ll o

In general, the first two phases are fairly casy for a subject matter specialist
to specify. In our example of the maize breeder, the test materi s would
probably be the native and the newly developed variceties. The characters to be
measured would probably be disease infection and grain yicld. For the
example on maintaining productivity of rice farms, the test variety would
probably be one of the recommended rice varicties and the fertilizer levels to
be tested would cover the suspected range of nitrogen needed. The characters
to be measured would include grain yield and other related agronomic char-
acters.

On the other hand, the procedures regarding how the measurements are to
be made and how these measurements can be used to prove or disprove a
hypothesis depend heavily on techniques developed by statisticians. These two
tasks constitute much of what is generally termed the design of an experiment,
which has three essential components:

1. Estimate of error
Control of error
3. Proper interpretation of results

1.1 ESTIMATE OF ERROR

Consider a plant breeder who wishes to compare the yield of a new rice variety
A to that of a standard variety B of known and tested properties. He lays out
two plots of equal size, side by side, and sows one to variety A and the other to
variety B. Grain yield for cach plot is then measured and the variety with
higher yield is judged as better. Despite the simplicity and commonsense
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appeal of the procedure just outlined, it has one important flaw. It presumes
that any difference between the yields of the two plots is caused by the varieties
and nothing else. This certainly is not true. Even if the same variety were
planted on both plots, the yield would differ. Other factors, such as soil
fertility, moisture, and damage by inseccts, diseases, and birds also affect rice
yields.

Because these other factors affect yields, a satisfactory evaluation of the two
varicties must involve a procedure that can separate varietal difference from
other sources of variation. That is, the plant breeder must be able 1o design an
experiment that allows him to decide whether the difference observed is caused
by varietal difference or by other factors.

The logic behind the decision s simple. Two rice varicties planted in two
adjacent plots will be considered different i. their yielding ability only if the
observed yield difference is larger than that expected if both plots were planted
to the same variety. Hence, the researcher needs to know not only the yield
difference between plots planted to different varieties, but also the yield
difference between plots planted to the same variety.

The difference among experimental plots treated alike is called experimental
error. This error is the primary basis for deciding whether an observed
difference is real or just due to chance. Clearly, every experiment must be
designed to have a measure of the experimental error.

1.1.1 Replication

In the same way that at least two plots of the same variety are needed to
determine the difference among plots treated alike, experimental error can be
mcasured only if there arc at least two plots planted to the same variety (or
receiving the same treatment), Thus, to obtain a measure of experimental error,
replication is needed.

1.1.2 Randomization

There is more involved in getting a measure of experimental error than simply
planting several plots to the same varicty. For example, suppose, in comparing
two rice varicties, the plant breeder plants varicties A and B each in four plots
as shown in Figure 1.1. If the area has a unidirectional fertility gradient so that
there is a gradual reduction of productivity from left to right, variety B would
then be handicapped because it is always on the right side of variety A and
always in a relatively less fertile area. Thus, the comparison between the yield
performances of variety A and varicty B would be biased in favor of A. A part
of the yield difference between the two varieties would be due to the difference
in the fertility levels and not to the varietal difference.

To avoid such bias, varictics must be assigned to experimental plots so that
a particular variety is not consistently favored or handicapped. This can be
achieved by randomly assigning varieties to the experimental plots. Random-
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Plot Plot Plot Plot Piot Plot Plot Plot
| 2 3 4 5 6 7 8

Figure 1.1 A systematic arrangement of plots planted to two rice varictics A and B. This scheme
does not provide a valid estimate of experiracntal error.

ization ensures that each variety will have an equal chance of being assigned to
any experimental plot and, consequently, of being grown in any particular
environment existing in the experimental site.

1.2 CONTROL OF ERROR

Because the ability to detect existing differences among treatments increases as
the size of the experimental error decreases, a good experiment incorporates all
possible means of minimizing the experimental error. Three commonly used
techniques for controlling experimental error in agricultiral research are:

1. Blocking
Proper plot technique
3. Data analysis

1.2.1 Blocking

By putting experimental units that are as similar as possible together in the
same group (generally referred to as a block) and by assigning all treatments
into each block separately and independently, variation among blocks can be
measured and removed from experimental error. In field experiments where
substantial variation within an experimental field can be expected, significant
reduction in experimental error is usually achieved with the use of proper
blocking. We emphasize the importance of blocking in the control of error in
Chapters 2-4, with blocking as an important component in almost all experi-
mental designs discussed.

1.2.2 Proper Plot Technique

For almost all types of experiment, it is absolutely essential that all other
factors aside from those considered as treatments be maintained uniformly for
all experimental units. For example, in variety trials where the treatments
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consist solely of the test varieties, it is required that all other factors such as
soil nutrients, solar energy, plant population, pest incidence, and an almost
infinite number of other environmental factors are maintained uniformly for
all plots in the experiment. Clearly, the requirement is almost impossible to
satisfy. Nevertheless, it is essential that the most important ones be watched
closely to ensure that variability among experimental plots is minimized. This
is the primary concern of a good plot technique

For field experiments with crops, the important sources of variability among
plots treated ahie are soil heterogeneity, competition effects, and mechanical
errors. The techniques appropriate for coping with each of these important
sources of variation are discussed in Chapters 12-14,

1.2.3 Data Analysis

In cases where blocking alone may not be able to achieve adequate control of
experimental error, proper choice of data analysis can help greatly. Covariance
ana'ysis is most commonly used for this purpose. By measuring one or more
covariates—the characters whose functional relationships to the character of
primary interest are known—the analysis of covariance can reduce the vari-
ability among experimental units by adjusting their values to a common value
of the covariates. For example, in an animal feeding trial, the initial weighit of
the animals usvally differs. Using this initial weight as the covariate, final
weight after the animals are subjected to various feeds (i.e., treatments) can be
adjusted to the values that would have been attained had all experimental
animals started with the same body weight. Or, in a rice field experiment where
rats damaged some of the test plots, covariance analysis with rat damage as the
covariate can adjust plot yields to the levels that they should have been with no
rat damage in any plot.

1.3 PROPER INTERPRETATICON OF RESULTS

An important feature of the design of experiments is its ability to uniformly
maintain all environmental factors that are not a part of the treatments being
evaluated. This uniformity is both an advantage and a weakness of a controlled
exper:ment. Although maintaining uniformity is vital to the measurement and
reduction of experimental error, which are so essential in hypothesis testing,
this same feature greatly limits the applicability and generalization of the
experimental results, a limitation that must always be considered in the
interpretation of results.

Consider the plant breeder's experiment comparing varieties A and B
(Section 1.1). It is obvious that the choice of management practices (such as
fertilization and weed control) or of the site and crop season in which the trial
is conducted (such as in a rainy or dry environment) will greatly affect the
relative performance of the two varieties. In rice and maize, for example, it has
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been shown that the newly developed, improved varicties are greatly superior
to the natve varieties when both are grown in a good environment and with
good management; but the improved varieties are no belter, or even poorer,
when both are grown by the traditional farmer’s practices.

Clearly the result of an experiment is, strictly speaking, applicable only to
conditions that are the same as, or similar to, that under which the experiment
was conducted. This limitation is especially troublesome because most agricul-
tural research is done on experiment stations where average productivity is
higher than that for ordinary farms. In addition, the environment surrounding
a single experiment can hardly represent the variation over space and time that
is so typical of commercial farms. Consequently, ficld experiments with crops
are usually conducted for several crop seasons and years, in research stations
and on farmers’ ficlds, to insure that the results will apply over a wide range of
environments. This is our primary concern in Chapters 8 and 16.



CHAPTER 2
Single-Factor Experiments

Experiments in which only a single factor varies while all others are kept
constant are called single-factor experiments. In such experiments, the treat-
ments consist solely of the different levels of the single variable factor. All
other factors are applied uniformly to all plots at a single prescribed level. For
example, most crop variety trials are single-factor experiments in which the
single variable factor is variety and the factor levels (i.e., treatments) are the
different varieties. Only the variety planted differs from one experimental plot
to another and all management factors, such as fertilizer, insect control, and
water management, are applied uniformly to all plots. Other examples of
single-factor experiment are:

« Fertilizer trials where several rates of a single fertilizer element are tested,
+ Insecticide trials where several insecticides are tested.
+ Plant-population trials where several plant densities are tested.

There are two groups of experimental design that are applicable to a
single-factor experiment. One group is the family of complete block designs,
which is suited for experiments with a small number of treatments and is
characterized by blocks, each of which contains at least one complete set of
trcatments. The other group is the family of incomplete block designs, which is
suited for experiments with a large number of treatments and is characterized
by blocks, each of which contains only a fraction of the treatments to be
tested.

We describe three complete block designs (completely randomized, random-
ized complete block, and latin square designs) and two incomplete block
designs (latiice and group balanced block designs). For each design, we
illustrate the procedures for randomization, plot layout, and analysis of
variance with actual experiments.
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2.1 COMPLETELY RANDOMIZED DESIGN

A completely randomized design (CRD) is one where the treatments are
assigned completely at random so that each experirzental unit has the same
chance of receiving any one treatment. For the CR.D, any difference among
experimental units receiving the same treatment is considered as experimental
error. Hence, the CRD is only appropriate for experiments with homogeneous
experimental units, such as laboratory experiments, where environmental effects
are relatively easy to control. For field experimenis, where there is generally
large variation among experimental plots, in such environmental factors as soil,
the CRD is rarely used.

2.1.1 Randomization and Layout

The step-by-step procedures for randomization and layout of a CRD are given
here for a field experiment with four treatments A, B, C, and D, each
replicated five times.

O step 1. Determine the total number of experimental plots (n) as the
product of the number of treatments (1) and the number of replications (r);
that is, n = (r)(1). For our example, n = (5)(4) = 20.

O sTep 2. Assign a plot number to each experimental plot in any convenient
manner; for example, consecutively from 1 to n. For our example, the plot
numbers 1,...,20 are assigned to the 20 experimental plots as shown in
Figure 2.1.

O sTeP 3. Assign the treatments to the experimental plots by any of the
following randomization schemes:

A. By table of random numbers. The steps involved are:

STEP A,. Locate a starting point in a table of random numbers
(Appendix A) by closing your eyes and pointing a finger to any position

Plot no —={1 2 3 4
Treatment —4—= B8 A D B

B] c{ Al cl Figure2.1 A sample layout of a completcly randomized
17 |18 |9 (20 design with four trcatments (A4, B, C, and D) cach
Al Bl Al D} replicuted five times.
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in a page. For our example, the starting point is at the intersection of

the sixth row and the twelfth (single) column, as shown here.

Appendix A, Table of Random Numbers
14620 95430 12951 81953 17629
09724 85125 48477 42785 70473
56919 17803 95781 85069 61594
97310 78209 51263 52396 82681
07585 28040 26939 64531 70570

N
25950 85189 69374 37904 06759
82937 16405 81497 20863 94072
60819 27364 59081 72635 49180
59041 38475 03615 84093 49731
74208 69516 79530 47649 53046
39412 03642 87497 29735 14308
48480 50075 11804 24956 72182
95318 28749 49512 35408 21814
72094 16385 90185 72635 86259
63158 49753 84279 56496 30618
19082 73645 09182 73649 56823
15232 84146 87729 65584 83641
94252 77489 62434 20965 20247
72020 18895 84948 53072 74573
48392 06359 47040 05695 79799
37950 77387 35495 48192 84518
09394 59842 39573 51630 78548
34800 28055 91570 99154 39603
36435 75946 85712 06293 85621
28187 31824 52265 80494 66428

STEP A,. Using the starting point obtained in step A,, read downward
vertically to obtain n = 20 distinct three-digit random numbers. Three-
digit numbers are preferred because they are less likely to include ties
than one- or two-digit numbers. For our example, starting at the
intersection of the sixth row and the twelfth column, the 20 distinct



10  Single-Factor Experiments

three-digit random numbers are as shown here together with their
corresponding sequence of appearance.

Random Random

Number Sequence Number Sequence
937 1 918 11
149 2 772 12
908 3 243 13
361 4 494 14
953 5 704 15
749 6 549 16
180 7 957 17
951 8 157 18
018 9 5N 19
427 10 226 20

STEP A,. Rank the n random numbers obtained in step A, in ascend-
ing or descending order. For our example, the 20 random numbers are
ranked from the smallest to the largest, as shown in the following:

Random Random

Number Sequence Rank Number Sequence  Rank
937 1 17 918 11 16
149 2 2 772 12 14
908 3 15 243 13 6
361 4 7 494 14 9
953 5 19 704 15 12
749 6 13 549 16 10
180 7 4 957 17 20
951 8 18 157 18 3
018 9 1 5N 19 11
427 10 226 20 5

STEP A,. Divide the n ranks derived in step Aj; into ¢ groups, each
consisting of » numbers, according to the sequence in which the random
numbers appeared. For our example, the 20 ranks are divided into four
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groups, each consisting of five numbers, as follows:

Group Number Ranks in the Group
1 17, 2, 15, 7, 19
2 13, 4, 18, 1, 8
3 16, 14, 6, 9, 12
4 10, 20, 3, 11, 5

STEP As.  Assign the  treatments to the n experimental plots, by using
the group number of step A, as the treatment number and the
corresponding ranks in each group as the plot number in which the
corresponding treatment is to be assigned. For our example, the first
group is assigned to treatment A4 and plots numbered 17, 2, 15, 7, and
19 are assigned to receive this treatment; the second group is assigned
to treatment B with plots numbered 13, 4, 18, 1, and 8; the third group
is assigned to treatment C with plots numbered 16, 14, 6, 9, and 12;
and the fourth group to treatment D with plots numbered 10, 20, 3, 11,
and 5. The final layout of the experiment is shown in Figure 2.1.

By drawing cards. The steps involved are:
STEP B;.  From a deck of ordinary playing cards, draw n cards, one at
a time, mixing the remaining cards after every draw. This procedure
cannot be used when the total number of experimental units exceeds 52
because there are only 52 cards in a pack.

For our example, the 20 selected cards and the corresponding
sequence in which each card was drawn may be shown below:

' 2 3 4 5 6 7 8 9 10
J Q
4 v
Sequence 11 12 13 14 15 16 17 18 19 20

G B e

STEP B,. Rank the 20 cards drawn in step B, according to the suit

rank (‘ ¢ 0 .) and number of the card (2 is lowest, A is
highest).
For our example, the 20 cards are ranked from the smallest to the

Sequence



12

Single-Factor Experiments

largest as follows:
Sequence 1 2 3 4 5 6 7 8 9 10
Rank 14 7 9 15 5 18 13 18

R RRRRIE

Sequence 11 12 13 14 15 16 17 18 19 20
Rank 1 3 20 6 17 12 4

R

STEP B,. Assign the ¢ treatments to the n plots by using the rank
obtained in step B, as the plot number. Follow the procedure in steps
A, and A . For our example, the four treatments are assigned to the 20
experimental plots as follows:

Treatment Plot Assignment
A 14, 7, 9, 15, 5
B 11, 2, 19, 13, 18
C 16, 8, 10, 1, 3
D 20, 6, 179 12’ 4

By drawing lots. The steps involved are:

sTep C,. Prepare n identical pieces of paper and divide them into ¢
groups, each group with r picces of paper. Label each piece of paper of
the same group with the same letter (or number) corr. sponding to a
treatment. Uniformly fold cach of the n labeled pieces of paper, mix
them thoroughly, and place them in a container. For our example, there
should be 20 picces of paper, five each with treatments 4, B, C, and D
appearing on them.

sTep C,. Draw onc picce of paper at a time, without replacement and
with constant shaking of the container after cach draw to mix its
content. For our example, the label and the corresponding sequence in
which each piece of paper is drawn may be as follows:

Treatmentlabel: D B A B C A D C B D

Sequence: 1 2 3 4 5 6 7 8 910
Treatmentlabel: D A4 A B B C D C C A
Sequence: 11 12 13 14 15 16 17 18 19 20

sTEP C,. Assign the treatments to plots based on the correspond-
ing treatment label and scquence, drawn in step C,. For our example,
treatment A would bc assigned to plots numbered 3, 6, 12, 13, and 20;
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treatment B to plots numbered 2, 4, 9, 14, and 15; treatment C to plots
numbered 5, 8, 16, 18, and 19; and treatment D to plots numbered 1, 7,
10, 11, and 17.

2.1.2  Analysis of Variance

There are two sources of variation among the n observations obtained from a
CRD trial. One is the treatment variation, the other is experimental error. The
relative size of the two is used to indicate whether the observed difference
among treatments is real or is due to chance. The treatment difference is said
to be real if treatment variation is sufficiently larger than experimental error.

A major advantage of the CRD is the simplicity in the computation of its
analysis of variance, especially when the number of replications is not uniform
for all treatments. For most other designs, the analysis of variance becomes
complicated when the loss of data in some plots results in unequal replications
among treatments tested (see Chapter 7, Section 7.1).

2.1.2.1 Equal Replication. The steps involved in the analysis of variance
for data from a CRD experiment with an equal number of replications are
given below. We use data from an experiment on chemical control of brown
planthoppers and stem borers in rice (Table 2.1).

0O step 1. Group the data by treatments and calculate the treatment totals
(T') and grand total (G). For our example, the results are shown in Table
2.1.

00 step 2. Construct an outline of the analysis of variance as follows:

Source Degree Sum

of of of Mean Computed rabular F
Variation Freedom Squares Square F 5% 1%
Treatment

Experimental error

Total

0 step 3. Using ¢ to represent the number of treatments and r, the number of
replications, determine the degree of freedom (d.f.) for each source of
variation as follows:

Totald.f.= (r}t) =1 =(@)7) -1 =27
Treatmentd.f.=t—-1=7-1=6
Errord.f.=t(r = 1)=74 - 1) = 21

The error d. f. can also be obtained through subtraction as:
Errord.f. = Totald.f.— Treatmentd.f. =27 — 6 = 21
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Table 2.1 Grain Yield of Rice Resuiting from Uswu of Different Foliar
and Granular Insecticldes for the Conirol of Brown Planthoppers and
Stem Borers, from a CRD Experiment with 4 (r) Replications and 7 (¢)

Treatments
Treatment

Total Trecatment
Treatment Grain Yiceld, kg/ha (T) Mean
Dol-Mix (1 kg) 2,537 2,069 2,104 1,797 8,507 2,127
Dol-Mix (2 kg) 3,366 2,591 221! 2,544 10,712 2,678
DDT + y-BHC 2,536 2,459 2,827 2385 10,207 2,552
Azodrin 2,387 2,453 1,556 2,116 8,512 2,128

Dimecron-Boom 1,997 1,679 1,649 1,859 7,184 1,796
Dimecron-Knap 1,796 1,704 1,904 1,320 6,724 1,681

Control 1,401 1,516 1,270 1,077 5,264 1,316
Grand total (G) 57,110
Grand mean 2,040

O step 4. Using X, to represent the measurement of the ith plot, T; as the
total of the ith treatment, and n as the total number of experimental plots
[i.e, n= (r)t)), calculate the correction factor and the various sums of
squares (SS5) as:

G2

Correction factor (C.F.) = -

Total SS = ¥ X2 - C.F.
fw]
1

T

Treatment SS = '—'17—

Error SS = Total SS — Treatment SS

Throughout this book, we use the symbol L to represent “the sum of.” For
example, the expression G = X, + X, + -+ + X, can be written as G =
X7, X or simply G = LX. For our cxample, using the T values and the G
value from Table 2.1, the sums of squares are computed as:

(57,110)°
C.F. =) _ 116,484,004
(4)(7)
Total S8 = [(2,537)? +(2,069) + -++ +(1,270)* +(1,077)’]
—~ 116,484,004

= 7,577,412
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(8,507) +(10,712)* + .- +(5,264)?
4

Treatment SS = ~ 116,484,004

= 5.587,174
Error S = 7,577,412 — 5,587,174 = 1,990,238
0 sTep 5. Calculate the mean square (MS) for each source of variation by
dividing each SS by its corresponding d. f:

Treatment SS

-1
- 5,587,174
6

Error SS
t((r-1)

_ 1,990,238
(M)

Treatment MS =
= 931,196

Error MS =
= 94,713

O sTep 6. Calculate the F value for testing significance of the treatment
difference as:

_ Treatment MS

Error MS
931,196
= 94773 283

Note here that the F value should be computed only when the error d. /. is
large enough for a reliable estimate of the error variance. As a general
guideline, the F value should be computed only when the error d. J. is six or
more.

O sTEp 7. Obtain the tabular F values from Appendix E, with /) = treatment
d.f.=(t=1)and f, = error d.f. = t(r — 1). For our example, the tabular
F values with f; = 6 and f, = 21 degrees of freedom are 2.57 for the 5%
level of significance and 3.81 for the 1% level.

O sTer 8. Enter all the values computed in steps 3 to 7 in the outline of the
analysis of variance constructed in step 2. For our example, the result is
shown in Table 2.2,

O ster 9. Compare the computed F value of step 6 with the tabular F values
of step 7, and decide on the significance of the difference among treatments
using the following rules:

1. If the computed F value is larger than the tabular F value at the 1%
level of significance, the treatment difference is said to be highly signifi-
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Table 2.2 Analysls of Varlance (CRD with Equat Replication) of Rice
Yieid Data in Table 2.1°

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square Ft 5% 1%
Treatment 6 5,587,174 931,196 9.83** 257 3.81
Experimental error 21 1,990,238 94,773

Total 27 7,577,412
‘v = 15.1%.

bae w significant at 1% level.

cant. Such a result is generally indicated by placing two asterisks on the
computed F value in the analysis of variance.

2. If the computed F value is larger than the tabular F value at the 5%
level of significance but smaller than or equal to the tabular F value at
the 1% level of significance, the treatment difference is said to be
significant. Such a result is indicated by placing one asterisk on the
computed F value in the analysis of variance.

3. If the computed F value is smaller than or equal to the tabular F value
at the 5% level of significance, the trcatment difference is said to be
nonsignificant. Such a result is indicated by placing ns on the computed
F value in the analysis of variance.

Note that a nonsignificant F test in the analysis of variance indicates the
failure of the experiment to detect any difference among treatments. It does
not, in any way, prove that all treatments are the same, because the failure
to detect treatment difference, based on the nonsignificant F test, could be
the result of either a very small or nil treatment difference or a very large
experimental error, or hoth. Thus, whenever the F test is nonsignificant, the
researcher should examine the size of the experimental error and the
numerical difference among trcatment means. If both values are large,
the trial may be repeated and efforts made to reduce the experimental error
so that the difierence among treatments, if any, can be detected. On the
other hand, if both values arc small, the difference among treatments is
probably too small to be of any economic value and, thus, no additional
trials are needed.

For cur example, the computed F value of 9.83 is larger than the tabular
F valvc at the 1% level of significance of 3.81. Hence, the treatment
difference is said to be highly significant. In other words, chances are less
than 1 in 100 that all the observed differences among the seven treatment
means could be due to chance. It should be noted that such a significant F
test verifies the existence of some differences among the treatments tested
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but does not specify the particular pair (or pairs) of treatments that differ
significantly. To obtain this information, procedures for comparing treat-
ment means, discussed in Chapter 5, are needed.

sTeP 10. Compute the grand mean and the coefficient of variation cv as
follows:

Grand mean = %
= VError MS % 100
Grand mean
For our exainple,
Grand mean = 1110 2,040

28

94,773 ~
= W %X 100 = 15.1%

The cv indicates the degree of precision with which the treatments are
compared and is a good index of the reliability of the experiment. It
expresses the experimental error as percentage of the mean; thus, the higher
the cv value, the lower is the reliability of the experiment. The cv value is
generally placed below the analysis of variance table, as shown in Table 2.2,

The cv varies greatly with the type of experiment, the crop grown, and the
character measured. An experienced researcher, however, can make a rea-
sonably good judgement on the acceptability of a particular cv value for a
given type of experiment. Our experience with field experiments in trans-
planted rice, for example, indicates that, for data on rice yield, the accepta-
ble range of cv is 6 to 8% for variety trials, 10 to 12% for fertilizer trials, and
13 to 15% for insecticide and herbicide trials. The cv for other plant
characters usually differs from that of yield. For example, in a field
experiment where the cv for rice yield is about 10%, that for tiller number
would be about 20% and that for plant height, about 3%.

21.22 Unequal Replication. Because the computational procedure for
the CRD is not overly complicated when the number of replications differs
among treatments, the CRD is commonly used for studies where the experi-
mental material makes it difficult to use an equal number of replications for all
treatments. Some examples of these cases are:

« Animal feeding experiments where the number of animals for each breed is
not the same.
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- Experiments for comparing body length of different species of insect caught
in an insect trap.

- Experiments that are originally set up with an equal number of replications
but some experimental units are likely to be lost or destroyed during
experimentation.

The steps involved in the analysis of variance for data from a CRD experim:nt
with an unequal number of replications are given below. We use data from an
experiment on performance of postemergence herbicides in dryland rice (Tabic
2.3).

0O step 1. Follow steps 1 and 2 of Section 2.1.2.1,

0 step 2. Using ¢ to represent the number of treatments and n for the total
number of observations, determine the degree of freedom for each source of
variation, as follows:

Totald.f.=n -1
=40-1=39
Treatmentd.f.=t -1
=11-1=10
Errord.f.= Total d.f.— Treatmentd. f.
=39-10=29

0O sTEp 3. With the treatment totals (T") and the grand total (G) of Table 2.3,
compute the correction factor and the various sums of squares, as follows:

GZ
n

C.F.=

_ (103,301)

m = 266,777,415

n
Total SS = ¥ X? - C.F.
=]

= [(3,187)* + (4,610 + --- +(1,030)] - 266,777,415

= 20,209,724
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Tsble 2.3 Craln Yield of Rice Grown in a D

and Times of Application of Postemergence
Unequal Number of Replications

ryland Fleld with Different Types, Rates,
Herbicides, from a CRD Experiment with

Treatment
Time of Treatment
Rate,”  application,® Total  Treatment.

Type kg a.i./ha DAS Grain Yield, kg/ba (T) Mean
Propanil/Bromoxynil  2.0/0.25 21 3,187 4,610 3,562 3,217 14,576 3,644
Propanil /2, 4-D-B 3.0/1.00 28 3,39 2,875 2,775 9,040 3,013
Propanil/Bromorynil  2.0/0.25 14 2,797 3,651 2,505 3,490 11,793 2,948
Propanil /Toxynil 2.0/0.50 14 2,832 2,103 3448 2255 11,638 2910
Propanil/CHCH 3.0/1.50 21 2,233 2,743 2,727 7,703 2,568
Phenyedipham 1.5 14 2,952 2272 2470 7,694 2,565
Propanil/Bromoxynil  2.0/0.25 28 2,858 2,895 2458 1,723 9,934 2,484
Propanil/2,4-D-IPE  3.0/1.00 28 2,308 2,335 1,975 6,618 2,206
Propanil /Toxynil 2.0/0.50 28 2,013 1,788 2,248 2115 8,164 2,041
Handweeded twice — 15and35 3,202 3,060 2240 2,69 11,192 2,798
Control — —_ 1,192 1,652 1,075 1,030 4,949 1,237

Grand total (G) 103,301

Grand mean 2,583

“ai. = active ingredient.

’DAS = days after seeding,
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Table 2.4 Analysis of Variance (CRD with Unequal Replication) of
Graln Yield Data In Table 2.3°

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares  Square F* 5% 1%
Treatment 10 15,090,304 1,509,030 8.55%* 2.18 3.00
Experimental

error 29 5,119,420 176,532

Total 39 20,209,724

Yev = 16.3%.

b = significant at 1% level,

] T2
Treatment SS = Y, —— — C.F.
-1

2 2 2
- (14'276) + (9’0340) + -~+i‘-‘-'%‘12)— ~ 266,777,415

= 15,090,304
Error SS = Total SS — Treatment SS
= 20,209,724 — 15,090,304 = 5,119,420

O step 4. Follow steps 5 to 10 of Section 2.1.2.1. The completed analysis of
variance for our example is given in Table 2.4. The result of the F test
indicates a highly significant difference among treatment means.

2.2 RANDOMIZED COMPLETE BLOCK DESIGN

The randomized complete block (RCB) design is one of the most widely used
experimental designs in agricultural research. The design is especially suited for
field experiments where the number of treatments is not large and the
experimental area has a predictable productivity gradient. The primary dis-
tinguishing feature of the RCB design is the presence of blocks of equal size,
each of which contains all the treatments.

2.2.1 Blocking Technique

The primary purpose of blocking is to reduce experimental error by eliminat-
ing the contribution of kaown sources of variation among experimental units,
This is done by grouping ihe experimental units into blocks such that vari-
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ability within each block is minimized and variability among blo.\s is
maximized. Because only the variation within a block becomes part of the
experimental error, blocking is most effective when the experimental area has a
predictable pattern of variability. With a predictable pattern, plot shape und
block orientation can be chosen so that much of the variation is accounted for
by the diflerence among blocks, and experimental plots within the same block
are kept as uniform as possible.

There are two important decisions that have to be made in arriving at an
appropriate and effective blocking technique. These are:

« The selection of the source of variability to be used as the basis for blocking.
» The selection of the block shape and orientation.

An ideal source of variation to use as the basis for blocking is one that is
large and highly predictable. Examples are:

» Soil heterogeneity, in a fertilizer or variety trial where yield data is the
primary character of interest.

+ Direction of insect migration, in an insecticide trial where insect infestation
is the primary character of interest.

+ Slope of the ficld, in a study of plant reaction to water stress.

After identifving the specific source of variability to be used as the basis for
blocking, the size ind shape of the blocks must be selected to maximize
variability among blocks. The guidelines for this decision are:

1. When the gradient is unidirectional (i.e., there is only one gradient), use
long and narrow blocks. Furthermore, orient these blocks so their
length is perpendicular to the direction of the gradient.

2. When the fertility gradient occurs in two directions with one gradient
much stronger than the other, ignore the weaker gradient and follow the
preceding guideline for the case of the unidirectional gradient.

3. W’ n the fertility gradient occurs in two directions with both gradients
equally strong and perpendicular to cach other, choose one of these
alternatives:

+ Use blocks that are as square as possible.

+ Use long and narrow blocks with their length perpendicular to the
direction of one gradient (see guideline 1) and use the covariance
technique (see Chapter 10, Section 10.1.1) to take care of the other
gradient.

« Use the latin square design (see Section 2.3) with two-way blockings,
one for each gradient.

4. When the pattern of variability is not predictable, blocks should be as
square as possible,
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Whenever blocking is used, the identity of the blocks and the purpose for
their use must be consistent throughout the experiment. That is, whenever a
source of variation exists that is beyond the control of the researcher, he should
assure that such variation occurs among blocks rather than within blocks. For
example, if certain operations such as application of insecticides or data
collection cannot be completed for the whole experiment in one day, the task
should be completed for all plots of the same block in the same day. In this
way, variation among days (which may be enhanced by weather factors)
becomes a part of block variation and is, thus, excluded from the experimental
error. If more than one observer is to make measurements in the trial, the same
observer should be assigned to make measurements for all plots of the same
block (see also Chapter 14, Section 14.8). In this way, the variation among
observers, if any, would constitute a part of block variation instead of the
experimental error.

2.2.2 Randomization and Layout

The randomization process for a RCB design is applied separately and
independently to each of the blocks. We use a field experiment with six
treatments A, B, C, D, E, F and four replications to illustrate the procedure.

O step 1. Divide the experimental area into r equal blocks, where r is the
number of replications, following the blocking technique described in Sec-

Gradient

\

Block I Block IL Block I Block I

Figure 2.2 Division of an cxperimental arca into four blocks, cach consisting of six plots, for a
randomized completc block dzsign with six treatments and four replications. Blocking is done such
that blocks are rectangular and perpendicular to the direction of the unidirectional gradicnt
(indicated by the arrow).
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1 4
c E
2 5
D B
3 6
F A Figure 23 Plot numbering and random assignment of six treatments
(A, B, C, D, E, and F) to the six plots in the first block of the field

Block I layout of Fig. 2.2.

tion 2.2.1. For our example, the experimental area is divided into four
blocks as shown in Figure 2.2. Assuming that there is a unidirectional
fertility gradient along the length of the experimental field, block shape is
made rectangular and perpendicular to the direction of the gradient.

STEP 2. Subdivide the first block into ¢ experimental plots, where ¢ is the
number of treatments. Number the ¢ plots consecutively from 1 to ¢, and
assign ¢ treatments at random to the ¢ plots following any of the randomiza-
tion schemes for the CRD described in Section 2.1.1. For our example,
block I is subdivided into six equal-sized plots, which are numbered
consecutively from top to bottom and from left to right (Figure 2.3); and,
the six treatments are assigned at random to the six plots using the table of
random numbers (see Section 2.1.1, step 3A) as follows:

+ Select six three-digit random numbers. We start at the intersection of the
sixteenth row and twelfth column of Appendix A and read downward
vertically, to get the following:

Random Number Sequence

918
772
243
494
704
549

AU AW =
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. Rank the random numbers from the smallest to the largest, as follows:

Random Number Sequence Rank
918 1 6
172 2 5
243 3 1
494 4 2
704 5 4
549 6 3

. Assngn the six treatrnents to the six plots by using the sequence in which
" the random numbers occurred as the treatment number and the corre-
sponding rank as the plot number to which the particular treatment is to
be assigned. Thus, treatment A is assigned to plot 6, treatment B to plot
5, treatment C to plot 1, treatment D to plot 2, treatment E to plot 4, and
treatment F to plot 3. The layout of the first block is shown in Figure 2.3,

O step 3. Repeat step 2 completely for each of the remaining blocks. For our
example, the final layout is shown in Figure 2.4.

It is worthwhile, at this point, to emphasize the major difference between a
CRD and a RCB design. Randomization in the CRD is done without any
restriction, but for the RCB design, all treatments must appear in each block.
This difference can be illustrated by comparing the RCB design layout of
Figure 2.4 with a hypothetical layout of the same trial based on a CRD, as

{ 4 7 10 13 i6 19 22

c E A c F A E A
2 5 8 1l 14 17 20 23

D B E D D B c F
3 6 9 12 15 18 21 24

F A F B c E 0 B

Block 1 Block I Block I Block IiL

Figure 24 A sample layout of a randomized complete block design with six treatments (4, B, C,
D, E, and F) and four replications.
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f 4 7 10 13 16 19 22

8 F c c E E A F
2 5 8 f1 14 17 20 23

& A A A B D F 8
3 6 9 12 15 18 2t 24

c B D c F & D D

Figure 2.5 A hypothetical layout of a completely randomized design with six treatments (4, B, C,
D, E, and F) and four replications.

shown in Figure 2.5. Note that each treatment in a CRD layout can appear
anywhere among the 24 plots in the field. For example, in the CRD layout,
treatment A appears in three adjacent plots (plots 5, 8, and 11). This is not
possible in a RCB layout.

2.23 Analysis of Variance

There arc :hree sources of variability in a RCB design: treatment, replication
(or block), and experimental error. Note that this is one more than that for a
CRD, because of the addition of replication, which corresponds to the variabil-
ity among blocks.

To illustrate the steps involved in the analysis of variance for data from a
RCB design we use data from an experiment that compared six rates of
seeding of a rice variety IR8 (Table 2.5).

O step 1. Group the data by treatments and replications and calculate
treatment totals (T), replication totals ( R), and grand total (G), as shown in
Table 2.5.

O step 2. Outline the analysis of variance as follows:

Source Degree Sum

of of of Mean Computed 1abularF
Variation Freedom Squares Square F 5% 1%
Replication

Treatment

Error

Total
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Table 2.5 Graln Yleld of Rice Varlety IR8 with Six Different Rates of Seeding,
from a RCB Experiment with Four Replications

oo Treatment
Treatment, Grain Yield, kg/ha Total  Treatment
kg seed/ha Rep.I Rep.II Rep.IIl Rep.IV (T) Mean
25 5113 5,398 5,307 4,678 20,496 5124
50 5346 5,952 4,719 4,264 20,281 5,070
75 5272 5713 5,483 4,749 21,217 5,304
100 5164 4,831 4,986 4,410 19,391 4,848
125 4,804 4,848 4432 4,748 18,832 4,708
150 5254 4542 4919 4,098 18,813 4,703
Rep. total (R) 30,953 31,284 29,846 26,947
Grand total (G) 119,030
Grand mean 4,960

O sTep 3. Using r to represent the number of replications and ¢, the number
of treatments, detcrmine the degree of freedom for each source of variation
as:

Totald.f.=rt—1=24~1=123
Replicationd./.=r~1=4~1=13
Treatmentd.f.=t—~1=6~1=5
Errord.f.= (r — 1)(t = 1) = (3)(5) = 15

Note that as in the CRD, the error d.f. can also be computed by
subtraction, as follows:

Errord.f. = Totald.f.— Replication d.f.~ Treatmentd./,

=23-3-5=15

O step 4. Compute the correction factor and the various sums of squares
(SS) as follows:

CF='7’—

_ (119,030)

= 590,339,204
(4)(6)
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[ r
Total SS =Y, ¥ X2 - C.F.
f=1 j=1

= [(5,113)? +(5,398)* + - +(4,098)] — 590,339,204
= 4,801,068

r
L R}

Replication SS = <=2

-~ C.F.

_ (30,953)° +(31,284)" +(29,846)° +(26,947)°
6

- 590,339,204
= 1,944,361

[
LT

Treatment SS = "lr - C.F.

_ (20,496)° + --- +(18,813)°
4

- 590,339,204

= 1,198,331
Error S = Total S§ — Replication SS — Treatment SS
= 4,801,068 — 1,944,361 — 1,198,331 = 1,658,376

O step 5. Compute the mean square for each source of variation by dividing
each sum of squares by its corresponding degree of freedom as:

Replication MS = Bs_p_lir_cgli;m_SS
= l,_94§,_3_§_}_ = 648,120
Treatment MS = w
= 118331 _ 559 666

5
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Error S§
Error MS G-D0-1
1,658,376
== = 110,558

O step 6. Compute the F value for testing the treatment difference as:

F= Treatment MS
" Error MS

_ 239,666
110,558

=217

0O step 7. Compare the computed F value with the tabular F values (from
Appendix E) with f; = treatment d.f. and f, = error d. f. and make conclu-
sions following the guidelines given in step 9 of Section 2.1.2.1.

For our example, the tabular F values with f; = § and f, = 15 degrees of
freedom are 2.90 at the 5% level of significance and 4.56 at the 1% level.
Because the computed F value of 2.17 is smaller than the tabular F value at
the 5% level of significance, we conclude that the experiment failed to show
any significant difference among the six treatments.

O step 8. Compute the coeflicient of variation as:

vError MS

= Grand mean x 100

v110,558
= '4’97 X 100 = 6.7%

O sTer 9. Enter all values computed in steps 3 to 8 in the analysis of variance
outline of step 2. The final result is shown in Table 2.6.

Table 2.6 Analysis of Variance (RCB) of Grain Yield Data in Table 2.5¢

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square F* 5 1%
Replication 3 1,944,361 648,120
Treatment 5 1,198,331 239,666 217™ 290 4.56
Error 15 1,658,376 110,558

Total 23 4,801,068
“v = 6.7%.

bns = not significant.
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2.24 Block Efficiency

Blocking maximizes the difference among blocks, leaving the difference among
plots of the same block as small as possible. Thus, the result of every RCB
experiment should be examined to see how this objective has been achieved.
The procedure for doing this is presented with the same data we used in
Section 2.2.3 (Table 2.5).

O step 1. Determine the level of significance of the replication variation by
computing the F value for replication as:

Replication MS

F(replication) = — s

and test its significance by comparing it to the tabular F values with
fi=(r—=1)and f, = (r — 1)(¢ — 1) degrees of freedom. Blocking is consid-
ered effective in reducing the experimental error if F(replication) is signifi-
cant (i.e., when the computed F value is greater than the tabular F value).

For our example, the computed F value for testing block difference is
computed as:

648,120
110,558

F(replication) = = 5.86

and the tabular Fva. :swith f; = 3 and f, = 15 degrees of freedom are 3.29
at the 5% level of significance and 5.42 at the 1% level. Because the
computed F value is larger than the tabular F value at the 1% level of
significance, the difference among blocks is highly significant.

O step 2. Determine the magnitude of the reduction in experimental error
due to blocking by computing the relative efficiency (R. E.) parameter as:

(r=1)E, +r(1-1)E,

R.E.=
(rt—1)E,

where E, is the replication mean square and E, is the error mean square in
the RCB analysis of variance.

If the error d.f. is less than 20, the R. E. value should be multiplied by
the adjustment factor k defined as:

C[r=1) (e =1) +1][e(r=1) +3]
T [(r= 1) =1) +3][t(r-1) +1]

k

Note that in the equation for R.E., E, in the denominator is the error for
the RCB design, and the numerator is the comparable error had the CRD
been used. Because the difference in the magnitude of experimental error
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between a CRD and a RCB design is essentially due to blocking, the value
of the relative efficiency is indicative of the gain in precision due to
blocking,

For our example, the R.E. value is computed as:

_ (3)(648,120) + 4(5)(110,558)

(24 - 1)(110,558) = 1.63

R.E.

Because the error d.f. is only 15, the adjustment factor is computed as:

_ (o)) +1][6(3) +3] _
=G ) +1] - 0

and the adjusted R.E. value is computed as;
Adjusted R.E.= (k)(R.E.)
= (0.982)(1.63)

= 1.60

The results indicate that the use of the RCB design instead of a CRD design
increased experimental precision by 60%.

2.3 LATIN SQUARE DESIGN

The major feature of the latin square (LS) design is its capacity to simulta-
neously handle two known sources of variation among experimental units. It
treats the sources as two independent blocking criteria, instead of only one as

in

the RCB design. The two-directional blocking in a LS design, commonly

referred to as row-blocking and column-blocking, is accomplished by ensuring
that every treatment occurs only once in each row-block and once in each
column-block. This procedure makes it possible to estimate variation among
row-blocks as well as among column-blocks and to remove them from experi-
mental error.

Some examples of cases where the LS design can be appropriately used are:

Field trials in which the experimental area has two fertility gradients
running perpeudicular to each other, or has a unidirectional fertility gradi-
ent but also has residual effects from previous trials (see also Chapter 10,
Section 10.1.1.2;.

Insecticide field trials where the insect migration has a predictable direction
that is perpendicular to the dominant fertility gradient of the experimental
field.

Greenhouse trials in which the experimental pots are arranged in straight
line perpendicular to the glass or screen walls, such that the difference
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among rows of pots and the distance from the glass wall (or screen wall) are
expected to be the two major sources of variability among the experimental
pots.

« Laboratory trials with replication over tifne, such that the difference among
experimental units conducted at the same time and among those conducted
over time constitute the two known sources of variability.

The presence of row-blocking and column-blocking in a LS design, while
useful in taking care of two independent sources of variation, also becomes a
major restriction in the use of the design. This is so because the requirement
tha’, all treatments appear in each row-block and in each column-block can be
satisfied only if the number of replications is equal to the number of treat-
ments. As a resu't, when the number of treatments is large the design becomes
impiactical because of the large number of replications required. On the other
hand, when the number of treatments is small the degree of freedom associated
with the experimental error becomes too small for the error to be reliably
estimated.

Thus, in practice, the LS design is applicable only for experiments in which
the number of treatments is not less than four and not more than eight.
Because of such limitation, the LS design has not been widely used in
agricultural experiments despite its great potential for controlling experimental
€rror.

2.3.1 Randomization and Layout

The process of randomization and layout for a LS design is shown below for
an experiment with five treatments 4, B, C, D, and E.

D sTep 1. Select a sample LS plan with five treatments from Appendix K,
For our example, the 5 X 5 latin square plan from Appendix K is;

(DR~ "IN~ "IN
Ol AW
Cmaman
WA AaL
A0 UM

O step 2. Randomize the row arrangement of the plan selected in step 1,
following one of the randomization schemes described in Section 2.1.1. For
this experiment, the table-of-random-numbers method of Section 2.1.1 is
applied.

* Select five three-digit random numbers from Appendix A; for example,
628, 846, 475, 902, and 452,
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« Rank the selected random numbers from lowest to highest:

Random Number Sequence Rank
628 1 3
846 2 4
475 3 2
902 4 5
452 5 1

« Use the rank to represent the existing row number of the selected plan
and the seq.ence to represent the rw number of the new plan. For our
example, the third row of the selected plan (rank = 3) becomes the first
row (sequence = 1) of the new plan; the fourth row of the selected plan
becomes the second row of the new plan; and so on. The new plan, after
the row randomization is:

At o
O XMl
QOO MW
Owowb
habOw®

O step 3. Randomize the column arrangement, using the same procedure
used for row arrangement in step 2. For our example, the five random °
numbers selected and their ranks are:

Random Number Sequence Rank
792 1 4
032 2 1
947 3 5
293 4 3
196 5 2

The rank will now be used to represent the column number of the plan
obtained in step 2 (i.e., with rearranged rows) and the sequence will be used
to represent the column number of the final plan.

For our example, the fourth column of the plan obtained in step 2
becomes the first column of the final plan, the first column of the plan of
step 2 becomes the second column of the final plan, and so on. The final
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plan, which becomes the layout of the experiment is:

Column Number

Row
Number 1 2 3 4 5
1 E C B A D
2 A D C B E
3 C B D E A
4 B E A D C
5 D A E C B

2.3.2 Analysis of Variance

There are four sources of variation in a LS de..gn, two more than that for the
CRD and one more than that for the RCB design. The sources of variation are
row, column, treatment, and experimental error.

To illustrate the computation procedure for the analysis of variance of a LS
design, we use data on grain yield of three promising maize hybrids (A, B, and
D) and of a check (C) from an advanced yield trial with a 4 X 4 latin square
design (Table 2.7).

The step-by-step procedures in the construction of the analysis of variance are:

D step 1. Arrange the raw data according to their row and column designa-
tions, with the corresponding treatment clearly specified for each observa-
tion, as shown in Table 2.7.

O step 2. Compute row totals (R), column totals (C), and the grand total
(G) as shown in Table 2.7. Compute treatment totals (7') and treatment

Table 2.7 Graln Yield of Three Promising Malze Hybrids (A, B, and D)
and a Check Varlety (C) from an Experiment with Latin Square Design

Row Grain Yicld, t/ha L
Number Col. 1 Col. 2 Col. 3 Col. 4 (R)
1 1640(B) 1210(D) 1425(C) 1345(A) 5620
2 1475(C) L18S(A) 1400(D) 1290(B) 5350
3 L670(A) 0.710(C) 1.665(B) 1.180(D) 5225
4 1565(D) 1290(B) 1655(A) 0660(C) 5.170

Column total (C) 6.350 4.395 6.145 4475
Grand total (G) 21.365
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means as follows:

Treatment Total Mean
A 5.855 1.464
B 5.885 1.471
C 4,270 1.068
D 5.355 1,339

O S‘I‘El; 3. Outline the analysis of variance as follows:

Source Degree Sum
of of of Mean Computed 1abular F
Variation Freedom Squares Square F 5% 1%

Row
Column
Treaiment
Error
Total

DO step 4. Using ¢ to represent the number of treatments, determine the
degree of freedom for each source of variation as:

Totald.f.=t2—-1=16-1=15
l?;owd.f. = Columnd.f. = Treatmentd.f.=t-1=4—-1= 3 /
Errord.f.= (1 - 1)(t-2)=(4-1)4-2)=6
The cn;r d.f can also be obtained by subtracﬁop as:
Eripr df.= Tottd d.f.— Row d.j"— Columnd.f.- Treatmentd.f.

=15-3-3-3=6

O ster 5. Compute the correction factor and the various sums of squares as:

e
C'E'Hz-,?.,

- Q-lli:s-)—- = 28.528952
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Total §§ = 3Xx2 - C.F. .

= [(1.640)* +(1.210)> + --- +(0.660)*] — 28.528952

= 1.413923

2
Row 8§ = ETR - C.F.

_ (5.620)” +(5.350) +(5.225)* +(5.170)*
4 ‘/ ot

—28.528952
= 0.030154

2
Column SS = EIQ - C.F,
_ (6.350)° +(4.395) +(6.145) +(4.475)°
4

—28.528952
= 0.827342

2
Treatment S = -E—’T— ~ C.F.

_ (5.855)" +(5.885)" +(4.270)* +(5.355)
4

—28.528952
= 0.426842
Error S§ = Total S§ ~ Row SS — Column SS — Treatment SS
= 1.413923 — 0.030154 —~ 0.827342 — 0.426842
= (0.129585

3 sTep 6. Compute the mean square for each source of variation by dividing
the sum of squares by its corresponding degree of freedom:

Row SS
(-1

_ 0.030154
3

Row MS =

= 0.010051
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Column MS = Qlt_ugilii
= 0—8237‘& = (.275781
* Treatment MS = mé:"_‘_e;‘i_-?ﬁ
= 212%1'2‘ = 0.142281
Error SS
_ Frror MS§ = ———=22
M= (- 2)
0.129585
= ——— = (0.021598
(3)(2)
O.STEP 7. Corﬁpute the F value for testing the treatment effect as:
F = Treatment MS
Error MS
0.142281
= 0.021598 6.59

O step 8. Compare the computed F value with the tabular F value, from
Appendix E, with f, = treatment d.f.=¢t—1 and f, =error d.f.=
(¢ = 1)(¢ — 2) and make conclusions following the guidelines in step 9 of
Section 2.1.2.1.

For our example, the tabular F values, from Appendix E, with f; = 3 and
f, = 6 degrees of freedom, are 4.76 at the 5% level of significance and 9.78
at the 1% level. Because the computed F value is higher than the tabular F
value at the 5% level of significance but lower than the tabular F value at the
1% level, the treatment difference is significant at the 5% level of signifi-
cance.

O ster 9. Compute the coefficient of variation as:

vError MS

Grand mean

= ———“0'10?35598 x 100 = 11.0%

cv %X 100

O step 10. Enter all values computed in steps 4 to 9 in the analysis of
variance outline of step 3, as shown in Table 2.8.

Note that although the F test in the analysis of variance indicates

significant differences among the mean yields of the four maize varieties
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Table 2.8 Analysis of Variance (L.S Design) of Grain Yield Data in Table 2.7¢

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square F® 5% 1%
Row 3 0.030154 0.010051
Column 3 0.827342 0.275781
Treatment 3 0.426842 0.142281 6.59* 4,76 9.78
Error 6 0.129585 0.021598

Total 15 1.413923
“cv = 11.0%.

he

= significant at 5% level.

tested, it does not identify the specific pairs or groups of varieties that
differed. For example, the F test is not able to answer the question of
whether every one of the three hybrids gave significantly higher yield than
that of the check variety or whether there is any significant difference among
the three hybrids. To answer these questions, the procedures for mean
comparisons discussed in Chapter 5 should be used.

2.3.3 Efficiencies of Row- and Column-Blockings

As in the RCB design, where the efficiency of one-way blocking indicates the
gain in precision relative to the CRD (see Section 2.2.4), the efficiencies of both
row- and column-blockings in a LS design indicate the gain in precision
relative to either the CRD or the RCB design. The procedures are:

O s1ep 1. Test the level of significance of the differences among row- and
column-blocks:

A. Compute the F values for testing the row difference and column
difference as:
_ Row MS
)= Error MS

_ 0.010051
~ 0.021598

Column MS
Error MS

_0.275781
"~ 0.021598

B. Compare each of the computed F values that is larger than 1 with
the tabular F values (from Appendix E) with f; =r~1 and f, =
‘t — 1Yt — 2) degrees of freedom. For our example, the computed

F(row
<1
F(column) =

= 12.77
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F(row) value is smaller than 1 and, hence, is not significant. For the
computed F(column) value, the corresponding tabular F values with
f, =3 and f, = 6 degrees of freedom are 4.76 at the 5% level of
significance and 9.78 at the 1% level. Because the computed F(column)
value is greater than both tabular F values, the difference among
column-blocks is significant at the 1% level. These results indicate the
success of column-blocking, but not that of row-blocking, in reducing
experimental error.

O step 2.  Compute the relative efficiency parameter of the LS design relative
to the CRD or RCB design:

+ The relative efficiency of a LS design as compared to a CRD:

E, + E. +(t - 1)E,
(t+1)E,

R.E.(CRD) =

where E, is the row mean square, E, is the column mean square, and E, is
the error mean square in the LS analysis of variance; and ¢ is the number
of treatments.

For our example, the R.E. is computed as:

0.010051 + 0.275781 + (4 — 1)(0.021598)
(4 + 1)(0.021598)

R.E.(CRD) =

= 3.25

This indicates that the use of a LS design in the present example is
estimated to increase the experimental precision by 225%. This result
implies that, if the CRD had been used, an estimated 2.25 times more
replications would have been required to detect the treatment difference
of the same magnitude as that detected with the LS design.

« The relative efficiency of a LS design as compared to a RCB design can
be computed in two ways—when rows are considered as biocks, and
when columns are considered as blocks, of the RCB design. These two
relative efficiencies are computed as:

_E,+(1-1)E,

R.E.(RCB,row) = ———_——(’)(Ee)
_E +(1-1)E,

R.E.(RCB, column) _——_(’)(Ee)

where E,, E_, E,, and ¢ are as defined in the preceding formula,
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When the error d. /. in the LS analysis of variance is less than 20, the
R.E. value should be multiplied by the adjustment factor k defined as:

(=D -2)+ 1][(r-1)* + 3]
[(r = 1)(2 = 2) + 3] (¢ - 1)* + 1]
For our example, the values of the relative efficiency of the LS design

compared to a RCB design with rows as blocks and with columns as
blocks are computed as:

R.E.(RCB, row) = 2019051 +(4 — 1)(0.021598)

4(0.021598)
= (0.87
0.275781 +(4 — 1)(0.021598
R.E.(RCB, column) = 4(0( 02159)8() )
= 3.9%4

Because the error d. f. of the LS design is only 6, the adjustment factor &
is computed as:

[(4 - 1)(4 - 2) +1][(4 ~ 1)* + 3]
- =0.93
[(4 - 1)(4 - 2) +3][(4 - 1)* + 1]

And, the adjusted R.E. values are computed as:
R.E.(RCB,row) = (0.87)(0.93) = 0.81
R.E.(RCB, column) = (3.94)(0.93) = 3.66

The results indicate that the additional column-blocking, made possi-
ble by the use of a LS design, is estimated to have increased the
experimental precision over that of the RCB design with rows as blocks
by 266%; whereas the additional row-blocking in the LS design did not
increase precision over the RCB design with columns as blocks. Hence,
for this trial, a RCB design with columns as blocks would have been as
efficient as a LS design.

2.4 LATTICE DESIGN

Theoretically, the complete block designs, such as the RCB and the LS designs
discussed in Sections 2.2 and 2.3, are applicable to experiments with any
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number of treatments. However, these complete block designs become less
efficient as the number of treatments increases, primarily because block size
increases proportionally with the number of treatments, and the homogeneity
of experimental plots within a large block is difficult to maintain. That is, the
experimental error of a complete block design is generally expected to increase
with the number of treatments.

An alternative set of designs for single-factor experiments having a large
number of treatments is the incomplete block designs, one of which is the lattice
design. As the name implies, each block in an incomplete block design does
not contain all treatments and a reasonably small block size can be maintained
even if the number of treatments is large. With smaller blocks, the homogene-
ity of experimental units in the same block is easier to maintain and a higher
degree of precision can generally be expected.

The improved precision with the use of an incomplete block design is
achieved with some costs. The major ones are:

- Inflexible number of treatments or replications or both
» Unequal degrees of precision in the comparison of treatment means
« Complex data analysis

Although there is no concrete rule as to how large the number of treatments
should be before the use of an incomplete block design should be considered,
the following guidelines may be helpful:

Variability in the Experimental Material. The advantage of an incomplete
bleck design over the complete block design is enhanced by an increased
variability in the ecxperimental material. In general, whenever block size in a
RCB design is too large to maintain a reasonable level of uniformity among
experimental units within the same block, the use of an incomplete block
design should be seriously considered. For example, in irrigated rice paddies
where the experimental plots are expected to be relatively homogeneous, a
RCB design would probably be adequate for a variety trial with as many as,
say, 25 varieties. On the other hand, with the same experiment on a dryland
field, where the experimental plots are expected to be less homogeneous, a
lattice design may be more efficient.

Computing Facilities and Services. Data analysis for an incomplete block
design is more complex than that for a complete block design. Thus, in
situations where adequate computing facilities and services are not easily
available, incomplete block designs may have to be considered only as the
last measure.

In general, an incomplete block design, with its reduced block size, is
expected to give a higher degree of precision than a complete block design.
Thus, the use of an incomplete block design should generally be preferred so
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long as the resources required for its use (e.g., more replications, inflexible
number of treatments, and more complex analysis) can be satisfied.

The lattice design is the incomplete block design most commonly used in
agricultural research. There is sufficient flexibility in the design to make its
application simpler than most other incomplete block designs. This section is
devoted primarily to two of the most commonly used lattice designs, the
balanced lattice and the partially balanced lattice designs. Both require that the
number of treatments must be a perfect square.

2.4.1 Balanced Lattice
The balanced lattice design is characterized by the following basic features:

1. The number of treatments (¢) must be a perfect square (i.e., 1 = k2,
such as 25, 36, 49, 64, 81, 100, etc.). Although this requirement may
seem stringent at first, it is usually easy to satisfy in practice. As the
number of treatments becomes large, adding a few more or eliminating
some less important treatments is usually easy to accomplish. For
example, if a plant breeder wishes to test the performance of 80 varieties
in a balanced lattice design, all he needs to do is add one more variety
for a perfect square. Or if he has 82 or 83 varieties to start he can easily
eliminate one or two.

2. The block size (k) is equal to the square root of the number of
treatments (i.e., k = 1'/?).

3. The number of replications (r) is one more than the block size [i.e.,
r = (k + 1)]. That is, the number of replications required is 6 for 25
treatments, 7 for 36 treatments, 8 for 49 treatments, and so on.

2.4.1.1 Rand...ization and Layout. We illustrate the randomization and
layout of a balanced lattice design with a field experiment involving nine
treatments. There are four replications, each consisting of three incomplete
blocks with each block containing three experimental plots. The steps to follow
are:

O step 1. Divide the experimental area into r = (k + 1) replications, each
containing ¢ = k2 experimental plots. For our example, the experimental
area is divided intc r = 4 replications, each containing ¢ = 9 experimental
plots, as shown in Figure 2.6.

O step 2. Divide each replication into k incomplete blocks, each containing &
experimental plots. In choosing the shape and size of the incomplete block,
follow the blocking technique discussed in Section 2.2.1 to achieve maxi-
mum homogeneity among plots in the same incomplete block. For our
example, each replication is divided into k = 3 incomplete blocks, each
containing k = 3 experimental plots (Figure 2.6).
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Block 1 1 2 3 10 )] 12 19 20 21 28 29 30

Block 2] 4 5 6 13 14 15 22 23 24 3 32 33

Block3| 7 8 9 16 17 18 25 26 27 34 35 36
Replication [ Replication I1 Replication 11 Replication IL

Figure 2,6 Division of the experimental area, consisting of 36 plots (1,2,...,36) into four
replications, each containing threc incomplete blocks of three plots cach, as the first step in laying
out a 3 X 3 balanced lattice design.

O step 3. Select from Appendix L a basic balanced lattice plan correspond-
ing to the number of treatments to be tested. For our example, the basic
plan for the 3 X 3 balanced lattice design is shown in Table 2.9,

O step 4.  Randomize the replication arrangement of the selected basic plan,
following an appropriate randomization scheme of Section 2.1.1. For our
example, the table-of-random-numbers method is applied:

« Select four three-digit random numbers from Appendix A; for example,
372, 217, 963, and 404.

+ Rank them from lowest to highest as:

Random Number Sequence Rank

mn 1 2
217 2 1
963 3 4
404 4 3

« Use the sequence to represent the existing replication number of the
basic plan and the rank to represent the replication number of the new

Table 2.9 Basic Plan of a 3 X 3 Balanced Lattice Design
involving Nine Treatments (1,2,..., 8) In Blocks of Three
Units and Four Replications

Incomplete

Block Treatment Number

Number ~ Rep.I  Rep.I  Rep.Ill  Rep. IV
1 123 147 159 168
2 456 258 267 249
3 789 369 3438 357
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plan. Thus, the first replication of the basic plan (sequence = 1) becomes
the second replication of the new plan (rank = 2), the second replication
of the basic plan becomes the first replication of the new plan, and so on.
The outcome of the new plan at this step is:

Incomplete
Block Treatment Number
Number Rep. I Rep. 11 Rep. 111 Rep. 1V
1 147 123 168 159
2 258 456 249 267
3 369 789 357 348

STEP 5. Randomize the incomplete blocks within each replication following
an appropriate randomization scheme of Section 2.1.1. For our example, the
same randomization scheme used in step 4 is used to randomly reassign
three incomplete blocks in each of the four replications. After four indepen-
dent randomization processes, the reassigned incomplete blocks may be
shown as:

Incomplete )
Block Number Reassigned l{lcomplete
in Basic Block Number in New Plan
Plan Rep. I Rep. 11 Rep. 111 Rep. 1V
1 3 2 3 1
2 2 1 1 3
3 1 3 2 2

As shown, for replication I, block 1 of the basic plan becomes block 3 of
the new plan, block 2 retains the same pecsition, and block 3 of the basic
plan becomes block 1 of the new plan. For replication II, block 1 of the
basic plan becomes block 2 of the new plan, block 2 of the basic plan
becomes block 1 of the new plan, and so on. The outcome of the new plan
at this step is:

Incomplete
Block Treatment Number
Number Rep. | Rep. 1l Rep. 111 Rep. IV
1 369 456 357 159
2 258 123 168 348

3 147 789 249 261
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STEP 6. Randomize the treatment arrangement within each incomplete
block. For our example, randomly reassign the three treatments in each of
the 12 incomplete blocks, following the same randomization scheme used in
steps 4 and 5. After 12 independent randomization processes, the reassigned
treatment sequences may be shown as:

Reassigned Treatment Sequence in New Plan

Treatment

Sequence Rep. 1 Rep. 11
in Basic Plan Block 1 Block2 Block3 Block1l Block2 Block3
1 2 3 2 2 3 3
2 3 2 3 1 2 2
3 1 1 1 3 1 1
Reassigned Treatment Sequence in New Plan
Treatment
Sequence Rep. I1I Rep. Iv
in Basic Plan Block1 Block2 Block3 Block1l Block2 Block3
1 3 3 1 1 3 2
2 2 1 2 3 1 3
3 1 2 3 2 2 1

In this case, for incomplete block 1 of replication I, treatment sequence 1
of the basic plan (treatment 3) becomes treatment sequence 2 of the new
plan, treatment sequence 2 of the basic plan (treatment 6) becomes treat-
ment sequence 3 of the new plan, and treatment sequence 3 of the basic plan
(treatment 9) becomes treatmen sequence 1 of the new plan, and so on. The
outcome of the new plan at this step is:

Incomplete
Block Treatment Number
Number Rep. | Rep. I1 Rep. 111 Rep. 1V
1 936 546 753 195
2 8§52 321 681 483
3 714 987 249 726

STEP 7. Apply the final outcome of the randomization process of step 6 to
the field layout of Figure 2.6 resulting in the final layout of Figure 2.7. Note
that an important feature in the layout of a balanced lattice design is that
every pair of treatments occurs together only once in the same block. For
example, treatment 1 appears only once with treatments 4 and 7 in block 3
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Nockt] To [ Ts | Te T | Ta | Te T7 | s | Ts Tl T | T

mock2| Te | To | T2 B || T T | Te | T Ta | T8 | Ta

ock3] T2 | T | Ta To | o | Tr | Tl T T2 1 T2 | Te
Replication | Replication I Replication IIT Replication I

igure 2.7 A sample layout of a 3 X 3 balanced lattice design, involving nine Ircalments
N Tave. . Ty).

of replication I; with treatments 2 and 3 in block 2 of replication II; with
treatments 6 and 8 in block 2 of replication III; and with treatments 5 and 9
in block 1 of replication IV. As a consequence of this feature, the degree of
precision for comparing each pair of treatrents in a balanced lattice design
is the same for all pairs.

2.4.1.2 Analysis of Variance. There are four sources of variation that can
be accounted for in a balanced lattice design: replication, treatment, incom-
plete block, and experimental error. Relative to the RCE design, the incom-
plete block is an additional source of variation and redects the differences
among incomplete blocks cf the same replication.

The computational procedure for the analysis of variance of a balanced
attice design is illustrated using data on tiller count from a field experiment
nvolving 16 rice fertilizer treatments. The experiment followed a 4 X 4 bai-
inced lattice design with five replications. The data are shown in Table 2.10,
vith the blocks and treatments rearranged according to the basic plan for the
X 4 balanced lattice design of Appendix L. Such a rearrangement is not
1ecessary for the computation of the analysis of variance but we do it here to
acilitate the understanding of the analytical procedure to be presented. The
iteps involved are:

1 step 1. Calculate the block totals ( B) and replication totals (R), as shown
in Table 2.10.

1 sTep 2, Calculate the treatment totals (T) and the grand total (G), as
shown in column 2 of Table 2,11,

1 sTEP 3. For each treatment, calculate the B, value as the sum of block
totals over all blocks in which the particular treatment appears. For exam-
ple, treatment 5 in our example was tested in blocks 2, 5, 10, 15, and 20
(Table 2.1G,. Thus, B, for treatment 5 is computed as the sum of the block
totals of blocks 2, 5, 10, 15, and 20, or By = 616 + 639 + 654 + 675 + 827
= 3,411,
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Table 2.10 Tiller Numbe: per Square Meter from 16 Fertilizer Treatments Tested
in a 4 X 4 Balanced Lattice Design”

Block Block
Block Total Block Total
Number Tiller, no./m? (B) Number Tiller, no./m? (B)
Rep. I Rep. 11
m @ & @ @ 6 (9 13)
1 147 152 167 150 616 5 140 165 182 152 639
®» © O 6 1) @ 149 ()
2 127 155 162 172 616 6 97 155 192 142 586
. 9 (10 a1n (12) a5 3 11
3 147 100 192 177 616 7 155 182 192 192 721
{13 (4 (15 (16) (16) (8 (12) @)
4 155 195 192 205 747 8 182 207 232 162 783
Rep. total R, 2595 Rep. total R, 2729
Rep. Il Rep. 1V
(1 (6 1) @Q6) 1 a9 @ Q2
9 155 162 177 152 646 13 220 202 175 205 802
¢ @ (15 (12 (13» @ an (@
10 182 130 177 165 654 14 205 152 180 187 724
o 1) 3 & 5 () (3) 16
11 137 185 152 152 626 15 165 150 200 160 675
a3 a 0 @ 9 © a5 @
12 185 122 182 192 681 16 155 177 185 172 689
Rep. total R, 2607  Rep. total R, 2890
Rep. V
(H (10 (a5 (8)
17 147 112 177 147 583
® @ @ a6
18 180 205 190 167 742
a3 © 3 (12
19 172 212 197 192 773
5 (14 a1 @
20 177 220 205 225 827
Rep. total R, 2925

“The values enclosed in parentheses correspond to the treatment numbers,

The B, values for all 16 treatments are shown in column 3 of Table 2.11.
Note that the sum of B, values over all treatments must equal (k)(G), where
k is the block size.

O step 4. For each treatment, calculate:
W=kT—(k+1)B,+G
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Table 2.11 Computations of the Adjusted and Unadjusted Treatment Totals
for the 4 x 4 Balanced Lattice Data in Table 2.10

Treatment Block

Treatment Total Total W= T = T
Number (T) (B) 4T - 5B, + G T+uyW M= 5
1 809 3,286 552 £29 166
2 794 3,322 32 805 161
3 908 3411 323 920 184
4 901 3,596 —630 878 176
5 816 3411 —-45 814 163
6 848 3,310 588 869 174
7 864 3,562 - 608 842 168
8 865 3,332 546 885 177
9 801 3,312 390 815 163
10 581 3,141 365 594 119
11 946 3,534 ~140 941 188
12 971 3,628 ~-510 953 19
13 869 3,564 - 598 848 170
14 994 3,588 -218 986 197
15 913 3,394 428 928 186
16 866 3,593 -~ 755 839 168

Sum 13,746 (G) 54,984 0 - —

For our example, the W value for treatment 5 is computed as:
W, = 4(816) — (5)(3,411) + 13,746 = —45

The W values for all 16 treatments are presented in column 4 of Table
2.11. Note that the sum of W values over all treatments must be zero.

O step 5. Construct an outline of the analysis of variance, specifying the
sources of variation and their corresponding degrees of freedom as:

Source Degree Sum

of of of Mean
Variation Freedom Squares Square
Replication k=4

Treatment(unadj.) k*-1=15

Block(adj.) k*~1=15

Intrablock error (k= 1)k*=1)=45

Treatment(adj.) [(k* - 1) =15)

Effective error [(k — 1Xk? - 1) = 45)

Total k¥k+1)—-1=179
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O ster 6. Compute the total SS, the replication §S, and the treatment

(unadjusted) SS as:
GZ

C.F.= __——(kz)(k 1)

_ 3y
(16)(s)

Total SS = ¥, X2 — C.F.

= 2,361,906

= [(147)? + (152 + -+ +(225)Y] - 2,361,906 -
= 58,856

2 .
- C.F.

Replicaiion SS =

5 2 N <\2 N
_ (2,595) +(2.72916+ ot *(2.925), — 2,361,906
5,946

2

’Ifréa}ment(unadj.) SS = -(-FE:-T) - C.F.

2 2 2
_ (809)* +(194) e +(866) _ 5 361,906

= 26,995

O step 7.  Compute the block(adjusted) SS (i.e., the sum of squares for block ‘
within replication adjusted for treatment eﬂ‘ects) as:

!
PG
=1

Block(adj.) SS = m

- (552)* +(312)% + .- +(=155)
(64)(5)

= 11,382
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O sTEP 8. Comﬁute lhe intrablock error SS as:
lntrablo;:k error SS = Total SS — Replication SS
| —~Treatment(unadj.) SS — Block(adj.) SS
= 58,856 — 5,946 — 26,995 — 11,382
= 14,533

D step 9. Compute the block(adj.) mean square and the intrablock error
mean square as: S

Block(adj.) S§

Block(adj.) MS =
ock(adj.) o 1

_ 11,382

5= 759

Intrablock error SS

Intrablock error MS =
(k-1)(k*-1)

14,533

OID

1
O step 10. For each treatment, calculate the adjusted treatment total T’ as:

T'=T+pW
where

5= Block(adj.) MS — Intrablock error MS
k?[Block(adj.) MS]

Note that if the intrablock error MS is greater than the block(adj.) MS, p
is taken to be zero and no adjustmen~t for treatment nor any further
adjustment is necessary. The F test for significance of treatment effect is
then made in the usual manner as the ratio of the treatment(unadj.) MS and
intrablock error MS, and steps 10 to 14 and step 17 can be ignored.

For our example, the intrablock error MS is smaller than the block(adj.)
MS. Hence, the adjustment factor p is computed as:

_ 759 — 323

16(759) = (.0359
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The T’ value for treatment 5, for example, is computed as 75 = 816 +
(0.0359)(—45) = 814. The results of T’ values for all 16 treatments are
shown in column 5 of Table 2.11.

O step 11. For each treatment, calculate the adjusted treatment mean M’ as;

N
M =51

For our example, the M’ value for treatment 5 is computed as M; =
814/5 = 163. The results of M’ values for all 16 treatments are presented in-
the last column of Table 2.11.

O step 12. Compute the adjusted treatment mean square as:

[ 1 G?
Treatment(adj.) MS = T? - —
reatment(adj.) _(k+l)(k2—l)][z p

B -(_soz‘ls_)]{[@”)’ +(805)° + --- +(839)]

_ (13,746)2}
16

= 1,602

O step 13, Compute the effective error MS are:
Effective error MS. = (Intrablock error MS)(1 + kp)

= 323[1 + 4(0.0359)]
= 369

‘ \Compute the corresponding cv value as;

- vEfiective error MS

bt Grand mean X 100
= y369 x 100 = 11.2%

172
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O step 14. Compute the F value for testing the treatment difference as:

_ Treatment(adj.) MS

F= Effective error MS
1,602
=30 - 4.34

O step 15. Compare the computed F value to the tabular F values, from

Appendix E, with f; = (k2 = 1)=15 and f, = (k — 1)(k* — 1) = 45 de-
grees of freedom. Because the computed F value is larger than the tabular F
value at the 1% level of significance, the treatment difference is judged to be
highly significant.

O sTEp 16. Enter all values computed in steps 6 to 9 and 12 to 15 in the

analysis of variance outline of step 5. The final result is shown in Table 2.12.

O sTep 17.  Estimate the gain in precision of a balanced lattice design relative

to the RCB design as:

_ 100[Block(adj.) SS + Intrablock error SS]
k(k? — 1)(Effective error MS)

R.E.

_ 100(11,382 + 14,533)

@6 - Ees) 17

Table 2.12 Analysis of Varlance (a 4 x 4 Balanced Lattice Design)
of Tiller Number Data Iin Table 2.10

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square Ft 5% 1%
Replication 4 5,946
Treatment(unadj.) 15 26,995
Block(adj.) 15 11,382 759
Intrablock error 45 14,533 323
Treatment(adj.) (15) — 1,602 434** 19 247
Effective error (45) - 369
Total 79 58,856
“%v =11.2%.

bs = significant at 1% level,
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That is, the use of the 4 X 4 balanced lattice design is estimated to have
increased the experimental precision by 17% over that which would have
been obtained with a RCB design.

2.4.2 Partially Balanced Lattice

The partially balanced lattice design is similar to the balanced lattice design
but allows for a more flexible choice of the number of replications. While the
partially balanced lattice design requires that the number of treatments must
be a perfect square and that the block size is equal to the square root of this
treatment number, the number of replications is not prescribed as a function of
the number of treatments. In fact, any number of replications can be used in a
partially balanced lattice design.

With two replications, the partially balanced lattice design is referred to as a
simple lattice; with three replications, a triple latuice; with four replications, a
quadruple lattice; and so on. However, such flexibility in the choice of the
number of replications results in a loss of symmetry in the arrangement of
treatments over blocks (i.e., some treatment pairs never appear together in the
same incomplete block). Consequently, the treatment pairs that are tested in
the same incomplete block are compared with a level of precision that is higher
than for those that are not tested in the same incomplete block. Because there
is more than one level of precision for comparing treatment means, data
analysis becomes more complicated.

2.4.2.1 Randomization and Layout. The procedures for randomization
and layout of a partially balanced lattice design are similar to those for a
balanced lattice design described in Section 2.4.1.1, except for the modification
in the number of replications. For example, with a 3 X 3 simple lattice (i.e., a
partially balanced lattice with two replications) the same procedures we
described in Section 2.4.1.1 can be followed using only the first two replica-
tions. With a triple lattice (i.e., a partially balanced lattice with three replica-
tions) the first three replications of the basic plan of the corresponding
balanced lattice design would be used.

When the number of replications (r) of a partially balanced lattice design
exceeds three and is an even number, the basic plan can be obtained:

- as the first r replications of the basic plan of the balanced lattice design
having the same number of treatments, or

- as the first r/p replications of the basic plan of the balanced lattice design
having the same number of treatments, repeated p times (with rerandomiza-
tion each time).

For example, for a 5 X 5 quadruple lattice design (i.e., a partially balanced
lattice design with four replications) the basic plan can be obtained either as



Latiice Design 53

Biock 1 | Tio | Ts | Ts | Tis | T2o T | To | o | T | T7
Block2 | Tia | To | Toa | To | Ta Tos | Tea | Tar | Tes | T2z
Bock 3] T2 | Tw | Mo | T2 [ T2 Ta | Th T3 [ T2 [ Ts
Blocka] T2 | Te | Te | T | Tu Te | Te | Te | T2o | Tio
Block5| T3 | Ts | Te | Ts | Tes Ta [ Tw | Ts | Tz | Tiz
Replication [ Replication IT
Block 1] T2 | Too | To | Tie | Tie To | T | Ta | T | Tos
Block2) Tz | Tu | Tis | Tis | Tia Te | Too [ Ts | Tos | Tio
Block3} T [ Ta | Ts | T2 | Ts T2 | T | T2 | e | Tw
Block 4| Tea | Tes | T2 | Tor | Tos To | Ta | Ta | Toa | Tio
Block5] T8 | T2 { T8 | T6 | Tio Te | Tas | Te [ T3 | Tis
Replication 11 Replicotion IL

Figure 28 A sample layout of a 5 X 5 quadruple lattice design with wo repetitions (replications 1
and 1V; and replications II and III), involving 25 treatments (7}, T,..., Tas).

the first four replications of the 5 X 5 balanced lattice design or as the 5 X 5§
simple lattice design repea.ed twice (i.e., p = 2).

In general, the procedure of using the basic plan without repetiticn is
slightly preferred because it comes closer to the symmetry achieved in a
balanced lattice design. For a partially balanced lattice design with p repeti-
tions, the process of randomization will be done p times, separately and
independently. For example, for the 5 X 5 quadruple lattice design with p = 2,
the process of randomization is applied twice—as if there were two 5 X 5
simple lattice designs.

Two sample field layouts of a 5 X 5 quadruple lattice design, one with
repetition and another without repetition, ase shown in Figures 2.8 and 2.9.

2.4.2.2 Analysis of Variance. The procedure for the analysis of variance
of a partially balanced lattice design is discussed separately for a case with
repetition and onec without repetition. A 9 X 9 triple lattice design is used to
illustrate the case without repetition; a 5 X 5 quadruple lattice is used to
illustrate the case with repetition.
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st ] T | Tz [ Tw | Ta | Ts T | Ts| To| Ta | Tu
Block2} To { s | Ts | TV | T2 To | T2 | Ta | Te | s
Block3] To| To | Te | Te | To Ta | Ta | To | Ta | T2o
Block4| Too | Tea | Tes | Ta | Tas Taa| o | T6 | Ts | Tie
Block 5| Ta | T7 | To| o | Te T | Ta | T | Ts| Ts
Replication 1 Replication IL
Block 1] T | Tie | Teo| To | Taa T | W | T Te | Ta
Block2) To | Ts | Tio | Tn | T2z Te | T2} T2 | T2| T7
Block 3] Te | T2a| To | Ta| T2 To | Ta | Ta{ Taa] T
Block4| Tp | Ta | Tis | Ta| Tie Toa| To | T3 | Te -T:
Bock5| To | Ta | Ta | Tz | Tes Ts | To| To| Ts| Ts
Rephication IIT Replication IZ

Figure 29 A sample layout of a 5 X 5 quadruple lattice design without repetition, involving 25
treatments (Ty, 73,.... T3s).

2.4.2.2.1 Design without Repetition. To illustrate the analysis of variance
of a partially balanced lattice design without repetition, we use a 9 X 9 triple
lattice design that evaluates the performance of 81 rice varieties. The yield
data, rearranged according to the basic plan of Appendix L, are given in Table
2.13. The steps in the analysis of variance procedure are:

O step 1. Calculate the block totals (B) and the replication totals (R) as
shown in Table 2.13. Then, compute the grand total:

= 323.25 + 300.62 + 301.18 = 925.05

O sTep2. Calculate the treatment totals (T') as shown in Table 2.14,



Table 2,13 Grain Yield Data from a Trial of 81 Upland Rice
Varieties Conducted In a 9 x 9 Triple Lattice Design”

Block

Block Total

Number Grain Yield, t/ha (B)

Rep. I

) @ 6 @ 6 ©» D & O

1 270 1.60 445 291 278 3.32 170 472 4.79 28.97
(10 11) (12) 13) (14 @15 (16) A (8)

2 420 522 396 1.51 348 4.69 1.57 261 3.16 3040
(19) (20) (21) (22) (23) (29) (25 (26) (27

3 463 333 631 608 186 410 572 5.87 420 4210
(28) (29 (30) (31) (32) (33) (34 (35 (36)

4 374 305 516 476 3.75 3.66 4.52 464 536 38.64
(37) (38) (39) (40) (41) (42) (43) (44) (45)

5 476 443 536 473 530 393 337 3.74 406 39.68
(46) (47) (48) (49) (50) (51) (52) (53) (54)

6 345 256 239 230 3.54 3.66 120 334 4.04 26.48
(55) (56) (57) (58) (59) (60) (61) (62) (63)

7 399 448 269 395 259 399 437 424 370 34.00
(64) (65) (66) (67) (68) (69) (70) (71) (72)

8 529 358 214 554 514 573 338 363 508 39.51
(13) (74) (75) (76) (I7) (78) (79) (80) (81)

9 376 645 396 3.64 442 6.57 639 339 4.89 43.47

Rep. total R, 323.25

Rep. I

(1) 10 (19 (28) (37) (46) (55) (64) (73)

1 306 2.08 295 3.75 4.08 3.88 214 3.68 285 28.47
(2 A1) (0) (29 (38) (47) (56) (65) (74)

2 1.61 530 275 4.06 3.89 2.60 4.19 3.14 4.82 3236
() (12) @) (30) (39 @8) (57) (66) (75)

3 419 333 467 499 458 3.17 2.69 257 3.82 34.01
@ (13) 22) (31) (40) (49) (58) (67) (76)

4 299 250 4.87 3.71 4.85 2.87 3.79 528 3.32 34.18
() (14) (23) (32) (41) (50) (59) (68) (77)

5 381 348 187 434 436 324 362 449 3.62 32.83
(6) (15) (24) (33) (42) (51) (60) (69) (78)

6 334 330 368 3.84 425 390 364 509 610 37.14
() (16) (25) (34) (43) (52) (61) (70) (79)

7 2,98 269 555 3.52 4.03 1.20 436 3.18 677 34.28
8 (A7) (26) (35) (44) (53) (62) (71) (8O)

8 420 269 514 432 347 341 374 367 227 3291
(9 (18 @27) (36) (45) (54) (63) (72) (81)

9 475 259 394 451 310 359 270 440 486 34.44

Rep. total R, 300.62

55
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Table 2.13 (Continued)

Block
Block Total
Number Grain Yield, t/ha (B)

Rep. Il

(1) (12) 20) (G4 45 (53) (38 (0) (77)

1 3.52 218 3.50 330 388 245 3.75 445 4.14 3117
(2 (10 @) @35 ) (59 (59) (67) (78)

2 79 358 4.83 363 3.02 420 359 506 651 3521
(3) (A1) (19) (6) (44 (52) (60) (68) (76)

3 469 533 443 531 413 198 466 450 4.50 39.53
4 (15 (23) (28) (39 @7 (61) (72) (80)

4 3.06 430 2.02 3.57 5.80 258 427 484 274 33.18
(5) (13) (49 (29 (7 @8 (62) (70) (81

5 379 .88 340 492 212 189 3.73 351 350 2774
© (14 (22) (30) (38) (46) (63) (1) (79

6 3.34 394 572 534 447 418 270 3.96 348 3713
(1) (18) (26) (31) (42) (50) (55) (66) (74)

7 235 287 550 272 420 287 299 1.62 533 3045
® 16 @27 (32) (@40 (51) (56) (64) (75)

8 451 126 420 3.19 476 3.35 3.61 452 338 3278
9 A7) @25 (33) @) 49 (57) (65) (M)

9 421 317 503 334 531 305 319 263 406 3399

Rep. total R, 301.18

“The values enclosed in parentheses correspond to the treatment numbers.

O step 3.  Construct an outline of the analysis of variance of a 9 X 9 triple
lattice design as:

Source Degree Sum
of of of Mean
Variation Freedom Squares Square
Replication r—-1=2
Block(adj.) rtk—-1)=24
Treatment(unadj.) k*-1=280
Intrablock error (k=1 rk—-k-1)=136
Treatment(ad;.) [(k* - 1) = (80)]
Total (rXk?)-1=242

Here, r is the number of replications and & is the block size.
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Table 2.14

Treatment Totals Computed from Data in Table 2.13

Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment
Total Total Total Total Total Total Total Total Total

No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T)
1 928 2 400 3 1333 4 89 5 1038 6 1000 7 703 8 1343 9 1375
10 986 11 1585 12 947 13 489 14 1090 15 1229 16 552 17 847 18 8.62
19 1201 20 958 21 1581 22 16.67 23 575 24 1118 25 1630 26 1651 27 1234
28 1106 29 1203 30 1549 31 11.19 32 11.28 33 1084 34 1134 35 1259 36 15.18
37 1096 38 1279 39 1574 40 1434 41 1497 42 1238 42 1042 44 1134 45 11.04
46 11.51 47 7.74 48 745 49 822 50 965 51 1091 52 438 53 920 54 11.83
55 912 56 1228 57 857 58 1149 59 980 60 1229 61 1300 62 11.71 63 9.10
64 1349 65 935 66 633 67 1588 68 1413 69 1527 70 1007 71 1126 72 1432
73 1067 74 1660 75 11116 76 1146 77 1218 78 1918 79 16.64 80 840 81 1325
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O ster 4. Compute the total SS, rcphcauon SS, and treatment (unadj.) .5 in
the standard manner:

= . Gz
(r)(&?)
_ (925 (925.05)°
(3)(s81)
Total SS§ =} X2 - C.F.

= 3,521.4712

= [(2.70)? +(1.60)* + --- +(4.06)] - 3,521.4712

= 308.9883
RZ

Replication SS = - C.F,

~ (323.25)% +(300.62)° + (301.18)°
B 81

- 3,521.4712

= 4.1132

, 7
Treatment(unadj.) SS = ——-C.F.

_ (928) +(4.00)° + --- +(13.25)°
3

- 3,521.4712
= 256.7386

O step 5. For each block, calculate:

where M is the sum of treatment totals for all treatments appearing in that
particular block and B is the block total. For example, blo. 4 2 of replication
II contained treatments 2, 11, 20, 29, 38, 47, 56, 65, and 74 (Table 2.13).
Hence, the M value for block 2 of replication II is:

M=T+ T+ T+ T+ T+ Ty+ T+ T+ Ty
=400+ 1585 + .-+ 16.60 = 100.22
and the corresponding C,, value is;
C, = 100.22 — 3(32.36) = 3.14
The C,, values for the 27 blocks are presented in Table 2.15.
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Table 215 The C, Values Computed from a 9 X 9 Triple Lattice Design
Data in Tables 2.13 and 2.14

Rep. I Rep.II Rep. Iil
Block Block Block
Number C, Number o Number C,

1 325 1 12.55 1 5.34
2 -5.33 2 314 2 3.74
3 -10.15 3 1.32 3 -8.62
4 -4,92 4 0.55 4 ~2.28
5 —-5.06 5 0.55 5 8.70
6 . 145 6 292 6 297
7 —4.64 7 -8.14 7 6.08
8 —8.43 8 418 8 6.41
9 -10.87 9 6.11 9 -0.83

Total -44.70 Total 23.19 Total 21.51

O step 6. For each replication, calculate the sum of C, values over all blocks
Gi.e, R)):
For replication I,

R(I)=325-533+ -.- — 10.87 = —44.70
For replication II, |

R.(II)=1255+ 314+ -+ +6.11 ==‘23.19’
For replication III, ‘

R(I) =534 +3.74 + .- - 083 = 21,51 |

Note that the R, values should add to zero (i.e., —44.70 + 23.19 + 21.51 =
0). ’

O sTep 7. Calculate the block(adj.) SS as:
r¢ IR
(k)(r)(r=1)  (k2)(r)(r-1)
_ (325 +(-5.33)" + --- +(-0.83)’
(9)(3)3-1)

_ (44700 + (23.19)" +(21.51)
(81)(3)(3 - 1)

Block(adj.) SS =

= 12.1492
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O step 8. Calculate the intrablock error SS as:

 Intrablock error SS = Total SS — Replication SS — Treatment(unadj.) SS
— Block(adj.) §S
= 308.9883 — 4.1132 —'256.7386 — 12.1492

= 35.9873

O sTep 9. Calculate the intrablock eﬁor mean square and block(adj.) mean
 square as: ‘

Intrablock error SS
(k=1)(rk — k-1

Intrablock error MS =

_ 35.9873
©-DIG)9)-9-1]

= 0.2646

; Block(adj.j SS
l/ilock(ad_p) MS k= 1)
121492

= m = 0.5062

O step 10. Calculate the adjustment factor p. For a triple lattice, the formula
is ‘

1 2
___MSE _3MSB — MSE
2 2
"( MSE * 3MSB - MSE)

where MSE is the intrablock erroi mean square and MSB is the block(adi.)
mean square.

Note that if MSB is less than MSE, u is taken to be zero and no further
adjustment is made. The F test for significance of treatment effect is made in
the usual manner as the ratio of treatment(unadj.) MS and intrablock error
MS, and steps 10 to 14 and step 17 can be ignored.



Lattice Design 61

For our example, the MSB value of 0.5062 is larger than the MSE value
of 0.2646; and, thus, the adjustment factor is computed as:

1 2
[0.2646 3(0.5062) — 0.2646

- of 2. 2
0.2646 ~ 3(0.5062) — 0.2646

= 0.0265
0O step 11. For each, treatment, calculate the adjusted treatment total T’ as:
T’ =T+ #z Cb

where the summation runs over all blocks in which the particular treatment
appears. For example, the adjusted treatment total for treatment number 2
is computed as:

T; = 4.00 + 0.0265(3.25 + 3.14 + 3.74) = 4.27

Note that for mean comparisons (see Chapter 5) the adjusted treatment
means are used. They are computed simply by dividing these individual
adjusted treatment totals by the number of replications.

0O step 12. Compute the adjusted treatment SS:
Treatment(adj.) SS = Treatment(unadj.) SS — 4

1 2
= | MSE ~ (3MSB - MSE)

A

X [(MSE)B, —(k — 1)(MSE)(rMSB — MSE))

5 ZBZ_ZRZ

=T k2

For our example,

B - (28.97)% +(30.40)2 + --- +(33.99)°
L 9

_ (323.25)* +(300.62)° +(301.18)°
81

= 49.4653
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1 2

A= -
02646 ~ 3(0.5062) — 0.2646

X {0.2646(49.4653)
~ £(0.2646)[3(0.5062) — 0.2646] } .
= 22,7921
Treatment(adj.) SS = 256.7386 ~ 22,7921
| = 233.9465
0O step 13.  Compute the treatment(adj.) mean square as:

Treatment(adj.) SS
k-1

Treatment(adj.) MS =

_ 233.9465

80 2.9243

O step 14. Compute the F test for testing the significance of treatment
difference as;

_ Treatment(adj.) MS

" Intrablock error MS
2.9243
= 0.2646 — 11.05

Compute the corresponding cv value as:

/Tntrablock 7S
v = Intrablock MS % 100
Grand mean

_ /0.2646 B
=381 X 100 = 13.5%

0 step 15. Compare the computed F value to the tabular F values of
Appendix E, with f, = (k* — 1)=80 and f, = (k — 1)(rk — k — 1) = 136
degrees of freedom. Because the computed F value is greater than the
tabular F value at the 1% level of significance, the F test indicates a highly
significant treatment difference.

0O step 16. Enter all values computed in steps 4 to 9 and 12 to 15 in the
analysis of variance outline of step 3. The final result is shown in Table 2.16.



Lattice Design

63

Table 2.16 Analysis of Varlance (a 9 X 9 Triple Lattice Design) of Data in Table 2.13¢

Sorce Degree Sum

of of of Mean  Computed _ Tabular F

Variation Freedom Squares Square F® % 1%

Replication 2 41132

Block(adj.) 24 12.1492 0.5062

Treatment(unad;.) 80 256.7386

Intrablock error 136 35.9873 0.2646

Treatment(adj.) (80) 233.9465 2.9243 11.05+* 138 157
Total 242 308.988.

“v = 13.5%.

bss = significant at 1% level.

O step 17. Estimate the gain in precision of a partially balanced lattice
design relative to the RCB design, as follows:

A. Compute the effective error mean square. For a partially balanced
lattice design, there are two error terms involved: one for comparisons
between treatments appearing in the same block [i.e., Error MS(1)] and
another for comparisons between treatments not appearing in the same
block [i.e., Error MS(2)]. For a triple lattice, the formulas are:

[ 6
Error MS(1) = M:‘E 3 MSE 3
| MSE * 3MSB - MSE
[ 9
Error MS(2) = M:E 5 MSE 3
| MSE * 3MSB ~ MSE

+(k - 2)

+(k-3)

]

With a large experiment, these two values may not differ much. And,
for simplicity, the average error MS may be computed and used for
comparing any pair of means (i.e., without the need to distinguish
whether or not the pair of treatments appeared together in the same
block or not). For a triple lattice, the formula is:

9
__MSE MSE _
Av, error MS k+1| 2 3 +(k-2)
MSE ~ 3MSB — MSE
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For our example, the value of the two error mean squares are

computed as:
Error MS(1) = (0'29646 ) 3 0.2646 3 + 7
| 02646 " 3(0.5062) - 0.2646
= 0.2786
i s i
Error MS(2) = (0'29646 ) 3 0.2646 3 +6
| 02646 * 3(0.5062) - 0.2646
= 0.2856

As expected, the two values of error MS do not differ much and,
hence, the average error MS can be used. It is computed as:

9
0.2646 0.2646
10 2 + 2
0.2646 ~ 3(0.5062) — 0.2646

Av. error MS = + 7

= (.2835

B. . Compute the efficiency of the partially balanced lattice design relative
to a comparable RCB design as:

Block(adj.) SS + Intrablock error ss][ 100
Er

R'E'=[ r(k—=1)+(k - 1)(rk — k - 1) ror MS

For our example, the three values of the relative efficiency corre-
sponding to Error MS(1), Error MS(2), and Av. error MS are com-

puted as:
R.E(1) = ( 12'”2942:133559873 )( 0'12(;%6) = 108.0%
R.E(2) = (”'1"'2942:13356'9873 )( 0-12%2 6) = 105.3%
R.E.(av.) = (12'142?:133%9873 )( 0.12%(;5) - 1061%

2.4.2.2.2 Design with Repetition. For the analysis of variance of a par-
tially balanced lattice design with repetition, we use a 5 X 5 quadruple lattice
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whose basic plan is obtained by repeating a simple lattice design (i.e., base
design) twice. Data on grain yield for the 25 rice varieties used as treatments
(rearranged according to the basic plan) are shown in Table 2.17. Note that
replications I and II are from the first two replications of the basic plan of the
5 X 5 balanced lattice design (Appendix L) and replications III and IV are
repetition of replications [ and II.

The steps involved in the analysis of variance are;

0O step 1. Calculate the block totals (B) and replication totals (R) as shown
in Table 2.17. Then, compute the grand total (G) as G = LR = 147,059 +
152,078 + 151,484 + 155,805 = 606,426.

O sTep 2. Calculate the treatment totals (T°) as shown in Table 2.18.

DO step 3. Construct an outline of the analysis of variance of a partially
balanced lattice design with repetition as:

Source Degree Sum
of of of Mean
Variation Freedom Squares  Square
Replication (n)(p)—1=3
Block(adj.) (n)(p)k—-1)=16

Component(a) [n(p = 1)(k—-1)=8]

Component(b) [n(k—1)=18]
Treatment(unadj.) (k*=-1)=24
Intrablock error (k = 1)(npk — k — 1) = 56
Treatment(adj.) [k?—1=24)

Total (n)(p)k?)—=1=99

Here, n is the number of replications in the base design and p is the
number of repetitions (i.e., the number of times the base design is repeated).
As before, k is the block size. In our example, the base design is simple
lattice so that n = 2 and, because this base design is used twice, p = 2.

O ster 4. Compute the total SS, replication SS, and treatment(unadj.) SS, in
the standard manner as:

P
(m)(p)(k?)

_ (606,426)°
(2)(2)(25)

C.F.

= 3,677,524,934



Table 2.17 Grain Yield Data from a Rice Variety Trial Conducied in a 5 X 5 Quadruple Lattice Design with Repetition

Rep. 1 Rep. I1 Rep. 111 Rep. IV

Block Bl~ck Block Block
Block Treatment Yield, Total Treatment Yield, Total Treatment Yield, Total Treatment Yield, Total
Number Number kg/ha (B) Number kg/ha (B) Number kg/ha (B) Number kg/ha (B)

1 1 4,723 1 6,262 1 5,975 1 5,228
2 4,977 6 5,690 2 5915 6 5,302
3 6,247 11 6,498 3 6,914 11 5,190
4 5325 16 8,011 4 6,389 16 1127
5 7,139 21 5.887 5 7.542 21 5,323
28,411 32,348 32,735 28,170
2 6 5,444 2 5,038 6 4,750 2 5.681
7 5,567 7 4,615 7 5,983 7 6,146
8 5,809 12 5.520 8 5339 12 6,032
9 5,086 17 6,063 9 4,615 17 7,066
10 6,849 22 6,486 10 5.336 22 6,680
28,755 27,7122 26,023 31,605
3 11 5,237 3 6,057 11 5,073 3 6,750
12 5,174 8 6,397 12 6,110 8 6,567
13 5,395 13 5,214 13 6,001 13 5,786
14 5112 18 7,093 14 5,486 18 7159
15 5,637 23 7,002 15 6,415 23 7,268

26,555 31,763 29,085 33,530
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4 16

17
18
19
20

5 21

22
23
24
25

5,793
6,008

6,864

5,026
6,348

5,321
6,870

7,512 °

6,648
6,948

30,039

33,299
147,059

14
19
24

10
15
20

5,291

4,864

‘5,453

4,917

-6,318

7,685
5,985

6,107

. 6,710
6,915

© 26,843

33402

152,078

16

17
18
19
20

6,064
6,405
6,856
4,654
5,986

5,750
6,539
1,576
71372
6,439

29,965

33,676
151,484

14
19
24

10
15
20

6,020
5,136
6,413
5,760
6,856

7,173
5,626
6,310
6,529
6,677

30,185

32,315
155,805

Rep. total (R)'_
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Table 2,18 Treatment Totals Computed from Data in Table 2.17

Treatment Treatment Treatment Treatment Treatment

Total Total Total Total Total
Number (T) Number (7) Number (7) Number (7) Number (7)

1 22,188 2 21,611 3 25,968 4 23,025 5 29,539
6 21,186 7 22,311 8 24,112 9 19,701 10 23,796
11 21,998 12 22,836 13 22,396 14 22,464 15 24,469
16 26,995 17 25,542 18 27,972 19 20,357 20 25,573
21 22,281 22 26,575 23 29,358 24 27,194 25 26,979

Total S = ¥ X? - C.F.

= [(@,723) +(4.977) + --- +(6,677)] - 3,677,524,934

= 63,513,102
RZ
Replication $S = -k—z- - C.F,

_ (147,059)" +(152,078)" +(151,484)" + (155,805)°
25

-3,677,524,934
= 1,541,779

2
Treatment(unadj.) S§ = ———— —~ C.F.
(unadj.) S8 = T35

_ (22,188)° +(21,611)° + - - +(26,979)"
(2)2)
—3,677,524,934,
= 45,726,281

O sTEP 5. For each block in each repetition, compute the S value as the sum
of block totals over all replications in that repetition and, for each § value,
compute the corresponding C value, as:

C=)T-nS

where n is as defined in step 3, T is the treatment total, and the summation
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is made only over the treatments appearing in the block corresponding to
the particular S value involved.

For our example, there are two repetitions, each consisting of two
replications—replication I and replication IlII in repetition 1 and replication
II and replication IV in repetition 2. Hence, the first S value, corresponding
to block 1 from replications I and III, is computed as S = 28,411 + 32,735
= 61,146. Becausc the five treatments in block 1 of repetition 1 are
treatments 1, 2, 3, 4, and 5 (Table 2.17), the first C value, corresponding to
the first § value, is computeu as:

C = (22,188 + 21,611 + 25,968 + 23,025 + 29,539) — 2(61,146)
= 122,331 — 122,292 = 39

The computations of all S values and C values are illustrated and shown
in Table 2.19. Compute the total C values over all blocks in a repetition (i.e.,
R,,j =1,...,p). For our example, the two R, values are 9,340 for repetition
1 and - 9,340 for repetition 2. The sum of all R, values must be zero.

STEP 6. Let B denote the block total; D, the sum of S values for each
repetition; and A, the sum of block totals for each replication. Compute the

Table 2.19 Computation of the S Values and the Corresponding
C Values, Based on Block Totals (Table 2,17) Reamanged in
Palrs of Blocks Contalning the Same Set of Treatments

Block Total
Block Ist 2nd
Number Replication Replication S C
Repeution 1
1 28,411 32,7135 61,146 39
2 28,755 26,023 54,778 1,550
3 26,555 29,085 55,640 2,883
4 30,039 29,965 60,004 6,431
5 33,299 33,676 66,975 -1,563
Total 147,059 151,484 298,543 9,340
Repetition 2
1 32,348 28,170 60,518 - 6,388
2 21,722 31,605 59,327 221
3 31,763 33,530 65,293 -780
4 26,843 30,185 57,028 -1,315
5 33,402 32,315 65,717 -1,078
Total 152,078 155,805 307,883 -9,340
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two components, (a) and (b), of the block(adj.) SS as:

A. Component(a) SS=X~Y -2

where »

> b}

x;_};z_ =
k pk2

)‘:’: 2

D

\Y= ZsZ _ J=1 f]
}’i 2

D

7= A2 _ =l !
k? pk?

For our example, the parameters and the component(a) SS are
computed as:

X = (28,411)% +(28,755)% + --- +(32,315)
5

_ (298,543)* +(307,883)’
(2)(25)

= 3,701,833,230 — 3,678,397,290
= 23,435,940

y = (6 146)7 +(54,778)% + - -+ +(65,717)

— 3,678,397,290
(2)(5)

= 15,364,391

5 - (141,059)" +(152,078)" +(151,484)° +(155,805)°
25

—3,678,397,290
= 669,423
Component(a) SS = 23,435,940 — 15,364,391 — 669,423
= 7,402,126
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¢t _ LR
() (m)(p)(n=1)  (k2)(n)(p{n - 1)

_ (39)* +(1,550)* + --- +(-1,078)’
(5)(2)(2)(1)

_ (9,340)° +(—9,340)
(25)(2)(2)(1)

= 3,198,865

B. Component(d) SS =

0O step 7. Compute the block(adj.) SS as the sum of component(a) SS and
component(b) SS computed in step 6:

Block(adj.) SS = Component(a) SS + Component(b) SS

= 7,402,126 + 3,198,865
= 10,600,991

O step 8, Compute the intrablock error S as:
Intrablock error SS = Total SS — Replication SS — Treatment(unad;j.) S§
—Block(adj.) S§
= 63,513,102 — 1,541,779 — 45,726,281 — 10,600,991
= 5,644,051

O step 9. Compute the block(adj.) mean square and the intrablock error
mean square as:

Block(adj.) SS
np(k —1)

_ 10,600,991

@06

Intrablock error SS
(k- 1)(npk — k- 1)

MSB =

= 662,562

MSE =

5,644,051
(@(20-5-1)

= 100,787
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O step 10. Compute the adjustment factor p as:

_ p(MSB — MSE)
b= % p(n - 1)MSB +(p — 1) MSE]

_ _ 2(662,562 — 100,787)
5[2(662,562) +(100,787)]

= 0.15759

O step 11, For each treatment, compute the adjusted treatment total as:
T'=T+p),C
where the summation runs over all blocks in which the particular treatment
appears. For example, using the data of Tables 2.18 and 2.19, the adjusted
treatment total for treatment number 1, which appeared in block 1 of both
repetitions, is computed as:
T’ = 22,188 + 0.15759(39 — 6,388) = 21,187
The results of all 7* values are shown in Table 2.20.

D step 12. Compute the adjusted treatment sum of squares as:

Treatment(adj.) SS = Treatment(unadj.) SS — 4

A=k(n-1)p T _(;1))((1}'.*)- ) - Componené(b) SS

where Y is as defined by formula in step 6.

Table 2.20 Adjusted Treatment Totals Computed from Data in Tables 2.18 and 2.19

Treatment Treatment Treatment Treatment Treatment
Total Total Total Total Total
Number (7') Number (7°) Number (7') Number (7’) Number ( ™
1 21,187 2 21,652 K 25,851 4 22,824 5 29,375
6 20,424 7 22,590 8 24,233 9 19,738 10 23,870
11 21,446 12 23,325 13 22,727 14 22,711 15 24,754
16 27,002 17 26,590 18 28,863 19 21,163 20 26,417

21

21,028

22

26,364

23

28,989

24

26,740

25

26,563
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For our example, we have

2(15,364,391)
[1 + 5(0.15759)]

A - 5”(1))(0.)15759){

=11,021,636
Treatment(ad).) S5 = 45,726,281 — 11,021,636
= 34,704,645

O step 13. Compute the adjusted treatment mean square as:

Treatment(adj.) SS
k-1

_ 34,704,645
25— 1

= 1,445,027

Treatment(ad;j.) MS =

O sTep 14. Compute the F value as:

_ Treatment(adj.) MS
Intrablock error MS

1,446,027
~ 100,787

= 14.35

Compute the corresponding cv value as:

o = vIntrablock error MS

Grand mean x 100
V100,787
= W— X 100 = 5.2%

- 3,198,865}

73

0O step 15. Compare the computed F value with the tabular F value, from
Appendix E, with f; = (k2 = 1) =24 and f, = (k — 1)(npk — k — 1) = 56
degrees of freedom, at a desired level of significance. Because the computed
F value is greater than the corresponding tabular F value at the 1% level of
significance, a highly significant difference among treatments is indicated.

O step 1€. Enter all values computed in steps 4 to @ and 12 to 14 in the
analysis of variance outline of step 3. The final result is shown in Table 2.21.
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Table 2.21 Analysis of Variance (a 5 X 5 Quadruple Lattice Design) of
Data in Table 2,17

Source Degree Sum

of of of Mean  Computed Tabular F
Variation Freedom  Squares Square Ft 5% 1%
Replication 3 1,541,779

Block(adj.) 16 10,600,991 162,562

Component(a) 8) 7,402,126
Component(b) 8) 3,198,865
Treatment(unadj.) 24 45,726,281

Intrablock error 56 5,644,051 100,787

Treatment(adj.) (29) 34,704,645 1,446,027 1435** 172 214
Total 99 63,513,102

ey = 5.2%.

bes m significant at 1% level.

O ster 17,  Compute the values of the two effective error mean square as:
A. For comparing treatments appearing in the same block:
Error MS(1) = MS‘E[l +(n - 1)p]
= 100,787[1 +(2 - 1)(0.15759)]
= 116,670
B. For comparing treatments not appearing in the same block:
Error MS(2) = MSE(1 + np)
= 100,787[1 + 2(0.15759)]
= 132,553

Note that when the average effective error MS is to be used (see step 17
of Section 2.4.2.2.1), compute it as:

(n)(k)()

Av, error MS = MSE[I + Tl

= 100,787[1 + 2(5_)(0-6_12?5_9)]

= 127,259
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O step 18.  Compute the efficiency relative to the RCB design as:

E. = Block(adj.) S5 + Intrablock error SS [ 100 ]
R.E.= Error MS

(m)(p)(k = 1) +(k = 1)(npk — &k — 1)

where Error MS refers to the appropriate effective error MS.
For our example, the three values of the relative efficiency corresponding
to Error MS(1), Error MS(2), and Av. error MS are computed as:

10,600,991 + 5,644,051 1] 100
RE.(1)=| 72 [ T165670|
= 193.4%
10,600,991 + 5,644,051 1] 100
R.E.(2) =] 72 | 132,553
=170.2%
10,600,991 + 5,644,051\ 100
R.E.(av.) = ( 72 )( 127,259)
= 177.3%

2.5 GROUP BALANCED BLOCK DESIGN

The primary feature of the group balanced block design is the grouping of
treatments into homogeneous blocks based on selected characteristics of the
treatments. Whereas the lattice design achieves homogeneity within blocks by
grouping experimental plots based on some known patterns of heterogeneity in
the experimental area, the group balanced block design achieves the same
objective by grouping trearments based on some known characteristics of the
treatments.

In a group balanced block design, treatments belonging to the same group
are always tested in the same block, but those belonging to different groups are
never tested together in the same block. Hence, the precision with which the
different treatments are compared is not the same for all comparisons. Treat-
ments belonging to the same group are compared with a higher degree of
precision than those belonging to different groups.

The group balanced block design is commonly used in variety trials where
varieties with similar morphological characters are put together in the same
group. Two of the most commonly used criteria for grouping of varieties are:

« Plant height, in order to avoid the expected large competition effects (see
Chapter 13, Section 13.1.2) when plants with widely different heights are
grown in adjacent plots.
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. Growth duration, in order to minimize competition effects and to facilitate
harvest operations.

Another type of trials using the group balanced block design is that involving
chemical insect control in which treatments may be subdivided into similar
spray operations to facilitate the field application of chemicals.

We outline procedures for randomization, layout, and analysis of variance
for a group balanced block design, using a trial involving 45 rice varietics with
three replications. Based on growth duration, varieties are divided into group A
for varieties with less than 105 days in growth duration, group B for 105 to 115
days, and group C for longer than 115 days. Each group consists of 15
varieties.

2.5.1 Randomization and Layout

The steps involved in the randomization and layout are:

O step 1. Based on the prescribed grouping criterion, group the treatments
into s groups, each consisting of ¢/s treatments, where 1 is the total number
of treatments. For our example, the varieties are grouped into three groups,
A, B, and C each consisting of 15 varieties, according to their expected
growth duration.

O step 2. Divide the experimental area into r replications, each consisting of
t experimental plots. For our example, the experimental area is divided into
three replications, each consisting of (3)(15) = 45 experimental plots.

O step 3. Divide each replication into s blocks, each consisting of /s
experimental plots. For our example, each of the three replications is
divided into three blocks, each consisting of 45/3 = 15 experimental plots.

O sTep 4. Using one of the randomization schemes described in Section 2.1.1,
assign the s groups at random to the s blocks of the first replication. Then,
independently repeat the process for the remaining replications.

For our example, the varietal groups 4, B, and C are assigned at random
to the three blocks of replication I, then replication 11, and finally replica-
tion II1. The .esult is shown in Figure 2.10.

O STEP 5. To each of the three blocks per replication, assign at random the
t/s treatments belonging to the group that was assigned in step 4 to the
particular block. For our example, starting with the first block of replication
1, randomly assign the 15 varieties of group A to the 15 plots in the block.
Repeat this process for the remaining eight blocks, independently of each
other. The final result is showr in Figure 2.11.

2.5.2 Analysis of Variance

The steps in the analysis of variance of a group balanced block design are
shown below using the data in Table 2.22 and the layout in Figure 2.11.
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Figure 2.10 Random assignment of three groups of varieties (4, B, and C) into three blocks in
each of the three replications, representing the first step ‘n the randomization process of a group

balanced block design.
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Figure 2.11 A samplc layout of a group balanced block design involving 45 varicties, divided into
three groups, vach consisting of 15 varicties, tested in three replications.

Table 2.22 Grain Yield Data of 45 Rice Varluties Tested In a
Group Balanced Block Deslign, with 15 Varleties per Group”

Varicty Grain Yield, t /ha vﬁzﬁy

Number Rep. I Rep. I Rep. 111 (T)
1 4252 3.548 3114 10.914
2 3.463 2720 2.789 8.972
3 3228 2.197 2.860 8.885
4 4.153 3672 3.738 11.563
5 3.672 2781 2.788 9.241
6 3337 2.803 2.936 9.076
7 3.498 3.725 2.627 9.850
8 3.222 3142 2.922 9.286

7




Table 2.22 (Continued)

Vaiety Grain Yield, t/ha Veniel
Number Rep. ] Rep. II Rep. 111 (7
9 3.161 3.108 27719 9.048
10 3.781 3.906 3.295 10.982
11 3.763 3.709 3.612 11.084
12 an 3.742 2.933 9.852
13 3.000 2.843 2.776 8.619
14 4.040 3.251 3.220 10.511
15 - 3.7% 3.027 3.125 9.942
16 3.955 3.030 3.000 9.985
17 3843 3.207 3.285 10.335
18 3.558 32 3.154 9.983
19 3.488 3.278 2.784 9.550
20 2.957 3.284 2.816 9.057
21 3237 2.835 3.018 9.090
22 3.617 2.985 2.958 9.560
23 4193 3.639 3.428 11.260
24 3611 3.023 2.805 9.439
25 3.328 2955 3.031 9.314
26 4.082 3.089 2.987 10.158
27 4,063 3.367 3.931 11.361
.28 3.597 3211 3.238 10.046
29 3.268 3913 3.057 10.238
30 4.030 3223 3.867 11.120
31 3.943 3133 3.357 10.433
32 2.799 3184 2,746 8.729
33 3479 m 4.036 10.892
3. 3.498 2912 3479 9.889
35 3431 2.879 3.505 9.815
36 4,140 4107 3.563 11.810
37 4,051 4206 3.563 11.820
38 3.647 2.863 2.848 9.358
39 4.262 3197 3.680 11.139
40 4,256 3.091 3.751 11.098
41 4.501 3.770 3.825 12.096
42 4334 3.666 4222 12.222
43 4416 3.824 3.096 11.336
44 3.578 3.252 4.091 10.921
45 4.270 3.896 4312 12.478
Rep. total (R) 166.969 148.441 146.947
Grand total (G) 462.357

9Group A consists of varieties 1-15, group B consists of varietics
16-30, and group C consists of varieties 31-45.

78
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1 step 1. Qutline the analysis of variance of a group balanced block design
with ¢ treatments, s groups, and r replications as:

Source Degree Sum :
of of of Mean"
Variation Freedom Squares Square
Replication r—1
Treatment gro-y. s—1
Error(a) (r=1¥s-1)
Treatments within group 1 ?:- -1
Treatments within group 2 -:- -1
Treatments within group s -_:- -1
Error(b) s(r - 1)( f - 1)
Total (rXn-1

J step 2. Compute the treatment totals (T'), replication totals (R), and the
grand total (G), as shown in Table 2.22,

J step 3. Construct the replication X group two-way table of totals (RS)
and compute the group totals (5), as shown in Table 2.23. Then compute
the correction factor, total SS, replication SS, group SS, and error(a) SS
as:

£

C.F.=i
rt

_ (462.357)°
(3)(45)

Total S§ = ) X? — C.F.
= [(4.252)* + -+ +(4.312)7] - 1,583.511077
= 29.353898

RZ

= 1,583.511077

Replication §§ = - C.F.

t

_ (166.969)" + (148.441)° + (146.947)°
- 45

-1,583.511077
= 5.528884
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Table 223 The Replication X Group Table of Yield Totals
" Computed from Data In Table 2.22

G
Yield Total (RS) otal
Group Rep. 1 Rep. II Rep. 111 (S)
A 53.537 48.774 45.514 147.825
B 54.827 48.310 47.359 150.496
C 58.605 51.357 54.074 164.036
SZ
Group SS = - C.F.

re/s

_ [(147.825)* + (150.496)" +(164.036)’]

(3)(45)/(3)
-1,583.511077
= 3,357499
RS)’
Error(a) SS = Z—E7s—)- — C.F.— Replication SS — Group S§
[(s3.537) + - +(54.074)?]
= - 1,583.511077
(45)/(3)
—5.528884 — 3.357499
= 0.632773

O sTep 4. Compute the sum of squares among treatments within the ith
group as: /s )

LT
J=1 Y S?
Treatments within group i §§ = PRy

where T, is the total of the jth treatment in the ith group and §; is the total
of the i tfn group.

For our example, the sum of squares among varieties within each of the
three groups is computed as:

L} s
3 (3)45)/0)

_(10914)° + - +(9.942)°  (147.825)’
3 45

Varieties within group 4 §S =

= 4,154795
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| 2T} S2
Varieties within group B SS = -
Broup 3 0®)70)

_ (9985)* + --- +(11.120)° _ (150.496)"
3 45

= 2.591050

Y 1¢ Sé
Varieties withi == - ==
arieties within group C SS 3 (3)(45)/3

_ (10433 + ... +(12478)"  (164.036)°
3 45

= 5.706299

Here, T,, T, and T refer to the treatment totals, and S,, Sp, and S,
refer to the group totals, of group 4, group B, and group C, respectively.

O step 5. Compute the error(b) SS as:
Error(b) SS = Total SS — (the sum of all other SS)
= 29.353898 —(5.528884 + 3.357499 + 0.632773
+4.154795 + 2.591050 + 5.706299)
= 7.382598

O step 6.  Compute the mean square for each source of variation by dividing
the SS by its 4. /. as:

Replication SS

Replication MS = p—

_ 5.528884
T2

Group SS
s—1

_3.357499
)

Error(a) SS
(r=1)(s-1)

_ 0632773
(2)(2)

= 2.764442

Group MS =

= 1.678750

Error(a) MS =

= (.158193
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Varieties within groun 4 MS = Varieties Z:,l/t.?;n—grl oup 4 5§

~4.154795
ST 14

= 0.296771

Varieties within group B SS
(t/s) -1

_ 2.591050

14

Varieties within group B MS =
= (.185075

Varieties within group C SS
(t/5) -1
_ 5.706299
14
Error(b) SS
s(r=D[(1/5) - 1]

_ 7.382598
84

Varieties within group C MS =

= 0.407593

Error(b) MS =

= 0.087888

0 step 7.  Compute the following F values:

Group MS

F(group) = Error(a) MS

1.678750

= 0.158193

F(varieties within group 4) = Vaneue;:\r/:r(lz)grﬁc;;p A MS

= 10 61*

_0.296771
"~ 0.087888

F(varieties within group B) = Var 'eue;::::‘('z)g;‘;;p BMS

= 3.38

~0.185075

= 0.087888 ~ 1!

Varieties within group C My

F(varieties within group C) =

Error(b) MS
0.407593
"~ 0.087888 4.64

*Although the crror (a) d.f. of 4 is not adequate for valid test of significance (sce Section 2.1.2.1,
step 6), for illustration purposes, such a deficiency has been ignored.
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O step 8. For each computed F value, obtain its corresponding tabular F
value, from Appendix E, at the prescribed level of significance, with f, = d.f.
of the numerator MS and f, = d.f. of the denominator MS.

For our example, the tabular F values corresponding to the computed
F(group) value, with f; = 2 and f, = 4 degrees of freedom, are 6.94 at the
5% level of significance and 18.00 at the 1% level; those corresponding to
each of the three computed F(varieties within group) values, with f;, = 14
and f, = 84 degrees of freedom, are 1.81 at the 5% level of significance and
2.31 at the 1% level.

O ster 9. Compute the two coefficients of variation corresponding to the two
values of the error mean square as:

VError(a) MS
Grand mean
v0.158193

=m——)(]00=11.6%

JError(b) MS

Grand mean

- T g

cw(a) = x 100

cw(b) = X 100

O sTep 10. Enter all values obtained in steps 3 to 9 in the analysis of variance
outline of step 1, as shown in Table 2.24. Results indicate a significant
difference among the means of the three groups of varieties and significant
differences among the varieties in each of the three groups.

Table 2.24 Analysis of Varlance (Group Balanced Block Design) for Data in
Table 2,22¢

urce Degree Sum

g‘f’ g of Mean Computed ~_Tabular F
Variation Freedom Squares Square F* 5% 1%
Replication 2 5.528884  2.764442

Varietal group 2 3357499 1.678750 10.61°* 694 18.00
Error(a) 4 0.632773  0.158193

Varieties within group 4 14 4.154795  0.296771 3.38°¢ 1.81 231
Varieties within group B 14 2.591050 0185075 211° 1.81 231
Varieties within group C 14 5706299 0407593 4.64°* 1.81 231
Error(b) 84 7.382598  0.087888

Total 134 29.353898

“ev (a) = 11.6%, cv (b) = 8.7%.
bes o significant at 1% level, * = significant at 5% level.



CHAPTER 3
Two-Factor Experiments

Biological organisms are simultaneously exposed to many growth factors
during their lifetime. Because an organism’s response to any single factor may
vary with the level of the other factors, single-factor experiments are often
criticized for their narrowness. Indeed, the result of a single-factor experiment
is, strictly speaking, applicable only to the particular level in which the other
factors were maintained in the trial.

Thus, when response to the factor of interest is expected to differ under
different levels of the other factors, avoid single-factor experiments and con-
sider instead the use of a factorial experiment designed to handle simulta-
neously two or more variable factors.

3.1 INTERACTION BETWEEN TWO FACTORS

Two factors are said to interact if the effect of one factor changes as the level
of the other factor changes. We shall define and describe the measurement of
the interaction effect based on an experiment with two factors A and B, each
with two levels (a, and a, for factor 4 and b, and b, for factor B). The four
treatment combinations are denoted by a,by, a,b,, ayb,, and a,b,. In addition,
we define and describe the measurement of the simple effect and the main effect
of each of the two factors 4 and B because these effects are closely related to,
and are in fact an immediate step toward the computation of, the interaction
effect.

To illustrate the computation of these three types of effects, consider the two
sets of data presented in Table 3.1 for two varieties X and Y and two nitrogen
rates N, and N;; one set with no interaction and another with interaction.

0O cTep 1. Compute the simple effect of factor A4 as the difference between its
two levels at a given level of factor B, That is:

» The simple effect of 4 at by = a,b, — ayb,
+ The simple effect of 4 at b, = a,b, — ayb,

84
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Table 3.1 Two Hypothetical Sets of 22 Factorial
Data: One with, and Another without, Interaction
between Two Factors (Varlety and Nitrogen Rate)

Rice Yield, t/ha
Okg N/ha 60 kg N/ha

Variety (M) (M) Av,
No interaction
X 10 3.0 20
Y 20 4.0 30
Av, 1.5 35
Interaction present

X 1.0 1.0 1.0
Y 20 4.0 30
Av. 1.5 25

85

In the same manner, compute the simple effect of factor B at each of the
two levels of factor A4 as:

+ The simple effect of B at a, = agh, — ayb,
« The simple effect of B at a, = a,b, ~ a,b,

For our example (Table 3.1), the computations based on data of the
set with interaction are:

Simple effect of variety at Ny = 2.0 — 1.0 =1.0t/ha
Simple effect of variety at N, = 4.0 — 1.0 = 3.0 t/ha
Simple effect of nitrogen of X = 1.0 — 1.0 = 0.0 t/ha
Simple effect of nitrogen of ¥ = 4.6 — 2.0 = 2.0 t/ha

And the computations based on data of the set without interaction

are:

Simple effect of variety at Ny = 2.0 -~ 1.0 = 1.0 t/ha
Simple effect of variety at N, = 4.0 — 3.0 = 1.0t/ha
Simple effect of nitrogen of X = 3.0 ~ 1.0 = 2.0 t/ha
Simple effect of nitrogenof Y = 4.0 — 2.0 = 2.0t/ha
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O step 2. Compute the main effect of factor A as the average of the simple
effects of factor A over all levels of factor B as:

The main effect of A = (1,/2) (simple effect of A4 at b,

+ simple effect of 4 at b,)
= (1/2)[(a,by — agho) + (a6, - agb)]

In the same manner, compute the main effect of factor B as:
“The main effect of B = (1 /2)(sxmple effect of B at a0

+ simple effect of B at al)
= (1/2)[(001’1 - aobo) +(d1bt -, “11’0)]

For our example, the computatlons based on data of the set with
interaction are: : .

Main effect of variety —-,'(1 /2)(1.Q ; 3.0) = \2.0 t/ha
Main effect of nitrogen = (1,/2)(0.0 + 2.0)=1.0tha

And the corflptxtetions based on data without interaction are:
Main effect of variety = (1/2)(1.0 + 1.0) = 1.0 t/ha

Main effect of nitrogen = (1,/2)(2.0 + 2.0) = 2.0t/ba

O step 3. Compute the interaction effect between factor 4 and factor B as a
function of the difference between the simple effects of A at the two levels of
B or the difference between the simple effects of B at the two levels of A4:
A X B = (1/2)(simple effect of A at b, — simple effect of A4 at by)
= (1/2)[(01”1 — agb) —(aybo - aobo)]
or,

A X B = (1/2)(simple effect of B at a, — simple effect of B at a05

= (1/2)[(‘11”1 — ayby) —(agb, - aobo)]
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For our example, the computations of the variety X nitrogen interaction
effect based on data of the set with interaction are:

V X N = (1/2)(simple «ffect of variety at N,
—simple effect of variety at N,)
= (1/2)(3.0 - 1.0) = 1.0t /ha
or,
V x N = (1/2)(simple effect of nitrogen of Y
~simple effect of nitrogen of X)
= (1/2)(2.0 - 0.0) = 1.0 t/ha

And the computations of the variety X nitrogen interaction effect based
on data of the set without interaction are:

VXN=1/2(10-10)=00t/ha
or,

VX N=1/2(20 - 2.0) = 0.0t/ha

A graphical representation of the nitrogen response of the two varieties is
shown in Figure 3.1a for the no-interaction data and in Figure 3.1¢ for the
with-interaciion data having an interaction effect of 1.0 t/ha. Cases with lower
and highe. irteraction effects than 1.0 t/ha are illustrated in Figures 3.1b and
3.1d. Figure 3.1b shows the nitrogen response to be positive for both varietics
but with higher response for variety Y (2.0 t/ha) than for varicty X (1.0 t/ha),
giving an interaction effect of 0.5 t/ha. Figure 3.1d shows a large positive
nitrogen response for X (2.0 t/ha) and an cqually large but negative response
for variety Y, giving an interacuon effect of 2.0 t /ha.

From the foregoing numerical computation and graphical representations of
the interaction effects, three points should be noted:

1. An interaction effect between two factors can be measured only if the
two factors are tested together in the same experiment (i.c., in a factorial
experiment).

2. When interaction is absent (as in Figure 3.1a) the simple effect of a
factor is the same for all levels of the other factors and equals the main effect.
For our example, the simple efTects of variety at N, and N, are both 1.0 t/ha,
which is the same as its main effect. That is, when interaction is absent, the
results from separate single-factor experiments (i.e., one for cach factor) are
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Figure 3.1 Graphical representation of the different magnitudes of interaction between varieties
(X and Y) and nitrogen rates (N, and N,) with (a) showing no interaction, (b) and (c) showing
intermediate interactions, and (d) showing high interaction.

equivalent to those from a factorial experiment with all factors tested together.
In our example, the varietal effect would have been estimated at 1.0 t/ha
regardless of whether:

« The two varicties are tested under N, in a single-factor experiment,
+ The two varieties are tested under N, in a single-factor experiment, or

. The two varieties are tested in combination with the two nitrogen rates in a
two-factor experiment.
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3. When interaction is present (as in Figures 3.1b, 3.1c, and 3.1d) the
simple effect of a factor changes as the level of the other factor changes.
Consequently, the main effect is different from the simple effects. For example,
in Figure 3.1c, the simple effects of nitrogen are 0.0 t/ha for variety X and 2.0
t/ha for variety Y, and its main effect is thus 1.0 t/ha. In other words,
although there was a large response to nitrogen application in variety Y, there
was none in variety X. Or, in Figure 3.1d, variety Y outyiclded varicty X by 2.0
t/ha under N, but gave a 2.0 t/ha lower yield under N,. If the mean yields of
the two varieties were calculated over the two nitrogen rates, the two variety
means would be the same (i.e., 2.5 t/ha). Thus, if we look at the difference
between these two variety means (i.e., main effect of variety), we would have
concluded that there was no varietal difference. 1t is therefore clear that when
an interaction effect between two factors is present:

» The simple effects and not the main effects should be examined.

+ The result from a single-factor experiment is applicable only to the particu-
lar level in which the other factors were maintained in the experiment and
there can be no generalization ot the result to cover any other levels.

3.2 FACTORIAL EXPERIMENT

An experiment in which the treatments consist of all possible combinations of
the selected levels in two or more factors is referred to as a factorial experi-
ment.* For example, an experiment involving two factors, each at two levels,
such as two varicties and two nitrogen rates, is referred to as a 2 X 2 or a 22
factorial experiment. Its treatments consist of the following four possible
combinations of the two levels in each of the two factors.

Treatm=nt Combination

Treatment
Number Variety N rate, kg/ha
1 X 0
2 X 60
3 Y 0
4 Y 60

If the 22 factorial experiment is expanded to include a third factor, say weed
control at two levels, the experiment becomes a 2 X 2 X 2 or a 2* factorial

*The term complete fuctorial experiment is somctimes used when the treatments include all
combinations of the selected levels of the variable factors. In contrast, the term incotnplete
factorial experiment is used when only a fraction of all the combinations is tested. Throughout this
book, however, we refer to complete Tactonal experiments as factonal experiments and use the
term incomplete lactorial, otherwise.
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experiment, with the following eight treatment combinations:

Treatment , Treatment Combination

Number Variety N rate, kg/ha Weed Control
1 X 0 With
2 X 0 Without
3 X 60 With
4 X 60 Without
5 Y 0 With
6 Y 0 Without
7 Y 60 With
8 Y 60 Without

Note that the term factorial describes a specific way in which the treatments
are formed and dues not, in any way, refer to the experimental design used.
For example, if the foregoing 2* factorial experiment is in a randomized
complete block design, then the correct description of the experiment would be
23 factorial experiment in a randomized complete block d.:sign.

The total number of treatments in a factorial experiment is the product of
the levels in each factor; in the 22 factorial example, the number of treatments
is 2 X 2 = 4, in the 2? factorial the number of treatment: is 2 X 2 X 2 = 8,
The number of treatments increases rapidly with an increase in the number of
factors or an increase in the levelr in each factor. For a factorial experiment
involving five varictics, four nitrogen rates, and three weed-control methods,
the tatal number of trcatments would be 5 X 4 X 3 = 60.

Thus, avoid indiscriminate use of factorial experiments because of their
large size, complexity, ar.d cost. Furthermore, it is not wise to commit oneself
to a large experiment at the beginning of the investigation whken several small
preliminary experiments may offer promising results. For example, a plant
breeder has collected 30 new rice varieties from a neighboring ¢ antry and
wants to assess their reaction to the local environment. Because the environ-
ment is expected to vary in terms of soil fertility, moisture levels, and so on,
the ideal experiment would be one that tests the 30 varieties in a factorial
experiment involving such other variable factors as fertilizer, moisture level,
and population density. Such an experiment, however, becomes extremely large
as variable factors other than varieties are added. Even if only one factor, say
nitrogen fertilizer with three levels, were included the number of treatments
would increase from 30 to 90.

Such a large experiment would mean difficulties in financing, in obtaining
an adequate experimental area, in controlling soil heterogeneity, and so on.
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Thus, the more pract.cal approach would be to test the 30 varieties first in a
single-factor experiment, and then use the results to select a few varieties for
further studies in more detail. For example, the initial single-factor experiment
may show that only five varietics are outstanding enough to warrant further
testing. These five varieties could then be put into a factorial experiment with
three levels of nitrogen, resulting in an experiment with 15 treatments rather
than the 90 treatments needed with a factorial experiment with 30 varieties.
Thus, although a factorial experiment provides valuable information on inter-
action, and is without question more informative than a single-factor experi-
ment, practical consideration may limiu its use.

For most factorial experiments, the number of treatments is usually too
large for an cfficient use of a complete block design. Furthermore, incomplete
block designs such as the lattice designs (Chapter 2, Section 2.4) are not
appropriate for factorial experiments. There are, however, special types of
design, developed specifically for factorial experiments, that are comparable to
the incomplete block designs for single-factor experiments. Such designs, which
are suitable for two-factor experiments and are commonly used in agricultural
research, are discussed here.

3.3 COMPLETE BLOCK DESIGN

Any of the complete block designs discussed in Chapter 2 for single-factor
experiments is applicable to a factorial experiment. The procedures for ran-
domization and layout of the individual designs are directly applicable by
simply ignoring the factor composition of the factorial treatments and consid-
ering all the treatments as if they were unrelated For the analysis of variance,
the computations discussed for individual designs are also directly applicable.
However, add:tional computational steps are required to partition the treat-
ment sum of squares into factorial components corresponding to the main
effects of individual factors and to their interactions. The procedure for such
partitioning is the same for all complete block designs and is, therefore,
illustrated for only cne case, namely, that of a randomized complete block
(RCB) design.

We illustrate the step-by-step procedures for the analysis of variance of a
two-factor experiment in a RCB design with an experiment involving five rates
of nitrogen fertilizer, three rice varieties, and four replications. The list of the
15 factorial treatment combinations is shown in Table 3.2, the experimental
layout in Figure 3.2, and the data in Table 3.3.

O sTer 1. Denote the number of replications by r, the level of factor 4 (i.e.,
variety) by a, and the level of factor B (i.e., nitrogen) by b. Construct the



Table 3.2 The 3 x 5 Factorlal Treatment Combinations of Three Rice
Varieties and Flve Nitrogen Levels

Factorial Treatment Combination

Nitrogen Level, 6966 P1215936 Milfor 6(2)
kg/ha (") (V2) (V)
O(No) N NoV2 No¥s
40(M) M N, MY
T(N) W M1, WA

100(N;) 14! g MK
130(N,) N Ny WAZ)

Table 3.3 Grain Yleld of Three Rice Varleties Tested with Five Levels
of Nitrogen In a RCB Design”

Grain Yield, t/ha

Treatment
Nitrogen Level, Rep. Rep. Rep. Rep. Total
kg/ha I I1 111 v (T)
"
Ny 3.852 2.606 3.144 2.894 12496
N 4,788 4,936 4.562 4608 18.894
N, 4.576 4.454 4.884 3.924 17.838
N, 6.034 5.276 5.906 5652  22.868
N, 5.874 5.916 5.984 5518  23.292
V2
Ny 2.846 3.794 4,108 344 14192
N, 4.956 5.128 4,150 4990 19.224
N, 5.928 5.698 5.810 4308 21.744
N 5.664 5.362 6.458 5474 22958
N, 5.458 5.546 5.786 5932  22.722
K
N, 4.192 3.754 3.738 3428 15112
N, 5.250 4,582 4.896 4286 19.014
N, 5.822 4.848 5.678 4932  21.280
N, 5.888 5.524 6.042 4756 22210
N, 5.864 6.264 6.056 5362  23.546
Rep. total (R) 76.992 73.688 77202  69.508
Grand total (G) 297.39%0

“For description of treatments, see Table 3.2
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VaNa | VaNy [V Ng| Vi Ny | VoNg

Rep.1 | VaNg| Vi Na| VaNg| Vi Np| VaN3

VpNy | VaNy | VaNo | Vi No| VoN,

VaNy| VaN3| ¥y Ny [ VoNg [ VN,

Rep. I | ViNa| VaNa| V; Np | Vy Ng| VoNg

VyNo| VaNg| Vo Ny [ V3N, | VaNg

ViNy | VaNg| Vy No| VaNy | ViNg

Rep. I | V2Na | Vi Nz | Vi N3 | Vo Ng | V3N,

VaNo| VsN2[ VaNy | VaN3| VaNs

Vy N | VaNg | Vo Ng | Vi No | VaNg ‘

Figure 3.2 A sample layout of a 3 X 5 factorial
i i ing three varietics (V;, V,, and

Rep. Iz | Vi Na| VaNy | Vi Ng| Vy Ny | VN[ experiment m»:olvmg t 1 Vay

P V,) and five nitrogen rates (Ny, Ny, Ny, Ny, and

VyNg| VoNy | V3 Ny | VyNy| V3N, Nyina .ranf:lomized complete block design with

four replications.

outline of the analysis of variance as:

Source Degree Sum
of of of Mean Computed 1abular F
Variation Freedom Squares  Square F 5% 1%
Replication r-1=3
Treatment ab—-1=14

Variety (A4) a-1=()

Nitrogen (B) b-1=(4)

AXB (a—=1Xb~1)=(8)
Error (r=1fab-1)=42

Total rab-1=59

D step 2. Compute treatment totals (T'), replication totals (R), and the
grand total (G), as shown in Table 3.3; and compute the total SS, replica-
tion S, treatment S, and error S, following the procedure described in
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Chapter 2, Section 2.2.3;

_ (297.3%0)
“4)(3)6)

Total SS = LX? ~ C.F.

= 1,474,014

= [(3.852)2 +(2.606)* + --- +(5.362)?] — 1,474,014

= 53.530
2
Replication S§ = IR _cF.
ab
(6.992) + -+ - +(69.508)*
- ~ 1,474,014
(3)(5) .
= 2,599
2
Treatment S§ = 2:"1- - C.F.
2 2
o (12496) + --- +(23.546)" _ 1,474,014

4
= 44.578
Error SS = Total S§ — Replication SS — Treatment SS
= 53.530 — 2.599 — 44.578
= 6.353

The preliminary analysis of variance, with the various SS just computed,
is as shown in Table 3.4,

O step 3. Construct the factor A X factor B two-way table of totals, with
factor A totals and factor B totals computed. For our example, the variety
X nitrogen table of totals (4B) with variety totals (A4) and nitrogen totals
(B) computed is shown in Table 3.5.
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Table 2.4 Preliminary Analysis of Variance for Data In Table 3.3

Source Degree Sum
of 5fr of Mean Computed ~ I@bular F
Variation Freedom Squares Square F° 5% 1%
Replication 3 2.599 0.866 .74+ 283 429
Treatment 14 44.578 3.184 21.09%* 1~ 254
Error 42 6.353 0.151

Total 59 53.530

de* = significant at 1% level.

D sTep 4.  Compute the three factorial components of the treatment sum of
squares as:

2
ASS =§_4__ C.F.
rb

_ (95.388)° +(100.840)" +(101.162)*

- 1,474.014
(4)(5)

= 1.052

2

BSS = E—B- - C.F.
ra
2 2

_ (41.800)" + --- +(69.560)" 1,474,014

(4)(3)

= 4].234

Table 3.5 The Varlety x Nitrogen Table of Totals from Data in Table 3.3

. Nitrogen
Yield Total (AB) Total
Nitrogen 4 v, Vs (B)
Ny 12.496 14.192 15.112 41.800
N, 18.894 19.224 19.014 57.132
N, 17.838 21.744 21.280 60.862
N, 22.868 22.958 22,210 68.036
N, 23.292 22722 23.546 69.560
Variety total (A4) 95.388 100.840 101.162 297.390
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A X BSS = Treatment SS — A SS — BSS
= 44,578 — 1.052 ~ 41.234
= 2,292

O step 5. Compute the mean square for each source of variation by dividing
the SS by its d. /.

ASS

a-1

= ——1'352 = 0.526

AMS =

BSS
BMS=Z'_—1

TR

AXBSS
(a—1)(b-1)
_ 2292

(24

Error SS
(r—1)(ab-1)

6353
GEEG) -1]

O sTep 6, Compute the F value for each of the three factorial components as:

AMS
Error MS

_ 0.52
0.151

BMS
F(B) = Error MS

_ lo.308
0.151

AXBMS
Error MS

0286
~ 0.151

AXBMS =

= 0.286

Error MS =

= 0.151

F(A) =

= 348

= 68.26
F(A x B) =

= 1.89
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Table 3.6 Analysis of Varlance of Data in Table 3.3 from a 3 X 5 Factorlal
Experiment in RCB Deslign’

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square F? 5% 1%
Replication 3 2.599 0.866 5.74** 283 429
Treatment 14 44.578 3.184 21.09** 194 254
Variety(A4) 2) 1.052 0.526 3.48* 3.22 515
Nitrogen( B) 4) 41234  10.308 68.26** 2,59 3.80
AXB (8) 2292 0.286 1.89™ 217 296
Error 42 6.353 0.151
Total 59 53.530
%v = 7.8%.

bss = significant at 1% level, * = significant at 5% level, ™ = not significant.

O step 7. Compare each of the computed F values with the tabular F value,
from Appendix E, with f; = d.f. of the numerator MS and f, = d.f. of the
denominator M3, at a prescnived level of significance. For example, the
computed F(A) value is compared with the tabular F values (with f, = 2
and f, = 42 degrees of freedom) of 3.22 at the 5% level of significance and
5.15 at the 1% ievel. The result indicates that the main effect of factor A
(variety) is significant at the 5% level of significance.

O sTep 8. Compute the coefficient of variation as:

vError MS

V= e—————
Grand mean

v0.151
= 795_6- X 100 = 7.8%

O ster 9. Enter all values obtained in steps 4 to 8 in the preliminary analysis
of variance of step 2, as shown in Table 3.6. The results show a nonsignifi-
cant interaction between variety and nitrogen, indicating that the varietal
difference was not significantly affected by the nitrogen level applied and
that the nitrogen effect did not differ significantly with the varieties tested.
Main effects hoth of variety and of nitrogen were significant.

3.4 SPLIT-PLOT DESIGN

The split-plot design is specifically suited for a two-factor experiment that has
more treatments than can be accommodated by a complete block design. In a
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split-plot design, one of the factors is assigned to the muain plot. The assigned
factor is called the main-plot factor. The main plot is divided into subplots to
which the second factor, called the subplot factor, is assigned. Thus, each main
plot becomes a block for the subplot treatments (i.e., the levels of the subplot
factor).

With a split-plot design, the precision for the measurement of the effects of
the main-plot factor is sacrificed to improve that of the subplot factor.
Measurement of the main effect of the subplot factor and its interaction with
the main-plot factor is more precise than that obtainable with a randomized
complete block design. On the other hand, the measurement of the effects of
the main-plot treatments (i.e., the levels of the main-plot factor) is less precise
than that obtainable with a randomized complete block design.

Because, with the split-plot design, plot size and precision of measurement
of the effects are not the same for both factors, the assignment of a particular
factor to either the main plot or the subplot is extremely important. To make
such a choice, the following guidelines are suggested:

1. Degree of Precision. For a greater degree ot precision for factor B than
for factor A, assign factor B to the subplot and factor A to the main plot. For
example, a plant breeder who plans to evaluate 10 promising rice varieties with
three levels of fertilizaticn in a 10 X 3 factorial experiment would probably
wish to have greater precision for varietal comparison than for fertilizer
response. Thus, he would designate variety as the subplot factor and fertilizer
as the main-plot factor.

On the other hand, an agronomist who wishes to study fertilizer responses
of the 10 promising varieties developed by the plant breeder would probably
want greater precision for fertiliz~~ response than for varietal effect and would
assign variety to main plot and fertilizer to subplot.

2. Relative Sice of the Mam Effects. If the main effect of one factor
(factor B) is expected to be much larger and easier to detect than that of the
other factor (factor A), facior B can be assigned to the main plot and factor A
to the subplot. This increases the chance of detecting the difference among
levels of factor A4 which has a smaller effect. For example, in a fertilizer X
variety experiment, the researcher may assign variety to the subplot and
fertilizer to the main plot because he expects the fertilizer effect to be much
larger than .ne varietal effect.

3. Management Practices. The cultural practices required by a factor may
dictate the use of large plots. For practical expediency, such a factor may be
assigned to the main plot. For example, in an experiment to evaluate water
management and variety, it may be desirable to assign water management to
the main plot to miniinize water movement betwezn adjacent plots, facilitate
the simulation of the water level required, and reduce border effects. Or, in an
experiment to evaluate the performance of several rice varieties with different
fertilizer rates, the researcher may assign the main plot to fertilizer to minimize
the need to separate plots receiving different fertilizer levels,
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Main plot
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Replicotion [ Replication IL Replication I

Figure 3.3 Division of the expcrimental area into three blocks (1eplications) each consisting of six
main plots, as the first step in laying out of a split-plot experiment involving three replications and
six main-plot treatments.

In a split-plot design, both the procedure for randomization and that for
analysis of variance are accomplished in two stages—one on the main-plot
level and another on the subplot level. At each level, the procedures of the
randomized complete block design*, as described in Chapter 2, are applicable.

3.4.1 Randomizaticn and Layout

There are two separate randomization processes in a split-plot design—one for
the main plot and another for the subplot. In each replication, main-plot
treatments are first randomly assigned to the main plots followed by a random
assignment of the subplot trcatments within each main plot. Each is done by
any of the randomization schemes of Chapter 2, Section 2.1.1,

The steps in the randomization and layout of a split-plot design are shown,
using a as the number of main-plot treatments, b as the number of subplot
treatments, and r as the number of replications. For illustration, a two-factor
experiment involving six levels of nitrogen (main-plot treatments) and four rice
varieties (subplot treatments) in three replications is used.

O step 1. Divide the experimental area into r = 3 blocks, each of which is
further divided into ¢ = 6 main plots, as shown in Figure 3.3.

*The assignment of the main-plot factor can, in fact, follow any of the complete block designs,
namely, completely randomized design, randomized complete block, and latin square; but we
consider only the randomized complete block because it is the most appropriate and the most
commonly used for agricultural experiments.



100  Two-Factor Experiments

Replication 1

Replication I

Rephcation I

Figure 34 Random assignment of six nitrogen levels (Ny, Ny, Ny, N3, Ny, and Ns) to the six main
plots in each of the three replications of Figuie 3.3,

0O step 2. Following the RCB randomization procedu: - with a = 6 treat-
ments and r = 3 replicaticns (Chapter 2, Section 2.2.2) randomly assign the
6 nitrogen treatments to the 6 main plots in each of the 3 blocks. The result
may be as shown in Figure 3.4.

O step 3. Divide each of the (r)(a) = 18 main plots into b = 4 subplots and,

following the RCB randomization

procedure for b = 4 (treatments and

Nys N3 Ny No Ng Np Ny No Ng Na Ng N3 No Ny Ng Ns Nz Na
Vo [V [Vifva|Valval [vi|Valvalw|vi|va] kvalva|va|vi|va|w
Vy (Ve[ Ve |Va|vai{val fvalvi{Vafva|Va|Va] {Va|Va|Va]|Va|Vs]va
Va Vz V4 V' Vz V| Vz VZ V| V4 VZ V4 V| V| V4 Vg V4 Vz
Vo [Va|Va|Va Vi tVal [Valvaivaivaiva|vid valva|vi|valvi|vs
Replication 1 Replication I Replication III

Figure 3.5 A sample layout of a split-plot design involving four rice varietics (¥}, V5, V3, and V)
as subplot treatments and six nitrogen levels ( Ny, Ny, Ny, Ny, Ny, and Ny) as main-plot trcatments,
in three replications.
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(rXa) = 18 replications, randomly assign the 4 varieties to the 4 subplots in
each of the 18 main plots. The result may be as shown in Figure 3.5.

Note that field layout of a split-plot design as illustrated by Figure 3.5
has the following important feaiures:

1. The size of the main plot is b times the size of the subplot. In our
example with 4 varieties (b = 4) the size of the main plot is 4 times
the subplot size.

2. Each main-plot treatment is tested r times whereas each subplot
treatment is tested (a)(r) times. Thus, the number of times a subplot
treatment is tested will always be larger than that for the main plot
and is the primary reason for more precision for the subplot treat-
ments relative to the main-pla: treatments. In our example, each of
the 6 levels of nitrogen was tesied 3 times but each of the 4 varieties
was tested 18 times.

34.2 Analysis of Variance

The analysis of variance of a split-plot design is divided into the main-plot
analysis and the subplot analysis. We show the computations involved in the
analysis with data from the two-factor experiment (six levels of nitrogen and
four rice varicties) shown in Figure 3.5. Grain yield data are shown in Table
3.7.

Let A denote the main-plot factor and B, the subplot factor. Compute
analysis of variance:

O sTtep 1. Construct an outline of the analysis of variance for a split-plot
design as:

Degree Sum

(S; e :lr of Mean Computed 1abular F
Variation Freedom Squares Square F 5% 1%
Replication r-1=2
Main-plot factor (A) a-1=35
Error(a) (r—=1)a-1)=10
Subplot factor ( B) b—-1=3
AXB (a~1b-1)=15
Error(b) a(r—1b~-1) =36

Total rab—1 =171

DO step 2. Construct two tables of totals;

A. The replication X factor A two-way table of totals, with the replication
totals, factor 4 totals, and grand total computed. For our example, the



Table 3.7 Grain Yieild Data of Four Rice
Vareties Grewn with Six Levels of Nitrogen
In a Spli-Plot Design with Three Replications

Grain Yield, kg/ha

Variety Rep. 1 Rep. 11 Rep. 111

N,(0 kg N/ha)

Vi(IR8) 4,430 4,478 3,850

V5 (IRS5) 3,944 5,314 3,660

V3(C4-63) 3,464 2,944 3,142

Vi(Peta) 4,126 4,482 4,836

N, (60 kg N /ha) '

14 5,418 5,166 6,432

Vs 6,502 5,858 5,586

Vi 4,768 6,004 5,556

Vs 5,192 4,604 4,652
N,(90 kg N/ha)

14 6,076 6,420 6,704

Vs 6,008 6,127 6,642

Vi 6,244 5,724 6,014

Vi 4,546 5,744 4,146
. N;(120 kg N/ha)

|4 6,462 7,056 6,680

v, 7,139 6,982 6,564

V; 5,792 5,880 6,370

V, 2,774 5,036 3,638
Ny(150 kg N/ha)

" 7,290 7,848 7,552

v, 7,682 6,594 6,576

o 7,080 6,662 6,320

V 1,414 1,960 2,766
N;(180 kg N/ha)

1) 8,452 8,832 8,818

v, 6,228 7,387 6,006

|14 5,594 7,122 5,480

Vs 2,248 1,380 2,014

102
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Table 3.8 The Replication x Nitrogen Table of Yield Totals Computed
from Data in Table 3.7

Yield Total (RA) Nitrogen
Nitrogen Rep. 1 Rep. 11 Rep. Il (4)
N 15,964 17,218 15,488 48,670
A 21,880 21,632 22,226 65,738
N, 22,874 24,015 23,506 70,395
N, 22,167 24,954 23,252 70,373
N, 23,466 23,064 23,214 69,744
Ny 22,522 24,721 22,318 69,561
Rep. total (R) 128,873 135,604 130,004
Grand total (G) 394,481

replication X nitrogen table of totals (RA4), with the replication totals
(R), nitrogen totals (A), and the grand total (G) computed, is shown in
Table 3.8.

B. The factor A X factor B two-way table of totals, with factor B totals
computed. For our example, the nitrogen X variety table of totals
(AB), with the variety totals (B) computed, is shown in Table 3.9.

O step 3.  Compute the correction factor and sums of squares for the main-
plot analysis as:

(394,481)°

= Ga 1B

Table 3.9 The Nitrogen X Varlety Table of Yield Totals Computed
from Data In Table 3.7

Yield Total (4B)

Nitrogi n 4] v, vy v,
N 12,758 12,918 9,550 13,444
N 17,016 17,946 16,328 14,448
N, 19,200 18,777 17,982 14,436
N; 20,198 20,685 18,042 11,448
N, 22,690 20,852 20,062 6,140
N; 26,102 19,621 18,196 5,642

Varicty total (B) 117,964 110,799 100,160 65,558
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Total S§ = L X? - C.F.

= [(4,430) + .- +(2,014)"] - 2,161,323,047

= 204,747,916

2

Replication SS = %%— - C.F.

_ (128,873)° +(135,604) +(130,004)’
(6)(4)

- 2,161,323,047

= 1,082,577

2
A (nitrogen) SS = -gr%- —~ C.F.

_ (48,670)° + --- +(69,561)°
(3)4)

= 30,429,200

~ 2,161,323,047

T(RA)?
b

Error(a) SS = — C.F — Replication SS — 4 SS

_ (15964)° + --- +(22,318)°
4)

-1,082,577 - 30,429,200

- 2,161,323,047

= 1,419,678
O step 4. Compute the sums of squares for the subplot analysis as:
2
B (variety) SS = %%— - C.F.

(117,964)* + - -+ +(65,558)° S
= ~ 2,161,323,047
(3)(6) |

= 89,888,101
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2
giﬁ’—— C.F.—BSS-ASS

A X B (nitrogen X variety) S =

~(12,758)* + .- +(5,642)°
B 3

— 2,161,323,047
~ 89,888,101 — 30,429,200
= 39,343,487

Error(b) SS = Total SS ~ (sum of all other SS)
= 204,747,916 — (1,082,577 + 30,429,200 + 1,419,678
+89,888,101 + 69,343,487) |

= 12,584,873

0 step 5.  For each source of variation, compute the mean square by dividing
the SS by its corresponding d. f.:

Replication SS

Replication MS = ]

_ 1,082,577

2 = 541,228

AMS =455
a-1
= 2582 _ 6,085,840

Error(a) SS
(r-1)a-1)

_ 1,419,678
10

Error(a) MS =

= 141,968

BSS
BMS-—--b—_—i-

_ 89.888,101

= 29,962,700
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‘ A X BSS

(a—1)}b-1)

_, 69,343,487
15

Error(b) SS
(r=1)}(b-1)

_ 12,584,873
36

AXBMS =

= 4,622,899

. Error(b) MS = p
= 349,580

O step 6. Compute the F value for each effect that needs to be tested, by
dividing each mean square by its corresponding error term:

AMS

F(4) = Error(a) MS

_ 6,085,840
141,968

B MS
Error(b) MS

= 42.87

F(B) =

29,962,700 _
= 349580 ~ 571

A X BMS
F(AX B)= ———=
(4 ) Error(b) MS
4,622,899
= 49,580 - 122
0O step 7. For each effect whose computed F value is not less than 1, obtain
the corresponding tabular F value, from Appendix E, with f, = d./. of the
numerator MS and f, = d.f. of the denominator MS, at the prescribed level
of significance. For example, the tabular F values for F(A4 X B) are 1.96 at
the 5% level of significance and 2.58 at the 1% level.

O step 8. Compute the two coeflicients of variation, one corresponding to the
main-plot analysis and another corresponding to the subplot analysis:

JError(a) MS
—_— X 100

cw(a) = Grand mean

_ V141,968

5479 X 100 = 6.9%
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yError(b) MS

ev(b) = Grand mean x 100
V349,580 _
= —5,47- X 100 = 10.8%

The value of cv(a) indicates the degree of precision attached to the
main-plot factor. The value of cv(b) indicates the precision of the subplot
factor and its interaction with the main-plot factor. The value of cv(b) is
expected to be smaller than that of cv(a) because, as indicated earlier, the
factor assigned to the main plot is expected to be measured with less
precision than that assigned to the subplot. This trend does not always hold,
however, as shown by this example in which the value of cv(b) is larger than
that of cv(a). The cause for such an unexpected outcome is beyond the
scope of this book. If such results occur frequently, a competent statistician
should be consulted.

STEP 9. Enter all values obtained from steps 3 to 8 in the analysis of
variance outline of step 1, as shown in Table 3.10; and compare each of the
computed F values with its corresponding tabular F values and indicate its
significance by the appropriate asterisk notation (see Chapter 2, Section
2.1.2).

For our example, all the three effects (the two main effects and the
interaction eflect) are highly significant. With a significant interaction,
caution must be exercised when interpreting the results (see Section 3.1). For
proper comparisons between treatment means when the interaction effect is
present, see Chapter 5, Section 5.2.4.

Table 3.10 Analysis of Varlance of Data In Table 3.7 froma 4 X 6
Factorial Experiment in a Split-Plot Design”

Source Degree Sum

of of of Mean Computed Tabular F
Variation Freedom  Squares Square F* 5% 1%
Replication 2 1.082,577 541,228

Nitrogen (A4) 5 30,429,200 6,085,840  42.87**  3.33 5.64
Error(a) 10 1,419,678 141,968

Variety (B) 3 89,888,101 29,962,700  85.71**  2.86 4.38
AXB 15 69,343,487 4,622,899 13.22** 196 2.58
Error(b) 36 12,584,873 349,580

Total 71 204,747,916

Yep(a) = 6.9%, cu(b) = 10.8%.
hes m significant at 1% level.
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3.5 STRIP-PLOT DESIGN

The strip-plot design is specifically suited for a two-factor experiment in which
the desired precision for measuring the interaction effect between the two
factors is higher than that for measuring the main effect of either one of the
two factors. This is accomplished with the use of three piot sizes:

1. Vertical-strip plot for the first factor—the vertical factor
2. Horizontal-strip plot for the second factor—the horizontal factor
3. Intersection plot for the interaction between the two factors

The vertical-strip plot and the horizontal-strip plot are always perpendicular to
each other. However, there is no relationship between their sizes, unlike the
case of main plot and subplot of the split-plot design. The intersection plot is,
of course, the smallest. Thus, in a strip-plot design, the degrees of precision

associated with the main effects of both factors are sacrificed in order to
improve the precision of the interaction effect.

3.5.1 Randomization and Layout

The procedure for randomization and layout of a strip-plot design consists of
two independent randomization processes—one for the horizontal factor and
another for the vertical factor. The order in which these two processes are
performed is immaterial.

Let A represent the horizontal factor and B the vertical factor, and ¢ and b
represent their levels. As in all previous cases, r represents the number of
replications. We illustrate the steps involved with a two-factor experiment
involving six rice varieties (horizontal trcatments) and three nitrogen rates
(vertical treatments) tested in a strip-plot design with three replications.

O sTep 1. Assign horizontal plots by dividing the experimental area into
r = 3 blocks and dividing each of those into @ = 6 horizontal strips. Follow
the randomization procedure for a randomized complete block design with
a = 6 treatments and r = 3 replications (see Chapter 2, Section 2.2.2) and
randomly assign the six varieties to the six horizontal strips in each of the
three blocks, separately and independently. The result is shown in Figure
3.6.

O sTeEp 2. Assign vertical plots by dividing each block into b = 3 vertical
strips. Follow the randomization procedure for a randomized complete
block with b = 3 treatments and r = 3 replications (see Chapter 2, Section
2.2.2) and randomly assign the three nitrogen rates to the three vertical
strips in each of the three blocks, separately and independently. The final
layout is shown in Figure 3.7.
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% Vs Vs
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Vy % Vs
A A A
v, v, Ve
\/ Vs Vi
Replication 1 Replication I Replication I

Figure 3.6 Random assignment of six varicties (V;, ¥, V3, V,, Vs, and ¥;) to the horizontal
strips in a strip-plot design with three replications.

3.5.2 Analysis of Variance

The analysis of variance of a strip-plot design is divided into three parts; the
horizontal-factor analysis, the vertical-factor analysis, and the interaction analy-
sis. We show the computational procedure with data from a two-factor
experiment involving six rice varieties (horizontal factor) and three nitrogen
levels (vertical factor) tested in three replications. The field layout is shown in
Figure 3.7; the data is in Table 3.11.

O step 1. Construct an outline of the analysis of variance for a strip-plot
design as:

Source Degree Sum
of og; of Mcan Computed Tabular F
Variation Freedom Squares  Square F 5% 1%
Replication r—-1=2
Horizontal factor (A4) a-1=5
Error(a) (r=1)a-1)=10
Vertical factor ( B) b-1m=2
Error(b) (r=1)b~-1)=4
AXB (a-1)b-1)=10
Error(c) (r=a-1)b~-1)=20
Total rab—1 =53

0O sTeP 2. Construct three tables of totals:

1. The replication X horizontal-factor table of totals with replication totals,
horizontal-factor totals, and grand total computed. For our example, the
replication X variety table of totals (RA) with replication totals (R),
variety totals (A4), and the grand total (G) computed is shown in Table
312,



N, Ny N, Ny Np N Ns N N2

Ve Va Vs
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Figure 3.7 A sample layout of a strip-plot design with six varictics (¥, V3, V3, V4, Vs, and V) as
horizontal treatments and three nitrogen rates (N,, N, and N;) as vertical treatments, in three
replications.

Table 3.11 Data on Graln Yield of Six Varieties
of Rice, Broadcast Sceded and Grown with
Three Nitrogen Rates in a Strip-plot Design

with Three Replications
Nitrogen -
Rate, Grain Yield, kg/ha

kg/ha Rep. 1 Rep. 11 Rep. 111

IR8(V;)

0(N)) 2,373 3,958 4,384
60 (N,) 4,076 6,431 4,889
120 (N3) 7,254 6,808 8,582

IR127-80(V,)
0 4,007 5,795 5,001

- 60 5,630 7,334 7,177

120 7,053 8,284 6,297
IR305-4-12(V;)

0 2,620 4,508 5,621
60 4,676 6,672 7,019
120 7,666 7,328 8,611

TR400-2-5(V,)

0 2,726 5,630 3,821
60 4,838 7,007 4,816
120 6,881 7,735 6,667

TR665-58(Vs)

0 4,447 3,276 4,582
60 5,549 5,340 6,011
120 6,880 5,080 6,076

Peta (V,)

0 2,572 3,724 3,326
60 3,896 2,822 4,425
120 1,556 2,706 3,214

110
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2. The replication X vertical-factor table of totals with the vertical-factor
totals computed. For our example, the replication X nitrogen table of
totals (RB) with nitrogen totals (B) computed is shown in Table 3.13.

3. The horizontal-factor X vertical-factor table of totals. For our example,
the variety X nitrogen table of totals (4 B) is shown in Table 3.14.

O step 3.  Compute the correction factor and the total sum of squares as:

_ (285,657)°
(3)(6)(3)

= 1,511,109,660
Total S§ = LX? ~ C.F.
= [(2,373)2 + oo +(3,214)2] - 1,511,109,660
= 167,005,649
O ster 4. Compute the sums of squares for the horizontal analysis as:

2
Replication S = %— - C.F.

_ (84,700)* +(100,438)° +(100,519)*

- 1,511,109,660
(6)(3)

= 9,220,962

2
A (variety) SS = Z;_—'; -~ C.F.

_ (48,755) + -.- +(28,241)

~ 1,511,109,660
(3)(3)

= 57,100,201



112 Two-Factor Experiments

T(RA)?
b

Error(a) SS = — C.F.- Replication SS ~ 4 SS

_ (13,703) + .- +(10,965)’
3
~9,220,962 — 57,100,201
= 14,922,620

- 1,511,109,660

Table 3.12 The ReplicationVaristy Table of Yield Totals Computed
from Data in Table 3.11

Yield Total (RA) vﬂ;}y
Variety Rep. I Rep. 11 Rep. 111 (A)
14 13,703 17,197 17,855 48,755
£ 16,690 21,413 18,475 56,578
14} 14,962 18,508 21,251 54,721
Vi 14,445 20,372 15,304 50,121
Vs 16,876 13,696 16,669 47,241
Vg 8,024 9,252 10,965 28,24),
Rep. total (R) 84,700 100,438 100,519
Grand total (G) 285,657

Table 3.13 The Replication x Nitrogen Table of Yield Totals

Computed from Data in Table 3.11

) Nitrogen
Yicld Total (RB) Total
Nitrogen Rep. | Rep. I Rep. HI (B)
N 18,745 26,891 26,735 72,371
N, 28,665 35,606 34,337 98,608
N, 37,290 37,941 39,447 114,678

Table 3.14 The Varlety x Nitrogen Table of Yield
Totals Computed from Data in Table 3.11

Yield Total (4B)

Varicty N| Nz NJ
" 10,715 15,396 22,644
12 14,803 20,141 21,634
W 12,749 18,367 23,605
Vs 12,177 16,661 21,283
Vs 12,305 16,900 18,036
Ve 9,622 11,143 7,476
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D step 5. Compute the sums of squares for the vertical analysis as:
2
B (nitrogen) SS = -)%-z— - C.F.

_ (72,371) +(98,608)° +(114,678)°

- 1,511,109,660

(3)(6) ,

= 50,676,061
2
Error(b) SS = @ ~ C.F.— Replication SS — B SS
2 2
- (18,745)" + 6 +(39,447) — 1,511,109,660
-9,220,962 — 50,676,061

= 2,974,909

O step 6. Compute the sums of squares for the interaction analysis as:

x(A4B)?
r

A X B (variety X nitrogen) SS = - C.F.-ASS-BSS

_ (10,15 + - +(7,476)°
3

-1,511,109,660
—57,100,201 - 50,676,061
= 23,877,980
Error(c) SS = Total SS — (the sum of all other SS)

= 167,005,649 —(9,220,962 + 57,100,201 + 14,922,620
+50,676,061 + 2,974,909 + 23,877,980)
= 8,232,916
O step 7. Compute the mean square for each source of variation by dividing
the SS by its df.:
9,220,962
2

_, 57,100,201
5

~ Replication MS = = 4,610,481

AMS = 11,420,040
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14,922,620

Error(a) MS = 30

= 1,492,262

_ 50,676,061
2

2,974,909
4

BMS = 25,338,031

Error(b) MS = = 743,727

23,877,980
10

8,232,916
20

AXBMS = = 2,387,798

Error(c) MS = = 411,646

O step 8, Compute the F values as:

AMS
F(4) Error(a) MS
B MS

F(B) = —=225

(8) Error(b) MS
AX BMS
F(4 x B) = Error(c) MS

For our example, because the d.f. for error (b) MS is only 4, which is

considered inadequate for a reliable estimatc of the error variance (see
Chapter 2, Section 2.1.2), no test of significance for the main effect of factor
B is to be made. Hence, the two other F values are computed as:

11,420,040
F(A) = Tas2 262 =~ 163
2,387,798
F(A X B) = —m—= 5.80

sTeP 9. For each effect whose computed F value is not less than 1, obtain
the corresponding tabular F value, from Appendix E, with f; = d./. of the
numerator MS and f, = d. /. of the denominator MS at the prescribed level
of significance.

For our example, the tabular F values corresponding to the computed
F(A X B) value, with f; = 10 and f, = 20 degrees of freedom, are 2.35 at
the 5% level of significance and 3.37 at the 1% level.
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O step 10. Compute the three coefficients of variation corresponding to the

three error mean squares as:
vError(a) MS

Grand Mean

yError(b) MS

Grand Meai:

JError(c) M5

Grand Mean X

cv(a) = % 100

co(b) = x 100

cv(c) =

The cv(a) value indicates the degree of precision associated with the
horizontal factor, cv(b) with the vertical factor, and cv(c) with the interac-
tion between the two factors. The value of cv(c) is expected to be the
smallest and the precision for measuring the interaction effect is, thus, the
highest. For cv(a) and cv(b), however, there is no basis to expect one to be
greater or snialler than the other.

For our example, because the d. /. for error(b) MS is inadequatc, cv(b)is
not computed. The cv values for the two other error terms are computed as:

v1,492,262
5,290

V411,646
5,290

cw(a) = %X 100 = 23.1%

cv(c) = X 100 = 12.1%

Table 3.15 Analysis of Variance of Data In Table 3.11 froma 3 X 6
Factorial Experiment In a Strip-plot Design’

ce Degree Sum
(S; * gfr of Mean  Computed Tabular F
Variation Freedom  Squares Sqiare F* 5% 1%
Replication 2 9,220,962 4,610,481
Variety (A) 5 57,100,201 11,420,040 7.65** 3.33 5.64
Error(a) 10 14,922,620 1,492,262
Nitrogen ( B) 2 50,676,061 25,338,031 € —_— -
Error(b) 4 2,974,909 743,727 co
AXB 10 23,677,980 2,387,798 5.80°* 235 337
Error(c) 20 8,232,916 411,646 '
Total 53 167,005,649

“cv(a) = 23.1%, cv(c) = 12.1%.
bes w significant at 1% level.
“Error(b) d.f is not adequate for valid test of significance.
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O step 11. Enter all values computed in steps 3 to 10 in the analysis of
variance outline of step 1, as shown in Table 3.15. Compare each computed
F value with its corresponding tabular F values and designate the significant
results with the appropriate asterisk notation (sec Chapter 2, Section 2.1.2).
For our example, both F values, one corresponding to the main effect of
variety and another to the interaction between variety and nitrogen, are
significant. With a significant interaction, caution must be exercised when
interpreting the results. See Chapter 5, Section 5.2.4 for approyriate mean
comparisons.

3.6 GROUP BALANCED BLOCK IN SPLIT-PLOT DES!GN

The group balanced block design described in Chapter 2, Section 2.5, for
single-factor experiments can be used for two-factor experiments. This is done
by applying the rules for grouping of treatments (described in Section 2.5) to
either one, or both, of the two factors. Thus, the group talanced block design
can be superimposed on the split-plot design resulting in what is generally
called the group balanced block in split-plot design; or it can be superimposed
on the strip-plot design resulting in a group balanced block in strip-plot design.

We limit our discussicn to a group balanced block in split-plot design and
illustrate it using an cxperiment with 45 rice varieties and two fertilizer levels.
The basic design is a split-plot design in three replications, with fertilizer as the
main-plot factor and variety as the subplot factor. The 45 varieties are
grouped, according to their growth duration, into group S, with less than 105
days, group S, with 105 to 115 days, and group S; with longer than 115 days.
We denote the main-plot factor by 4, the subplot factor by B, the level of
factor A by a, the level of factor B by b, the number of replications by r, the
number of groups in which the b subplot treatments are classified by s, and the
group identification by S, S,,...,S,.

3.6.1 Randomization and Layout

The steps in the randomization and layout of the group balanced block in
split-plot design are:

O step 1. Divide the experimental area into r = 3 replications, each of which
is further divided into a = 2 main plots. Following the randomization
procedure for the standard split-plot design described in Section 3.4.1,
randomly assign the two main-plot treatments (F, and F,) to the two main
plots in each replication. The result may be as shown in Figure 3.8.

O step 2. Divide each of the six main plots (two main plots for each of the
three replications) into three groups of plots, each group consisting of 15
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A F2 Fy
F F F
Replication 1 Replication I Replication Il

Figure 3.8 Random assignment of two [ertilizer rates (main-plot trcatments: F; and F) to the
two main plots in each replication, as the first step in the laying out of a group balanced block in
split-plot design with three replications.

plots. Using one of the randomization schemes of Chapter 2, Section 2,1.1,
randomly assign the three groups of varieties (S, S,, and S;) to the three
groups of plots, separately and independently, for each of the six main plots.
The result may be as shown in Figure 3.9,

O step 3. Using the same randomization scheme as in step 2, randomly
assign the 15 varieties of each group (i.e., treatments 1,...,15 for group S,,
treatments 16,...,30 for group S,, and treatments 31,...,45 for group S;)



118 Two-Factor Experiments

o---—--F‘——--—v 0—-----%—--———0 O——-—-—F.|—---—-0
$ [S3]% S2 15 | & S5 15| 53
o—------Fz-—~—-—- t—----Fl-—-m---* 4—---—F2---———v
S3 | S, | 84 S3 | Sy | S, S, | 5| S3
Replication I Replication IT Replication III

Figure 3.9 A sample layout after the two fertilizer rates ( Fy and F,) and three groups of varictics
(S}, §;, and S;) arc assigned, in a group balanced block in split-plot design with three replications.

to the 15 plots in the corresponding group of plots. This process is repeated
18 times (three groups per main plot and a total of six main plots). The final
layout may be as shown in Figure 3.10.

3.6.2 Analysis of Variance

For illustration we use data (Table 3.16) from the group balanced block in
split-plot design whose layout is shown in Figure 3.10. The computational
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Figure 3.1¢ A sample layout of a group balanced block in split-plot design with two
ates (F; and F;) as main-plot treatments and 45 rice varictics (L,2,...,45) grouped in three
yroups (Sy, Sy, and Sy) as subplot treatments, in threc replications.

fertilizer
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Table 3.16 Grain Yield of 45 Rice Varletles Tested with Two Fertilizer
Rates (F, and F,) Using a Group Balanced Block in Split-plot
Design with Fertilizer as Main-plot Factor and Varlety, Classified in
Three Groups,® as the Subplot Factor; in Three Replications

Grain Yicld, t/ha
Variety Rep. I Rep. II Rep. 111
Number F I 2 F, £ F F,

1 4,252 4331 3.548 5.267 3.114 4.272

2 3.463 3.801 2.720 5.145 2.789 3.914

3 3.228 3.828 2.797 4.498 2.860 4.163

4 4,153 5.082 3.672 5.401 3.738 4,533

5 3.672 4275 2.781 5.510 2.788 4,481

6 3.337 4.346 2.803 5.874 2.936 4.075

7 3.498 5.557 3.725 4.666 2.627 4.781

8 3222 4451 3142 3.870 2.922 3721

9 3.161 4.349 3.108 5.293 2.779 4101
10 3.781 4,603 3.906 4.684 3.295 4.100
11 3.763 5.188 3.709 4.887 3.612 4,798
12 3177 4,975 3.742 5.021 2,933 4.611
13 3.000 4.643 2.843 5.204 2.776 3.998
14 4.040 4.991 3.251 4.545 3.220 4.253
15 3.79% 4313 3.027 4.742 3.125 4411
16 3.955 4311 3.030 4.830 3.000 4.765
17 3.843 4.815 3.207 4.804 3.285 4.263
18 3.558 4.082 327 4.817 3.154 4433
19 3.488 4.140 3.278 4.197 2.784 4.237
20 2.957 5.027 3.284 4.429 2.816 4.415
21 3237 4434 2.835 4.030 3018 3.837
22 3.617 4.570 2.985 4.565 2.958 4.109
23 4,193 5.025 3.639 4.760 3428 5.225
24 3611 4,744 3.023 4.221 2.805 3972
25 3.328 4.274 2.955 4.069 3.031 3.922
26 4,082 4.356 3.089 4.232 2987 4.181
27 4,063 4,391 3.367 5.069 3.931 4.782
28 3.597 4.494 3211 4.506 3.238 4410
29 3.268 4.224 3.913 4.569 3.057 4377
30 4,030 5.576 3223 4.229 3.867 5.344
31 3.943 5.056 3.133 4.512 3.357 4.373
32 2,799 3.897 3.184 3.874 2.746 4.499
33 3.479 4,168 33717 4.036 4,036 4.472
34 3.498 4,502 2.912 4.343 3.479 4.651
35 3431 5.018 2.879 4.590 3.505 4.510
36 4.140 5.494 4,107 4.856 3.563 4.523
37 4.051 4.600 4.206 4.946 3.563 4.340
38 3.647 4,334 2.863 4.892 2.848 4.509

120
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Group Balanced Block in Split-Plot Design
Table 3.16 (Continued)
Grain Yield, t/ha

Variety Rep. 1 Rep. II Rep. III
Number F E K y o F, F,
39 4.262 4,852 3197 4,530 3.680 4371
40 4,256 5.409 3.091 4,533 3.751 5134
41 4.501 5.659 3.770 5.050 3.825 4,776
42 4,334 5121 3.666 5.156 4222 5.229
43 4416 4,785 3.824 4,969 3.096 4.870
4 3.578 4.664 3252 5.582 4,091 4,362
45 4270 4.993 3.896 5.827 4312 4918

“Group S, (less than 105 days in growth duration) consists of varieties 1 to 15;
group S, (105 to 115 days in growth duration) consists of varieties 16 to 30; and
group S; (longer than 115 days in growth duration) consists of varieties 31 to 45.

steps in the analysis of variance are:

O STEP 1.

split-plot design, with grouping of subplot treatments, as:

Outline the analysis of variance for a group balanced block in

Source Degree Sum

of of of Mean
Variation Freedom Squares  Square
Replication r—-1=2

Factor A (A) a-1=1

Error(a) (r=-1a—-1)=2

Group (S) s—1=2

AXS (a-1}r—-1)=2

Error(b) a(s—=1}r—-1)=28

B within S, (b/s)—1=14

B within S, (b/s)—1=14

B within S, (b/s)—1=14

A X (B within §))
A X (B within ;)
A X (B within §;)
Error(c)

Total

(a-Di(b/s)—1]=14

(a—D[(b/s)—~1]= 14

(a = Di(b/s)—1] =14
as(r - D[(b/s) — 1] = 168
rab -1 = 269
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D steP 2, Construct three tables of totals:

1. The replication X factor A X group three-way table of totals with repli-
cation X factor A4 totals and replication totals computed. For our exam-
ple, the replication X fertilizer X group table of totals (RAS), with
replication X fertilizer totals (RA) and replication totals (R) computed,
is shown in Table 3.17.

2. The factor 4 X factor B two-way table of totals with factor B totals,
factor A totals, group X factor A totals, group totals, and the grand
total computed. For our example, the fertilizer X variety table of totals
(AB), with variety totals (B), fertilicer totals (A), group X fertilizer
totals (SA), group totals (S), and the grand total () computed, is
shown in Table 3.18.

O step 3.  Compute the correction factor and the various sums of squares in
the standard manner as:

_ (1,085.756)°
(3)(2)(45)

= 4,366.170707
Total S = £X* - C.F.
= [(4.252)* + -+ +(4.918)?] - 4,366.170707

= 154.171227

Table 3.17 The Replication X Fertllizer X Group Table of Totals from Data
in Table 3.16

Yicld Total (RAS)

Rep. 1 Rep. 11 Rep.Ill
Group F, . F, F, F, R
S, 53.537 68733 48.774 74 607 45.514 64212
S, 54827 6R.463 48310 67327 47.359  66.272
S 58.605  72.552 51.357 71696 54.074  69.537
Total (RA) 166.969 209.748 148.441 213.630 146.047 200.021

Rep. total (R) 376717 362 071 346.968




Table 3.18 The Fertllizer X Variety Table of Totals from Data in Table 3.16

Yield Total (4B)

Vasiety Variety total
Number F F, (B)
1 10.914 13.870 24.784
2 8972 12.860 21.832
3 8.885 12.489 21.374
4 11.563 15.016 26.579
5 9.241 14.266 23.507
6 9.076 14,295 23371
7 9.850 15.004 24,854
8 9.286 12,042 21.328
9 9.048 13.743 22,791
10 10.982 13.387 24.369
11 11.084 14.873 25.957
12 9.852 14.607 24459
13 8.619 13.845 22,464
14 10.511 - 13.789 24.300
15 9.942 13.466 23.408
Total (S4) 147.825 207.552 355377 = §,
16 9.985 13.906 23.891
17 10.335 13.882 24217
18 9.983 13.332 23.315
19 9.550 12,574 22.124
20 9.057 13.871 22,928
21 9.090 12,301 21.391
22 9.560 13.244 22.804
23 11.260 15.010 26.270
24 9.439 12,937 22376
25 9314 12,265 21.579
26 10.158 12,769 22927
27 11.361 14.242 25.603
28 10.046 13.410 23.456
29 10.238 13.170 23.408
30 11.120 15149 26.269
Total (S4) 150.496 202.062 352.558 = S,
k)| 10.433 13.941 24374
32 8.729 12,270 20.999
33 10.892 12.676 23.568
34 9.889 13.496 23.385
35 9.815 14118 23.933
36 11.810 14.873 26.683
37 11.820 13.886 25.706
38 9.358 13,735 23.093
39 11,139 13,753 24.892
40 11.098 15.076 26.174
41 12.096 15.485 27.581
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Table 3.18 (Continued)

Variety Yicld Total (4B) Variety total
Number F F (B)
42 12,222 15.506 27.728
43 11.336 14.624 25.960
4 10.921 14.608 25.529
45 12.478 15.738 28.216
Total (§4) 164.036 213.785 377821 = S,
Fertilizer total (4)  462.357 623.399
Grand Total (G) 1,085,756

2
Replication S§§ = %’;— - C.F.

_ (376.117)" +(362.071)° +(346.968)°

~ 4,366.170707
(2)(45)

= 4,917070

2
A(fertilizer) SS = %—';— — C.F.

_ (462.357)" +(623.399)
(3)(45)

= 96.053799

-~ 4,366.170707

Error(a) SS =

RA 2
.Z.L(_E_.)_ — C.F.— Replication SS — 4 SS

_ (166.969)” + - - - +(200.021)°
45

- 4,366.170707 — 4.917070

—96.053799
= 2.796179

rs?
rab/s

Group SS = - C.F.

_ (355.377) +(352.558)° +(377.821)*
(3)(2)(45)/(3)

- 4,366.170707

= 4,258886
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I(s4)’
A X Group SS r5/s C.F.— A SS — Group SS
(147.825)% + - .- +(213.785)*
= - 4,366.170707
(3)(45)/(3)
—96.053799 — 4.258886
= (.627644
‘ 2
Error(b) SS = z(%g-)— — C.F.— Replication S§ — A SS

—Error(a) SS — Group S§ — A X Group S§

_ (53.531)" + - +(69.537)°
45/3

- 4,366.170707 — 4.917070

—96.053799 — 2.796179 — 4.258886 — 0.627644
= 2.552576

O step4. Compute the sums of squares for factor B within the ith group and
for its interaction with factor 4 as:

s LB} &
B within S, SS = o —m

L(4B)] Z(SA)]

A X (B within S;) SS = /s

— B within §; §§

where the subscript / refers to the ith group and the summation is only over
all those totals belonging to the ith group. For example, the summation in
the term IB? only covers factor B totals of those levels of factor B
belonging to the ith group.

For our example, the computations for each of the three groups are:
» For §;:

(24.784)" + --- +(23.408)"  (355.377)°
(3)(2) (3)(2)(45)/3

Varieties within §,SS =

= 5.730485
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(10.914)* + ... +(13.466)°

A X (varieties within S,) SS =

3
_ (147.825)° +(207.552)° 5 730485
(3)(45)/(3) e
= 2.143651
» For S,:
o (23.891)% + --- +(26.269)*  (352.558)°
Varieties within S, SS = -
%5 Q15 B)2)@5)/3
= 5.484841
~ 2 2
A X (varieties within S,) SS = (9.985)” + 3 +(15.149)
2 2
_ (150496)" +(202.062)" _ g 4es041
(3)(45)/3

= (.728832
« For S;:

(24.374)* + .- +(28.216)°  (377.821)°
(3)(2) (3)(2)(45)/3

Varieties within S, SS =

= 9.278639

(10.433)> + .. +(15.738)°
3
_ (164.036)" +(213.785)°
(3)(45)/3
= 1.220758
0O step 5. Compute the Error(c) SS as:

A X (varieties within S;) SS =

~9.278639

Error(c) SS = Total SS — (the sum of all other SS)
= 154.171227 —(4.917070 + 96.053799

+2.796179 + 4.258886 + 0.627644
+2.552576 + 5.730485 + 5.484841
+9.278639 + 2.143651 + 0.728832
+1.220758)

= 18.377867
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O srep 6.  Compute the mean square for each source of variation by dividing
the SS by its degree of freedom. Then, compute the F value for each effect
to be tested by dividing its mean square by the appropriate error mean
square.

For our example, for either the repli:ation or the 4 effect, the divisor is
the Error(a) MS. For either the group or the (4 X group) effect, the divisor
is the error(b) MS. For all other effects, the divisor is the Error(c) MS. Note
that because the Error(a) d. /. is only 2, which is considered inadequate for
a reliable estimate of the error variance (see Chapter 2, Section 2.1.2), the F
values for testing the replication effect and the A effect are not computed.

O step 7. For each computed F value greater than 1, obtain the correspond-
ing tabular F values, from Appendix E, with f; = d./. of the numerator MS
and f, = d.f. of denominator MS, at the 5% and 1% levels of significance.

O step 8. Compute the three coefficients of variation corresponding to the

three error terms as:
yError(a) MS

Grand mean

yError(b) MS
—_—— X 100

Grand mean

yError(c) MS

ev(c) = Grand mean

cv(a) = x 100

cv(b) =

X 100

The cv(a) value indicates the degree of precision attached to the main-plot
factor, the cv(b) indicates the degree of precision attached to the group
effect and its interaction with the main-plot factor, and the cv(c) value
refers to the effects of subplot trcatments within the same group and their
interactions with the main-plot factor. In the same manner as that of a
standard split-plot design, the value of cu(a) is expected to be the largest,
followed by cv(b), and finally cu(c).

For our example, because d. f. for Error(a) MS is inadequate, no value of
cv(a) is to be computed. The coeflicients of variation for the two other error
terms are computed as;

v0.319072
4.021

/0.109392
ev(e) = 7o

co(b) = X 100 = 14.0%

X 100 = 8.2%

As expected, the cv(c) value is smaller than the cv(b) value. This implies
that the degree of precision for mean comparisons involving treatments
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Table 3.19 Analysis of Varliance of Data In Table3.16 from & Group Balanced Block in Split-plot Design®

Source Degree Sum
of cog; of Mean Computed Tabular F
Variation Freedom Squares Square F* 5% 1%
Replication 2 4917070 2.458535
Fertilizer (4) 1 96053799  96.053799 e - —
Error(a) 2 2.796179 1.398089
Group (S) 2 4258886 2.129443 6.67* 446 865
AXS 2 0.627644 0.313822 <1 _— —_
Error(b) 8 2.552576 0.319072
Varieties within S, 14 5.730485 0.409320 3.74** 1.75 219
Varieties within S, 14 5.484841 0.391774 3.58** 1.75 219
Varieties within S; 14 9.278639 0.662760 6.06** 1.75 219
A X (varieties within §,) 14 2.143651 0.153118 1.40™ 1.75 219
A X (varieties within S,) 14 0.728832 0.052059 <1 —_ —_
A X (varieties within S;) 14 1.220758 0.087197 <1 - -
Error(c) 168 18.377867 0.109392

Total 259 154.171227

%v(b) = 14.0%, cv(c) = 8.2%.
be* = significant at 1% level, * = significant at 5% level, ™ = not significant.

“Error(a) d.f. is not adequate for valid test of significance.


http:inTable3.16

Group Balanced Block in Split-Plot Design 129

belonging to the same group would be higher than that involving treatments
of different groups.

O sTer 9. Enter all values obtained in steps 3 to 8 in the analysis of variance
outline of step 1. Comare each computed F value with its corresponding
tabular F values and indicate its significance by appropriate asterisk nota-
tion (see Chapter 2, Sect.on 2.1.2). The final result is shown in Table 3.19,
The results indicate nonsignificant interaction between variety and fertilizer
rate, highly significant differences among varieties within each and all three
groups, and a significant difference among the three group means.



CHAPTER 4

Three-or-More-Factor
Experiments

A two-factor experiment can be expanded to include a third factor, a three-fac-
tor experiment to include a fourth factor, and so on. There are, however, two
important consequences when factors are added to an experiment:

1. There is a rapid increase in the number of treatments to be tested, as we
illustrated in Chapter 3.

2. There is an increase in the number and type of interaction effects. For
example, a three-factor experiment has four interaction effects that can
be examined. A four-factor experiment has 10 interaction effects.

Although a large experiment is usually not desirable because of its high cost
and complexity, the added information gained from interaction effects among
factors can be very valuable. Consequently, the researcher’s decision on the
number of factors that should be included in a factorial experiment is based on
a compromise between the desire to evaluate as many interactions as possible
and the need to keep the size of experiment within the limit of available
resources.

4.1 INTERACTION BETWEEN THREE OR MORE FACTORS

Building on the definition of a two-factor interaction given in Chapter 3
(Section 3.1), a k-factor interaction (where k >2) may be defined as the
difference between the effects of a particular (k — 1)-factor interaction over the
different levels of the kth factor. For example, a three-factor interaction effect
among factors 4, B, and C (the 4 X B X C interaction) can be defined in any
of the following three ways:

1. The difference between the A X B interaction effects over the levels of
factor C.

2. The difference between the A X C interaction effects over the levels of
factor B.

130
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3. The difference between the B X C interaction effects over the levels of
factor A.

For illustration, consider a 2 X 2 X 2 factorial experiment involvins three
factors, each with two levels. Two sets of hypothetical data, set(a) showing the
presence of the A X B X C interaction effect, and set(b) showing its absence,
are presented in Table 4.1.

The 4 X B X C interaction effects can be measured by any of three
methods:

+ Method I is based on the difference in the 4 X B interaction effects.

0O sTep 1. For each level of factor C, compute the 4 X B interaction effect,
following the procedure in Chapter 3, Section 3.1;
For set(a) data:

Atcy: 4 X Binteraction = }(0.5 - 2.0) = —0.75 t /ha

Atc;: 4 X Binteraction = $(4.0 — 2.5) = 0,75 t/ha
For set(b) data:

Atcg: 4 X Binteraction = 1(3.5 — 2.0) = 0.75 t /ha

Atc: A X Binteraction = (3.5 — 2.0) = 0.75 t/ha
Table 4.1 Two Hypothetical Sets of Data from a 2 X 2 X 2 Factorlal

Experiment”; Set (a) Shows the Presence of the Three-factor
Interaction and Set (b) Shows the Absence of the Three-factor

Interaction

L;:vcl Grain Yield, t/ha

0

Factor ‘o a

A bo bl bl - bo bo bl bl - bo
(a) A X B X C interaction present

ag 20 30 1.0 2.5 5.0 25

a, 40 3.5 -05 . 5.0 9.0 4,0

a; —a, 20 0.5 - =15 25 4.0 1.5
(b) A X B X Cinteraction absent

ap 20 25 0.5 30 35 0.5

a, 4.0 6.0 20 5.0 1.0 20

a, —a 20 35 15 20 35 1.5

“Involving three factors 4, B, and C, each with two levels; agy and a, for
factor A, by and b, for factor B, and ¢, and ¢, for factor C.
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O step 2. Compute the A X B X C interaction effect as the difference be-
tween the A X B interaction effects at the two levels of factor C computed in
step 1:

For set(a): A X B X C interaction = 1[0.75 —(—0.75)] = 0.75 t/ha

Forset(b): A X B X C interaction = $(0.75 — 0.75) = 0.00 t/ha

« Method 11 is based on the difference in the A X C interaction effects,

O step 1. For each level of factor B, compute the A X C interaction effect,
following the procedure in Chapter 3, Section 3.1
For set(a) data:
At by: A X Cinteraction = 1(2.5 - 2.0) = 0.25 t/ha
Atb,: A X Cinteraction = (4.0 — 0.5) = 1.75 t/ha
For set(b) data:
At by: A X Cinteraction = £(2.0 — 2.0) = 0.00 t/ha

At b;: A X Cinteraction = }(3.5 ~ 3.5) = 0.00 t/ha

O sTep 2, Compute the 4 X B X C interaction effect as the difference be-
tween the A X C interaction effects at the two levels of factor B computed in
step 1:

Forset(a): A X B X C interaction = 4(1.75 — 0.25) = 0.75 t/ha

Forset(b): A X B X C interaction = 1(0.00 — 0.00) = 0.00 t/ha

- Method 111 is based on the difference in the B X C interaction effects.

DO sTep 1.  For each level of factor 4, compute the B X C interaction effect,
following the procedure in Chapter 3, Section 3.1:
For set(a) data:
Atag: B X Cinteraction = }(2.5 — 1.0) = 0.75 t/ha

Ata,: B X C interaction = §[(4.0 —(-0.5)] =2.25t/ha
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For set(b) data:

Atay: B X Cinteraction = 4(0.5 — 0.5) = 0.0 t/ha

Ata,: B X Cinteraction = (2.0 — 2.0) = 0.0 t/ha

O sTep 2. Compute the 4 X B X C interaction effect as the difference be-
tween the B X C interaction effects at the two levels of factor 4 computed in
step 1:

For set(a): 4 X B X Cinteraction = $(2.25 - 0.75) = 0.75 t/ha

For set(b): A X B X Cinteraction = 4(0.0 — 0.0) = 0.00 t/ha

Thus, regardless of computation method, the 4 X B X C interaction effect of
set(a) data is 0.75 t/ha and of se(b) data is 0.0 t/ha.

The foregoing procedure for computing the three-factor interaction effect
can be easily extended to cover a four-factor interaction, a five-factor interac-
tion, and so on. For example, a four-factor interaction 4 X B X C X D can be
computed in any of the following ways:

As the difference between the 4 X B X C interaction effects over the levels
of factor D

+ As the difference between the 4 X B X D interaction effects over the levels
of factor C
As the difference between the 4 X C X D interaction effects over the levels
of factor B
As the difference between the B X C X D interaction effects over the levels
of factor 4.

4.2 ALTERNATIVE DESIGNS

There are many experimental designs that can be considered for use in a
three-or-more-factor experiment. For our pucpose, these designs can be clas-
sified into four categories, namely, the single-factor experimental designs, the
two-factor experimental designs, the three-or-more-factor experimental de-
signs, and the fractional factorial designs.

4.2.1 Single-Factor Experimental Designs

All experimental designs for single-factor experiments described in Chapter 2
are applicable to experiments with three or more factors. This is done by
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treating all the factorial treatment combinations as if they were levels of a
single factor.

For illustration, take the case of a three-factor experiment involving two
varieties, four nitrogen levels, and three weed-control methods to be tested in
three replications. If a randomized complete block design (RCB) is used, the
2 X 4 X 3 = 24 factorial trecatment combinations would be assigned com-
pletely at random to the 24 experitental plots in each of the three replications.
The field layout of such a design may be as shown in Figure 4.1 and the outline
of the corresponding analysis of variance shown in Table 4.2. Note that with a
RCB design there is only one plot size and only one error variance for testing
the significance of all effects (i.e., the three main effects, the three two-factor
interaction effects, and one three-factor interaction effect) so that all effects are
measured with the same level of precision. Thus, a complete block design, such
as RCB, should be used only if:

- All effects (i.e., main effects and interaction effects) are of equal importance
and, hence, should be measured with the same level of precision.

. The experimental units are homogeneous enough to achieve a high level of
homogeneity within a block.

Because an experiment with three or more factors usually involves a large
number of treatments, homogeneity in experimental units within the same
block is difficult to achieve and, therefore, the complete block design is not
commonly used.

4.2.2 Two-factor Experimental Designs

All experimental designs for two-factor experiments described in Chapter 3 are
applicable to experiments with three or more factors. The procedures for
applying any of these designs to a three-factor experiment are given below. We
illustrate the procedure with the 2 X 4 X 3 factorial experiment described in
Section 4.2.1.

O step 1. Divide the k factors to be tested into two groups, with k; factors in
one group and k, factors in another group (where k, + k, = k), by putting
those factors that are to be measured with the same level of precision in the
same group. Each group can contain any number of factors.

For our example with k = 3 factors, variety and weed control can be
combined in one group and the remaining factor (nitrogen) put in another
group. Thus, group I consists of two factors (k; = 2) and group Il consists
of one factor (k, = 1).

O step 2. Treat the factorial treatment combinations of k, factors in group I
as the levels of a single factor called factor A4, and the factorial treatment
combinations of k, factors in group II as the levels of a single factor called
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Figure4.1 A sample layoutof a2 X 4 X 3 factorial experiment involving two varicties (¥; and ¥;), four
nitrogen levels (Ny, Ny, N;, and M), and three weed-control methods (W,, W4, and W) arranged in a
randomized complete block design with three replications.
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factor B. Thus, the k-factor experiment is now converted to a two-factor
experiment involving the two newly created factors A and B.

For our example, the 3 X 2 = 6 factorial treatment combinations be-
tween variety and weed control in group I are treated as the six levels of the
newly created factor 4, and the four levels of nitrogen as the levels of the
newly created factor B. Thus, the 2 X 4 X 3 factorial experiment can now
be viewed as a 6 X 4 factorial experiment involving 4 and B.

O sTep 3. Sclect an appropriate experimental design from Chapter 3 and
apply it to the simulated two-factor experiment constituted in step 2 by
following the corresponding procedure described in Chapter 3.

For our example, if the split-plot design with factor B (nitrogen) as the
subplot factor is to be used, the layout of such a design may be as shown in
Figure 4.2 and the form of the corresponding analysis of variance shown in
Table 4.3.

Note that with this split-plot design, there are two plot sizes and two error
mean squares for testing significance of the various effects:

« Error(a) MS for the main effect of variety, the main effect of weed
control method, and their interaction effect

« Error(b) MS for the main effect of nitrogen fertilizer and its interaction
with the other two variable factors

Because the error(b) MS is expected to be smaller than error{a) MS (see

Table 4.2 Outline of the Analysis of Varlance for a 2 X 4 X 3 Factorial
Experiment In RCB Design

Source Degrec Sum
of of of Mcean Computed Tabular F
Variation Freedom” Squares  Square F 5% 1%
Replication r—1m=2
Treatment vnw - 1 = 23

Variety (V) v~1m=1]

Nitrogen (N) n—-1=13

Weed Control (W) w—1m=2

VXN (v=1)}n—-1)=13

VX w (v-1)w=~1)=2

NxWw (n=1w-1)=6

VXNXW (v—=1n-1)}w-1)=6
Error (r= 1 vnw = 1) = 46

Total ronw -1 =171

° = number of replications; v, n, and w are levels of the three factors V, N, and W,
respectively.
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Figure4.2 A sample layout of a2 X 4 X 3 factorial experiment involving two varieties (V and ¥3), four
nitrogen levels (Ng, Ny, N, and Ny), and three weed-control methods (W, W,, and W,) arranged in a
split-plot design with nitrogen levels as the subplot treatments, in three replications.
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Chapter 3, Section 3.4.2) the degree of precision for measuring all effects
concerning nitrogen is expected to be higher than that related to either
variety or weed control.

Thus, a split-plot design (or a strip-plot design) is appropriate for a
three-or-more-factor experiment if both of the following conditions hold:

« The total number of factorial treatment combinations is too large for a
complete block design.

« The k factors can be easily divided into two groups with identifiable
differences in the desired level of precision attached to each group.

4.2.3 Three-or-More-Factor Experimental Designs

Experimental designs specifically developed for three-or-more-factor experi-
ments commonly used in agricultural research are primarily the extension of
either the split-plot or the strip-plot design.

For our example, a split-plot design can be extended to accommodate the
third factor through additional subdivision of each subplot into sub-subplots,
and further extended to accommodate the fourth factor through additional
subdivision of each sub-subplot into sub-sub-subplots, and so on. The resulting
designs are referred to as a split-split-plot design, a split-split-split-plot design,
and so on. A split-split-plot design, applied to a three-factor experiment, would
have the first factor assigned to the main plot, the second factor to the subplot,

Table 4.3 Outline of the Analysis of Varlance for a 2 x 4 x 3 Factorial Experimentin
a Split-plot Design”

Source Degree Sum
of of of Mecan  Computed Tabular F
Variation Freedom” Squares  Square F ST 1%
Rephication r-1=2
Main-plot factor w— ] =%
Vanets (V) v-1=1
Weed Control (W) Wl =2
VoW (0~ 1} w-1)=2
Error(a) (r=1)ew = 1)=10
Subplot factor (N) n-1=3
Man-plot factor % subplot factor: (ew = 1)(n—-1)=15
NV (n—14e-1)=3
N W (n=1)w-1)=6
NAVsW (n =1~ 1)n-1)=0
Errorth) tw(r - 1)n-1)=136
Total rewn - | =71

“Applicd to a simulated two-factor experiment with main-plot factor as a combination of two
original factors ¥ and W, and subplot factor representing the third original factor N.

br = number of replications; v, n, and w arc levels of the three original factors V, N, and W,
respectively,
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and the third factor to the sub-subplot. In this way, there is no need to
combine the three factors into two groups to simulate a two-factor experiment,
as is necessary if a split-plot design is applied to a three-factor experiment.

Similarly, the strip-plot design can be extended to incorporate the third
factor, the fourth factor, and so on, through the subdivision of each intersec-
tion plot into subplots and further subdivision of each subplot into sub-
subplots. The resulting designs are referred to as a strip-split-plot design, a
strip-split-split-plot design, and so on.

4.24 Fractional Factorial Designs

Unlike the designs in Sections 4.2.1 to 4.2.3, where the complete set of factoriai
treatment combinations is to be included in the test, the fractional factorial
design (FFD), as the name implies, includes only a fraction of the complete set
of the factorial treatment combinations. The obvious advantage of the FFD is
the reduction in size of the experiment, which may be desirable whenever the
complete set of factorial treatment combinations is too large for practical
implementation. This important advantage is, however, achieved by a reduc-
tion in the number of effects that can be estimated.

4.3 SPLIT-SPLIT-PLOT DESIGN

The split-split-plot design is an extension of the split-plot design to accommo-
date a third factor. It is uniquely suited for a three-factor experiment where
three different levels of precision are desired for the various effects. Each level
of precision is assigned to the effects associated with each of the three factors.
This design is characterized by two important features:

1. There are three plot sizes corresponding to the three factors, namely, the
largest plot (main plot) for the main-plot factor, the intermediate plot
(subplot) for the subplot factor, and the smallest plot (sub-subplot) for
the sub-subplot factor.

2. There are three levels of precision, with the main-plot factor receiving
the lowest degree of precision and the sub-subplot factor receiving the
highest degree of precision.

We illustrate procedures for randomization, layout, and analysis oi variance
with a 5 X 3 X 3 factorial experiment with three replications. Treatments are
five levels of nitrogen as the main plot, three management practices as the
subplot, and three rice varietics as the sub-subplot. We use r to refer to the
number of replications; 4, B, and C to refer to the main-plot factor, subplot
factor, and sub-subplot factor; and a, b, and c to refer to the treatment levels
corresponding to factors 4, B, and C.
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4.3.1 Randomization and Layout

There are three steps in the randomization and layout of a split-split-plot
design:

O step 1. Divide the experimental arca into r replications and each replica-
tion into @ main plots. Then, randomly assign the a main-plot treatments to
the a main plots, separately and independently, for each of the r replica-
tions, following any one of the randomization schemes of Chapter 2, Section
2.1.1.

For our example, the area is divided into three replications and each
replication into five main plots. Then, the five nitrogen levels (N, N,, N;,
N,, and N;) are assigned at random to the five main plots in each
replication. The result may be as shown in Figure 4.3.

O step 2. Divide each main plot into b subplots, in which the b subplot
treatments are randomly assigned, separately and independently, for each of
the (r)(a) main plots.

Nz Ny N3

Ny Ns Ns

Ng Ng Ny

N, N, Ng

Ny N3 N2
Replication I Replication I Replication IIL

Figure 43 Random assignmnt of five nitrogen levels (Ny, Ny, Ny, N, and Ns) to the main plots
in each of the three replications as the first step in laying out a split-split-plot design.



Split-Split-Plot Design 141
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Figure 44 Random assignment of three management practices (M,, M, and M,) to the three
subplots in cach of the 15 main plots as the sccond step in laying out a split-split-plot design.

For our example, each main plot is divided into three subplots, into
which the three management practices (M,, M,, and M,) are assigned at
random. This randomization process is repeated (r)(a) = 15 times. The
result may be as shown in Figure 4.4,

O sTep 3. Divide each subplot into ¢ sub-subplots, in which the ¢ sub-subplot
treatments are randomly assigned, separately and independently, for each of
the (r)(a)(b) subplots.

For our example, each subplot is divided into three sub-subplots, into
which the three varieties (V;, V;, and V;) are assigned at random. This
randomization process is repeated (r)(a)(b) = 45 times. The final layout
may be as shown in Figure 4.5.

4.3.2 Analysis of Variance

Grain yield data (Table 4.4) from a 5 X 3 X 3 factorial experiment conducted .
in a split-split-plot design, whose layout is shown in Figure 4.5, is used to -
illustrate analysis of variance. ' o '
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O step 1. Construct an outline of the analysis of variance for the split-split-
plot design

Source Degree . Sum
of of of Mean Computed 1abuler F
Variation Freedom Squares  Square F 5% 1%
Muain-plot analysis:
Replication r—1=2
Main-plot factor (A} a-1=4
Error{a) (r—=1a=-1)=8
Subplot analysis:
Subplot factor ( B) b~1m=2
AxB (a—1)b~1)=8
Error(h) a(r=1)b-1)=20
Sub-subplot analysis:
Sub-subplot factor (C) c~1m2
AxC (a=1)c~1)=8
BxcC (h=1c-1=4
AXBxC (a=1)hb~=1)c—-1)=16
Error{c¢) ab(r - 1c—=1)=60
Total rabc - 1 = 134

N MV, [NMVRINMVST NGV, [N MY [N MVo] TNaM VG | NM oV, | NMaY,
NM V3 [NMV [N [N MRV [N M3V, [N MV [N V3 [NV NV
rﬁlevz NMYINMV ] [NMVSIN MV INMV ] INMY, NGV, INGMGY,

NMV, INMVINMV T [NGMY INGMV, [NSMAV] [NgMRV, [NGM,Vy [ NgMaVy
NMV, [NMV3 NGV [NGMoVR(NM, Vi INMaVoE  TNGMAV3 NM, V| N5V,
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Replication [ Replication I Rephication I

Figure 4.5 A sample layout of a 5 x 3 x 3 factorial expeniment arranged in a split-split-plot
design with five nitrogen levels (N), My, Ny, Ny, and N) as main-plot treatments, threc manage-
ment practices ( M;, My, and M;) as subplot trcatments, and three varieties (Vy, V3, and ¥3) as
sub-subplot treatments, in three replications.
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Table 4.4 Graln Yields of Three Rice Varletles Grown under Three Management
Practices and Five Nitrogen Levels; In a Split-split-plot Design with Nitrogen as
Main-plot, M2 12gement Practice as Subplot, and Varlety as Sub-subplot Factors,
with Three Replications

Grain Yield, t/ha
2 2 v,
Management Rep.l Rep. Il Rep III Rep.l Rep. Il Rep III Rep.l Rep.1l Rep.Ill

N, (0kg N/ha)
M,(Minimum) 3320 3864 4507 6.101 5122 4815 5355 5.536 5.244
M,(Optimum) 3.766 4311 4875 509 4873 4166 7442 6462 5.584
M,;(Intensive) 4.660 5.915 5400 6573 5495 4225 7018 8.020 7.642

N,(50kg N/ha)
M, 3.188 4752 4756 5595 6780 5390 6706 6.546 7.092
M, 3.625 4809 5295  6.357 5925 5163  8.592 7.646 7.212
M, 5232 5170 6.046 7016 7442 4478 8480 9.942 8.714
N,(80kg N/ha)
M, 5468 5.788 4422 5442 5988 6.509 8452 6.698 8.650
M, 5759 6130 5308  6.398  6.533 6.56.  8.662 8.526 8.514
M, 6.215 7.106 6.318  6.953 6914 7991 9112 9.140 9.320
N,(110hkg N/ha)
M, 4246 4.842 4863 6209 6768 5779 8042 7414 6.902
M, 5.255 5.742 5.345 6992  7.856 6.164 9.080 9.016 7.778
M, 6.829 5.869 6.011  7.565 7.626 7362 9.660 8.966 9.128
N;(140 kg N/ha)
M, 3132 4375 4678 6860 6.894 6.573 9314 8.508 8.032
M, 5.389 4315 589 6.857 6974 7422 9224  9.680 9.294
M, 5.217 5389 7.309 7.254 71812 8.950 10360 9.896 9.712

O step 2. Do a main-plot analysis.

A. Construct the replication X factur A two-way table of totals and com-
pute the reolication totals, the factor A totals, and the grand total. For
our example, the replication X nitrogen table of totals (RA), with the
nitrogen totals (A4) and the grand total (G) computed, is shown in

Table 4.5.
B. Compute the correction factor and the various sums of squares:
GZ
C.F.= Tabe
_ (884.846)°

T PeEE) T
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Table 4.5 The Replication X Nitrogen Table of Yield Totals Computed

from Data In Table 4.4
Nit
Yield Total (R4) Tor
Nitrogen Rep.1 Rep. 11 Rep. 111 (A)

N 49.331 49.598 46.458 145.387
N, 54.791 59.012 54.146 167.949
N, 62.451 62.823 63.601 188.885
N, 63.878 64.099 59.332 187.309
N 63.607 63.843 67.866 195.316

Rep. total(R) 294,068 299.375 291.403

Grand total(G) 884.846

Total §S = ) X?> — C.F.

= [(3.320)2 + -+ +(9.712)?] - 5,799.648

= 373.540

RZ
abc

Replication $S§ = - C.F.

_ (294.068)° +(299.375) +(291 403)*

(5)(3)(3)
~5,799.648

= (.732

2

. 24
A (nitrogen) SS = 3~ C-F.

(145.387)* + --- +(195.316)°

(3)(3)()
—5,799.648

= 61.641
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RA 2
Error(a) SS = -;ib-c_) — C.F.— Replication SS — 4 S§
(49.331)> + - .- +(67.866)" . :
= - 5,799.648
(3)(3) PO
~0.732 - 61.641

= 4,451

0O step 3. Do a subplot analysis.
A. Construct two tables of totals:

(i) The factor A X factor B two-way table of totals, with the factor B
totals computed. For our example, the nitrogen X management table of
totals (AB), with the management totals (B) computed, is shown in
Table 4.6.

(ii) The replication X factor A X factor B three-way table of totals,
For our example, the replication X nitrogen X management table of
totals (RAB) is shown in Table 4.7.

B. Compute the various sums of squares:

2

B (management) SS = -~ C.F.

rac

_ (265.517)" +(291.877)" +(327.452)°
(3)(5)(3)

—-5,799.648
= 42.936

Table 4.6 The Nitrogen X Management Table of Yield Totals
Computed from Data In Table 4.4

Yield Total (4B)

Nitrogen M, M, M,
N 43.864 46.575 54.948
N, 50.805 54.624 62.520
N; 57.417 62.399 69.069
N, 55.065 63.228 69.016
N; 58.366 64.051 71.899

- Management total ( B) 265.517 291.877 327452
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Table 4.7 The Replication x Nitrogen X Management Table of Yield Totals
Computed from Data in Table 4.4

Yield Total (RAB)
Management Rep.1 Rep. 11 Rep. 111

N,(0 kg N/ha)
M, 14.776 14.522 14.566
M, 16.304 15.646 14.625
M, 18.251 19.430 17.267

N,(50 kg N/ha)
M, 15.489 18.078 17.238
M, 18.574 18.380 17.670
M, 20.728 22.554 19.238

N,(80 kg N /ha)
M, 19.362 18.474 19.581
M, 20.819 21.189 20.391
M, 22.280 23.160 23.629

‘ N,(110 kg N/ha)
M, 18.497 19,024 17.544
M, 21.327 22.614 19.287
M, 24,054 22.461 22.501

Ny(140 kg N /ha)
M, 19.306 19777 19.283
M, 21470 20.969 22,612
M, 22.831 23.097 25.971

: X (48)’
A X B (nitrogen X management) SS = —;—~CF.-ASS-BSS
(43.864)% + --- +(71.859)?
= — 5,799.648 — 61.641
(3)(3)
—-42.936
= 1.103
. X (R4B)’ .
Error(b) SS = - C.F.— Replication SS — 4 SS

—Error(a) SS - BSS—AXBSS
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Table 4.8 The Nitrogen X Variety Table of Yleld Totals
Computed from Data In Table 4.4

Yield Total (AC)

Nitrogen 4 Va Vy
N, 40.618 46.466 58.303
N, 42.873 54.146 70.930
N, 52,514 59.297 77.074
N, 49,002 62.321 75.986
Ny 45.700 65.596 84.020

Variety total (C) 230.707 287.426 366.313

_ (14.776)’ + --- +(25.911)°
3

— 5,799.648

-0.732 — 61.641 — 4.451 — 42936 — 1.103

= 5.236

O sTep 4. Do a sub-subplot analysis.

A. Construct three tables of totals:

147

(i) The factor A X factor C two-way table of totals with the factor C
totals computed. For our example, the nitrogen X variety table of totals

(AC), with the variety totals (C) computed, is shown in Table 4.8.

(ii) The factor B X factor C two-way table of totals. For our exam-
ple, the management X variety table of totals (BC) is shown in Table

4.9.

(iii) The factor A X factor B X factor C three-way table of totals. For
our example, the nitrogen X management X variety table of totals

(ABC) is shown in Table 4.10.

Table 4.8 The Management X Variety Table of Yield
Totals Computed from Data In Table 4.4

Yicld Total (BC)
Management 4 v, A
M, 66.201 90.825 108.491
M, 75.820 93.345 122,712

M, 88.686 103.656 135,110
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B. Compute the various sums of squares:

2

C (variety) S§ = - C.F.

rab

_ (230.707)" +(287.826)" +(366.313)*
(3)(5)(3)

-5,799.648

= 206.013

Table 4,10 The Nitrogen X Management X Variety Table of Yield Totals
Computed from Data in Table 4.4

Yield Total (4BC)
Management 14 Vs W
N;(0 kg N/ha)
M, 11.691 16.038 16.135
M, 12.952 14.135 19.488
M, 15.975 16.293 22.680
N,(50 kg N /ha)
M, 12.696 17.765 20.344
M, 13.729 17.445 23.450
M. 16.448 18.936 27.136
N;(80 kg N/ha)
M, 15.678 17.939 23.800
My 17.197 19.500 25.702
M, 19.639 21.858 27572
o N,(110 kg N/ha)
M, 13.951 18.756 22,358
M, 16.342 21.012 25.874
M, 18.709 22.553 27.754
Ns(140 kg N /ha)
M, 12.185 20.327 25.854
M, 15.600 21.253 28,198

M, 17.915 24.016 29.968
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AC)?
A X css=>:(r—b)—c.r.—Ass— CSSs
(40.618)* + --- +(84.020)
= — 5,799.648
(3)(3)
—61.641 — 206.013
= 14.144
BC)
BXCSS = E(r—a) - C.F.-BSS-CSS
(66.201)* + --- +(135.110)°
= — 5,799.648
(3)(5) ,
—42.936 — 206.013
= 3.852
: ¥ (4Bc)?
AXBXCSS=="—"—-CF-ASS—-BSS~CSS

—AXBSS-AXCSS-BXCSS

_ (11.691)* + .-+ +(29.968)°
3

- 5,799.648

—61.641 — 42,936 — 206.013
—1.103 - 14.144 —- 3.852
= 3,699
Error(c) SS = Total SS — (the sum of all other SS)

= 373.540 - (0.732 + 61.641 + 4.451
+42,936 + 1.103 + 5. 236 + 206.013
- +14.144 + 3852 + 3 699)

= 29,733
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O step 5. For each source of variation, compute the mean square value by
dividing the SS by its d./.:

Replication SS

Replication MS = o

= 9% = 0.3660

AMs =258
a—1

= -Lfﬂ- = 15.4102

Error(a) SS
(r—1)(a-1)
- 4.451

(2)(4)

B SS

Error(a) MS =

= 0.5564

296 g

AXBSS

AXBMS=m

1.103

= W = 0.1379

Error(b) SS
a(r—1)(b-1)

Error(b) MS =
__3.236
(5)(2)(2)

CSS
c—1

= (.2618

CMS =

= 103.0065

_ 206.013
2
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AXCSS
(a=1)(c~1)

_ 14144
(4)(2)

AXCMS=
=1.7680

g BXCSS
BXCMS =5

3.852

= TZ—)_(-ﬁ = 0.9630

AXBXCSS
(a-1)(b-1)c—-1)

__3.69
“)2(2)

AXBXCMS=

= 0.2312

Error(c) SS

Error(c) MS = ab(r - 1)(c - 1)

29.733

= W = (.4956

O step 6. Compute the F value for each effect by dividing each mean square
by its appropriate error mean square:

AMS
F(4) Error(a) MS
15.4102

= 05564 - 27.70

BMS
F(B) = Error(b) MS
21.4680

= 02618 _ 8200

A X BMS
X B) = ————"—
F{4 x B) Error(b) MS
0.1379

= 02618 <!
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o CMS
F(c) Error(c) MS

_103.0065
T 0.4956

AXCMS
Error(c) MS

= 207.84

F(AXC)=

BXCMS

“FSB xC)= Error(c) MS

~0.9630
~ 0.4956

AXBXCMS
Error(c) MS

= 1.94

F(AXBXC)=

0.2312

= 04956 <1

O sTep 7. For each effect whose computed F value is not less than 1, obtain
the-corresponding tabular F values from Appendix E, with f, = d.f. of the
numerator MS and f, = d.f. of the denominator MS, at the 5% and 1%
levels of significance.

O sTep 8. Compute the three coefficients of variation corresponding to the

three error terms:
yError(a) MS

Grand mean

v0.5564
6.55

[Error(b) MS

Grand mean

v0.2618
6.55

yError(c) MS

Grand mean

v0.4956
6.55

cv(a) = % 100

X 100 = 11.4%

cv(b) = x 100

X 100 = 7.8%

c(c) = x 100

X 100 = 10.7%
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The cv(a) value indicates the degree of precision associated with the
main effect of the main-plot factor, the cv(b) value indicates the degree of
precision of the main effect of the subplot factor and of its interaction with
the main plot, and the cv(c) value indicates the degree of precision of the
main effect of the sub-subplot factor and of all its interactions with the other
factors. Normally, the sizes of these three coeflicients of variation should
decrease from cv(a) to cv(b) and to cv(c).

For our example, the value of cvo(a) is the largest as expected, but those
of cv(b) and cv(c) do not follow the expected trend. As mentioned in
Chapter 3, Section 3.4.2, such unexpected results are occasionally encoun-
tered. If they occur frequently, a competent statistician should be consulted.

O step 9. Enter all values obtained in steps 2 to 8 in the analysis of variance
outline of step 1, and compare each computed F value with its correspond-
ing tabular F values, and indicate its significance by the appropriate asterisk
notation (see Chapter 2, Section 2.1.2).

For our example, the results, shown in Table 4.11, indicate that the
three-factor interaction (nitrogen X management X variety) is not signifi-
cant, and only one two-factor interaction (nitrogen X variety) is significant,
For a proper interpretation of the significant interaction effect and mean
comparisons, see appropriate procedures in Chapter 5.

Table 4.11 Analysis of Varlance” (Split-split- plot Design) of Grain Yleld Data in
Table 4.4

Source Degree Sum
of of of Mean Computed Tabular F
Vanation Freedom Squares Square Fh % 1%

Mawn-plot analysis

Replication 2 0.732 0.3660
Nitrogen () 4 61.641 15.4102 27.70** 84 1.01
Error(a) 8 4.451 0.5564
Subplot analysis
Management ( B) 2 42,936 21,4680 82.00°** 349 585
AXB 8 1.103 0.1379 <1 - —
Error(h) 20 5.236 0.2618
Sub-subplot unalysis
Variety (C) 2 206.013 103.0065 207.84** 315 498
AxC 8 14.144 1.7680 3,57 210 282
BxC 4 3.852 0.9630 1.94™ 252 3.65
AXBEXC 16 3.699 0.2312 <1 - -
Ercor(c) 60 29.733 0.4956

Total 134 373.540

“cv(a) = 11.4%, cv(b) = 1.8%, cv(c) = 10.7%.
ba* = significant at 1% level, ™ = not significant.



154 Three-or-More Factor Experiments

4.4 STRIP-SPLIT-PLOT DESIGN

The strip-split-plot design is an extension of the strip-plot design (see Chapter
3, Section 3.5) in which the intersection plot is divided into subplots to
accommodate a third factor. The strip-split-plot design is characterized by two
main features.

1. There are four plot sizes—the horizontal strip, the vertical strip, the
intersection plot, and the subplot.

2. There are four levels of precision with which the effects of the various
factors are measured, with the highest level corresponding to the sub-
plot factor and its interactions with other factors.

The procedures for randomization, layout, and analysis of variance for the
strip-split-plot design are given in the next two sections. We use r as the
number of replications; A, B, and C as the vertical, horizontal, and subplot
factors; and a, b, and c as the treatment levels corresponding to factors A4, B,
and C. A three-factor experimment designed to test the effects of two planting
methods M, and M, and three rates of nitrogen application N, N,, and Ny on
the yield of six rice varieties V,, V,, V3, V,, Vs, and ¥ is used for illustration.
This experiment had three replications using nitrogen as the vertical factor,
variety as the horizontal factor, and planting method as the subplot factor.
Grain yield data are shown in Table 4.12.

44.1 Randomization and Layout

The steps involved in the randomization and layout of a strip-split-plot design
are:
5

O ster 1. Apply the process of randomization and layout for the strip-plot
design (Chapter 3, Section 3.5.1) to the vertical factor (nitrogen) and thc
horizontal factor (variety). The result may be as shown in Figure 4.6.

O sTeP 2. Divide each of the (a)(b) intersection plots in each of the r
replications into ¢ subplots and, following one of the randomization schemes
of Chapter 2, Section 2.1.1, randomly assign the ¢ subplot treatments to the
¢ subplots, separately and independently, in each of the (r)(a)(b) intersec-
tion plots.

For our example, cach of the (3)(6) = 18 intersection plots in each
replication is divided into two subplots and the two planting methods P,
and P, are randomly assigned to the subplots, separately and independently,
for each of the 54 intersection plots (18 intersection plots per replication and
3 replications). The final layout is shown in Figure 4.7.
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Table 4.12 Grain Yields of Six Rice Varieties Tested under Two Planting Methods and Three Nitrogen Rates,
in a Strip-split-plot Design with Three Replications

Grain Yield, kg/ha .
P, (Transplanted)

Py(Broadcast)

Total Total
Variety Rep.1 Rep.II  Rep. Il (ABC) Rep.1 Rep.II  Rep. III (ABC)
N;(0kg N/ha)

Vi(IR8) 2373 3,958 4,384 10,715 2,293 3,528 2,538 8,359

V,(IR127-8-1-10) 4,007 5,795 5,001 14,803 4,035 4,885 4,583 13,503
V3(IR305-4-12-1-3) 2,620 4,508 5,621 12,749 4,527 4,866 3,628 13,021
V,(IR400-2-5-3-3-2) 2,726 5,630 3,821 12,177 5,274 6,200 4,038 15,512
V5 (IR665-58) 4,447 3,276 4,582 12,305 4,655 2,796 3,739 11,190
V,(Peta) 2,572 3,724 3,326 9,622 4,535 5,457 3,537 13,529

N,(60 kg N/ha)
A 4,076 6,431 4,889 15,396 3,085 7,502 4,362 14,949
V, 5,630 7,334 1177 20,141 3,728 7424 5,377 16,529
Vi 4,676 6,672 7,019 18,367 4,946 7,611 6,142 18,699
Va 4,838 7,007 4,816 16,661 4,878 6,928 4,829 16,635
Vs 5,549 5,340 6,011 16,900 4,646 5,006 4,666 14,318
Ve 3,896 2,822 4,425 11,143 4,627 4,461 4,774 13,862
N,(120 kg N /ha)

" 7,254 6,808 8,582 22,644 6,661 6,353 7,759 20,773
Vv, 7,053 8,284 6,297 21,634 6,440 7,648 5,736 19,824
W 7,666 7,328 8,611 23,605 8,632 7,101 7,416 23,149
| A 6,881 7,735 6,667 21,283 6,545 9,838 7,253 23,636
Vs 6,880 5,080 6,076 18,036 6,995 4,486 6,564 18,045

Vo 1,556 2,706 3,214 7,476 5,374 7,218 6,369 18,961
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Figure 4.6 Random assignment of six varieties (V), V3, V3, V4, Vs, and V) to horizontal strips
and three nitrogen rates (N,, N,, and N) to vertical strips, as the first step in the laying out of a
strip-split-plot design with three replications.

Ny N3 N Ny N2 N Ns N N
| PR |P Rl PP | P | P
2 1 2 2 1 \ 2 2 2
vel=2-{—2 =2 v -2 -2 w22
ARl R|A ARl Rl PR RLhA A
| PP PR | P | P BIERE
2 \ X 1 2 2 \ 2 2
Vo|- ==~ ——{— =] Ve|]-—~|-=-|--| |-=—-|---|-=-
PRl P | P Pl P[P P} Pv | P
Al R | Pl R | P2 Al R P
V5 —_—— | e — = VG —_———f—_—— V3 e o e ] - ——
Rl BRI P R Py “ P | P Py
R | P A | P P: R Py
% IRANS N0 D VY NS (NP WU VS S U
Rl AR P 1R BBl P | P
Rl A |PR R iR A P, | P
VR JURES ML BRI BV MRS R BIRLON BV Ly S By
R P i P Bl AP Bl A Py
A By R R Bl R R Py P
V% DRSO P DR IRV DR DL Sl VY AN N F.
Rl AR | A il Rl P | R
Replication 1 Replication I Replication IIL

Figure 4.7 A sample layout of a 3 x 6 x 2 factorial experiment arranged in a strip-split-plot
design with six varieties (¥, V3, V3, Vy, Vs, and ¥;) as horizontal treatments, three nitrogen rates
(N, N, and N;) as vertical treatments, and two planting methods (P, and P,) as subplot
treatments, in three replications.

156
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44.2 Analysis of Variance
The steps involved in the analysis of variance of a strip-split-plot design are:

O step 1. Construct an outline of the analysis of vz riance for a strip-split-plot
design as follows:

Source Degree Sum
of 5 of Mean Computed Tabular F
Variation Freedom Squares  Square F 5% 1%
Replication r—1=2
Vertical factor (A) a—-1=2
Error(a) (r—1a—-1)=+«
Horizonta! iactor ( B) b-1=5
Error(b) (r=1}b-1)=10
AXB (a~1Xb-1)=10
Error(c) (r=1a~1)b-1)=20
Subplot factor (C) c—-1m=1
AXC (a=1)c-1)=2
BxC b-=1)c—-1)=5
AXBXC (a—1)b=-1)(c-1)=10
Error(d) ab(r — 1){c—~ 1) =36
Total rabe — 1 = 107

O step 2. Do a vertical analysis.

A. Compute the treatment totals (4ABC) as shown in Table 4.12,

B. Construct the replication X vertical factor two-way table of totals, with
replication totals, vertical factor totals, and the grand total computed.
For our example, the replication X nitrogen table of totals (RA), with
replication totals (R), nitrogen totals (A), and grand total (G) ¢vm-
puted, is shown in Table 4.13.

C. Compute the correction factor and the various sums of squares:

GZ

C.F.= —~-
ralic

_ _(s80,151)"
(3)(3)(6)(2)

Total S§ = )_ X% — C.F.

= 3,116,436,877

= [(2,373)* + -+ +(6,369)] - 3,116,436,877

= 307,327,796
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Table 4.13 The Replication X Nitrogen Table of Yield Totals Computed

from Data in Table 4.12
. Nitrogen
Yield Total (RA) Total
Nitrogen Rep. 1 Rep. II Rep. 111 4)
WA 44,064 54,623 48,798 147,485
N, 54,515 74,538 64,487 193,600
- N 71,937 80,585 80,544 239,066
Rep. Total(R) 176,576 209,746 193,829
Grand total(G) 580,151

2

Replication SS = E— -~ C.F,
' abc

_ (176,576)” +(209,746)* +(193,829)°

(3)(6)(2)
~3,116,436,877
= 15,289,498
2

i

rbe

A (nitrogen) SS = - C.F.

_ (147,485)* +(193,600)* +(239,066)°

(3)(6)(2)

~3,116,436,877

= 116,489,164
2 (R4)* o

Error(a) SS = " C.F.~ Replication SS — 4 SS

(44,064)° + - - - +(80,544)°

=\ — 3,116,436,877

(6)(2)

—15,289,498 — 116,489,164

= 6,361,493

O step 3. Do a horizontal analysis.

A. Construct the replication X horizontal factor two-way table of totals

»

with horizontal factor totals computed. For our example, the repiica-
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Table 4.14 The Replication x Variety Table of Yield Totals
Computed from Data in Table 4.12

Variet
Yield Total (RE} Totl

Variety Rep. 1 Rep. II Rep. II (B)
" 25,742 34,580 32,514 92,836
V, 30,893 41,370 34,171 106,434
A 33,067 38,086 38,437 109,590
v, 31,142 43,338 31,424 105,904
Vs 33,172 25,984 31,638 90,794
Ve 22,560 26,388 25,645 74,593

tion X variety table of totals (RB) with variety totals (B) computed is
shown in Table 4.14,

B. Compute the various sums of squares:
BZ

B (variety) SS = E— - C.F.

rac

_ (92,836)° + --- +(74,593)°
(3)(3)(2)

= 49,119,270

Y (RBY

Error(b) SS = o~ C.F.— Replication S§ ~ B SS

— 3,166,436,877

_ (25,742) + --- +(25,645)°
(32

-15,289,498 — 49,119,270
= 26,721,828

~ 3,116,436,877

O sTeP 4. . Do an interaction analysis.
~ A. Construct two tables of totals.

(i) The vertical factor X horizontal factor two-way table of totals.
For our example, the nitrogen X variety table of totals (AB) is shown
in Table 4.15.

(ii) The replication X vertical factor X horizontal factor three-way ta-
ble of totals. For our example, the replication X nitrogen X variety
table of totals (R4 B) is shown in Table 4.16.



Table 4.15 The Nitrogen X Varlety Table of Yield Totals
Computed from Data in Table 4.12

Yield Total (4B)

Variety N N, N;
" 19,074 30,345 43,417
2 28,306 36,670 41,458
Vs 25,710 37,066 46,754
Vi 27,689 33,296 44919
Vs 23,495 31,218 36,081
Vs 23,151 25,005 26,437

Table 4,16 The Nitrogen X Varlety x Replication Table of Yield Totals
Computed from Data in Table 4.12

Yield Total ( RAB)
Variety Rep. I Rep. II Rep. 111
N,(0kg N/ha)
4 4,666 7,486 6,922
v, 8,042 10,680 9,584
Vs 7,147 9,374 9,249
V, 8,000 11,830 7,859
Vs 9,102 6,072 8,321
|7 7,107 9,181 6,863
N,(60 kg N/ha)
|14 7,161 13,933 9,251
v, 9,358 14,758 12,554
v 9,622 14,283 13,161
Vv, 9,716 13,935 9,645
Vs 10,195 10,346 10,677
7 8,523 7,283 9,199
Ny(120kg N/ha)

4 13,915 13,161 16,341
R 13,493 15,932 12,033
W 16,298 14,429 16,027
VY 13,426 17,573 13,920
Vs 13,875 9,566 12,640
Ve 6,930 9,924 9,583

160
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B. Compute the following sums of squares:;

Y.(4B)

AXBSS=—’C——C.F.—ASS—-BSS

_ (19,074) + - - +(26,437)°
(3)(2)

—116,489,154 — 49,119,270
= 24,595,732

Y. (RAB)’

Error(c) SS = = — C.F.—- Replication S§ — 4 §§

- 3,116,436,877

—Error(a) SS — B SS — Error(b) SS — A X B SS
_ (4,666)° + --- +(9,583)°
2
—15,289,498 — 116,489,164 — 6,361,493
—49,119,270 — 26,721,828 — 24,595,732
= 19,106,732

- 3,116,436,877

QO sTter 5. Do a subplot analysis.
A. Construct two tables of totals.

(i) The vertical factor X subplot factor two-way table of totals, with
subplot factor totals computed. For our example, the nitrogen X
planting method table of totals (AC) with planting method totals (C)
computed is shown in Table 4.17.

Table 4.17 The Nitrogen X Planting Method Table of Yield Totals
Computed from Data In Table 4.12

Yield Total (AC)
Nitrogen P, P,
N, 72,371 75,114
N, 98,608 94,992
N, 114,678 124,388

Planting method total(C) 285,657 294,494
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(ii) The horizontal factor X subplot factor two-way table of totals.
For our example the variety X planting method ( BC) table of totals is

shown in Table 4.18.
B. Compute the following sums of squares:
lanti hod) S§ Lc F
C (planting method) SS = T C.F.
(285,657)% +(294,494)°
= - 3,116,436,877
(3)(3)(6)
= 723,078
AC)’
A XCSS=Z(’_b)—C.F.—ASS—CSS
_(12,371)" + - +(124,388)°
(3)(6)
-3,116,436,877 —116,489,164
- 723,078
= 2,468,136
Bc)?
BXCSS=-§SM—)—C.F.—BSS—CSS
_ (48,755) + --- +(46,352)"
(3)(3)
-3,116,436,877 — 49,119,270
- 723,078
= 23,761,442

Table 4,18 The Varlety x Planting Method Table of Yield Totals
Computed from Data in Table 4.12

Yield Total (BC)

Variety P, p,
14 48,755 44,081
v, 56,578 49,856
14 54,721 54,869
Vs 50,121 55,783
Vs 47,241 43,553

Ve 28,241 46,352
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: Y (4Bc)?
AXBXCSS=="——"~C.F.~ASS—-BSS~CSS

~AXBSS—-AXCSS—-BXCSS

_(10115) + ... +(18,961)
3

~116,489,164 — 49,119,270 — 723,078
- 24,595,732 —- 2,468,136 — 23,761,442
= 7,512,067
Error(d) SS = Total SS —(the sum of all other SS)

- 3,116,436,877

= 307,327,796 — (15,289,498 + 116,489,164
+6,361,493 + 49,119,270 + 26,721,828
+24,595,732 + 19,106,732 + 723,078
+2,468,136 + 23,761,442
+7,512,067)

= 15,179,356

O sTeP 6. For each source of variation, compute the mean square value by
dmdmg the SS by its degree of freedom:

Replication SS

Replication MS = p—

_. 15,289,498
2
ASS

a-1
- 116,489,164
2

= 7,644,749
AMS =

= 58,244,582
Error(a) SS
(r-1)(a-1)

_ 6,361,493
@

Error(a) MS =

= 1,590,373



164 ' Three-or-More Factor Experiments

- BSS
BMS=3"5

_ 49,119,270
5

Error(b) SS
(r=-1)b-1)

_ 26,721,828
2)()

= 9,823,854
 Error(b) MS =
= 2,672,183

AXBSS
(a-1)(b-1)

_ 24,595,732
(2)(5)
Error(c) SS

(r-1)a-1)(b-1)

- 19,106,732

(2)(@)(5)

cms =<5
c-1

723,078
1

AXBMS =

= 2,459,573

- Brror(c) MS =

= 955,337

= 723,078
AXCSS
(a=1)(c-1)

_ 2,468,136
(2)(1)

AXCMS=
= 1,234,068

BX CSS
(b—1)c-1)

_ 23,761,442
(5)(1)
AXBXCSS
(a-1)(b—=1)(c-1)

_ 7,512,067
(2(5)(1)

BXCMS =

= 4,752,288

AXBXCMS=

= 751,207
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Error(d) SS
ab(r—1)(c-1)
- 15,179,356

(3)(6)(2)(1)

O step 7. Compute the F value for each effect by dividing each mean squaref
by its appropriate error mean square: -

Error(d) MS =

= 421,649

B MS

F(8) = Error(b) MS

9,823,854
T 2,672,183 3.68
A X BMS

F = L2200
(4% B) Error(c) MS

2,459,573
" 955,337

CMS
F(c) = Error(d) MS

= 2.57

_ 123,078
T 821,649

AXCMS
Error(d) MS

=17

F(AXC)=
_ 1,234,068
T 421,649

BXCMS
Error(d) MS

=293

F(BxC)=
_ 4,752,288
T 421,649

AXBXCMS
Error(d) MS

= 11.27

F(AXBXC)=

751,207

=629 = 178

Note that' because of madequate d.f. for error(a) MS, the F value for the
main effect of factor 4 is not computed (see Chapter 2, Section 2.1.2.1),
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O step 8. For each effect whose computed F value is not less than 1, obtain
the corresponding tabular F values from Appendix E, with f, = d.f. of the
numerator MS and f, = d.f. of the denominator MS, at the 5% and 1%
levels of significance.

O step 9. Compute the four coefficients of variation corresponding to the
four error mean squares, as follows: ‘

JError(a) MS
Grand mean

yError(b) MS
—_— X 100

Grand mean

B VError(c) MS 100
ew(e) = Grand mean

yError(d) MS
—_— X 100

Grand mean

cv(a) =

cw(b) =

cw(d) =

The cv(a) and cv(b) values indicate the degrees of precision associated
with *“e measurement of the effects of vertical and horizontal factors. The
cv(c) value indicates the precision of the interaction effect between these
two factors and the cuv(d) value indicates the precision of all effects
concerning the subplot factor. It is normally expected that the values of
cv(a) and cu(b) are larger than that of cv(c), which in turn is larger than
cu(d).

For our example, the value of cv(a) is not computed because of inade-
quate error d.f. for error(a) MS (see step 7). The other three cv values are
computed as:

V2,672,183
w(b) =533

co(c) = %’,;% X 100 = 18.2%

X 100 = 30.4%

_ +/421,649

cw(d) = 53— X 100 = 12.1%

O step 10. Enter all values obtained in steps 2 to 9 in the analysis of variance
outline of step 1 and compare each computed F value to its corresponding
tabular F values and indicate its significance by the appropriate asterisk
notation (see Chapter 2, Section 2.1.2).
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Table 4.19 Analysis of Varlance” (Strip-split-plot Design) of Grain Yleld Data in
Table 4.12

Source De Sum
of (ffmc of Mean Computed ~ Tabular F
Variation Freedom Squares Square F? 5% 1%
Replication 2 15,289,498 7,644,749
Nitrogen (A4) 2 116,489,164 58,244,582 ¢ —_ —_
Error(a) 4 6,361,493 1,590,373
Variety (B) 5 49,119,270 9,823,854 3.68* 333 564
Error(b) 10 26,721,828 2,672,183
AXB 10 24,595,732 2,459,573 2.57* 235 337
Error(c) 20 19,106,732 955,337
Planting method (C) 1 723,078 723,078 1.71™ 411 1739
AXC 2 2,468,136 1,234,068 2,93™ 326 525
BXC 5 23,761,442 4,752,288 11,27 248 3.58
AXBXC 10 1,512,067 751,207 1.78™ 210 286
Error(d) 36 15,179,356 421,649

Total 107 307,327,796

“cv(b) = 30.4%, cv(c) = 18.2%, cv(d) = 12.1%.
bs* = significant at 1% level, * = significant at 5% level, ™ = not significant.
“Error(a) d.f. is not adequate for valid test of significance.

For our example, the results (Table 4.19) show that the three-factor
interaction is not significant, and that two of the three two-factor interac-
tions, namely, the nitrogen X variety interaction and the variety X planting
method interaction, are significant. These results indicate that the effects of
both nitrogen and planting method varied among varieties tested. For a
proper interpretation of the significant interactions and appropriate mean
comparisons, see appropriate procedures in Chapter 5.

4.5 FRACTIONAL FACTORIAL DESIGN

As the number of factors to be tested increases, the complete set of factorial
treatments may become too large to be tested simultaneously in a single
experiment. A logical alternative is an experimental design that allows testing
of only a fraction of the total number of treatments. A design uniquely suited
for experiments involving a large number of factors is the fractional factorial
design (FFD). It provides a systematic way of selecting and testing only a
fraction of the complete set of factorial treatment combinations. In exchange,
however, there is loss of information on some presclected effects. Although this
information loss may be serious in experiments with one or two factors, such a
loss becomes more tolerable with a large number of factors. The number of
interaction effects increases rapidly with the number of factors involved, which
allows flexibility in the choice of the particular effects to be sacrificed. In fact,
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in cases where some specific effects are known beforehand to be small or
unimportant, use of the FFD results in minimal loss of information.

In practice, the effects that are most commonly sacrificed by use of the FFD
are high-order interactions—the four-factor or five-factor interactions and, at
times, even the three-factor interaction. In almost all cases, unless the re-
searcher has prior information to indicate otherwise, he should select a set of
treatments to be tested so that all main effects and two-factor interactions can
be estimated.

In agricultural research, the FFD is most commonly used in exploratory
trials where the main objective is to examine the interactions between factcrs.
For such trials, the most appropriate FFD are those that sacrifice only those
interactions that involve more than two factors.

With the FFD, the number of effects that can be measured decreases rapidly
with the reduction in the number of treatments to be tested. Thus, when the
number of effects to be measured is large, the number of treatments to be
tested, even with the use of FFD, may still be too large. In such cases, further
reduction in the size of the experiment can be achieved by reducing the
number of replications. Although use of a FFD without replication is uncom-
mon in agricultural experiments, when FFD is applied to an exploratory trial
the number of replications required can be reduced. For example, two replica-
tions are commonly used in an exploratory field trial in rice whercas four
replications are used for a standard field experiment in rice.

Another desirable feature of FFD is that it allows reduced block size by not
requiring a block to contain all treatments to be tested. In this way, the
homogeneity of experimental units within the same block can be improved. A
reduction in block size is, however, accompanied by loss of information in
addition to that already lost through the reduction in number of treatments.

Although the FFD can be tailor-made to fit most factorial experiments, the
procedure for doing so is complex and beyond the scope of this book. Thus, we
describe only a few selected sets of FFD that are suited for exploratory trials in
agricultural research. The major features of these selected designs are that
they:

« Apply only to 2" factorial experiments where n, the number of factors,
ranges from 5 to 7.

+ Involve only one half of the complete set of factorial treatment combina-
tions (i.e., the number of treatments is 1/2 of 2" or 2"~ 1),

» Have a block size of 16 plots or less.

- Allow all main effects and most, if not all, of the two-factor interactions to
be estimated.

The selected plans are given in Appendix M. Each plan provides the list of
treatments to be tested and the specific effects that can be estimated. In the
designation of the various treatment combinations for all plans, the letters
a, b,c,... are used to denote the presence (or use of high level) of factors
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A, B, C,.... Thus, the treatment combination ab in a 2° factorial experiment
refers to the treatraent combination that contains the kigh level (or presence)
of factors A and B and low level (or absence) of factors C, D, and E, but this
same notation (ab) in a 2% factorial experiment would refer to the treatment
combination that contains the high level of factors 4 and B and low level of
factors C, D, E, and F. In all cases, the treatment combination that consists of
the low level of all factors is denoted by the symbol (1).

We illustrate the procedure for randomization, layout, and analysis of
variance of a FFD with a field experiment involving six factors 4, B, C, D, E,
and F, each at two levels (i.e., 2° factorial experiment). Only 32 treatments
from the total of 64 complete factorial treatment combinations are tested in
blocks of 16 plots each. With two replications, the total number of experimen-
tal plots is 64.

4.5.1 Randomization and Layout

The steps for randomization and layout are:

O step 1. Choose an appropriate basic plan of a FFD in Appendix M. The
plan should correspond to the number of factors and the number of levels of
each factor to be tested. For basic plans that are not given in Appendix M,
see Cochran and Cox, 1957.* Our example uses plan 3 of Appendix M.

O sTep 2. If there is more than one block per replication, randomly assign the
block arrangement in the basic plan to the actual blocks in the field.

For this example, the experimental area is first divided into two replica-
tions (Rep. I and Rep. II), each consisting of 32 experimental plots. Each
replication is further divided into two blocks (Block 1 and Block 2), each
consisting of 16 plots. Following one of the randomization schemes of
Chapter 2, Section 2.1.1, randomly reassign the block numbers in the basic
plan to the blocks in the field. The result may be as follows:

Block Numberin  Block Number Assignment in Field

Basic Plan Rep. | Rep. 11
I 2 1
I 1 2

Note that all 16 treatments listed in block I of the basic plan arc assigned
to block 2 of replication I in the field, all 16 treatments listed in block II of
the basic plan are assigned to block 1 of replication I in the field, and so on.

O step 3. Randomly reassign the treatments in each block of the basic plan
to the experimental plots of the reassigned block in the field (from step 2).

*W. G. Cochran and G. M. Cox, Experimental Designs. New York: Wiley, 1957, pp. 276-292.
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For this example, follow the same randomization scheme used in step 2
and randomly assign the 16 treatments of a given block (in the basic plan)
to the 16 plots of the corresponding block in the field, separately and
independently for each of the four blocks (i.e., two blocks per replication
and two replications). The result of the four independent randomization
processes may be as follows:

Plot Number Assignment in Field

Treatment
Number in Rep. | Rep. 11
Basic Plan Block 1 Block 2 Block 1 Block 2
1 6 5 4 11
2 3 4 14 7
3 15 10 3
4 12 6 8 1
5 1 12 7 15
6 5 1 11 4
7 13 3 16 14
8 7 8 12 9
9 2 16 9 3
10 10 11 10 5
11 11 15 5 8
12 8 2 6 12
13 4 14 1 16
14 9 9 Y] 13
15 16 13 15 2
16 14 7 13 10

Note that block 1 of replication I in the field was assigned to receive
treatments of block II in the basic plan (step 2); and according to the basic
plan used (i.e., plan 3 of Appendix M) treatment 1 of block Il is ae. Thus,
according to the foregoing assignment of treatments, treatment ae is as-
signed to plot 6 in block 1 of replication 1. In the same manner, because
treatment 2 of block II in the basic plan 1s &f, treatment «f is assigned to
plot 3 in block 1 of replication I; and so on. Tht final layout is shown in
Figure 4.8.

4.5.2 Analysis of Variance

The analysis of variance procedures of a FFD, without replication and with
replication, are illustrated. We use Yates’ method for the computation of sums
of squares. This method is suitable for manual computation of la\ ge fractional
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factorial experiments. Other alternative procedures are;

+ The application of the standard rules for the computation of sums of
squares in the analysis of variance (Chapter 3), by constructing two-way
tables of totals for two-facior interactions, three-way table of totals for
three-factor interacticas, and so on.

» The application of the single d./. contrast method (Chapter 5), by specify-
ing a contrast for each of the main effects and interaction effects that are to
be estimated.

4.5.21 Design without Replication. For illustration, we use data (Table
4.20) from a FFD trial whose layout is shown in Figure 4.8. Here, only data
from replication I of Table 4.20 is used. The computational steps in the
analysis of variance are:

O step 1. Outline the analysis of variance, following that given in Appendix
M, corresponding to the basic plan used. For our example, the basic plan is

Block ¢ Block 2 Block 1 Block 2
Pl —F e § 2 [ 2 1 2 1 2
Treatment | cd od acdf df abde obdf bf odef
3 4 3 4 3 4 3 4
of abce bede ab of (]} od obed
5 6 ] 6 5 6 5 6
abed oe 1) obef de gf bd be
T 8 T e T 8 T 8
abcdef cf beet! bedf acde obe! af ce
9 10 9 10 9 [[o) 9 fo
abef bd obdf ef oc be obedef bdef
t 12 1 12 11 12 f 12
ce bf be ocde ocdf beaf oe of
13 14 13 14 13 1] 13 14
cdef bdet ocef obde beef ab obef cdef
15 16 13 16 13 16 13 16
be odef de oc ocef bede cd obce
Replication [ Replcoton IT

Figure 48 A sample layout of a fractional factorial design with two replications: 1/2 of 2¢
factorial treatments arranged in blocks of 16 plots each.
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plan 3 of Appendix M and the outline of the analysis of variance is:

Source Degree Sum

of of " of = Mean Computed TabularF
Variation Freedom: Squares Square F 5% 1%
Block 1
Main effect 6
Two-factor
interaction 15
Error 9
Total 31

@ step 2. Determine the number of real factors (k) each at two levels, whose
complete set of factorial treatments is equal to the nuinber of treatments (¢)
to be tested (i.e., 2¥ = t). Then select the specific set of k real factors from

Table 4.20 Grain Yleld Data from a 2° Factorlal Experiment Planted
In a 1 Fractional Factorial Design In Blocks of 16 Experimental Plots
Each, and with Two Replications

Grain Yield, Grain Yield,
t/ha t/ha
Treatment Rep.I Rep.II Total Treatment Rep.I Rep.II Total
Block 1 Block 2
(1) 2,92 276 568 ad 3.23 348 67N
ab 3.45 350 695 ae 3.10 311 621
ac 3.65 350 715 af 3.52 327 679
be 3.16 305 621 bd 3.29 322 651
de 3.29 303 632 be 3.06 320 6.26
df . 334 337 671 bf 327 327 654
ef 328 323 651 od 3.68 352 720
abde 3.88 379 767 ce 3.08 302 610
abdf 395 4,03 798 cf 329 310 6.39
abef 3.85 390 775 abed 3.89 399 1788
acde 4.05 418 823 abce n 380 751
acdf 4.37 420 857 abcef 3.96 398 1794
acef n 380 757 adef 4.27 398 825
bede 4.04 387 791 bdef 3.69 362 731
bedf 4.00 376 176 cdef 4.29 409 838
beef 3.63 346 709 abcdef 4.80 478  9.58

Total (RB) 5863  57.43 5813 5743
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the original set of n factors and designate all (n — k) factors not included in
the set of k as dummy factors.

For our example, the ¢ = 32 treatment combinations correspond to a
complete set of 2* factorial treatment combinations, with k = 5. For sim-
plicity, the first five factors 4, B, C, D, and E are designated as the real
factors and F as the dummy factor.

O sTEP 3. Arrange the ¢ treatments in a systematic order based on the k real
factors:

A. Treatments with fewer number of letters are listed first. For example, ab
comes before abe, and abc coines before abede, and so on. Note that if
treatment (1) is present in the set of ¢ treatments, it always appears as
the first treatment in the sequence.

B. Among treatments with the same number of letters, those involving
letters corresponding to factors assigned to the lower-order letters come
first. For example, ab comes before ac, ad before bc, and so on.

C. All treatmer:i-identification letters corresponding to the dummy factors
are ignored in the arrangement process. For our example, factor F is
the dummy factor and, thus, af is considered simply as a and comes
before ab.

In this example, the systematic arrangement of the 32 treatments is
shown in the first column of Table 4.21. Note that:

- The treatments are listed systematically regardless of their block alloca-

tion.

+ The dummy factor F is placed in parenthesis.

0O step 4.  Compute the ¢ factorial effect totals:

A. Designate the original data of the  treatments as the initial set or the 1,
values. For our example, the systematically arranged set of 32 t, values
are listed in the second column of Table 4.21.

B. Group the ¢, values into 1/2 successive pairs. For our example, there
are 16 successive pairs: the first pair is 2.92 and 3.52, the second pair is
3.27 and 3.45, and the last pair is 4.04 and 4.80.

C. Add the values of the two treatments in each of the t/2 pairs con-
stituted in task 2 to constitute the first half of the second set or the 1,
values. For our example, the first half of the 1, values are computed as:

6.44 = 2.92 + 3.52
6.72 = 3.27 + 3.45

8.34=4.29 + 4.05
8.84 = 4.04 + 4.80



Table 4.21 Application of Yates' Method for the Computation of Sums of Squares
of a 2° Factorlal Experiment Conducted in a } Fractional Factorial Deslign, without
Replication, from Rep. 1 data In Table 4.20

Factorial Effect
Treatment Identification
Combination t, 7 ty 1 ts Preliminary  Final
(0)) 292 644 1316 2722 5697 116.76 G (G)
a(f) 3.52 672 1406 2975 59.79 6.14 A A
b(f) 3.27 694 1381 2748 3.07 2.50 B B
ab 345 702 1594 3231 3.07 0.56 AB AB
c(f) 3.29 6.57 13.29 1.94 0.97 5.98 C C
ac 3.65 724 1419 1.13 1.53 -0.08 AC AC
be 316 805 1513 138 -001 -048 BC BC
abe(f) 396 7.89 17.18 1.69 0.57 -0.50 ABC ABC(Block)
aif) 334 638 0.78 0.46 3.03 7.36 D D
ad 323 691 116 0.51 295 -0.50 AD AD
bd 329 685 0.55 1.02 041 -046 BD BD
abd(f) 395 734 0.58 051 -049 -020 ABD ABD
cd 368 756 0.61 002 -0.93 2.38 CD CD
acd(f) 437 157 077 -003 045 -116 ACD ACD
bed(f) 400 834 117 036 -071 -020 BCD BCD
abcd 389 884 0.52 021 0.21 0.94 ABCD EF
e(f) 328 060 0.28 0.90 2.53 2.82 E E
ae 310 018 0.18 2.13 4.83 0.00 AE AE
Se 3.06 036 0.67 090 -0.81 0.56 BE BE
abe(f) 3.85 0.80 -0.16 2.05 0.31 0.58 ABE ABE
ce 308-0.11 053 0.38 005 -0.08 CE CE
ace(f) 3.77 066 0.49 003 -051 -090 ACE ACE
bee(f) 363 069 001 016 -0.05 1.38 BCE BCE
abce 371-011 050 -065 -0.15 0.92 ABCE DF
de 3.29-0.18 -042 -0.10 1.23 2.30 DE DE
ade(f) 427 079 044 -0483 1.15 1.12 ADE ADE
bde(f) 369 069 077 -004 -035 -056 BDE BDE
abde 3.88 008 —0.80 049 -0.81 -010 ABDE CF
cde(f) 429 098 097 086 -073 -0.08 CDE CDE
acde 405 019 -061 -—-157 053 —0.46 ACDE BF
bede 404-024 -0.79 -158 -243 1.26 BCDE AF

abede(f) 480 076 1.00 179 337 580 ABCDE F

174
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The results of the first 16 ¢, values are shown in the top of the third
column of Table 4.21.
Subtract the first value from the second in each of the t/2 pairs
constituted in task 2 to constitute the bottom half of the 1, values. For
our example, the second half of the 1, values are computed as:

0.60 = 3.52 - 2.92
0.18 =345 - 3.27

—0.24 = 4,05 - 4.29
0./6 =4.80 — 4.04

The results of the last 16 ¢, values are shown in the bottom half of
the third column of Table 4.21.
Reapply tasks B to D using the values of ¢, instead of {, to derive the
third set or the ¢, values. For our example, tasks B to D are reapplied to
1, values to arrive at the 1, values shown in the fourth column of Table
4.21.
Repeat task E, (k — 2) times. Each time use the newly derived values of
t. For our example, task E is repeated three more times to derive l5
values, 1, values, and ¢, values as shown in the fifth, sixth, and seventh
columns of Table 4.21.

O sTep 5. Identify the specific factorial effect that is represented by each of
the values of the last set (commonly referred to as the factorial effect totals)
derived in step 4. Use the following guidelines:

A. The first value represents the grand tota! (G).

B.

For the remaining (¢ - 1) values, assign the preliminary factorial effects
according to the letters of the corresponding treatments, with the
dummy factors ignored. For our example, the second ts value corre-
sponds to treatment combination a( f ) and, hence, is assigned to the 4
main effect. The fourth ¢, value corresponds to treatment ab and is
assigned to the A X B interaction effect, and so on. The results for all
32 treatments are shown in the eighth column of Table 4.21.

For treatments involving the dummy factor (or factors) adjust the

preliminary factorial effects derived in task B as follows:

» Based on the conditions stated in the basic plan of Ap-ndix M,
identify all effects involving the dummy factor that are cstimable
(i.e., that can be estimated). For our example, the estimable effects
involving the dummy factor F consist of the main effect of F and all
its two-factor interactions AF, BF, CF, DF, and EF.
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« Identify the aliases of all effects listed immediately above. The alias
of any effect is defined as its generalized interaction with the defining
contrast. The generalized interaction between any two factorial
effects is obtained by combining all the letters that appear in the two
effects and canceling all letters that enter twice. For example, the
generalized interaction between ABC and AB is AABBC or C.

For our example, because the defining contrast is ABCDEF (see
plan 3 of Appendix M) the aliases of the six effects involving the
dummy factor F are: F = ABCDE, AF = BCDE, BF = ACDE,
CF = ABDE, DF = ABCE, and EF = ABCD.

The two factorial effects involved in each pair of aliases (one to
the left and another to the right of the equal sign) are not separable
(i.e., can not be estimated separately). For example, for the first pair,
F and ABCDE, the main efTect of factor F cannot be separated from
the A X B X C X D X E interaction effect and, hence, unless one of
the pair is known to be absent there is no way to know which of the
pairs is the contributor to the estimate obtained.

» Replace all preliminary factorial effects that are aliases of the
estimable effects involving the dummy factors by the latter. For
example, because ABCDE (corresponding to the last treatment in
Table 4.21) is the alias of /, * is replaced by F. In the same manner,
BCDE is replaced by AF, ACDE by BF, ABDE by CF, ABCE by
DF, and ABCD by EF.

« When blocking is used, identify the factorial effects that are con-
founded with blocks. Such effects are stated for each plan of
Appendix M. For our example, ABC is confounded with block (see
plan 3 of Appendix M) and the preliminary factorial effect ABC is,
therefore, replaced by the block effect. That means that the estimate
of the ABC effect becomes the measure of the block effect.

The final results of the factorial effect identification are shown in
the last column of Table 4.21.

O step 6. For each source of variation in the analysis of variance (step 1)
identify the corresponding factorial effects. For our example, there is only
one factorial effect (i.e., ABC) corresponding to the first source of variation
of block. For the second source of variation (main effects) there are six
factorial effects corresponding to the six main effects (A4, B, C, D, E, and
F). And, for the third source of variation (two-factor interactions) there are
15 factorial effects (i.e., all 15 possible two-factor interaction effects among
the six factors). All the remaining nine factorial effects correspond to the
last source of variation (error).

O step 7. For each source of variation in the analysis of variance of step 1,
compute its SS as the sum of the squares of the factorial effect totals of the
corresponding factorial effects (identified in step 6) divided by the total



Fractional Factorial Design 177

number of treatments tested in the experiment. For our example, the various
SS are computed as:

Block SS = i’—’—;-’-f—)z

=\£-—-g—'2'r-’-9-)i= 0.007812

(4)* +(B) +(C)* +(D)* +(E)* +(F)*
32

Main effect SS =

= [(6.14) +(2.50)* +(5.98)” +(7.36)*
+(2.82)* +(5.80)] /32
= 5.483500
Two-factor interaction SS = [(A4B)? +(AC)* +(BC)* + --- +(CF)*
+(BF) +(AF)] /32
= [(0.56)* +(-0.08)? +(—0.48)
+ +or +(=0.10)* +(-046)" +(1.26))] /32
= 0.494550
Error SS = [(4BDY* +(ACD)? +(BCDY + ---
+(ADE)* +(BDE) + (CDEYY /32
= [(-0.20* +(~1.16)* +(-0.20)* + --- +(1.12)?
+(~0.56)" +(~0.08)] /32

= (.189088

Note that the error SS can also be computed as the difference between the
total SS and the sum of all other SS, where the total SS is computed from
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all factorial effect totals. For our example, the total SS and the error SS are:

(A +(B) +(AB)* + -+ +(BF)* +(AF)* +(F)}

Total §S =

32

= [(6.14)* +(2.50)* +(0.56)* + - -+ +(—0.46)’
+(1.26)* +(5.80)] /32

= 6.174950

Error S§ = Total $§ — Main effect SS — Two-factor interaction SS

—Block SS

= 6.174950 ~ 5.483500 — 0.494550 — 0.007812

= (0.189088

O step 8. Determine the degree of freedom for each SS as the number of
factorial effect totals used in its computation. For example, the computation
of the block SS involves only ore effect, namely ABC; hence, its d.f. is 1.
On the other hand, there are six effect totals involved in the computation of
the main effect SS; hence, its d.f. is 6. The results are shown in the second
column of Table 4.22,

O ster 9. Compute the mean square for each source of variation by dividing
each SS by its d.f:

Block SS
1

= 0.007812

Block MS =

Table 4.22 Arnalysis of Variance of Data from a Fractional Factorial Design:
1 of a 2° Factorial Experiment without Replication”

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square Ft 5% 1%
Block 1 0.007812 0.007812 <1 —_— -
Main effect 6 5.483500 0.913917 43.50** 337 5.80
Two-factor interaction 15 0.494550 0.032970 1.57™ 3.00 4.96
Error 9 0.189088 0.021010

Total 31 6.174950

“Source of data: Rep. I data of Table 4.2,
he* = significant at 1% level, ™ = not significant.
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Main effect SS
6

_ 5.483500
"6

Main effect MS =

= 0.913917

Two-factor interaction $S$
15

Two-factor interaction MS =

_0.494550
T15

Error SS
9

_ 0.189088
9

= 0.032970
Errer MS =
= 0.021010

0 step 10. Compute the F value for each effect by dividing its MS by the
error MS:

Block MS
Error MS

_ 0.007812 <
0.021010

Main effect MS
Error MS

_0.913917
~0.021010

F(block) =
1
F(main effect) =

=43.50

Two-factor interaction MS

F(two-factor interaction) =

Error MS
0.032970
= 0021010 ~ 17

O ster 11. Compare each computed F value with the corresponding tabular
F values, from Appendix E, with f, = d.f. of the numerator MS and
f, =errord.f.

The final analysis of variance is shown in Table 4.22. The results indicate
a highly significant main effect but not the two-factor interaction effect.

4.5.2.2 Desiin with Replication. We show the computations involved in
the analysis of variance of a FFD with data from both replications in Table
4.20.
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O step 1. Outline the aralysis of variance, following that given in plan 3 of
Appendix M:

Source Degree Sum

of of of Mean Computed labular F
Variation Freedom Squares Square F 5% 1%
Replication 1
Block 1
Block X Replication 1
Main effect 6
Two-factor
interaction 15
Three-factor
interaction 9
Error 30
Total 63

O step 2. Compute the replication X block totals (RB) as shown in Table

4.20. Then compute the replication total for each of the two replications
(R), the block totals for each of the two blocks (B), and the grand total (G)
as:

R, = 58.63 + 58.13 = 116.76
R, =57.43 + 57.43 = 114.86
B, = 58.63 + 57.43 = 116.06
B, = 58.13 + 57.43 = 115.56

G = 116.76 + 114.86
= 116.06 + 115.56 = 231.62

O sTep 3. Let r denote the number of replications, p the number of blocks in
each replication, and ¢ the total number of treatments tested. Compute the
correction factor, total SS, replication SS, block SS, and block X replication
SS as:

GZ

C.F.=—
rt

_ (231.62)°

AL = 838.247256
(2)(32)
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Total S§ = ¥ X2 - C.F.
= [(2.92)2 + e +(4.78)2] — 838.247256
= 12.419344

RZ

Replication SS = - C.F.
_ (116.76)" +(114.86)°

7 — 838.247256

= 0.056406

2
—C.F.

Block SS =

_ (116.06)° +(115.56)*
32

= 0,003906
Y. (RBY

Block X Replication S§ = T — C.F.— Replication S§ — Block SS

_ (58.63) +(57.43) +(58.13)* +(57.43)°
32,2

~838.247256 — 0.056406 — 0.003906
= 0.003907

— 838.247256

O step 4. Follow steps 2 to 7 of Section 4.5.2.1; with one modification,
namely that the grain yield data in the second column of Table 4.21 is
replaced by the yield totals over two replications as shown in Table 4.23.
Then compute the various SS as follows:

(4)’ +(B)* +(C)* +(D)* +(E)* +(F)
(r)(2%)

= [(13.86) +(6.08)* + (11.32)? +(14.32)}

Main effect SS =

+(5.68) +(10.62)Y] /(2)(32)
= 11.051838
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Two-factor interaction SS = [(Al.’i)2 +(AC")2 +(1.’2C)2 + oo +(CF)?
| +(BFY +(4FY] /(r)(2)
= [(1.48)? +(oﬂ.92)2 +(~1.50)% 4 --- +(—0.44)

+(~0.52)° +(1.62)*] /(2)(32)
= 0.787594

Three-factor interaction SS = [(ABD)? +(ACD)’ +(BCD) + ---
+(ADE)’ +(BDE) +(CDE)Y /(r)(2*)
= [(~0.54)* +(-2.42)* + (0.04)* + -

+(1.78)" +(=0.24) +(1.24)] /(2)(32)
= (.238206
Error §§ = Total SS — (the sum of all other SS)

= 12.419344 —(0.056406 + 0.003906 + 0.003907

+11.051838 + 0.787594 + 0.238206)
= (.277487

0 ster 5. Compute the mean square for each source of variation, by dividing

the SS by its d.f. (see step 8 of Section 4.5.2.1 for the determination of d. f)
as;

Replication SS

Replication MS = 1

- 9'—05—16@ = 0.056406

Block SS

Block MS = ]

_ 0.003906

7 = 0.003906
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Block X Replication S§

Block X Replication MS = 1

_ 0.003907

1 = 0.003907

Table 4.23 Application of Yates’ Method for the Computation of Sums of Squares
of a 2° Factorlal Experiment Conducted In a } Fractional Factorial Design, with
Two Replications; from Data In Table 4.20

Factorial Effect
Treatment Identification
Combination ¢, ty t, ty t ty Preliminary Final
1) 5.68 1247 2596 53.65 11297 231.62 (G) (G)
a(f) 6.79 13.49 27.69 5932 118.65 13.86 A A
b(f) 6.54 1354 2791 5500 697 6.08 B B
ab 6.95 14.15 3141 63.65 6.89 1.48 AB AB
c(f) 6.39 1342 26.73 4.01 257 1132 C C
ac 7.15 1449 2827 296  3.51 0.92 AC AC
be 621 1577 2955 3.08 049 -1.50 BC BC
abe(f) 794 1564 3410 3.8] 099 -0.50 ABC ABC(Block)
da(f) 671 1272 152 163 523 1432 D D
ad 671 1401 249 094 609 -0.32 AD AD
bd 6.51 13.67 147 222 099 -1.62 BD BD
abd(f) 798 1460 149 129 -007 -0.54 ABD ABD
cd 720 1457 119 027 -1.61 478 CD CD
acd(f) 857 1498 189 0.22 011 -242 ACD ACD
" bed(f) 776 1661 229 074 -1.05 004 BCD BCD
abed 788 1749 152 025 0.55 1.84 ABCD EF
e(f) 651 111 1.02 173 567 5.68 E E
ae 621 041 061 350 865 -008 AE AE
be 626 076 1.07 154 -105 094 BE BE
abe(f) 775 173 -013 455 073 050 ABE ABE
ce 610 000 129 097 -069 0.86 CE CE
ace(f) 757 147 093 002 -093 -106  ACE ACE
bee(f) 709 137 041 070 -0.05 1.72 BCE BCE
ab e 751 012 0.88 -077 -0.49 1.60 ABCE DF
de 6.32 -0.30 -0.70 —041 1.77 2.98 DE DE
ade(f) 825 149 097 -1.20 3ol 1.78 ADE ADE
bde(f) 731 147 147 -036 -095 -0.24 BDE BDE
abde 767 042 -125 047 -147 -044 ABDE CF
cde(f) 838 193 179 167 -079 124 CDE CDE
acde 823 036 -1.05 -2.72 083 -052 ACDE BF
bede 791 -015 -1.57 —-2.84 —439 162 BCDE AF

abede( 1) 958 167 182 339 623 1062 ABCDE F
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‘Main efffact MS = Main eéfect SS
| = —————11'0?838 = 1.841973
'Two-faéﬁtoi"imefactign Ms = Two-factor ilr;ter action S§
= 0.787594 = 0.052506
15
Thref:-factqr interaétiop MS = Three-factor i;teraction SS
= _0239ﬂ = 0.026467
Error MS = Error S§
30
='—0'2;-(’)487 = 0.009250

O step 6. Compute the F value for each effect, by dividing its MS by th:

error MS as:

F(réplication) =

F(block) =

F(block X replication) =

Replication MS
Error M§

0.056406

0.009250 — 910

Block MS
Error MS

0.003906

0.009250 < !

Block X replication MS
Error MS

0.003907

0.009250 < !
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Main effect MS
Error MS

_ 1.841973
~ 0.009250

F(main effect) =

= 199.13

Two-factor interaction MS

F(two-factor interaction) =

Error MS
0.052506
= 0.009250 _ >%8

Three-factor interaction MS

F(three-factor interaction) = Error MS

0.026467
~ 0.009250 ~ 286
O ster 7. Compare each computed F value with the corresponding tabular F
values, from App.ndix E, with f; = d. . of the numerator MS and f, = error
d.f. The results indicate that the main effects, the two-factor interactions,
and the three-factor interactions are all <ignificant,

The final analysis of variance is shown in Table 4.24. There are two important
points that should be noted 1n the results of this analysis of variance obtained
from two replications as compared to that without replication (Table 4.22):

* The effect of the three-factor interactions can be estimated only when there
is replication.

Table 4.24 Analysis of Varlance of Grain Yleld Data in Table 4.20, from a

Fractional Factorial Design: } of a 2° Factorlal Experiment with Two
Replications

Source Degree Sum
of of of Mean  Computed Tabular F
Variation Freedom  Squares Square Fa % 1%

0056406 0056406 6.10* 417 17.56
Block 0.003906  0.003906 < —_— -
Block x replication 0.003907 0003907 <] - -

Replication i
1
1
Main cffect 6 11.051838 1841973  19913** 242 347
5
9

Two-factor interaction 1 0.787594 (052506 5.68** 202 270
Three-lactor interaction 0.238206 0.026467 2.86* 221 3.06
Error 30 0.277487 0009250

Total 63 12.419344

¢ ** = significant at 1% level, * = significant at 5% level.
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Without replication, the error term is estimated as the values of the
three-factor interaction effects; whereas, with replication, an independent
estimate of error is available. Thus, when the three-factor interaciion effect
is large and significant (as is the present case) the error term is highly
overestimated and the sensitivity of the F test greatly reduced. This is clearly
shown in our example in which the significance of the two-factor interaction
cannot be detected in the case without replication.



CHAPTER 5

Comparison Between
Treatment Means

There are many ways to compare the means of treatments tested in an
experiment. Only those comparisons helpful in answering the experimental
objectives should be thoroughly examined. Consider an experiment in rice
weed control with 15 treatments—4 with hand weeding, 10 with herbicides,
and 1 with no weeding (control). The probable questions that may be raised,
and the specific mean comparisons that can provide their answers, may be:

+ Is any treatment effective in controlling weeds? This could be answered
simply by comparing the mean of the nonweeded treatment with the mean
of each of the 14 weed-control treatments.

+ Are there differences between the 14 weed-control treatments? If so, which
is effective and which is not? Among the effective treatments, are there
differences in levels of effectivity? If so, which is the best? To answer these
questions, the mean of cach of the 14 weed-control treatinents is compared
to the control’s mean and those that are significantly better than the control
are selected. In addition, the selected treatments are compared to identify
the best among them.

+ Is there any difference between the group of hand-weeding treatinents and
the group of herbicide treatments? To answer this question, the means of
the four hand-weeding treatments are averaged and compared with the
averaged means of the 10 herbicide treatments.

+ Are there differences between the four hand-weeding treatments? If so,
which treatment is best? To answer thesc questions, the four hand-weeding
treatment means are compared to detect any significant difference among
them and the best treatments are identified.

+ Are there differences among the 10 herbicide treatments? If so, which
treatment is best? Or, which herbicide gave better performance than the
2,4-D treatment, the current leading herbicide for rice? The comparisons
needed for the first two questions are similar to those described previous'y,

187
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except that four hand-weeding treatments replaced the 10 herbicide treat-
ments. For the third question, the mean of each herbicide treatment is
compared with the mean of the 2, 4-D treatment to identify those herbicides
giving significantly better performance than 2, 4-D.

. If five of the 10 herbicide treatments represent five different rates of a single
herbicide, are there grain yield differences among the rates of application?
To aaswer this question, a functional relationship between the response and
the treatment (i.c., rate of herbicide application) is evaluated to characterize
the change in grain yield for every change in the amount of herbicide
applied (see Chapter 9 on regression analysis).

This weed-control experiment illustrates the diversity in the types of mean
comparison. These different types can, however, be classified either as pair
comparison or group comparison. In this chapter we focus on the statistical
procedures for making these two types of comparison.

5.1 PAIP. COMPAR!SON

Pair comparison is the simplest and most commonly used comparison in
agricultural research. There are two types:

« Planned pair comparison, in which the specific pair of treatments to be
compared was identified before the start of the experiment. A common
example is comparison of the control treatment with each of thc other
treatments.

«  Unplanned pair compariscn, in which no specific comparison is chosen in
advance. Instead, every possible pair of treatment means is compared to
identify pairs of treatments that are significantly different.

The two most commonly used test proceduies for pair comparisons in
agricultural research are the least significant difference (LSD) test which is
suited for a planned pair comparison, and Duncan’s multiple range test
(PMRT) which is applicable to an unplanned pair comp:..ison. Other test
procedures, such as the honestly significant difference (HSD) test and the
Student-Newman-Keuls’ multiple range test, can be found in Steel and Torrie,
1980,* and Snedecor and Cochran, 1980.

5.1.1 Least Significant Difference Test

The least significant difference (LSD) test is the simplest and the most
commonly used procedure for making pair comparisons. The procedure pro-

*R. G. D. Steel and J. A. Torre, Principles and Procedures of Statistics, 2nd ed., USA:
McGraw-Hill, 1980, pp. 183-193.

YG. W. Sncdecor and W. G. Cochran. Statistical Methods. USA: The lowa State University Press,
1980. pp. 232-237.
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vides for a single LSD value, at a prescribed level of significance, which serves
as the boundary between significant and nonsignificant differences between
any pair of treatment means. That is, two treatments are declared significantly
different at a prescribed level of significance if their difference exceeds the
computed LSD value; otherwise they are not significantly different.

The LSD test is most appropriate for making planned pair comparisons but,
strictly speaking, is not valid for comparing all possible pairs of means,
especially when the number of treatments is large. This is so because the
number of possible pairs of trecatment means increases rapidly as the number
of treatments increases— 10 possible pairs of means with 5 treatments, 45 pairs
with 10 treatments, and 105 pairs with 15 treatments. The probability that, due
to chance alone, at least one pair will have a difference that exceeds the LSD
value increases with the number of treatments being tested. For example, in
experiments where no real difference exists among all treatments, it can be
shown that the numerical difference between the largest and the smallest
treatment means is expected to exceed the LSD value at the 5% level of
significance 29% of the time when 5 treatments are involved, 63% of the time
when 10 treatments are involved, and 83% of the time when 15 treatments are
involved. Thus avoid use of the LSD test for comparisons of all possible pairs
of means. If the LSD test must be used, apply it only when the F test for
treatment effect is significant and the number of treatments is not too
large—less than six.

The procedure for applying the LSD test to compare any two treatments,
say -he ith and the jth treatments, involve these steps:

0O step 1. Compute the mean difference between the ith and the jth treat-
ment as:

where X, and X, are the means of the ith and the jth treatments.

0O step 2. Compute the LSD value at « level of significance as:
LSD, = (t,)(s7)

where s is the standard error of the mean difference and ¢, is the tabular ¢
value, from Appendix C, at « level of significance and with n = error degree
of freedom.

O stzp 3. Compare the mean difference computed in step 1 to the LSD value
computed in step 2 and declare the ith and jth treatments to be significantly
different at the a level of significance, if the absolute value of d,, is greater
than the LSD value, otherwise it is not significantly different.

In applying the foregoing procedure, it is important that the appropriate
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standard error of the mean difference for the treatment pair being compared is
correctly identified. This task is affected by the experimental design used, the
number of replications of the two treatments being compared, and the specific
type of means to be compared. Thus in the succeeding sections we illustrate the
procedure for implementing an LSD test for various cxperimental designs.
Emphasis is on how to compute the s; value to be used and other special
modifications that may be required.

5.1.1.1 Complete Block Design. For a complete block design where only
one error term is involved, such as completely randomized, randomized
complete block, or latin square, the standard error of the mean difference for
any pair of treatment means is computed as:

where r is the number of replications that is common to both treatments in the
pair and s? is the error mean square in the analysis of variance,

When the two treatments do not have the same number of replications, s is
computed 2s:

si= sz(l+l)
noon

where r, and 7, ¢ ¢ the number of replications of the ith and the jth treatments,
In a factoria. experiment, there are several types of treatment mean, For

example, a 2 X 3 factorial experiment, involving factor A with two levels and

factor B with three levels, has four types of mean that can be compared:

The two A means, averaged over all three levels of factor B

The three B means, averaged over both levels of factor A

The six A means, two means at each of the three levels of factor B
The six B means, three means at cach of the two levels of factor A

W=

The type-1 mean is an average of 37 observations; the type 2 is an average
of 2r observations; and the type 3 or type 4 is an average of r observations.

Thus, the formula 5; = (252/r)!/? is appropriate only for the mean dif-
ference involving cither type-3 or type-4 mean. For type 1 and type 2, the
divisor r in the formula should be replaced by 37 and 2r. That is, to compare
two A means averaged over all levels of factor B, the s; value is computed as
(252/3r)'/2 and to compare any pair of B means averaged over all levels of
factor A4, the s; value is computed as (252/2r)'/? or simply (s2/r)!/2
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We illustrate the LSD test procedure with two examples. One is a case with
equal replication; the other a case with unequal replication.

5.1.1.1.1 Equal Replication. Data from a completely randomized design
experiment with seven treatments (six insecticide treatments and one control
treatment) were tested in four replications (Chapter 2, Table 2.1). Assume that
the primary objective of the experiment is to identify one or more of the six
insecticide treatments that is better than the control treatment. For this
example, the appropriate comparison is the series of planned pair comparisons
in which each of the six insecticide treatment means is compared to the control
mean. The steps involved in applying the LSD test to each of the six pair
comparisons are:

O step 1.  Compute the mean difference between the control treatment and
each of the six insecticide treatments, as shown in Table 5.1.

O step 2. Compute the LSD value at a level of significance as:

2
LSD, = 1,)/ 2
r

For our example, the error mean square s? is 94,773, the error degree of
freedom is 21, and the number of replications is four. The tabular ¢ values
(Appendix C), with n = 21 degrees of freedom, are 2.080 at the 5% level of

Table 5.1 Comparison between Mean Ylelds of a
Control and Each of the Six Insecticlde Treatments,
Using the LSD Test (Data in Table 2.1)

Difference from

Mean Yield,” Control,”

Treatment kg/ha kg/ha
Dol-Mix (1 kg) 2,127 811**
Dol-Mix (2 kg) 2,678 1,362**
DDT + y-BHC 2,552 1,236**
Azodrin 2,128 812**
Dimecron-Boom 1,796 480*
Dimecron-Knap 1,681 3657
Control 1,316 —_

“Average of four replications.
be* = significant at 1% level, * = significant at 5% level,
™ = not significant,
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significance and 2.831 at the 1% level. The LSD values are computed:

LSD 4 = 2.080‘/ -294—;@ = 453 kg/ha
LSD,, = 2.831\/ -2—(&;713—) = 616 kg/ha

O step 3. Compare each of the mean differences computed in step 1 to the
LSD values computed in step 2 and indicate its significance with the
appropriate asterisk notation (sec Chapter 2, Section 2.1.2). For our exam-
ple, the mean difference between the first treatment and the control of 811
kg/ha (Table 5.1) exceeds both computed LSD values and, thus, receives
two asterisks to indicate that the two treatments are significantly different at
the 1% level of significance. The results for the six pair comparisons show
that, except for Dimecron-Knap, all insecticide treatments gave yields that
were significantly higher than that of control.

5.1.1.1.2  Unequal Replication. Using data from a completely randomized
design experiment with 11 trcatments (10 weed-control treatments and a
control) and unequal replications (Chapter 2, Table 2.3), a rescarcher wishes to
determine whether any of the 10 weed-control treatments is better than the
control treatment. For this example, the appropriate comparison is the planned
pair comparisons in which cach of the 10 weed-control treatment means is
compared to the control mean. The steps involved in applying the LSD test to
each of these 10 pair comparisons are:

O step 1. Compute the mean difference between the control treatment and
cach of the 10 weed-control treatments, as shown in column 4 of Table 5.2,

O step 2. Compute the LSD value at a level of significance. Because some
treatments have four replications and others have three, two sets of LSD
values must be computed. Using the error mean square s* of 176,532
(Chapter 2, Table 2.4), the error degree of freedom of 29, and the tabular ¢
values with 29 degrees of freedom of 2.045 at the 5% level of significance
and 2.756 at the 1% level, the two sets of LSD values are computed:

« For comparing the control mean (with four replications) and each
weed-control treatment having four replications, compute the LSD values
by the same formula as in Section 5.1.1.1.1, step 2:

LSD y = 2.045‘/ 3(]—73'5—32—) = 608 kg/ha
LSD,, = 2.7561/ -21173—'5331 = 819 kg/ha
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Table 5.2 Comparison between Mean Yields of Each of the 10 Treatments
and the Control Treatment, Using the LSD Test with Unequal Replication
(Data In Table 2.3)

Difference
Mean from
Treatment Replications, Yield, Control,* _LSD Values
Number no. kg/ha kg/ha 5% 1%
1 4 3,644 2,407** 608 819
2 3 3,013 1,776** 656 884
3 4 2,948 1,711** 608 819
4 4 2,910 1,673% 608 819
5 3 2,568 1,331** 656 884
6 3 2,565 1,328** 656 884
7 4 2,484 1,247 608 819
8 3 2,206 969+* 656 884
9 4 2,041 804* 608 819
10 4 2,79% 1,561%* 608 819
11(Control) 4 1,237 — — —

“** = significant at 1% level, * = significant at 5% level.

+ For comparing the control mean (with four replications) and each
weed-control treatment having three replications, computc the LSD
values following the formula:

LSD, = (¢,)(s;)

where

Sd--._—. sz(l.*.l)
o

Thus,

LSD 5 = 2.045/176,532 (1/3 + 1/4)

= 656 kg/ha

LSD,, = 2.756/176,532 (1/3 + 1/4)

= 884 kg/ha

0O step 3. Compare each of the mean diflerences computed in step 1 to its
corresponding LSD values computed in step 2 and place the appropriate
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asterisk notation (see Chapter 2, Section 2.1.2). The mean difference be-
tween the first treatment (four replications) and the control (four replica-
tions) is 2,407 kg/ha. Compare it to the first set of LSD values in step
2—608 kg/ha and 819 kg/ha. Because the mean difference is higher than
the corresponding LSD value at the 1% level of significance, it is declared
significant at the 1% level of significance and is indicated with two asterisks.

On the other hand, the mean difference between the second treatment
(with three replications) and the control (with four replications) is 1,776
kg/ha. Compare it to the second set of LSD values in step 2—656 kg/ha
and 884 kg/ha. Because the mean difference is also higher than the
corresponding LSD value at the 1% level of significance, it is declared
significant at the 1% level of significance and is indicated with two asterisks.

The test results for all pairs shown in Table 5.2, indicate that all
weed-control treatments gave significantly higher yields inhan that of the
control treatment.

5.1.1.2 Balanced lattice Design. The application of the LSD test to data
from a balanced lattice design ipvolves two important adjustments:

» The adjusted treatment mean is used in computing the mean difference.

« The effective error mean square is used in computing the standard error of
the mean difference.

For illustration, consider the 4 X 4 balanced lattice design described in
Chapter 2 and the corresponding data in Table 2.10. Assume that onc of the 16
treatments (trcatment 10) is the no-fertilizer control treatment and that the
researcher wishes to determine whether there is any significant response to cach
of the 15 fertilizer treatments. For this purpose, the appropriate mean compari-
son is the planned pair compariscns in which each of the 15 fertilizer
treatments is compared with the control treatment. The steps involved in
applying the LSD test are:

0O step 1. Compute the mean difference between the control (treatment 10)
and each of the 15 fertilizer treatments, using the adjusted treatment means
(sce Chapter 2, Section 2.4.1.2) shown in Table 5.3.

0 step 2.  Compute the LSD value at « level of significance as:

LSD, = ra\/2(cffccuvc error MS)

r

where effective error MS is as defined in Chapter 2, Section 2.4.1.2, step 13.

For our example, each treatment is replicated five times and the effective
error MS with 45 degrees of freedom is 369. The tabular ¢ values (Appendix
C) with n = 45 degrees of freedom arc 2.016 at the 5% level of significance
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Table 5.3 Comparison between Mean Tiller
Count of Each of the 15 Fertilizer Treatmonts with
That of Control, Using the LSD Test (Data In Table

2.10)
Difference

Treatment Adjusted Mean, from Control,”
Number no./m? no./m?

1 166 47%*

2 161 42%*

3 184 65**

4 176 57+

5 163 44**

6 174 554+

7 168 49**

8 177 58+
9 163 44**
10(control) 119 —
11 188 69**
12 191 T2%*
13 170 51+
14 107 78%*
15 186 67**
16 168 49%*

%% = siauificant at 1% level.

and 2.693 at the 1% level. Thus, the LSD values are:

LSD g = 2.016 2—(33@ = 24/m?
2(369) .
LSD, = 2.693 =% = 33/m

O step 3. Compare the mean difference of each pair of treatments computed
in step 1 to the LSD values computed in step 2 and place the appropriate
asterisk notation (see Chapter 2, Section 2.1.2). For example, the mean
difference between treatment 1 and the control treatment of 47 tillers /m?
exceeds both computed LSD values and is indicated with two asterisks. The
results for all 15 pairs are highly significant (Table 5.3).

3.1.1.3 Fartially Balanced Lattice Design. As in the case of the balanced
lattice design (Section 5.1.1.2), the application of the LSD test to data from a
partially balanced lattice design involves two important adjustments:

» The adjusted treatment mean is used in the computation of the mean
difference.
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- The appropriate effective error mean square is used in the computation of
the standard error of the mean difference.

But unlike the balanced lattice design where there is only one standard error
of the mean difference, there are two standard errors of the mean difference for
a partially balanced lattice design—one corresponds to treatment pairs that
were tested in the same incomplete block and another corresponds to treat-
ment pairs that never appeared together in the same incomplete block. For the
first set, the effective error MS(1) is used; for the second, the effective error
MS(2) is used (see Chapter 2, Section 2.4.2.2.1, step 17 for formulas).

Consider the varietal test in a 9 X 9 triple lattice design, as described in
Chapter 2, Section 2.4.2, with the data shown in Table 2.13. Assume that the
researcher wishes to identify varietics that significantly outyielded the local
variety (variety no. 2). For this purpose, the appropriate mean comparison is
the planned pair comparisons in which each of the 80 test varieties is compared
to the local -ariety. The steps involved in applying the LSD test are:

0 step 1. Compute the mean difference between the local variety and each of
the 80 test varieties based on the adjusted treatment means, and indicate
whether each pair was or was not tested together in the same incomplete
block, as shown in Table 5.4.

O step 2.  Compute the two sets of LSD values:

- For comparing two treatments that were tested together in an incomplete
block:

LSD, = {a‘/Z[effecuve crrror MS(1)]

where effective error MS(1) is as defined in Chapter 2.

. For comparing two treatments that were not tested together in an
incomplete: block:

LSD, = ’a\/ 2[effective errror MS(2)]

where effective error MS(2) is as defined in Chapter 2.
For our example, each variety is replicated three times, the effective error
MS(1) is 0.2786, and the effective error MS(2) is 0.2856. The tabular ¢ values
(Appendix C) with n = 136 degrees of freedom are 1.975 at the 5% level of
significance and 2.606 at the 1% level. Thus, the two sets of LSD values are
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Table 5.4 Comparison between Adjusted Mean Yield of 80 Rice Varletles and That of
Local Varlety, Using the LSD Test (Data In Table 2.13)

Difference Difference Difference
Adjusted from Local Adjusted from Local Adjusted from Local

Variety Mean,° Variety,” Variety Mean,” Variety,” Varicty Mean,* Vanety,”

Number  t/ha t/ha Number  t/ha t/ha Number  t/ha t/ha
1 3.28 1.86°* 29 4.07 2.65°° 56 414 2.72%
3 441 2.99* 3n 516 3.74** 57 2.82 1.40°
4 3.00 1.58** 31 3.75 2.33* 58 3.84 242¢*
5 3.57 215 32 3.78 2.36°° 59 3.26 1.84%*
6 3.41 1.99*¢ 33 3.59 2.17°* 60 401 2.59%*
7 2.35 0.93° 34 n 2.29°¢ 61 420 278
8 4.60 3.18¢* 35 422 2.80°* 62 3.98 2.56**
9 4.66 3.24°¢ 36 4.99 3.57% 63 3.07 1.65**
10 3.38 1.96** 37 3.80 2.38°* 64 459 317
11 519 3.77°* 38 427 2.85°¢ 65 3.06 1.64°*
12 KR Y] 1.75°* 39 519 377 66 210 0.68™
13 1.66 0.24™ 40 4.80 3.38° 67 5.26 3.84%*
14 3.62 2.20°° 41 4.94 3.52¢* 68 4.56 3.14¢
15 4.06 2.64*° 42 4.16 2,74+ 69 5.09 3.67*¢
16 1.78 0.36™ 43 3.39 1.97¢* 70 3.29 1.87°*
17 281 1.39¢ 44 3.70 228 n 3.74 232%
18 2.93 1.51** 45 3.74 232 n 473 3.31°
19 3.95 2.53*° 46 3.99 2.57°* K} 3.56 2.14*
20 318 1.76** 47 2.60 1.18e* 74 5.52 410
21 523 3.81°** 48 2.58 1.16°* 75 3.69 227
2 5.50 4.08** 49 275 1.33°¢ 76 3.65 223"
23 1.81 0.39™ 50 3.29 1.87°* 7 4,02 260"
24 374 232 51 31 231" 78 6.36 4,94
25 5.26 3.84* 52 1.32 -0.10™ 79 5.40 3.98e
26 5.50 4,08 53 3.16 1.74°* 80 2.72 1.30°*
27 413 271" 54 4.04 2.62** 81 4.45 303
28 KK 231 55 3.16 1.74%*

“Italicized means arc from varictics that were tested together with the local variety in the
same incomplete block.
hae w significant at 1% level, * = significant at 5% level, ™ = not significant,

computed as:

+ For comparing two varieties that were tested together in an incomplete
block, the LSD values are computed following the first formula given:

LSD(1) g5 = 1.975‘/ w = 0.85 /ha
LSD(1) ; = 2.606‘/ &23@91 =1.12/ha
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- For comparing two varieties that were not tested together in an incom-
plete block, the LSD values are computed following the second formula

given:
LSD(2) g5 = 1.975‘/ 2—(0—23833-)- =0.86t/ha
LSD(2) g = 2.606\/ z(_Q__ZZ'Sj)_ =1.14t/ha

Note that whenever the two effective error MS do not differ much, the use
of the average error MS (see Chapter 2, Section 2.4.2.2.1, step 17) is
appropriate, and only one set of LSD values needs to be computed as:

LSD, = 1, \/ 2(av. effectl\r/e error MS)

This LSD value can be used for comparing any pair of treatn« nts regardless
of their block configuration. In this example, the use of the average efective
error MS of 0.2835 is applicable. Hence, the only set of LSD values needed
is computed as:

LSD o = 1.975 &?3—5) = 0.86 t/ha
LSD, = 2.606 w =1.13 t/ha

Although this set of LSD values is applicable to the comparison of any pair
of treatment means, for illustration purposes, in succeeding steps, we will
use the two sets of LSD valucs computed from effective error MS(1) and
effective error MS(2).

O step 3. Compare the mean difference of cach pair of varieties computed in
step 1 to the appropriate set of LSD values computed in step 2. Use LSD(1)
values for pairs that were tested together in an incomplete block, otherwise
use LSD(2) values. For example, because variety no. 1 and the local varicty
were tested together in an incomplete block, their mean difference of 1.86
t/ha is compared with the LSD(1) values of 0.85 and 1.12 t/ha. The result
indicates a highly significant difference between variety no. 1 and local
varicty. On the other hand, because variety no. 12 was not tested together
with the local variety in any block, their mean difference of 1.75 t/ha is
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compared with the LSD(2) values of 0.86 and 1.14 t/ha. The results for all
pairs are shown in Table 5.4.

5.1.1.4  Split-Plot Design. In 4 split-plot design, with two variable factors
and two error terms, there are four different types of pair comparison. Fach
requires its own set of LSD values. These comparisons are:

- Comparison between two main-plot treatment means averaged over all
subplot treatments,

« Comparison between two subplot treatment means averaged over all main-
plot treatments.

+ Comparison between two subplot treatment means at the same main-plot
treatment.

+ Comparison between two main-plot treatment means at the same or differ-
ent subplot treatments (i.e., means of any two treatment combinations).

Table 5.5 gives the formula for computing the appropriate standard error of
the mean difference s for each of these types of pair comparison. When the
computation of s; involves more than one error term, such as in comparison
type 4, the standard tabular ¢ values from Appendix C cannot be used directly
and the weighted tabular ¢ values need to be computed. The formulas for
weighted tabular ¢ values are given in Table 5.6.

Consider the 6 X 4 factorial experiment whose data are shown in Tables 3.7
through 3.9 of Chapter 3. The analysis of variance (Table 3.10) shows a highly

Table 5.5 Standard Error of the Mean Dit'erence for Each of the Four Types of
Palr Comparison in a Split-plot Design

Type of Pair Comparison
Number Bctween 5;°
1 Two main-plot means (aver- 75
aged over all subplot treat- b"
ments) r
2 Two subplot means (averaged 2E,
over all main-plot trecatments) ra
3 Two subplot means at the same 2E,
main-plot treatment r
4 Two niain-plot means at the _
same or different subplot treat- \/ 2[( l)bEh + E]
ments r

“E, = error(a) MS, E, = error(b) MS, r = no, of replications, a = no. of main-plot
treatments, and b = no. of subplot treatments,
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Table 5.6 The Welghted Tabular t Values Assoclated with the Different
Mean Comparisons in Tables 5.5, 5.8, and 5.10, Whose Standard Error of
the Mean Difference Involves More Than One Error Mean Square

Treatment Comparison

! Source
Table Comparison Weighted Tabular
Number Number Number t Value*
(b-1)E,, + E,,
1 .
(b-1)Es + E,
2 58 3 (b-1)E.+E,
(a—-1)E1, + Et,
3 >8 4 (a-1)E .+ E,
(b—1)Eu, + Et
4 10 4.4
(C— l)E' + Eh'b
’10 c'c
(c-1)Ea .+ Ey,
10 1 <
6 s 0 (C - I)E‘. + E’l
(c- )E1 + E,t
.1 l (°c (‘M)
7 510 1 (c—-1)E +E,
8 510 " blc=1Et, +(b—1)E, + E,t,

b(c- 1)E +(b-1)E, + E,

aFor definitions of a, b, ¢, E,, E,, and E,, see Tables 5.5, 5.8, and 5.10; t,, tp,
and ¢, are the tabular ¢ values from Appendix C with n = d./. corresponding to
E,, E,, and E_, respectively.

significant interaction between nitrogen and variety, indicating that varietal
effects varied with the rate of nitrogen applied. Hence, comparison between
nitrogen means averaged over all varieties or between variety means averaged
over all nitrogen rates is not useful (see Chapter 3, Section 3.1).

The more appropriate mean comparisons are those between variety means
under the same nitrogen rate or between nitrogen-rate means of the same
variety. However, because pair comparison between nitrogen-rate means of the
same variety is not appropriate because of the quantitative nature of the
nitrogen-rate treatments, only the comparison between variety means with
the same nitrogen rate is illustrated.

The steps involved in the computation of the LSD test for comparing two
variety means with the same nitrogen rate (i.e., two subplot means at the same
main-plot treatment) are:
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O step 1. Compute the standard error of the mean difference following the
formula for comparison type 3 of Table 5.5:

E
7= / %
2(349,580) .
= === = 4828kg/ha

where the E, value of 349,580 is obtained froin the error(b) MS in the
analysis of variance of Table 3.10.

O sTep 2.  From Appendix C, obtain the tabular ¢ values with n = error(b)
d.f.= 36 degrees of freedom as 2.029 at the 5% level of significance and
2.722 at the 1% level.

O sTeP 3. Following the formula LSD, = (¢, )(s;) compute the LSD values
¢y the 5% and 1% levels of significance:

LSD 45 = (2.029)(482.8) = 980 kg/ha
LSD,, = (2.722)(482.8) = 1,314 kg/ha

0 step 4. Construct the variety X nitrogen two-way table of means with the
LSD values for comparing two variety means at the same nitrogen rate as
shown in Table 5.7. For each pair of varieties (with the same nitrogen rate)

Table 5.7 Mean Yields of Four Rice Varletles Tested
with Six Rates of Nitrogen in a Split-plot Deslign (Data

in Table 3.7)
Nitrogen g
Rate, Mean Yicld,? kg/ha
kg/ha IR8 IRS C4-63 Peta
0 4,253 4,306 3,183 4,481
60 5,672 5,982 5,443 4,816
90 6,400 6,259 5,994 4,812
12¢ 6,733 6,895 6,014 3,816
150 7,563 6,951 6,687 2,047
180 8,701 6,540 6,065 1,881

“Average of three replications. The LSD values for compar-
ing two varicties under the same nitrogen rate are 980
kg/ha at the 5% level of significance and 1,314 kg/ha at
the 1% level,
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to e compared, compute the mean difference and compare it to the LSD
values. For example, one mean difference of interest may be between Peta
and IR8 at 0 kg N/ha, which is computed as 4,481 — 4,253 = 228 kg/ha.
Because this mean difference is smaller than the LSD value at the 5% level
of significance, it is not significant.

5.1.1.5 Strip-Plot Design. As in the case of the split-plot design (Section
5.1.1.4) a strip-plot design has four types of pair comparison, each requiring its
own set of LSD values. These four types and the appropriate formulas for the
computation of the corresponding 57 values are shown in Table 5.8.

The procedure for applying the LSD test to pair comparison in a strip-plot
design is illustrated with a 6 X 3 factorial experiment. Data and analysis of
variance are given in Tables 3.11 through 3.15 of Chapter 3. Because the
interaction cffect between variety and nitrogen is significant (Table 3.15),
the only appropriate type of pair comparison is that among varieties under the
same nitrogen rate (see rclated discussion in Section 5.1.1.4).

The steps in the computation of the LSD values for comparing two varieties
grown with the same nitrogen rate are:

O step 1. Compute the s value, following the formula for comparison type 3
of Table 5.8:

d rb

. \/2[(1;- 1)E, + E,

_ \[ 2[(2)(411,6%6) + 1,492,262]
(3)(3)

= 717.3 kg/ha

O stEp 2. Because there are two error terms (£, and E,) involved in the
formula used in step 1, compute the weighted tabular ¢ values as:

- From Appendix C, obtain the tabular ¢ values corresponding to E, with
n=10d.f. (ie., t,) and the tabular ¢ values corresponding to E, with
n=20d.f. (ie., t.) at the 5% and 1% levels of significance:

1,(.05) = 2.228 and 1,(.01) = 3.169

1.(.05) = 2.086 and 1,(.01) = 2.845

- Compute the weighted tabular ¢ values, following the corresponding
formula given in Table 5.6 (i.c., formula 2):
(b-1)Ex.+ E,t,
(b-1)E.+ E,
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Tzble 5.8 Standard Error of the Mean Difference for Each of the Four
Types of Palr Comparison in a Strip-plot Design

Type of Pair Comparison

Number Between 5;°
1 Two horizontal means (aver- 35
aged over all vertical treat- .
rb
ments)
2 Two vertical meaas (averaged 2E,
over all horizontal treatments) ra
3 Two horizontal means at the \/2[(b -1)E.+ E,]
same level of vertical factor rb
4 Two vertical means at the same \/ 2[(a—1)E, + E,]
level of horizontal factor ra

“E, = error(a) MS, E,, = error(h) MS, E, = error(c) MS, r = no. of replica-
tions, g = levels of horizontal-strip factor, and b = levels of vertical-strip
factor.

(2)(411,646)(2.086) +(1,492,262)(2.228)

(.05) = (2)(411,646) + 1,492,262
= 2.178
(01) = ()411,646)(2.845) +(1,492,262)(3.169)
(2)(411,646) + 1,492,262
= 3.054

O step 3.  Compute the LSD values at the 5% and 1% levels of significance:
LSD o5 = 1'(.05)(s7)
= (2.178)(717.3) = 1,562 kg/ha
LSDg, = ¢'(.01)(s;)
= (3.054)(717.3) = 2,191 kg/ha
O step 4. Construct the variety X nitrogen two-way table of means, with the
LSD values (computed in step 3) indicated, as shown in Table 5.9. For
example, to determine whether the mean yield of IRS is significantly

different from that of Peta at a rate of 0 kg N/ha, their mean difference
(3,572 — 3,207 = 365 kg/ha) is compared to the computed LSD values of
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Table 5.9 Mean Yields of Six Rice Varleties Tested with Three Nitrogen Rates
in a Strip-plot Design (Data in Table 3.11)

Mean Yield,“ kg/ha
Variety 0 kg N/ha 60 kg N/ha 120 kg N/ha
IR8 3,572 5,132 7,548
IR127-80 4,934 6,714 7,211
IR305-4-12 4,250 6,122 7,868
IR400-2-5 4,059 5,554 7.094
IR665-58 4,102 5,633 6,012
Peta 3,207 3,714 2,492

“Average of three replications. The LSD values for comparing two varieties with the
same nitrogen rate are 1,562 kg/ha at the 5% level of significance and 2,191 kg/ha at
the 1% level.

1,567 and 2,191 kg/ha. Because the mean difference is smaller than the LSD
value at the 5% level of significance, the mean yields of Peta and IR8 at 0 kg
N /ha are not significantly different.

5.1.1.6 Split-Split-Plot Design. For a split-split-plot design, there are 12
types of pair comparison, each requiring its own set of LSD values. These pair
comparisons, together with the appropriate formulas for computing the corre-
sponding s values, are shown in Table 5.10.

The procedure for applying the LSD test to pair comparison in a split-split-
plot design is illustrated with a 5 X 3 X 3 factorial experiment. The data and
analysis are given in Tables 4.4 through 4.11 of Chapter 4. From the analysis
of variance (Table 4.11), all three main effects and one interaction effect
between nitrogen and variety are significant. Consequently, only the following
types of mean comparison should be tested:

1. Comparison between the three management practices averaged over all
varieties and nitrogen rates— because none of the interaction effects
involving management practices is significant.

2. Comparison between the three varieties averaged over all management
practices but at the same nitrogen rate—because the nitrogen X variety
interaction is significant.

3. Comparison between the five nitrogen rates averaged over all manage-
ment practices but with the same variety—because the nitrogen X
variety interaction is significant,

Because pair comparison is appropriate only for comparisons 1 and 2 and
not for comparison 3 where the treatments involved (i.e., nitrogen rates) are
quantitative, we give the LSD-test procedures only for comparisons 1 and 2.



Table 5.10 Standard Error of the Mean Ditference for Each of the 12 Typos of Palr
Comparison in a Split-split-plot design

Type of Pair Comparison

Number

Between

1

10

11

12

Two main-plot means (aver-
aged over all subplot and sub-
subplot treatments)

Two subplot means (averaged
over all inain-plot and sub-
subplot treatments)

Two subplot means (averaged
over all sub-subplot treat-
ments) at the same or different
levels of main-plot factor

‘Two sub-subplot means (aver-
aged over all main-plot and
subplot treatments)

Two sub-subplot means at the
same level of main-plot factor
(averaged over all subplot
treatments)

Two sub-subplot means at the
same level of subplot factor
(averaged over all main-plot
trcatments)

Two sub-subplot means at the
same combination of main-plot
and subplot trcatments

Two main-plot means (aver-
aged over all sub-subplot treat-
ments) at the same or different
levels of subplot factor

Two subplot means (averaged
over all main-plot treatments)
at the same or different levels
of sub-suuplot factor

Two subplot means at the same
combination of main-plot and
sub-subplot treatments

Two main-plot mcans (aver-
aged over all subplot treat-
ments) at the same or different
levels of sub-subplot factor
Two main-plot mcans at the
same combination of subplot
and sub-subplot treatments

JE
r

\/2[(1:— 1)E, + E,]

rbe

\/2[(0 - 1)E, + E,]

rac

\/2l(c- 1)E, + E,]

rc

rbe

\/ZI(c— 1)E, + E,]

2[b(c - 1)E, +(b—1)E, + E, ]

rbc

‘E, = error(a) MS, E, = crror(b) MS, E, = error(c) MS, r = number of replications,
a = number of main-plot treatments, b = number of subplot trcatments, and ¢ = number
of sub-subyplot treatments,

205
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For comparison 1 (comparison between the three management practices
averaged over all varieties and nitrogen rates) the steps for applying the LSD
test are:

O step 1.  Compute the s value, following the formula for comparison type 2
of Table 5.10:

si=\ —

2(0.2618)

—(5-)(5755' = 0.108 t/ha

O step 2. From Appendix C, obtain the tabular s values with n = error(b)
d.f.=20 d.f. as 2.086 at the 5% level of significance and 2.845 at the 1%
level.

O step 3. Compute the LSD values at the 5% and 1% levels of significance:

LSD, = (#,)(s;)
LSD ,, = (2.086)(0.108) = 0.225 t/ha
LSD,, = (2.845)(0.108) = 0.307 t/ha

O step 4. Compute the mean yields of the three management practices
averaged over all nitrogen rates and varieties:

Management Mean Yield,
Practice t/ha
M, 5.900
M, 6.486
M, 7.277

O sTep 5. Using the mean yields computed in step 4, compute the mean
difference for any pair of management practices of interest and compare it
with the LSD values computed in step 3. For example, to compare M, and
M, the mean difference is computed as 6.486 — 5.900 = 0.586 t/ha. Because
the computed mean difference is higher than the LSD value at the 1% level
of significance, the difference between M, and M, is declared highly signifi-
cant.
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For comparison 2 (comparison between the three varieties averaged over all
management practices but at the same nitrogen rate) the step-by-step proce-
dures for applying the LSD test are:

O ster 1. Compute the s; value, following the formula for comparison type 5
of Table 5.10:

2
rb

_ [2(0.4956) _
-1/—————(3)(3) 0.332t/ha

O sTer 2. From Appendix C, obtain the tabular ¢ values with n = error(c)
d.f.= 60 d.f. as 2,000 at the 5% level of significance and 2.660 at the 1%
level.

Sg=

O step 3. Compute the LSD value, at the 5% and 1% levels of significance:
LSD, = (,)(s7)
LSD 45 = (2.000)(0.332) = 0.664 t/ha

LSD, = (2.660)(0.332) = 0.883 t/ha

O sTep 4. Constiuct the variety X nitrogen two-way table of means averaged
over the three management practices, as shown in Table 5.11. To compare
any pair of variety means at the same nitrogen rate, compute the mean
difference and compare it to the LSD values computed in step 3. For
example, to compare V; and V¥, at 140 kg N /ha, the mean difference is
7.288 — 5.078 = 2.210 t/ha. Because this mean difference is higher than the
LSD value at the 1% level of significance, the mean yields of ¥, and ¥, at
140 kg N /ha are declared highly significantly different.

5.1.2 Duncan’s Multiple Range Test

For experiments that require the evaluation of all possible pairs of treatment
means, the LSD test is usually not suitable. This is especially true when the
total number of treatments is large (see Section 5.1.1). In such cases, Duncan’s
multiple range test (DMRT) is useful.

The procedure for applying the DMRT is similar to that for the LSD test;
DMRT involves the computation of numerical boundaries that allow for the
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Table 5.11 Mean Yields of Three Rice
Varletles Grown with Five Nitrogen Rates
In a Split-split-plot Design (Data in Table

an
Nit
Rar | Mean Yield, t/ha”
kg/ha v,
0 4513 5163 6478
50 474 6016 1881
80 5835 6589 8564
110 5445 6925 8443
140 SO 7288 9336

“Average of threc management practices, each
replicated three times. The LSD values for
comparing two varietics with the same nitro-
gen rates are 0.664 ¢/ha at the 5% level of
significance and 0.883 t/ha at the 1% level.

classification of the difference between any two treatment means as significant
or nonsignificant. However, unlike the LSD test in which only a single value is
required ‘or any pair comparison at a prescribed level of significance, the
DMRT requires computation of a series of values, each corresponding to a
specific se: of pair comparisons.

The procedure for computing the DMRT values, as for the LSD test,
depends primarily on the specific s; of the pair of treatmen*s being compared.
Because the procedures for computing the appropriate s; value for the various
experimental designs are already discussed for the LSD test in Section 5.1.1,
we illustrate the procedure for applying the DMRT for only one case—a
single-factor experiment in a completely randomized design.

The steps for computation of the DMRT values for comparing all possible
pairs of means are given for a completely randomized design experiment
testing seven insecticide treatments in four replications. The data and analysis
of variance are given in Tables 2.1 and 2.2 of Chapter 2.

O ster 1. Rank all the treatment means in decreasing (or increasing) order. It
is customary to rank the treatment means according to the order of
preference. For yield data, means are usually ranked from the highest-yield-
ing treatment to the lowest-yielding treatment. For data on pest incidence,
means are usually ranked from the least-infested treatment to the most
severely infested treatment.
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For our example, the seven treatment means arranged in decreasing order
of yield are:

Treatment Mean Yield, kg/ha Rank
T,: Dol-Mix (2 kg) 2,678 1
T,: DDT + y-BHC 2,552 2
T,: Azodrin 2,128 3
T,: Dol-Mix (1 kg) 2,127 4
T;: Dimecron-Boom 1,796 5
Ti: Dimecron-Knap 1,681 6
T,: Control 1,316 7

0O step 2. Compute the s; value following the appropriate procedures for
specific designs described in Section 5.1.1. For our example, 57 is computed

as:
252
si=\ =

= ‘/ -2(94‘;—773) = 217.68 kg/ha

O step 3. Compute the (¢+ — 1) values of the shortest significant ranges as;

_ (5)(s9)
P2

where ¢ is the total number of treatments, s; is the standard error of the
mean difference computed in step 2, r, values are the tabular values of the
significant studentized ranges obtained from Appendix F, and p is the dis-
tance in rank between the pairs of treatment means to be compared (i.e.,
p = 2 for the two means with consecutive rankings and p = ¢ for the highest
and lowest means).

For our example, the r, values with error d. f. of 21 and at the 5% level of
significance are obtained from Appendix F as:

R forp=2,3,...,¢

P r,(05)
2,94
3.09
3.18
324

3.30
3.33

NN AW
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The (1 — 1) = 6 R, values are then computed:

_ (5)s2)
"R
Q94)(217.68) - 45

p R

2 3
3 (3.09)5;17.68) _ 4%
s (3.18)5;17.68) _ 489
;s B 24)5;17 68) _ 409
6 (3.30)‘55 217.68) _ <o
; @ 33)5;17 68) _ &1

O step 4. Identify and group together all treatment means that do not differ
significantly from each other:

A.

Compute the difference between the largest treatment mean and the
largest R, value (the R, value atp = 1) computed in step 3, and declare
all treatmcnt means whose values are less than the computed difference
as significantly different from the largest treatment mean.

Next, compute the range between the remaining treatment means
(i.e., those means whose values are larger than or equal to the difference
between the largest mean and the largest R, value) and compare this
range with the value of R, at p=m wherc m is the number of
treatments in the group. If the computed range is smaller than the
corresponding R, value, all the m treatment means in the group are
declared not significantly different from cach other.

Finally, in the array of means in step 1, draw a vertical line
connecting all means that have been declared not significantly different
from cach other.

For our example, the difference between the largest R, value (the R,
value at p = 7) of 513 and the largest treatment mean (7, mean) of
2,678 is 2,678 — 513 = 2,165 kg/ha. From the array of means obtained
in step 1, all treatment means, except that of T;, are less than the


http:3.33)(217.68
http:3.30)(217.68
http:3.24)(217.68
http:3.18)(217.68
http:3.09)(217.68
http:2.94)(217.68
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computed difference of 2,165 kg/ha. Hence, they are declared signifi-
cantly different from 7.

From the m =2 remaining treatment means (7, and T;) whose
values are larger than the computed difference of 2,165 kg/ha, compute
the range as 2,678 — 2,552 = 126 kg/ha and compare it to the R,
value at p = m = 2 of 453. Because the computed difference is smaller
than the R, value at p = 2, T, mean and T; mean are declared not
significantly different from each other. A vertical line is then drawn to
connect these two means in the array of means, as shown foliowing:

Mean Yield,
Treatment kg/ha
T, 2,678
T 2,552
T, 2,128
T, 2,127
T 1,796
T; 1,681
T, 1,316

Compute the difference between the second largest treatment mean and
the second largest R, value (the R, value at p =t — 1) computed in
step 3, and declare d" treatment means whose values are less than this
difference as significantly different from the second largest treatment
mean. For the m, remaining treatment means whose values are larger
than or equal to the computed difference, compute its range and
compare it with the appropriate R, value (R, at p = m,). Declare all
treatments within the range not sngmhumlly dlﬂ“(.rcnt from each other
if the range is smaller than the corresponding R, value.

For our example, the difference between the su.ond largest R, value
(the R, value at p = 6) and the second largest treatment mean (T
mean) i lS computed as 2,552 — 508 = 2,044 kg /ha. Because the means
of treatments T, T, and T, arc less than 2,044 kg/ha, they are
declared significantly different from the mean of 7;.

The m; = 3 remaining treatment means, which have not been de-
clared significantly different, are T;, T,, and 7. Its range is computed
as Ty - T, = 2,552 — 2,127 = 425 kg/ha, which is compared to the
correspondmg R, value at p = m; = 3 of 476 kg /ha. Because the range
is smaller than lhc R, value at p = 3, the threec remaining means are
not significantly different from each other. A vertical line is then drawn
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to connect the means of T, Ty, and T;, as shown following:

Mean Yield,
Treatment kg/ha
T 2,678
T 2,552
T, 2,128
T 2,127
T 1,796
T, 1,681
T, 1,316

C. Continue the process with the third largest treatment mean, then the

fourth, and so on, until all treatment means have been properly
compared. For our example, the process is continued with the third
largest treatment mean. The difference between the third largest treat-
ment mean (7, mean) and the third largest R, value (R, value at
p = 5) is computed as 2,128 — 499 = 1,629 kg/ha. Only the mean of
treatment 7, is less than the computed difference of 1,629 kg /ha. Thus,
T, is declared significantly different from T,. The four remaining
treatments, which have not been declared significantly different, are T,
T,, T, and T,. Its range is computed as T, — Ty = 2,128 — 1,681 = 447
kg/ha. Because the computed range is less than the corresponding R,
value at p = 4 of 489 kg/ha, all the four remaining means are declared
not significantly different from each other. A vertical line is then drawn
to connect the means of T, 7|, Ty, and T, as shown following:

Mean Yield,
Treatment kg/ha
T, 2,678
T, 2,552
T, 2,128
T 2,127 ‘
T 1,796
T, 1,681
T, 1,316

At this point, the same process can be continued with the fourth
largest trcatment mean, and so on. However, because the mean of T, is
the only one outside the groupings already made, it is simpler just to
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compare the T, mean, using the appropriate R, values, with the rest of
the means (namely: T;, 75, and T;). These comparisons are made as
follows:

Ty vs. Ty: 2,127 — 1,316 = 811 > R, (at p = 4) of 489
Ty vs. T5: 1,796 — 1,316 = 480 > R, (at p = 3) of 476
Tgvs. T:: 1,681 — 1,316 = 365 < R, (at p = 2) of 453

Of the three comparisons, the only one whose difference is less than
the corresponding R, value is that between T and T;. Thus, T; and T,
are declared not significantly different from each other. A vertical line
is then drawn to connect the means of T and T, as shown following:

Mean Yield,
Treatment kg/ha

T, 2,678 ‘

T, 2,552

T, 2,128

T, 2,127

T, 1,796

T, 1,681 I
T, 1,316

Because the last treatment in the array (73) has been reached, the
process of grouping together all treatment means that do not differ
significantly from each other is completed.

O sTep 5. Present the test results in one of the two following ways:

1. Use the line notation if the sequence of the treatments in the presenta-
tion of the results can be arranged according to their ranks, as shown in
Table 5.12.

2. Use the alphabet notation if the desired sequence of the treatments in the
presentation of the results is not to be based on their ranks. The
alphabet notation can be derived from the line notation simply by
assigning the same alphabet to all treatment means connected by the
same vertical line. It is customaiy to use a for the first line, b for the
second, ¢ for the third, and so on. For our example, a, b, ¢, and d are
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Table 5.12 DMRT for Comparing All Possible
Palrs of Treatment Means, from a CRD
Experiment Involving Seven Trealments,
Using the Line Notation (Data in Table 2.1)

Mean Yield,
Treatment kg/ha” DMRT?*

T, 2,678

T, 2,552 I

T, 2,128

T, 2,127

T, 1,796

T, 1,681 I
T, 1,316

“Average of four replications.

’Any two means connected by the same vertical
line are not significantly different at the 5% level of
significance.

Table 5.13 DMRT for Comparing All Possible
Pairs of Treatment Means, from a CRD
Experiment Involving Seven Treatments,
Using the Alphabet Notation (Data in

Table 2.1)

Mean Yield,
Treatment kg/ha* DMRT?
T, 2,121 be
T, 2678 a
T, 2,552 ab
T, 2,128 be
T, 1,796 c
T, 1,681 cd
T, 1,316 d

“Average of four replications,

bAny two mecans having a common letter are not
significantly different at the 5% level of signifi-
cance.
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assigned to the four vertical lines in Table 5.12 as follows:

Mean Yield,

Treatment kg/ha

T, 2,678 a

T 2,552 I b

T, 2,128 c

' 2,127

T 1,796

T, 1,681 d

T, 1,316 I

The final presentation using the alphabet notation is shown in Table
5.13. Note that one or more letters can be assigned to each treatment.
For example, only one letter, a, is assigned to T, while two letters, ab,
are assigned to T.

5.2 GROUP COMPARISON

For group comparison, more than two treatments are involved in each com-
parison. There are four types of comparison:

*  Between-group comparison. in which treatments are classified into s (where
s > 2) meaningful groups, each group consisting of one or more treatments,
and the aggregate mean of each group is compared to that of the others.

+  Within-group comparison, which is primarily designed to compare treat-
ments belonging to a subset of all the treatments tested. This subset
generally corresponds to a group of treatments used in the between-group
comparison. In some instances, the subset of the treatments in which the
within-group comparison is to be made may be selected independently of
the between-group comparison.

« Trend comparison, waich is designed to examine the functional relationship
between treatment levels and treatment means. Conscquently, it is applica-
ble only to treatments that are quantitative, such as rate of herbicide
application, rate of fertilizer application, and distance of planting,

*  Factorial comparison, which, as the name implies, is applicable only to
factorial treatments in which specific sets of treatment means are compared
to investigate the main effects of the factors tested and, in particular, the
nature of their interaction,
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The most commonly used test procedure for making a group comparison is
to partition the treatment sum of squares into meaningful components. The
procedures is similar to that of the analysis of variance where the total sum of
squares is partitioned into a fixed set of components directed by the experi-
mental design used. For example, the total SS in the RCB design has three
components, namely, replication, treatment, and experimental error. With
further partitioning of the treatment SS into one or more components, specific
causes of the difference between treatment means can be determined and the
most important ones readily identified.

The procedure for partitioning the treatment S consists essentially of:

. Selecting a desired set of group comparisons to clearly meet the experimen-
tal objective. The relationship between an experimental objective and the
selected set of group comparisons is clearly illustrated by the weed-control
experiment described in Section 5.1.

. Computing the SS for each desired group comparison and testing the
significance of each comparison by an F test.

Each component of a partitioned treatment SS can be either a single d. f. or
a multiple 4. f. contrast.
A single d. . contrast is a linear function of the treatment totals:

4
L=cTi+ L+ - +eT=Y T,
i=1

where T is the treatment total of the ith treatment, 1 is the total number of
treatments, and c, is the contrast coefficient associated with the ith treatment.
The sum of the contrast coefficients is equal to zero:

!
Y¢=0
i=1

The SS for the single d.f. contrast L is computed as:

LZ
r(Zc?)

SS(L) =

Two single d.f. contrasts are said to be orthogonal if the sum of cross
products of their coefficients equals zero. That is, the two single d. f. contrasts:

Li=cyy + ey + -0 +¢,T,

Ly=cyTy +cpuly+ - 6T,
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are said to be orthogonal if the following condition holds:

!
X ey = Cyyly + Ciptp + o+ 0y, =0
=1

A group ‘of p single d.f. contrasts, where p > 2, is said to be mutually
orthogonal if each pair, and all pairs, of the contrasts in the group are
orthogonal. For an experiment with ¢ treatments, the maximum number of
mutually orthogonal single 4. /. contrasts that can be constructed is (+ — 1) or
the d.f. for the treatment SS. Also, for any set of (1 — 1) mutually orthogonal
single d. f. contrasts, the sum of their SS equals the treatment SS. That is:

SS(L,) + SS(L,) + -+ + SS(L,_,) = Treatment SS

where Ly, L,,...,L,_, are (¢ — 1) mutually orthogonal single d.f. contrasts.
The single d.f. contrast method is applicable to all four types of group
comparison defined earlier, and any group comparison can be represented by
one or more single d.f. contrasts.
A muliiple d.f. contrast represents a group of single d.f. contrasts, and is
usually defined in terms of a between-group comparison as:

M=g vs.g,Vs.8,VS.--- vs. g,

where g, is the ith group consisting of m, treatments and there is no overlap-
ping of treatinents among the s groups (i.e., nc single treatment appears in
more than onc group).

The SS for the multiple d.f. contrast M with (s — 1) d.f. is computed as:

s \2
G
12':_(_7_5_(1-1 ')

ss(M)=7 ¥ o :
r), m,

=]

i=1

where G, is the sum of the treatment totals over the m, treatments in the g,
group, and # is the number of replications.

We describe the partitioning of the treatment SS, either by the single 4. /.
contrast method or the multiple d.f. contrast method, to implement each of
the four types of group comparison: between-group comparison, within-group
comparison, trend comparison, and factorial comparison.

5.2.1 Between-Group Comparison

A between-group comparison involving s groups can be represented by a
multiple d.f. contrast or as a set of (s — 1) mutually orthogonal single d./.
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contrasts. The basis for choosing between those is the total number of groups
involved (the size of s) and the additional comparisons needed. With a large s,
the set of mutually orthogonal single d.f. contrasts would be large and the
computational procedure would become lengthy. However, because many of
these contrasts may be useful for subsequent within-group comparisons, the
additional computation could be justified.

5.2.1.1 Single d.f. Contrast Method. The primary task in the use of single
d.f. contrast method is the construction of an appropriate set of (s — 1)
mutualiy orthogonal single d.f. contrasts involving the s treatment groups.
Although there are several ways in which such a set of (s — 1) mutually
orthogonal contrasts can be derived, we illustrate a simplified procedure using
an example of five treatment groups (s = 5). Let g, 8,, &3, g4, and g5 represent
the original five treatment groups; and m,, m,, m;, m,, and m, represent the
corresponding number of treatments in each group.

O step 1. From the s original treatment groups, identify a set of (s — 1)
between-group comparisons each of which involves only two groups of
treatments,

A. Place the original treatment groups first into two sets in any manner
desired. For our example, g,, g,, and g; may be placed in the first set
and g, and g in the seccad set. These two sets comprise the first newly
created between-group comparison (i.e., comparison 1 of Table 5.14).

B. Examine each of the two sets derived in step 1A to see if cither, or both,
has more than two original treatment groups. If any set does, further
subdivide that set until all sets contain no more than two original
treatment groups per set. For our example, because set 2 of comparison
1 contains only two original treatment groups (g, and gs) no further
regrouping is required. On the other hand, set 1 contains three original

Table 5.14 The Construction of a Set of Four Mutually Orthogonal
Single d.f. Contrasts to Represent a Between-group Comparison
Involving Five Groups of Treatments (g,, 92, g3, g4, @nd gs)
Each Consisting of Two Treatments

Eetween-group Comparison

Number Set 1 Set 2 Single d.f. Contrast*
1 8181+ & 84+ 8s 2(Gy + G, + Gy) — 3(G4 + Gs)
2 4 82 8 2G, - (G, + Gy)
3 5 4] G, ~ G,
4 84 8s Gy — Gs

4G, is the sum of treatment totals over all treatments in group g,.
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treatment groups ( g,, 8,, and g;) and should thus be further regrouped.
We placed g, in one set and g, and g, in another, resulting in the
second newly created between-group comparison (i.e. comparison 2 of
Table 5.14). Because neither of these two ncw scts in comparison 2
consists of more than two original trcatment groups, the regrouping
process is terminated.

C. Split each set that involves two original treatment groups into two sets
of one original treatment group cach. For example, there are at this
point two sets that have two original trcatment groups: (g,, 8s) of
comparison 1 and (g,, gy) of comparison 2. Hence, split each of these
two sets into new sets, each consisting of one original treatment group
(i.e., comparisons 3 and 4 of Table 5.14).

O step 2. Represent each of the (s — 1) between-group comparisons derived
in step 1 by its corresponding single d.f. contrast. A between-group com-
parison involving two treatment groups (s = 2) can always be represented
by the following single d. f contrast:

L= Clcl - Csz

where G, is the sum of the treatment totals of all m, treatments belonging to
the first group, G, is the sum of the treatment totals of all m, treatments
belonging to the second group, and ¢, and ¢, are the contrast coefficients
that satisfy the condition:

m ¢, = m,c,
For example, comparison 1 of Table 5.14 with set 1 consisting of the first
three original treatment groups (g,, g,, g;) and set 2 consisting of the last
two (g4, 85) can be represented by the single d. /. contrast:

L = a,(G, + G, + Gy) ~ a,(G, + Gs)

where G, is the sum of the treatment totals of m, treatments in group g,
(i=1,...,5) and a, and a, are constants such that:

(my + my+ my)a; = (my + mg)a,

For example, if each m; = 2, then the single d. /. contrast for comparison
1 of Table 5.14 would be:

The single d. f. contrast for all four between-group comparisons involving

five groups of treatments created in step 1, assuming that m; = 2, are shown
in Table 5.14.
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Once the appropriate set of single d. /. contrasts associated with the desired
between-group comparison is specified, the corresponding computation of its
SS and the test for its significance are fairly straightforward.

We illustrate the procedure for doing this with data from the RCB experi-
ment with four replications and six rates (kg/ha) of seeding (T, = 25, T, = 50,
T, =15, T, = 100, Ty = 125, and T = 150) shown in Table 2.5 of Chapter 2.
It is assumed that the researcher wishes to compare between three groups of
treatments, with 7, and T; in the first group (g,), Ty and T} in the second
group (g,), and T and T in the third group (g,). Thus:

M=g vs.govi. 8y

Following the procedure just outlined for constructing a set of (s — 1) single
d.f. contrasts, the appropriate set of two single d. /. contrasts for our example
may be:

L =28 —(g+8)
=AM+ )~ (L + T+ T+ T)
Ly=g,-8
=(L+T,)-(G+T)

The step-by-step procedures for computing the SS and for testing its
significance are:

O sTep 1. Verify the orthogonality among the (s — 1) single d.f. contrasts.
For our example, orthogonality of the two single d. f. contrasts L, and L, is
verified because the sum of the cross products of their contrast coefficients
(Zl-1cycy) is zero [ie, (2)(0) + (2)(0) + (—1)(1) + (= 1)1) + (=1)(-1)
+(-1)(-1)=0}.

O sTep 2. Compute the SS for each of the (s — 1) single 4. . contrasts. For
our example, with r = 4 and the values of treatment total taken from Table
2.5 of Chapter 2, the §S for L, and L, are computed as:

[2(20,496 + 20,281) — (21,217 + 19,391 + 18,832 + 18,813)]*
44+4+1+1+1+1)

SS(L,) =

= 227,013

(21,217 + 19,391) — (18,832 + 18,813)]?

_
SS(L2) 40+14+1+1)

= 548,711
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0O step 3. Compute the SS for the original between-group comparison involv-
ing s groups as the sum of the (s — 1) SS computed in step 2. For our
example, the SS for the original between-group comparison M involving
three groups is computed as:

SS(M) = SS(L,) + SS(L,) = 227,013 + 548,711

= 775,724

O ster 4. Compute the F value as:

SS(M)
_ G-
Error MS

where error M is from the analysis of variance. For our example, with error
MS of 110,558 (Table 2.6), the F value is computed as:

775,724
T
110,558

F = 3.51

D ster 5. Compare the computed F value with the tabular F values (Appen-
dix E) with f, = (s — 1) and £, = error d.f. For our example, the tabular F
values with f; = 2 and f, = 15 d.f. are 3.68 at the 5% level of significance
and 6.36 at the 1% level. Because the computed F value is smaller than the
tabular F value at the 5% level of significance, the means of the three groups
of treatment do not differ significantly from each other.

5.21.2 Multiple d.f. Contrast Method. To illustrate the procedurc for
using a multiple 4. f. contrast to make between-group comparison, we use the
same set of data and same group comparison that was used to illustrate the
single d. f. contrast method in Section 5.2.1.1. The steps are:

D step 1. For each of the s groups, compu* - the sum of treatment totals of
all treatments in the group. For our example, the total for each of the three
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groups is computed as:

Group Number of
Number Treatments Treatment Total
1 2 G, =T, + T, = 40,777
2 2 G, =T, + T, = 40,608
3 2 G, =T, + T, = 37,645
Total 6 G, + G, + G, = 119,030

O step, 2. Compute the SS of the between-group comparison involving s
groups as; o

J 2

o1& G (Z.G’)
j=

SS(M)=;):;'-——;——

=17 "Eml

{=1

For our example, the SS of the between-group comparison involving
. three groups is computed as: ‘ '

G2+ G2+ G2 (G, +G,+G,)’

R )TC) R O1)
_ (40,777)" + (40,608)" +(37,645)°
_ 8
_ (119,030)°
24
= 591,114,927 — 590,339,204
= 775,723

Note that this SiS, except for rounding error, is equal to the SS computed by
the single d. /. contrast method in Section 5.2.1.1. ‘

O step 3. Follow steps 4 and 5 of the single 4. f. contrast method in Section
5.2.1.1.

5.2.2 Within-Group Comparison

Although both the single d.f. and the multiple d.f. contrast methods are
applicable to a within-group comparison, the multiple d.f. is simpler and is
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preferred in practice. We illustrate both methods using the maize yield data in
Table 2.7 of Chapter 2, assuming that the researcher wishes to determine the
significance of the difference among the three hybrids A4, B, and D.

5.2.2.1 Single df. Contrast Mcthod. The procedure for applying the
single d.f. contrast method to the within-group comparison is essentially the
same as that for the between-group comparison described in Section 5.2.1. The
s treatments in the within-group comparison are treated as if they are s groups
in the between-group comparison. The procedures are:

0O step 1. Construct a set of two orthogonal single d. /. contrasts to represcat
the desired within-group comparison involving three treatments (W = A4 vs.
B vs. D) as:

L,=T,-T,

where T, T,, and T, are the treatment totals of the three hybrids 4, B,
and D.

O sTep 2. Verify the orthogonality of the two single 4. f. contrasts L, and L,
constructed in step 1. Because the sum nf cross products of the contrast
cocflicients of L, and L, is zero [i.e., (1)(1) + (1X—1) + (—2)(0) = 0] their
orthogonality is verified.

O sTtep 3. Compute the SS for each single d.f. contrast using the formula
SS(L) = L*/r(Lc?) as:

[5.855 + 5.885 — 2(5.355)]?

SS(L) = @0 +1+4)

= 0.044204

(5.855 — 5.885)%
@1 +1)

SS(L,) = = 0.000112

O sTep 4. Compute the SS for the desired within-group comparison (#),
with 2 d.f., as the sum of the two SS computed in step 3:

SS(W) = SS(L,) + SS(L,)

= 0.044204 + 0.000112 = 0.044316
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O ster 5.  Compute the F value as:

SS(W)
)
" Error MS

0.044316
2

= 0021598 ~ 103

'O sTEP 6. Because the computed F value is smaller than the corresponding
tabular F value (Appendix E) with f; = 2 and f, = 6 degrees of freedom and
at the 5% level of significance of 5.14, there is no significant difference in
mean yield among the three maize hybrids.

5.2.2.2 Multiple d.f. Contrast Method. The procedures for applying the
multiple d. . contrast method to the within-group comparison are:

O step 1. Compute the SS of a within-group comparison involving s treat-
ments as:

£ (1)

SS(W) = 1= =

rs

where T, is the total of the ith treatment and r is the number of replications
common to all s treatments. This SS has (s — 1) degrees of freedom.

For our example, the SS of the within-group comparison involving three
treatments (W = A vs. B vs. D) is computed as:

X+ TP+ T} (T,+T,+T,)
4 OIO)

_ (5.855)" +(5.885)" +(5.355)°
B 4

SS(W) =

_ (5.855 + 5.885 + 5.355)°
12

= (0.044317

‘Note that this SS, except for rounding error, is the same as that computed
earlier through the single d. /. contrast method.

O step 2, Follow steps 5 and 6 of Section 5.2.2.1,
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5.2.3 Trend Comparison

With quantitative treatments, such as plant density or rate of fertilizer applied,
there is continuity from one treatment levcl to another and the number of
possible treatment levels that could be tested is infinite. Although only a finite
number of treatment levels can be tested in a trial, the researcher’s interest
usually covers the whole range of treatments. Consequently, the types of mean
comparison that fccus on the specific treatments tested are not adequate. A
more appropriate approach is to examine the functional relationship between
response and trecatment that covers the whole range of the treatment levels
tested.

For example, in a rice fertilizer trial where nitrogen rates of 0, 30, 60, 90,
and 120 kg N /ha are tested, a researcher is not interested simply in establish-
ing that grain yield at 30 kg N /ha is higher than that at 0 kg N /ha, and that
grain yield at 60 kg N /ha is still higher than that at 30 kg N/ha, and so on.
Instead, the interest is that of describing yield response over the whole range of
nitrogen rates tested. Even though a certain specific nitrogen rate, for example
45 kg N/ha, was not actually tested, it is desirable to estimate what the yield
would have been if 45 kg N /ha had been tested. This is achieved by examining
a nutrogen response function that can describe the change in yield for every
change in the rate of nitrogen applied. This type of analysis is referred to as
trend comparison.

Although trend comparison can be made for any prescribed functional
relationship, the simplest aa most commonly used is the one based on
polynomials (sce Chapter 9 fur more informatice on polynomials and other
types of functional relationship). An nth degree polynomial describing the
relationship between a dependent variable Y and an independent variable X is
represented by:

Y=a+ B X+ BX + - +B,X"

where a is the intercept and B, (i = 1,...,n) is the partial regression coefficient
associated with the ith degree polynomial.

The trend comparison procedure based on polynomials, usually referred to
as the method of orthogonal polynomials, seeks the lowest degree polynomial
that can adequately represent the relationship between a dependent variable Y
(usually represented by crop or non-crop response) and an independent
variable X (usually represented by the treatment level). The procedure consists
of:

1. Construction of a set of mutually orthogonal single 4. /. contrasts, with
the first contrast representing the first degree polynomial (linear), the
second contrast representing the second degree polynomial (quadratic),
and so on. The number of polynomials that can be examined depends
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on the number of paired observations () or, generally, the number of
treatments tested (¢). In fact, the highest degree polynomial that can be
examined is equal to (n — 1) or (¢ — 1).

2. Computation of the SS, and the test of significance, for each contrast.

3. Selection of the specific degree polynomial that best describes the
relationship between the treatment and the response. For example, in
the polynomial equation given, if only B, is significant, then the
relationship is linear; and, if only B, and B,, or only f,, is significant,
then the relationship is quadratic; etc.

We illustrate the method of orthogonal polynomials for two cases. One has
treatments of equal intervals; the other has treatments of unequal intervals.

5.23.1 Treatments with Equal Intervals. For treatments with equal inter-
vals, we use rice yield data from a RCB experiment where six rates (kg/ha) of
seeding (7} = 25, T, = 50, T, = 75, T, = 100, T; = 125, and 7, = 150) were
tested in four replications (Table 2.5 of Chapter 2). Note that the treatments
have an equal interval of 25 kg seed/ha. Th:.: steps involved in applying the
orthogonal polynomial method to compare the trends among the six treatment
means follow:

O step 1. From Appendix G, obtain the set of (7 — 1) single d.f. contrasts
representing the orthogonal polynomials, where ¢ is the number of treat-
ments tested. For our example, the five single d. /. contrasts representing the
orthogonal polynomials are listed in terms of its contrast coefficients and the
corresponding sum of squares of the coefficients:

Orthogonal Polynomial Coefficient  §um of

Degree of (c) Squares
Polynomial n ., T, T, T, T, (X2
Linear (1st) -5 =3 -1 +1 +3 +5 70
Quadratic(2nd) +5 -1 -4 -4 -1 +5 84
Cubic (3rd) -5 +7 +4 -4 -7 +5 180
Quartic (4th) +1 =3 42 42 =3 +1 28
Quintic (5th) -1 +5 ~-10 +10 -5 +1 252

O step 2,  Compute the SS for each single d.f. contrast, or each orthogonal
polynomial, derived in step 1. For our example, with r = 4 and using the
treatment totals in Table 2.5 and the formula SS(L) = £L?/r(Lc?), the SS
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for each degree of polynomial is computed as:

SS, = [(—5)(20,496) + (—3)(20,281) +(-1)(21,217)

+(1)(19,391) +(3)118,832) +(5)(18,813)]*/(4)(70)
= 760,035 |
SS, = [(5)(20,496) +(~1)(20,281) +(—4)(21,217)

+(~4)(19,391) +(~1)(18,832) +(5)(18.813)]’ /(4)(84)
= 74,505
S8, = [(~5)(20,496) +(7)(20,281) + (4)(21,217)

+(—4)(19,391) + (- 7)(18,832) +(5)(18,813)]* /(4)(180)
= 113,301
58, = [(1)(20,496) + (—3)(20,281) +(2)(21,217)

+(2)(19,391) + (- 3)(18,832) + (1)(18,813)]* /(4)(28)
= 90,630
SS, = [(—1)(20,496) +(5)(20,281) +(—10)(21,217)

+(10)(19,391) + (- 5)(18,832) +(1)(18,813)]> /(4)(252)
= 159,960

where the subscripts 1, 2, 3, 4, and 5 of the SS refer to the first, second,
third, fourth, and fifth degree polynomial, respectively.

O step 3. Compute the F value for each degree poiynomial by dividing each
SS computed in step 2 by the error mzan square from the analysis of
variance. With the error MS of 110,558 from Table 2.6, the F value
corresponding to each SS computed in step 2 is:

SS,
F= Error MS

_ 760,035 _

=~ T10.558 ~ 687
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SS,
K= Error MS
74,405
= Tio.558 ~ 067
L‘J'SJ
K= Error MS

_ 113,301 _
110,558

_ss,
4 TMrror MS

1.02

SS,
F = Error MS

159,960

= 110,558 ~ 14

O sTtep 4. Compare each computed F value with the tabular F value (Ap-
pendix E) with f; = 1 and f, = error d.f. at the prescribed level of signifi-
cance. The tabular F values with f; = 1 and f, = 15 degrees of freedom are
4.54 at the 5% level of significance and 8.68 at the 1% level. Except for Fj,
all other computed F values are smaller than the tabular F value at the 5%
level of significance. Thus, the results indicate that only the first degree
polynomial is significant, or that the relationship between yield and seeding
rate is linear within the range of the seeding rates tested.

O sTep 5. Pool the SS over all polynomials that are at least two degrees
higher than the highest significant polynomial. This pooled SS value is
usually referred to as the residual SS.

For our example, because all degree polynomials, except the first, are not
significant, the third, fourth, and fifth degree polynomials are pooled. That
is, the residual SS, with three d.f., is computed as the sum of the §§
corresponding to the third, fourth, and fifth degree polynomials:

Residual SS = SS, + SS, + SS;
= 113,301 + 90,630 + 159,960
= 363,891

The residual 4. f. is equal to the number of SS pooled; three in this case.
The residual mean square and the corresponding F value can be computed,
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in the usual manner:

Residual SS

Residual MS = Residual d.f.

_ 363,891
3

- Restdual MS
Error MS

121,297
"~ 110,558

= 121,297

=110

The computed F value can be compared with the tabular F value with
J, = residual d.f. and f, = error d.[. at the prescribed level of significance.
For our example, the tabular F values with f; = 3 and f, = 15 d./. are 3.29
at the 5% level of significance and 5.42 at the 1% level. As expected, the
combined effects of the third, fourth, and fifth degree polynomials are not
significant at the 5% level of significance.

O step 6. Enter all values obtained in steps 2 to 5 in the analysis of variance
table. The final results are shown in Table 5.15.

5.2.3.2 Treatments with Unequal Intervals. In the orthogonal polynomial
method, the only difference between the case of equal intervals and that of
unequal intervals is in the derivation of the appropriate set of mutually
orthogonal single d.f. contrasts to represent the orthogonal polynomials.
Instead of obtaining the contrast coefficients directly from a standardized
table, such as Appendix G, the contrast coefficients must be derived for each
case of unequal treatment intervals, However, once the contrast coefficients are

Table 5.15 Analysis of Varlance with the Treatment Sum of Squares
Partitioned Following the Procedure of Trend Comparison (Data In

Table 2.5)

Source Degree Sum

of c%fr of Mecan Computed 1abular F

Variation Freedom Squares Square F° 5% 1%

Replication 3 1,944,361

Seeding rate 5 1,198,331 239,666 2.17™ 2,90 4.56
Linear ) 760,035 760,035 6.87* 4.54 8.68
Quadratic 1) 74,405 74,405 <1 - -
Residual 3 363,891 121,297 L10™ 329 542

Error 15 1,658,376 110,558

Total 23 4,801,068

“% = significant at 5% level, ™ = not significant.
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specified, the computational procedures are the same for both cases. Thus, we
focus mainly on the procedure for deriving the orthogonal polynomial coeffi-
cients for the case of unequal intervals.

The procedures for deriving the orthogonal polynomial coeflicients for
treatments with unequal intervals are complex, especially when higher-degree
polynomials are involved. For simplicity, we discuss only the derivation of
orthogonal polynomial coefficients of up to the third degree, but for any
number of treatments. This limitation is not too restrictive in agricultural
research because most biological responses to environmental factors can be
adequately described by polynomials that are no higher than the third degree.

Consider a trial where the treatments consist of four nitrogen rates—0, 60,
90, and 120 kg N /ha. Note that the intervals between successive treatments are
not the same. The steps involved in the derivation of the three sets of
orthogonal polynomial coefficients (i.e., first, second, 2ad third degree poly-
nomials) are:

O step 1. Code the treatments to the smallest integers. For our example, the
codes X, X,, Xj, and X,, corresponding to the four nitrogen rates, are
obtained by dividing each nitrogen rate by 30:

Nitrogen Rate, Code

kg/ha (X)
0 0
60 2
90 3
120 4

O sTep 2. Compute the three sets of orthogonal polynomial coefficients,
corresponding to the first (linear), second (quadratic), and third (cubic)
degree polynomials as:

Q,=b+cX, + X}
C,=d+eX + X} + X}

where L, Q,, and C, (i = 1,...,t) are the coefficients of the /th treatment
corresponding to linear, quadratic, and cubic, respectively; ¢ is the number
of treatments; and a, b, c, d, e, and [ are the parameters that need to be



Group Comparison 231

estimated from the following six equations:*

t t
YL=ta+YX-=0
i=] i=1

! t t
EQ,=Ib+cZX,+ ZX,2=0
=1 (=1 (=1

t t t t
YC=td+el X+fE X2+ L X =0
i=1 =1 =1 LY .

t t '
YLO =Y (a+X)(b+cX+X)=0
{=1 =] T

'

4 t i )
lZlLICI= El(a+,\’,)(d+ez\’,+f,\’,2+,\’,3)‘=o
- e

4 4
,Z,Q:C: =X (b+cX+ X2)(d+eX,+ X2+ X?) =0
- i=1 C

The general solution of the six parameters and the compuvtmion of their
particular values, for our example, are: k

_IX
t

-9

4

p = EX)EX) ~(£x2)
((ZX?) ~(£x)?
= (9099 -(29)" _ 10
4(29) - (9> 7
o= (ZX)(Zx?) - (T x?)
t(£X?) -(Zx)?
009 -499) _ 2z
4(29) - (9)* 7

*The first three equations are derived from the definition of single d. f contrast that the sum of its
cocflicients must be zero. The lust three cquations are derived from the orthogonality conditions
that the sum of the cross products of coeflicients for each pair of contrasts must be zero.
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f= {EX $[(x)? - ((EX2)] + EX4[£X° - (£X)(EX?))]
+rx’[Ex2) - Ex)(Ex)]) |
J(zxfiex - Exy] s Ex)En) - £x°]
+zx2[(zx)(zx3) -(=x2)])

, 1299[(9) — 4(29)] + 353[4(99) — 9(29)] + 99[(29)" = 9(99)]
353[4(29) 9] +991(9)(29) — 4(99)] + 29[ (9)(99) — (29)*]

69

11

L AEX)ER) — ((EX)] +[EX)(EX) - o(2X1)]
HEX?) - (X))

(‘ %)[(9)(29) — 4(99)] +[(9)(99) - 4(353)]

4(29) - (9)*
=12
T 55
dom = e(ZX,) + /(EX?) + EX?

!

(55152)(9) ( )(29) +99
3

12

55
The values of the parameters a, b, ¢, d, e, and f computed are then used
in the equations in step 2 to compute the values of L,, Q,, and C; for each

nitrogen rate.
For example, for 0 kg N/ha, the three coefficients are computed as:

Li=a+ X

9 9
=-3%t0=-3
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Q1 =b+cX, + X

10 27 10
=7 -70+0=7

C =d+eX, + (X2 + X}

12 512 12
=Tty @to=-5

And, for 60 kg N /ha, they are:

L2=a+X2
9 1
=—z+2=—z

Qr=b+cX,+ X}

10 27 2_ _16

G =d+eX}+ fX} + X}

__B S 890 s T
=5t @-g@+@ =5

The results for all four niirogen rates are:

Treatment Orthogonal Polynomial Coefficient
Nitrogen Rate, Code
kg/ha (X) Linear Quadratic Cubic
0 0 -9 5 -1
60 2 -1 -8 6
90 3 3 -4 ~8
120 4 7 7 3

Note that the common denominator for all coefficients of the same degree
polynomial is removed. For example, the four coefficients of the linear
contrast, namely, — §, — 4, 3, and }, are simply shown as —9, -1, 3,
and 7.

5.2.4 Factorial Comparison

For a factorial experiment, the partitioning of the treatment SS into compo-
nents associated with the main effects of the factors tested, and their interac-
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tion effects, is a standard part of the analysis of variance (see Chapter 3,
Section 3.3). Each effect, however, may be further partitioned into several
subcomponents. In fact, the procedures described in Sections 5.2.1, 5.2.2, and
5.2.3 can be applied directly to partition the main-eflect SS. For example,
consider the 3 X 5 factorial experiment whose analysis of variance is shown in
Table 3.6 of Chapter 3. If the researcher wishes to make a trend comparison
between the five nitrogen rates (i.c., partition the nitrogen SS into lincar
component, quadratic component, etc.) the procedure described in Section
5.2.3 is directly applicable. Or if the researcher wishes to make a between-group
comparison to compare the mean of the three varieties (V}, V,, and V;) he can
apply one of the methods described in Section 5.2.1. Thus only the procedure
for partitioning the interaction effect SS is so far unspecified.

We illustrate the computational procedures for partitioning a two-factor
interaction SS with data from a 6 X 3 factorial experiment involving six rice
varieties and three nitrogen rates, as shown in Table 3.11 of Chapter 3. Note
that the analysis of variance (Table 3.15) showed a highly significant interac-
tion effect between variety and nitrogen, indicating that varietal differences are
not the same at different rates of nitrogen and, similarly, that nitrogen
responses differ among varieties tested. Thus, further partitioning of the
interaction SS could be useful in understanding the nature of the interaction
between variety and fertilizer rate. The step-by-step procedures for partitioning
a two-factor interaction SS are:

O ster 1. Construct a set of mutually orthogonal contrasts (see Section 5.2.1)
for one of the factors, say factor 4 (to be referred to as the primary factor),
corresponding to the objective of the trial. This set of contrasts could be
composed of either single d. f. or multiple d. f. contrasts or a mixture of the
two. To minimize misinterpretation of results, the contrasts should be
selected so they are mutually orthogonal.

For our example, nitrogen factor may be considered as the primary
factor. In such a case, the trend comparison would be an appropriate set of
contrasts to examine. With three rates of nitrogen (0, 60, and 120 kg/ha),
two orthogonal single d. f. contrasts A; and A, representing the linear and
quadratic polynomials can be constructed. Because the three nitrogen rates
are of equal intervals (see Section 5.2.3.1) the two sets of orthogonal
polynomial coefficients are obtained directly from Appendix G as:

Nitrogen Orthogonal Polynomial Coeflicient

Rate, Linear Quadratic
kg/ha (4)) (43)
0 -1 +1
60 0 -2

120 +1 +1
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O sTtep 2, Compute the SS for each of the contrasts constructed in step 1,
based on the A totals over all levels of factor B, following the appropriate
procedure described in Sections 5.2.1. 5.2.2, or 5.2.3.

For our example, the SS for each of che two single 4.f. contrasts is
computed following the procedure of Section 5.2.3.1:

[(=D(M) +(O)(N,) +(1)(N,)]?
(r)(@)[(=1)* +(0)* + (1)}

A, SS =N, SS =

[(1)(M) +(=2)(N,) +()(W,)]?
(r)(@)])* +(-2)* + (1)}

where N, N,, and Nj are nitrogen totals for the first, second, and third level
of nitrogen, respectively; r is the number of replications; and a is the
number of varieties. Note that the quantity (r)(a) is used in the divisor
instead of r because the treatment totals (N,, N,, and N;) used in the
computation of the SS are summed over (r)(a) observations. Note further
that because there are only two orthogonal single d. /. contrasts, only one of
the two SS needs to be computed directly; the other one can be obtained by
subtraction. That is, if N, SS is computed directly, then Ny SS can be
derived simply as:

A, SS = N, SS =

N, §§ = Nitrogen S§ — N, §S

Substituting the nitrogen totals from Table 3.13, the values of the two SS of
the first contrast is computed as:

(=1)(72,371) +(1)(114,678))]

_ _1
4 55 =N, 55 BIGI0)

= 49,718,951

. The SS of the second contrast is either computed directly as:

[(1)(72,371) +(=2)(98,608) +(1)(114,678)]?
(18)(6)

= 957,110

or computed through subtraction as;
Ay S§=N, S§ = Nitrogen S§ — N, SS

= 50,676,061 — 49,718,951 = 957,110
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0 step 3.  Following the procedure of step 2, compute the SS for each of the
contrasts constructed in step 1 but based on the A totals at each level of
factor B (instead of the 4 totals over all levels of factor B used in step 2).
Note that for each contrast, the number of SS to be computed is equal to b,
the levels of factor B.

For our example, there are six SS for the linear component of nitrogen
SS (N, SS) and six SS for the quadratic component N, SS; with each SS
corresponding to each of the six varieties. The computation of these SS is
shown in Table 5.16. For example, the N, SS and N, SS for V; are
computed as:

[(-1)(10,715) +(1)(22,644)]°

N,_SS =

(3)(2)
= 23,716,840
[(1)(10,715) +(—2)(15,396) +(1)(22,644)]*
NS5 = (3)(6)
= 366,083

O step 4.  Compute the components of the 4 X B SS, corresponding to the
set of mutually orthogonal contrasts constructed for factor 4 in step 1 as:

b
A, XBSS=Y (4,58),- 4,SS
=1

Table 5.16 Computational Procedure for the Partitioning of Nitrogen X Variety
Interaction SS in Table 3.15 Into Two Components, Based on the Linear and
Quedratic Components of Nitrogen SS

Treatment Total ) Sum of Squares*

Varicty N, N, N, Linear Quadratic
|4 10,715 15,396 22,644 23,716,840 366,083
v, 14,803 20,141 21,634 7,777,093 821,335

A 12,749 18,367 23,605 19,642,123 8,022

Vs 12,177 16,661 21,283 13,819,873 1,058

Vs 12,305 16,900 18,036 5,474,060 664,704

Ve 9,622 11,143 7476 767,553 1,495,297
Total 71,197,542 3,356,499

“The linear SS = (~ N, + N;)?/6 and the quadratic SS = (N, = 2N, + N;)*/[(3)(6)).
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where 4; X B SS is the ith component of the A X B SS, A, SS is the ith
component of the main-effect SS as computed in step 2, (4; SS), is the S
for the A4, contrast corresponding to the jth level of factor B as computed in
step 3, and b is the number of levels of factor B.

For our example, the two components of the N X V' SS are computed as:

6
N, X VSS =Y (N,SS), - N,SS
j=1

6
Ny X VSS = 121 (Np SS), = NoSS

where (N, SS); and (N, SS) , are the SS, computed in step 3, associated
with the jth variety for the linear and quadratic components of nitrogen SS,
respectively. N, SS and N, SS are similarly defined SS computed in step 2.

Substituting the values obtained in steps 2 and 3 in the two preceding
equations, the following values are obtained:

N, X VSS = (23,716,840 + --- + 767,553) — 49,718,951

= 71,197,543 — 19,718,951 = 21,478,591
Ny X V' SS = (366,083 + --- + 1,495,297) — 957,110

= 3,356,499 — 957,110 = 2,399,389
Note that the N, X V' SS can also be computed by subtraction:

NyX VSS=NXVSS~N, xVSS

where N X V' SS is the interaction SS computed in the standard analysis of
variance as shown in Table 3.15. Thus,

Ny X V' SS = 23,877,980 — 21,478,591 = 2,399,389

STEP 5. Enter all values of the SS computed in steps 2 to 4 in the original
analysis of variance. For our example, the values of the N, SS, N, S8,
N, X V SS, and N, X V SS are entered in the analysis of variance of Table
3.15, as shown in Table 5.17. The result indicates that the existence of the
variety X nitrogen interaction is mainly due to the difference in the lincar
part of the yield responses to nitrogen rates of the different varieties.

Note that, at this point, the partitioning of the nitrogen X variety interac-
tion S, based on the prescribed trend comparison of nitrogen means, is
completed. The researcher should decide at this point if the information
obtained so far is adequate to answer the experimental objectives. If the
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objectives are answered, the procedure can be terminated. Otherwise, addi-
tional analyses may be needed. In general, further analysis may be required
when one or both of the following cases occur:

- When the primary factor or the specific set of contrasts originally selected
for the primary factor is shown to be not appropriate. In our example, it
may be suspected that the use of variety instead of nitrogen as the
primary factor for partitioning the interaction SS could provide better
answers to the experimental objectives. Or, instead of choosing the set of
orthogonal polynomials as the basis for partitioning the nitrogen S, it is
suspected that some between-group comparisons may be more useful.

. The findings have generated additional questions. For example, in the
illustration we used here, the result obtained so far leads to the question:
what are the varieties that contribute to the differences in the rates of
nitrogen response? To answer this question, further partitioning of the
linear component of the interaction SS (i.e., N, X V SS) is needed. The
following additional steps are required:

O srep 6. Make visual observations of the data for probable answers to the
new question raised. For our example, the nitrogen responses of the difTer-
ent varieties can be casily examined through a frechand graphical represen-
tation of the responses, as shown in Figure 5.1. It can be seen that:

-V, is the only variety with a negative response.
- Among the remaining five varieties, ¥, and V; scem to have a declining
response within the range of nitrogen rates tested while the others (V,,

Table 5.17 Analysls of Variance with Partitioning of Main Effect SS and
Corresponding Interaction SS (Original Analysis of Varlance in Table
3.15)

Source Degree Sum
of of of Mean Computed
Variation Frecedom Squares Square Fe
Replication 2 9,220,962 4,610,481
Varicty (V) 5 57,100,201 11,420,040 7.65%*
Error(a) 10 14,922,620 1,492,262
Nitrogen (N) 2 50,676,061 25,338,031
Linear (¥,) 1) 49,718,951 49,718,951
Quadratic (Np) 1) 957,110 957,110 h
Error(b) 4 2,974,909 743,727
NxV 10 23,877,980 2,387,798 5.80**
N XV (5) 21,478,591 4,295,718 10.44**
NoxV (5) 2,399,389 479,878 L™
Error(c) 20 8,232,916 411,646
Total 53 167,005,649

“e* = significant at 1% level, * = significant at 5% level, ™ = not significant.
PError(h) d.f. is not adequate for valid test of significance.
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V3, and V) do not.

+ There seems to be no appreciable difference in the responses either
between ¥, and ¥ or among V;, V;, and V.

Thus, the six varieties can be classified into three groups according to their
nitrogen responses: group 1 composed of ¥, with a negative response, group
2 composed of ¥, and ¥ with declining responses, and group 3 composed of
V1, V3, and ¥V, with linear positive responses.

O step 7. Confirm the visual observation made in step 6 through partitioning
of the interaction SS into appropriate components. For our example, the
N, X ¥V SS can be further partitioned into the following four components:

Degree
Component of Question to be
Number Definition Freedom Answered
1 N, X (V; vs. others) 1 Does the linear response of
Ve differ from that of the
other varieties?
2 Ny X [(V3, V5) vs. 1 Does the mean linear re-
MLV Vi)l sponse of V, and ¥ differ
from that of V¥, V;, and V?
3 N, X (Vyvs. Vs) 1 Does the linear response of
‘ V, difter from that of V§?
4 N, X (Vyvs. V3vs. V) 2 Is there any difference in
the linear responses of ¥,
V3, and V?
Gain yield (t/ha)
8
25 0 720 Figure 5.1 Mecan yicld of 6 rice varictics with 3

Nitrogen (kg/ha) nitrogen rates (data in Table 3.11).
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O step 8. Compute the SS for each of the components of the N; X V' S§§
constructed in step 7. For our example, the computation of the SS for each
of the four components of the N, X V' SS follows the first formula in
Section 5.2.4, step 4. The final results are shown in Table 5.18.

Results of the partitioning of N; X V SS confirmed the visual observa-
tion made in step 6, as follows:

» Component 1 is significant, indicating that there is a significant difference
between the linear response of ¥V and the mean linear response of the
other five varieties.

« Component 2 is significant, indicating that among the five varieties, there
is a significant difference between 1he mean linear response of ¥, and ¥
and that of V;, V;, and V.

« Components 3 and 4 are both nonsignificant, indicating that there is no
significant difference in the linear responses between V¥, and Vg or
between V|, V;, and V.

Table 5.18 Additional Partitioning of the N, X V §Sin Table 5.17, to Support the
Visual Observation in Figure 5.1

Source Degree Sum

of of of Mecan  Computed _labular 7

Variation Freedom  Squares Square Fe 5% 1%

N XV 5 21,478,591 4,295,718  10.44** 271 4.10
N, X (V, vs. others) (1)  16917,575 16917,575 41.10** 435 8.10
N, X [V Vo) vs. (Vi Vi V)l (D) 3,783,340 3,783,340  9.19** 435 8.10
N, X (Vyvs. V) 1) 100,834 100,834 <1 - -
N X (W vs. Vyvs. Vy) 2 676,842 338,421 <1 - =

Error(c) 20 8,232,916 411,646

4** = significant at 1% level.



CHAPTER 6

Analysis of
Multiobservation Data

When a single character from the same experimental unit is measured more
than once, the data is called multiobservation data. There are two types:

« Data from plot sampling in which s sampling units are measured from each
plot, as in the measurement of plant height in transplanted rice where 10
hills may be measured in each plot.

« Data from measurements made over time in which the same character is
measured at different growth stages of the crop, as in plant height, tiller
number, and dry matter production, which may be measured every 20 days.

Standard analysis of variance (Chapters 2 to 4), which requires that there is
a single observation per character per experimental unit, is not directly
applicable to multiobservation data. It can be applied only to the average of all
samples from a plot, or to the average of all measurements made over time, for
each plot. We focus on the appropriate procedures for directly analyzing
multiobservation data.

6.1 DATA FROM PLOT SAMPLING

For data from plot sampling, an additional source of wvariation can be
measured; that due to sampling variation, which is commonly referred to as
sampling error. The formats for the analysis of variance for data from plot
sampling of a completely randomized design (CRD) and a randomized com-
plete block (RCB) design, with ¢ treatments and r replications; and of a
split-plot design with g main-plot treatments, b subplot treatments, and r
replications, are shown in Tables 6.1, 6.2, and 6.3.

Because the only distinct feature of the analysis of variance for data from
plot sampling is the part involving sampling error, we illustrate the computa-
tional procedure with one example from an experiment with a RCB design,
and another example from an experiment with a split-plot design.
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Table 6.1 Formai for the Analysls of Variance of Data from Plot
Sampling in a CRD with t Treatments, r Replications, and s Sampling
Units per Plot

Source Degree Sum
of of of Mean Computed JabularF
Variation Freedom Squares Squares F 5% 1%
Treatment -1
Experimental error  £(r — 1)
Sampling error re(s—1)

Total ris—1

Table 6.2 Format for the Analysis of Variance of Data from Plot
Sampling in a RCB Design with t Treatments, r Replications, and s
Sampling Units per Plot

Source Degree Sum .
of of of Mean Computed labular F
Variation Freedom Squares Squarc F 5% 1%
Replication r-1
Treatment -1
Experimental error  (r — 1)(f — 1)
Sampling crror re(s-1)

Total rs-1

Table 6.3 Format for the Analysis of Variance of Data from Plot Sampling In a
Split-Plot Design with a Main-plot Treatments, b Subplot Treatments, r

Replications, and s Sampling Units per Plot

Source Degrec Sum

of of of Mean Computed labular F
Variation Freedom Squares Square F 5% 1%
Replication r-1
Main-plot treatment (A) a-1
Error(a) (r=1a-1)
Subplot treatment ( B) b-1
AXB (a-1¥b~-1)
Error(b) a(r—=1)}b-1)
Sampling error abr(s — 1)
Total rabs — 1
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6.1.1 RCB Design

The computations we show here use data from a R"B experiment to evaluate
forms of urea and their mode of application in wetland rice. In an experiment
with nine treatments in four replications, data on tiller count, collected from
four randomly selected 2 X 2-hill sampling units per plot, is shown in Table
6.4.

Let ¢ denote the number of treatments, r the number of replications, and s
the number of sampling units selected per plot. The steps to compute analysis
of variance are:

O step 1.  Construct an appropriate outline of the analysis of variance of data
from plot sampling based on the experimental design used. For this exam-
ple, the form of the analysis of variance is shown in Table 6.2.

0O step 2. Construct the replication X treatment table of totals (RT') and
compute the replication totals (R), the treatment totals (T'), and the grand
total (G). For our example, such a table is shown in Table 6.5.

O step 3.  Compute the correction factor and the sums of squares as:

(17238

= (—9)(7)(-;1—)- = 414,199.51

Table 6.4 Tiller Count (no./ 4 hills) of Rice Varlety IR729-67-3, Tested under
Nine Fertilizer Treatments in a RCB Experiment with Four Replications and
Four Sampling Units (S,, S, S5, and §;)

Treatment Rep.1 Rep. 11 Rep. I Rep. IV .

30 23 27 22 22 26 25 32 34 26 30 24 40 42 37 26
48 46 33 42 57 60 38 50 67 64 63 58 40 57 36 60
52 47 61 46 49 41 43 70 52 48 54 56 50 61 58 74
45 51 73 55 65 62 79 54 75 56 75 75 58 41 47 58
52 62 56 52 50 72 51 51 56 39 49 59 53 53 40 72
62 63 56 43 52 48 54 56 74 58 48 51 63 59 46 52
58 46 63 55 47 50 70 53 75 48 73 52 66 76 72 74
63 56 59 49 47 53 60 68 47 58 65 78 63 70 80 68
70 72 72 49 55 44 42 52 69 55 56 59 53 52 44 49

OO~ b=



http:414,199.51
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Table 6.5 The Replication X Treatment Table of Totals Computed from
Data in Teble 6.4

Treatment Tiller Count Total (RT) Treaument
Number Rep.I Rep.II Rep.Ill Rep. IV (T)
1 102 105 114 145 466
2 169 205 252 193 819
3 206 203 210 243 862
4 224 260 281 204 969
5 222 224 203 218 867
6 224 210 231 220 885
7 222 220 248 288 978
8 227 228 248 281 984
-9 263 193 239 198 893
Rep. total (R) 1,859 1,848 2,026 1,99
Grand total (G) 7,723
Total 8 = ¥ X? ~ C.F.
= [(30) +(23) + -+ +(49)7] - 414,199.51
= 25,323.49
o LR?
Replication S§ = = C.F,
2 2 2 2
_ (1,859)° +(1,848)" +(2,026)" +(1,990)* _ 414,199.51
0)@)
= 682.74
‘ T?
Treatment SS = T C.F,
2 2 2
_ (466)" +(819)" + +(893)° _ 414,199.51

(4)(4)

= 12,489.55


http:12,489.55
http:414,199.51
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Y (RT)

Experimental error SS =

— C.F.~ Replication SS —Treatment SS

_ (102)* +(105)* + (114)* + --- +(198)°
4

— 414,199.51 —-682.74 — 12,489.55
= 3,882.95
Sampling eni'qr SS = Total SS —(sum of all other S§ )
= 25,323.49 —(682.74 + 12,489.55 + 3,882.95)

= 8,268.25

O step 4. For each source of variation, compute the mean square by dmdlng
the SS by its corresponding 4. f.:

Replication SS

Replication MS = -1

= 88274 _ 5758
3
Treatment SS

-1

_ 12,489.55
-8

Treatment MS =

= 1,561.19
Experimental error SS
(r-1)(t-1)

_ 3,882.95
(3)(®)

Sampling error SS
tr(s — 1)

Experimental error MS =

= 161.79

Sampling error MS =

8,268.25

NOOIO
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0 sTepS. To test the significance of the treatment effect, compute the F value
as:

Treatment MS
Experimental error MS

1,561.19
= Te179 060
and compare it with the tabular F value (Appendix E) with f; = (t — 1) = 8
and f, = (r — 1)(1 — 1) = 24 degrees of freedom, at the prescribed level of
significance,

For our example, the computed F value of 9.65 is greater than the tabular
F value with f, = 8 and f, = 24 degrees of freedom at the 1% level of
significance of 3.36. Hence, the treatment difference is significant at the 1%
level of significance.

O step 6. Enter all values obtained in steps 2 to 5 in the analysis of variance
outline of step 1. The final result is shown in Table 6.6.

O sTep 7. For mean comparison, compute the standard error of the di-
flerence between the ith and jth treatments as:

N ECN)

where MS, is the experimental error MS in the analysis of variance, For our
example, the standard error of the difference between any pair of treatments

18:
o [ 2161L79) _
s; @@ =450

Table 6.6 Analysis of Variance (RCB with Data from Plot Sampling) of Data
In Table 6.4°

Source Degree Sum
of of of Mecan  Computed Tabular F
Variation Freedom  Squares  Square F? 5% 1%
Replication 3 682.74 22758
Treatment 8 12,489.55 1,561.19 9.65** 236 336
Experimental error 24 3,882.95 161.79
Sampling error 108 8,268.25 76.56

Total 143 25,323.49
“cv = 23.6%.

bes = significant at 1% level,


http:25,323.49
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O step 8. Compute the estimates of the sampling error variance and of the
experimental error variance as:

S§=MSI
., MS,— MS,
Sg= ""s—'

where MS, is the sampling error MS in the analysis of variance. For our
example, the two variance estimates and their corresponding cv values are:

s} = 76.56

PR ECES 2 JP
cw(S) = ————'72456 %X 100 = 16.2%
cw(E) = '2;;31 % 100 = 8.5%

For examples on the use of variance estimates in the development of
sampling techniques, see Chapter 15, Section 15.2.

6.1.2 Split-Plot Design

The computational procedure we show below uses data from a split-plot
experiment involving eight management levels as main-plot treatments and
four times of nitrogen application as subplot treatments. There are three
replications. The data on plant height, measured on two single-hill sampling
units per plot, is shown in Table 6.7.

We denote the main-plot factor by A, the subplot factor by B, the levels of
facior A4 by a, the levels of factor B by b, the number of replications by r, and
the number of sampling units per plot by s. The computational procedures are:

O ster 1. Construct the outline of an appropriate analysis of variance of data
from plot sampling based on the experimental design used. For our exam-
ple, the form of the analysis of variance is shown in Table 6.3.

O step 2. Construct three tables of totals:
+ The replication X factor A two-way table of totals (RA), including the
replication totals (R), factor 4 totals (A), and the grand total (G). For

our example, this is shown in Table 6.8.
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Table 6.7 Height of Rice Plants Measured on Two Sampling Units
(S, and S;) per Plot, from a Split-Plot Experiment Involving Eight
Management Levels (M, M,,..., My) and Four Times of Nitrogen
Application (T;, T,, T3, and T,) with Three Replications

Treatment Combination Plant Height, cm
Time of Management Rep. 1 Rep. II Rep. 111
Application Level S M S, S, S S,
T, M, 104.5 106.5 1123 109.0 109.2 106.7
M, 923 920 113.3 1096 108.0 106.3
M, 96.8 95.5 108.3 1102 1024 103.2
M, 947 944 108.1 107.0 1025 1044
M; 105.7 103.0 1049 1024 1008 101.3
M, 1005 102.0 1063 1045 1060 108.4
M, 86.0 89.0 105.0 102.0 104.0 103.7
My 1059 1046 1089 1058 958 99.2
T M, 109.7 1122 1103 108.0 113.6 1135
M, 100.5 100.0 1135 1125 103.6 102.0
M, 914 920 1092 1062 113.0 1119
M, 100.8 1032 1150 1120 109.6 1082
M; 97.0 961 105.1 1023 1163 114.3
M, 1023 100.0 1052 108.2 1155 118.8
M, 1003 1008 97.5 963 100.0 1023
M, 102.7 102.5 1043 107.5 1068 107.6
T M, 97.5 952 107.6 1062 113.2 115.0
M, 95.0 96.2 1025 1058 1067 104.6
M, 86.6 855 104.1 1023 1050 105.3
M, 91.2 90.0 108.1 105.6 103.8 1043
M, 100.0 100.0 992 101.3 1001 98.6
M, 944 935 962 960 1061 1044
M, 923 934 981 962 1020 100.6
My L1019 103.0 1043 1064 942 920
T, M, 103.8 105.0 1101 1095 115.0 1125
M, 932 925 111.0 111.3 960 972
M, 950 952 108.1 106.0 107.2 1074
M, 103.9 103.6 1120 1093 117.6 1195
M; 96.0 935 1025 103.8 108.0 107.2
M, 1023 1028 111.7 1105 107.5 1073
M, 91.2 930 99.5 97.8 1043 103.3
My 106.0 1064 1000 103.0 1049 1064




Data from Plot Sampling

Table 6.8 The Replication x Management Level Table of Totals
Computed from Data in Table 6.7

Management
Management Plant Height Total (RA) T
Level Rep. 1 Rep. 11 Rep. 111 (A)

My 834.4 873.0 898.7 2,606.1
M, 761.7 879.5 824.4 2,465.6
M, 738.0 854.4 855.4 2,447.8
M, 781.8 87711 869.9 2,528.8
M, 791.3 821.5 846.6 2,459.4
M, 797.8 838.6 874.0 2,510.4
M, 746.0 792.4 820.2 2,358.6
My 833.0 840.2 806.9 2,480.1

Rep. total (R) 6,284.0 6,776.7 6,796.1

Grand total (G) 19,856.8

249

« The factor A X factor B two-way table of totals (AB) including factor B
totals (B). For our example, this is shown in Table 6.9.
- The replication X factor A X factor B three-way table of totals (RAB).
For our example, this is shown in Table 6.10.

O step 3.  Compute the correction factor and the sums of squares:

Table 6.9 The Management Level x Time of Nitrogen Application Table

C.F

_ (19,856.8)°
(3)(8)(4)(2)

of Totals Computed from Data In Table 6.7

= 2,053,606.803

Management Plant Height Total (4 B)
Level T T, T, T,

M, 648.2 667.3 634.7 655.9
M, 621.5 632.1 610.8 601.2
M, 616.4 623.7 588.8 618.9
M, 611.1 648.8 603.0 665.9
M, 618.1 631.1 599.2 611.0
M, 627.7 650.0 590.6 6421
M, 589.7 597.2 582.6 589.1
My 620.2 631.4 601.8 626.7

Time total (B) 4,952.9 5,081.6 4,811.5 5,010.8
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Total S§ = ) X? - C.F.

= [(104.5) +(106.5 + --- +(106.4)’]
- ~2,053,606.803

= 8,555.477
LR

el C.F.

Y Ri:pﬁcation S.§ =
(6,284.0)* + (6,776.7)2 +(6,796.1)%
(8)(4)(2)
—2,053,606.803
= 2,632.167

LA

rbs

(2,606.1)% +(2,465.6)* + - +(2,480.1)
(3)(9)(2)

—2,053,606.803
1,482.419

¥ (R4)’
bs

A (management lci:;/e.I) SS = - C.F.

. Error(a) S8 = — C.F.—- Replication S — 4 SS

(834.4)° +(873.0)* + --- +(806.9)
(4)(2)
—2,053,606.803 — 2,632.167 — 1,482.419
= 1,324.296

LB

ras

B (time of application) SS = - C.F.

(4,952.9)% +(5,081.6)* + (4,811.5) +(5,010.8)*
(3)(8)(2) ‘

-2,053,606.803
= 820.819
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Table 6.10 The Replication x Management l.evel X Time of Nitrogen
Application Table of Totals Computed from Data in Table 6.7

Management Time of Plant Height Total (RAB)
Level Application Rep.1 Rep. 11 Rep. Il
M, T, 211.0 2213 2159
T, 221.9 2183 221.1
T, 192.7 213.8 2282
T, 208.8 219.6 2215
M, T, 1843 2229 214.3
‘ T 200.5 226.0 205.6
T 191.2 208.3 211.3
. . T 185.7 223 193.2
M, N 1923 218.5 205.6
: T 183.4 2154 2249
T 172.1 206.4 210.3
‘ Ty 190.2 214.1 2146
M, ( T, 189.1 215.1 206.9
' T 204.0 2210 217.8
T 181.2 213.7 208.1
\ T, 207.5 221.3 237.1
M, T 208.7 207.3 202.1
T 193.1 207.4 230.6
T 200.0 200.5 198.7
. T 189.5 206.3 2152
M, : T, 202.5 210.8 2144
S T 2023 213.4 2343
s 187.9 192.2 210.5
T, 205.1 222 214.8
M, T 175.0 207.0 207.7
T 201.1 193.8 202.3
1 185.7 1943 202.6
S T 184.2 197.3 207.6
M, . T, 210.5 214.7 195.0
‘ T 205.2 211.8 2144
T 204.9 210.7 186.2
T, 2124 203.0 211.3
o 2. (4B)’
A xBSS=T——C.F.-BSS—ASS

_ (648.2)° +(667.3)" + --- + (626.752
(3)(2)

—2,053,606.803 — 820.819 — 1,482.419

= 475.305
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¥ (R4B)?

Efror(b) SS = — - C.F.- Replication SS — 4 SS
—EBrror(a) SS~BSS— A X BSS
_ (107 +(2213) + - +(211.3)°
2 . B
~2,053,606.803 ~ 2,632.167 — 1,482,419
~1,324.296 — 820.819 — 475.305,
= 1,653.081

Sampling error SS = Total SS —~ (sum of all other SS)
| = 8,555.477 —(2,632.167 + 1,482.419 + 1,324,296
+820.819 + 475.305 + 1,653.081)
= 167.390

0 step 4, For each source of variation, compute the mean square by dividing
the SS by its corresponding d. f.:

Replication MS = _______Repl;cz:n(lm S8
= 202197 _ 1 316.084
2 s
AMS = ASS
‘ a-1
= 1,482.419 = 211.774
7
: Error(a) SS
Bnor(a ) MS = m_—l)
1,324.296
=~ = 94,593
(2)(7)
pus= 2SS

= 820:;819 = 273.606
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AXBSS
(a-1)(b-1)

_ 475.305
(M)

AXBMS =

= 22.634

Error(b) SS
a(r-1)(b-1)

-Error(b) MS =

1,653.081

= _(8)(2)(3) = 34.439

Sampling error SS
abr(s — 1)

Samphng error MS =

167.390

“®Paen -

DO sTeP 5. To test the significance of each of the three effects, namely, 4, B,
and 4 X B, follow the procedures outlined in Chapter 3, Section 3.4.2, steps
61t009.

O sTep 6. Enter all values obtained in steps 2 to 5 in the analysis of variance
outline of step 1. The final results are shown in Table 6.11. The results
indicate that only the main effect of the time of nitrogen application is
significant.

O step 7. For pair comparison, compute the standard error of the mean
difference following the appropriate formula given in Chapter 5, Table 5.5,
but with one modification—multiply each divisor by s, the sample size in
each plot. For example, to compare two subplot treatments at the same
main-plot treatment, the standard error of the mean difference is:

2E
s

where E, is the error(b) MS from the analysis of variance. And, to compare
two subplot treatments (averaged over all main-plot treatments) the stan-
dard error of the mean difference is:

sg=1\—

For our example, the standard error of the mean diflerence between any two
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Table 6.11 Analysis of Variance (Split-Plot Design with Data from Plot Sambllng) of Data In Table 6.7¢

Source Degree Sum
of of of Mean Computed Tabular F
Variation : Freedom Squares Square F? 5% 1%
Replication 2 2,632.167 1,316.084
Management level (A) 7 1,482.419 211.774 2.24™ 27 4.28
Error(a) 14 1,324.296 94.593
Time of application (B) 3 820.819 273.606 7.94** 2.80 422
AXB 21 475.305 22634 <1 C—_ —
Error(b) 48 1,653.081 34.439
Sampling error 9% 167.390 1.744

Total ; 191 8,555.477

acy(a) = 9.4%, co(b) = 5.7%.
bes - significant at 1% level, ™ = not significant.
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times of nitrogen application at the same management level is computed as:

s_=’ [2(34.439)
4 3)2)
= 3.388

And the standard error of the mean difference between any two times of
nitrogen application averaged over all management levels is computed as:

oo 2(34.439)
TV BE)
= 1.198

sTEP 8. Compute the estimates of two variance components: the expen-
mental error associated with the smallest experimental unit [i.e. error(b) in
this case] and the sampling error as:

2 _ MSz_MSl
SE=
= MS,

where MS, is the sampling error MS, M, is the experimental error MS, and
s is the number of sampling units per plot. For our example, the two
variance estimates are computed as:

2= 34.4392— 1.744 _ 16.348

s2=1744
with the éo;responding cv values of

/i6348
@(E) = o34

oy
(S) =4

X 100 = 3.9%

% 100 = 1.3%

The results indicate a relatively small sampling error compared to the
experimental error.

For further details in the use of the variance estimates for developmg
sampling techniques, see Chapter 15, Section 15.2.
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6.2 MEASUREMENT OVER TIME

When a character in an experiment is measured over time, the researcher is
usually interested in examining the rate of change from one time period to
another. For example, when a researcher measures weight of dry matter of rice
plants at different growth stages, interest is usually on the effects of treatment
on the growth pattern (or the rate of change over time) based on weight of dry
matter (Figure 6.1) rather than on the effects of treatment on weight of dry
matter at the individual growth stage. In other words, it is important to
determine the interaction effect between treatment and stage of observation,
but that cannot be done if the analysis of variance is obtained separately for
each stage of observation. Hence, the common approach is to combine data
from all stages of observation and obtain a singlc analysis of variance.
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Figure 6.1 Growth response (dry matter) of rice variety IR48 under fertilized and nonferiilized
conditions. '
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Table 6.12 Format of the Pooled Analysis of Varlance for Measurements over
Time, from a RCB Design

Source Degree Sum
of (;Sff of Mean Computed Tabular F
Variation Freedom® Squares Square F 5% 1%
Replication r-1
Treatment (T) -1
Error(a) (r=1)¢t-1)
Time of observation (P) p—-1
TP (U-1p-1
Error(b) Hr=1)p-1)
Total rip—1

“r = number of replications, ¢ = number of treatments, and p = number of times of
observation. ’

Such an analysis of variance is accomplished by considering time of observa-
tion as an additional factor in the experiment and treating it as if it were a
subplot or the smallest experimental unit. Thus, the format of the pooled
analysis of variance for measurements over time based on a RCB design,
shown in Table 6.12, is similar to that for the standard split-plot design with
treatments as main-plot and times of observation as subplot treatments. The
format of the pooled analysis of variance for measurements over time based on
a split-plot design, shown in Table 6.13, is similar to that for the standard
split-split-plot design, and so on.

Table 6.13 Format of the Pooled Analysis of Varlance for Measurements over
Time, from a Split-Plot Design

Source Degree Sum
of :,’r of Mean Computed TabularF
Variation Freedom' Squares  Square F 5% 1%
Replication r-1
Main-plot treatment (A4) a-1
Error(a) (r—1a-1)
Subplot treatment ( B) b-1
AXB . (a—-1Xb~1;
Error(b) a(r=1b-1)
Time of observation (C) p-1
AXC (a=1}p—-1
BxC (b-1)p-1
AXBxC (a-1)b~-1)p-1)
Error(c) ab(r - 1Xp-1)
Total rabp ~ 1

r = number of replications, a = number of main-plot treatments, b = number of
subplot treatments, and p = number of times of observation.
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6.2.1 RCB Design

Our computations here use data from a RCB experiment to test nitrogen
fertilizer efficiency in medium-deepwater rice plots. Eight fertilizer treatments
were tested in four replications. Data on nitrogen content of the soil, collected
at three growth stages of the rice crop, are shown in Table 6.14.

Let ¢ denote the number of treatments, r the number of replications, and p
the number of times data were collected from each plot. The step-by-step
procedures for data analysis are:

O step 1. Compute an analysis of variance for each of the p stages of
observation, following the procedure for standard analysis of variance based
on the experimental design used. For our example, the design is RCB.
Following the procedure described in Chapter 2, Section 2.2.3, the p =3
analyses of variance are computed and the results are shown in Table 6.15.

O step 2. Test the homogeneity of the p error variances, following the
procedure of Chapter 11, Section 11.2. For our example, the chi-square test
for homogeneity of variance is applied to the three error mean squares:

« Compute the x? value as:

2 _ (2.3026)(f)( plogs? — X log s?)
(p+1)
1+ ..!’37-
_ (2.3026)(21)[310g0.03507 —(—4.38948)]
(3+1)
3(3)(21)

X

1+

=1.15

. Compare the computed x? value to the tabular x* value, with (p — 1) =2
degrees of freedom. Because the computed x? value is smaller than the
corresponding tabular x2 value at the 5% level of 5.99, heterogeneity of
variance is not indicated. '

O step 3. Based on the result of the test for homogeneity of variance of step

2, apply the appropriate analysis of variance:

« If heterogeneity of variance is indicated, choose an appropriate data
transformation (see Chapter 7, Section 7.2.2.1) that can stabilize the error
variances and compute the pooled analysis of variance based on the
transformed data. For our example, because heterogeneity of error vari-
ance is not indicated, no data transformation is needed. (For an example
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Table 6.14 Data on Nitrogen Content of the Soll, Subjected o Eight Fertilizer
Treatments in a RCB Design with Four Rep'ications, Collected at Three Growth
Stages’ of the Rice Crop

Soil Nitrogen Content, %

Treatment Rep. 1 Rep. 11 Rep. II1 Rep. IV

326 1.88 140 298 1.74 124 278 176 144 277 200 1.25
3.84 236 133 374 214 121 3.09 1.75 128 336 1.57 117
350 220 1.23 349 227 154 3.03 248 146 336 247 141
343 232 161 345 235 133 281 216 140 332 199 112
343 198 111 324 170 125 345 178 139 3.09 174 1.20
3.68 2.01 126 324 233 144 284 222 112 291 200 1.24
297 266 187 290 274 1.81 292 267 131 242 298 1.56
311 253 176 3.04 222 128 320 261 123 281 222 1.29

- =B - WLV T -G Y N

“At 15 days after transplanting ( P,), at 40 days after transplanting ( P,), and at panicie
initiation stage (Py).

on pooled analysis of variance based on transformed data, sce Section
6.2.2).

» If heterogeneity of error variance is not indicated, compute a pooled
analysis of variance based on original data from all p stages of observa-
tion. For our example, because heterogeneity of error variance is not
indicated, the pooled analysis of variance is computed.

The general format of the pooled analysis of variance for measurements
over time from a RCB design is outlined in Table 6.12. The required
computational procedure follows that for a standard analysis of variance of
a split-plot design described in Chapter 3, Section 3.4.2, with the ¢ treat-
ments treated as the @ main-plot trcatments and the p times of observation
as the b subplot treatments.

Table 6.15 Three Individual Analyses of Variance (RCB Deslgn), One for Each
Stage of Observation, of Data in Table 6.14

So D

of uree eogfree Mecan Square*

Variation Frecdom P, P, Py

Replication 3 0.302412 0.0.9654 0.061458

Treatment 7 0.211634** 0.415005** 0.063686™

Error 21 0.039843 0.039356 0.026011
Total 31

“¢* = F test significant at 1% level, ™ = F test not significant,
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The result of the pooled analysis of variance, for our example, is shown in
Table 6.16. The results show a highly significant interaction between treat-
ment and growth stage, indicating that the treatment effects varied signifi-
cantly among the different growth stages.

sTEP 4, For pair comparison, follow the standard procedure for a split-plot
design (see Chapter 5, Section 5.1.1.4) based on the result of the pooled
analysis of variance obtained in st2p 3.

For our example, because the interaction between treatment and growth
stage is highly significant (Table 6.16), pair comparison should be made only
between treatments at the same growth stage. The standard error of the
difference between two treatments at the same growth stage is computed as:

r=¢ﬂw—nm+a]
d p

_ [2[(2)(0.036349) + 0.036642]
(4)(3)

= 0.13

where E, is the error(a) MS and E, is the error(b) MS in the pooled
analysis of variance.

The result of the Duncan’s multiple range test (see Chapter 5, Section
5.1.2) for comparing treatment means at each growth stage is shown in
Table 6.17.

Table 6.16 Pooled Analysis of Variance for Measurements over Time
(RCB Design), from Data in Table 6.14°

Source Degree Sum

of (;&rf of Mean Computed ~ Tabular F
Variation Freedom Squares Square Fb 5% 1%
Replication 3 0.845742 0.281914

Treatment (T") 7 1.265833 0.180833 4,94** 249 3.65
Error(a) 21 0.769492 0.036642

Growth stage (P) 2 52.042858  26.021429 . 715.88+* 3.19 5.08
TXP 14 3.566442 0.254746 7.01** 190 248
Error(b) 48 1744767  0.036349

Total 95 60.235134

%n(a) = 8.5%, cv(b) = 8.5%.
bs+ u significant at 1% level.
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Table 6.17 Duncan's Multiple Range Test (DMRT)
for Comparing Eight Fertilizer Treatment Means at
Each Growth Stage, Computed from Data in Tables

6.14 and 6.16
Treatment Mean Nitrogen Content, %¢
Numbef Pl Pz PJ
1 2.95 de 1.85 de 1.33b
2 351a 1.96 cde 1.30b
3 335ab 236b 1.44 ab
4 3.25 abed 220 be 1.37 ab
5 3.30 abe 1.80e 1.24b
6 3.17 bed 2.14 bed 127b
7 280e 276 a 1.64a
8 3.04 cde 240b 1.39 ab

“Average of four replicaticus. In a column, means fol-
lowed by a common letter are not significantly different
at the 5% level.

O step 5. If the interaction between treatment and time of observation is
significant, apply an appropriate mean-comparison method to examine the
nature of the interaction. The choice of the methods to be used depends on
whether the time of observation is a quantitative factor.

If the time of observation is quantitative in nature (such as the chrono-
logical age of the crop expressed in terms of the number of days after
planting, the age of the confined insects, etc.) and there are at least three
stages involved, either one, or both, of the following procedures can be
applied:

A. Partition the interaction S, based on an appropriate choice of trend
comparison on the time of observation (see Chapter 5, Section 5.2.3).

B. Apply an appropriate regression technique of Chapter 9 to estimate a
functional relationship between the response (Y¥) and the time of
observation ( X) separately for cach treatment (see, for example, Figure
6.1) and compare these regressions across treatments.

If the time of observation is not quantitative, or if there are less than three
stages of observation involved, partition the interaction SS, based on an
appropriate set of between-group comparisons either on the treatments or
on the growth stages, or both (see Chapter 5, Section 5.2.1),

For our example, because the interaction between treatment and time of
observation is significant, the interaction SS should be properly examined.
Because the time of observation is represented by a discrete set of crop
growth stages (i.e., with one stage of observation representing chronological
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Table 6.18 Partitioning of the Treatment X Growth Stage Interaction SS In the
Analysls of Varlance Shown In Table 6.16

Source Degree Sum

of of of Mean  Computed r1avularF

Variation Freedom  Squares Square F 5% 1%

TXP 14 3.566442  0.254746 7.01** 190 248
(Tyvs. Ty to Tyand Ty) X P ()] (2.136675) (1.068338)  29.39**  3.19 5.08
(Tyvs. o T) X P ()] (0.536011) (0.268006) 7.37** 319 5.08
(N Tivs. LN T, T) X P ) (0.642872) (0.321436) 8.84** 319 508
(Tvs. Ty X P ()] (0.021700) (0.010850) <1 — -
(ML, T, T) x P ©) (0.229184) (0.038197) 1.05™ 2.30 3.20

Error(b) 48 1.744767  0.036349

ass = significant at 1% level, ™ = not significant.

age and another representing physiological age of the crop), the between-
group comparisons on treatments or on growth stages should be made. We
choose to partition the interaction SS based on between-group comparisons
on treatments. The results are shown in Table 6.18. Results indicate that the
eight fertilizer treatments can be classified, based on similarity of the
chanies in nitrogen content over time, into four groups: the first group
consists of T3, the second consists of Ty, the third consists of 7, and T, and
the fourth consists of T}, T3, T, and Ty.

6.2.2 Split-Plot Design

We show the computations with data from a split-plot experiment, which
sought the optimum time of herbicide application (main-plot treatment) in
relation to the application of a protectant (subplot treatment) in wet-seeded
rice. Data on plant heigat, measured at three growth stages of the rice crop, are
shown in Table 6.19.

Let A denote the main-plot factor, B the subplot factor, a the levels of factor
A, b the levels of factor B, r the number of replications, and p the number of
times that data were collected from each plot. The step-by-step procedures for
data analysis are:

0O step 1.  Compute a standard analysis of variance for each of the p stages of
observation, based on the experimental design used. For our example,
following the procedure for standard analysis of variance of a split-plot
design described in Chapter 3, Section 3.4.2, the p = 3 analyses of variance,
one for each stage of observation, are shown in Table 6.20.

O step 2. Test the homogeneity of the p error(b) MS, following the proce-
dure of Chapter 11, Section 11.2. For our example, the chi-square test for
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Table 6.19 Helght of Rice Plants, Subjected to Different Herbicide and Protectant Treatments Ina
Split-Plot Design, Measured at Three Growth Stages”

Treatment Plant Height, cm

Time of

Herbicide Protectant Rep. 1 Rep. II Rep. III Rep. IV

Number Application” Application P, P, P, P, P, P, P P, P P P P

1 6DBS(4,) Yes(B)) 158 293 521 160 292 527 153 297 580 150 301 632
2 No(B,) 153 300 525 165 289 509 163 308 550 159 320 621
3 3 DBS(4,) Yes 149 323 652 148 303 547 148 285 538 147 293 585
4 No 148 31.8 560 142 319 571 144 272 489 136 291 57.3
5 0 DAS (4,) Yes 130 298 601 132 295 57.6 133 299 568 152 284 549
6 No 128 303 564 165 325 498 138 290 575 151 289 552
7 3 DAS (4,) Yes 148 291 534 147 296 544 152 305 640 142 291 61.7
8 No 131 31.2 581 143 299 522 121 302 652 13.6 303 590
9 6 DAS (A4s) Yes 120 282 571 148 303 588 139 272 513 132 312 615
10 No 120 301 588 112 281 57.8 126 296 562 132 288 609
11 10 DAS (A4¢) Yes 150 299 549 132 300 610 138 30.7 599 145 297 599
12 No 147 289 539 130 284 583 136 326 60.7 13.6 288 603
13 No application (4;) Yes 151 298 595 139 306 60.5 155 289 607 13.3 29.7 58.7
14 No 153 302 572 137 339 588 152 293 599 142 296 609

Py, P,, and P; refer to 14, 25, and 50 days after transplanting, respectively.
*DBS = days before sceding; DAS = days after seeding.
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Table 6.20 Three Indlvidual Analyses of Variance (Split-Plot Design), One for
Each Stage of Observation, for Data In Table 6.19

So D

S0 urce egee Mean Square®

Variation Freedom P, P, Py

Replication 3 0.027798 1.388750 32538333

Herbicide (A4) 6 6.067857%* 0.906429™ 16.715357™

Error(a) 18 1.030714 2.807222 23.831944

Protectant (B) 1 1.290179™ 2.361607™ 14.000000™

AXB 6 1.478095™ 0.666190™ 4.873333™

Error(b) 21 0.584583 1.255536 4.875238
Total 55

“Py, P,, and P; refer to 14, 25, and 50 days after transplanting, respectively; ** = F
test significant at 1% level, ™ = F test not significant.

homogeneity of variance is applied to the three error(b) MS, as:

. (2.3026)(21)[3(log 2.238452) — 0.553671]

3+1)
[l MOTOIR))

= 23.49

The result of the x? test indicates a highly significant difference between
error variances across the three growth stages. For data such as plant height,
where the values are expected to differ greatly from one growth stage to
another (as is the case with this example), the presence of heterogeneity of
error variances is not unexpected.

DO sTEP 3. Based on the result of the test for homogeneity of variance of step

2, apply the appropriate analysis of variance as follows:

« If heterogeneity of variance is not indicated, compute a pooled analysis
of variance using the original data from all p stages of observation.

- If the heterogeneity of variance is indicated, choose an appropriate data
transformation (see Chapter 7, Scction 7.2.2.1) that can stabilize the error
variances and compute a proled analysis of variance based on the
transformed data. For our zxample, the logarithmic transformation is
applied. The form of the pooled analysis of variance for measurements
over time from a split-plot design is shown in Table 6.13. The required
computational procedure follows that for a standard analysis of variance
of a split-split-plot design described in Chapter 4, Section 4.3.2, with the
p times of observation treated as the ¢ sub-subplot treatments. The final
result of the pooled analysis of variance based on transformed daa is
shown in Table 6.21. The results show a highly significant interaction
between herbicide trecatment and growth stage, indicating that the effects
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Table 6.21 Pooled Analysls of Varlance for Measurements over
Time (Split-Plot Design) Based on Transformed Data (Logarithmic
Transformation) for Data In Table 6.19

Source Degree Sum

of of of Mezn  Computed Tabular F
Variation Freedom Squares  Squarc F 5% 1%
Replication 3 0.001082 0.000361

Herbicide (A4) 6 0.013471 0.002245 244™ 2,66 4.01
Error(a) 18 0.016576 0.000921

Protectant ( B) 1 0.000700 0.000700 1.72™ 432 8.02
AXB 6 0.002675 0.000446 1.09™ 257 3.81
Error(b) 21 0.008576 0.000408

Growth stage (P) 2 10.325742 5.162871 7,637.38** 3,11 4.87
AXP 12 0.028467 0.002372 3.51** 1.87 240
BxP 2 0.002042 0.001021 151" 311 4.87
AXBXP 12 0.008564 0.000714 1.06™ 1.87 240
Error(c) 84 0.056799 0.000676

Total 167 10.464694

“** = significant at 1% level, ™ = not significant.

of herbicide treatment differed significantly between the three growth
stages.

STEP 4. Make pair comparison between treatment means by applying the
standard procedure for a split-split-plot design (see Chapter 5, Section
5.1.1.6 or Chapter 7, Section 7.2.2.1) bascd on the result of the pooled
analysis of variance obtained in step 3. For our example, because the pooled
analysis of variance was based on transformed data, the procedure of
Chapter 7, Section 7.2.2.1 should be followed. Because the only significant
interaction effect is that between herbicide treatment and growth stage and
the effect of the protectant is not significant, the appropriate pair compari-
son is one between herbicide means at each growth stage. For a pair
comparison between two main-plot treatment means (averaged over all
subplot treatments) at the same sub-subplot treatment, the standard error of
the mean difference is computed, based on the formula in Table 5.10 of
Chapter 5 as:

- 2[([7_ l)Ec+Ea]
Sa= \/ rbp

_ ‘/2[(2)(0.000676) + 0.000921]
(4)(2)(3)

= 0.01376
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Table 6.22 Duiican’'s Multiple Range Test
(DMRT) on Mean Plant Helght of Seven
Herbicide Treatments, at Each Growth Stage,
Computed from Data in Tables 6.19 and 6.21

Herbicide Mean Plant Height, cm®
Treatment Py P, Py
A 158a 30.0a 55.8a
A, 145b 301a 564a
A, 14.1b 29.8a 56.0a
A, 1400 3002 585a
Ag 129¢ 29.2a 578a
Ag 139b 299a 58.6a
A, 145b 302a 59.5a
Av., 14.2 29.9 57.5

“Average of two protectant treatments and four
replications; Py, Py, and P, refer to 14, 24, and 50
days after transplanting, respectively. In each col-
umn, means followed by a common letter are not
significantly different at the 5% level.

The result of the DMRT for comparing herbicide treatment means
(averaged over the two protectant treatments), separately at each growth
stage, is shown in Table 6.22.

O step 5. Follow the procedure outlined in step 5 of Section 6.2.1. For our
example, only the interaction between herbicide and growth stage is signifi-
cant. Hence, only the SS of this interaction needs to be partitioned. Based
on the results of the pair comparison between treatment means at each
growth stage obtained in step 4 (Table 6.22), there was no significant
difference between herbicide treatments at any of the two later growth
stages. At the first growth stage, only the fifth herbicide treatment (i.e.,
application of herbicide at 6 DAS or Ay) and the first (i.e., application of
herbicide at 6 DBS or A,) gave results distinctly different from the rest of
the herbicide treatments, with the tallest plants exhibited by A, and the
shortest by A,. Thus, an appropriate partitioning of the herbicide X growth
stage interaction SS is that shown in Table 6.23. The result of the SS
partitioning confirms the observation made.

6.3 MEASUREMENT OVER TIME WITH PLOT SAMPLING

When a character is measured at several stages of observation and plot
sampling is done at each stage, the resulting set of data is referred to as
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Table 6.23 Partitioning of the Herbicide X Growth Stage Interaction SSIn the Analysis of Varlance
of Table 6.21

Source Degree Sum

of of of Mean Computed Tabular F

Variation Freedom  Squares Square Fe 5% 1%

AXP 12 0.028467 0.002372 3.51** 187 240
(Asvs. A, 10 Ay, Ay, A7) X (P, vs. Pa, P;) (1)  (0.010174) (0.010174) 15.05** 396 6.95
(41 vs. Ay, A3, A4 A, A7) X (Pyvs. Py P) (1) (0.012590) (0.012590)  18.62%* 396 6.95
(A2, A3, Ay, Ag. A7) X (P, vs. Py, P;) (4 (0.002430) (0.000608) <1 - -
(A5 vs. Ay 10 Ay, A, A7) X (P, vs. Py) 1) (0.000727) (0.000727)  1.08™  3.96 6.95
(A, vs. Ay, Ay, Ay, Ag, A7) X (P, vs. Py) (1)  (b000874) (0.000874)  129™ 396 6.95
(A2, Ay, Ay, Ag, A7) X (P, vs. Py) @ (0.001672) (0.000418) <1 - =

Error(c) 84 0.056799  0.000676

%% = significant at 1% level, ™ = pnot significant.
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measurement over time with plot sampling. An illustration of this type of data is
shown in Table 6.24. Data on tiller count, obtained from a RCB experiment,
with nine fertilizer treatments and four replications, were measured at two
growth stages of the rice crop. At each stage, measurement was from four
2 x 2-hill sampling units per plot.

We use the data in Table 6.24 to illustrate the procedure for analyzing data
based on measurement over time with plot sampling. Let ¢ denote the number
of treatments, r the number of replications, s the sample size per plot, and p
the number of times that data were collected from each plot.

O stEP 1. At each stage of observation, compute an analysis of variance of
data from plot sampling, according to the basic design involved (see Section
6.1). For our example, because the basic design is RCB, each of the p = 2
analyses of variance is computed following the procedure of Section 6.1.1.
The results are shown in Table 6.25.

O step 2. Test the homogeneity of the p experimental error variances from
the p analyses of variance of step 1. For our example, because p = 2, the F
test for homogeneity of variance is applied (instead of the chi-square test)
as:

297.84
F=13= 1.73

Because the computed F value is smaller than the corresponding tabular F
value of 1.98, with f; = f, = 24 degrees of freedom and at the 5% level of
significance, the F test is not significant and the heterogeneity of the
experimental error variances over the two growth stages is not indicated.

O step 3. Compute a pooled analysis of variance using the plot data (i.e.,
mean over all s sampling units per plot). The pooled analysis of variance
should be made based on transformed data (see Sections 6.2.1 and 6.2.2,
step 3) if the test for homogeneity of experimental error variances of step 2
is significant; and on the original data, otherwise. For our example, because
the heterogeneity of the experimental error variances is not indicated, the
pooled analysis of variance is made, using the plot data shown in Table 6.26
and following the procedure of Section 6.2.1. The result of the pooled
analysis of variance is shown in Table 6.27. The results show a highly
significant interaction between treatment and stage of observation, indicat-
ing that the treatment effect is not the same at both stages of observation.

Appropriate procedures for mean comparisons are described in Section
6.2.1.

O sTer 4. Test the homogeneity of p sampling error variances, from individ-
ual analyses of variance of step 1. If heterogeneity is not indicated by the
test, compute the pooled sampling error variances as the arithmetic mean of
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Teble 6.24 Data on Tiller Count, Tested in a RCB Trial with Nine Fertifizer Treatmenis, Measured from Four
2 X 2-hill Sampling Units per Plot (S,, S,, S,, and S,) and at Two Growth States (P, and P,)“ of the Rice Crop

Treatment
Number

Tillers, no. /4 hills

Rep. 11

Rep. 11

Rep. IV

Py

Py

Py

P,

Py

Py

Py

Py

815 S, S,

5 5.8, S,

S, S,

Sl S: S] S,‘

S, 5. 8,8,

S15:5: 8,

5, 8.5, 8,

51 85:55,

WO b Wi

26252528
63717073
44443971
61 7358 99
631556591
69 97 85 99
44 66 49 62
57 68 51 59
7943 84 90

30232722
48 46 33 42
5274761 46
%3817355
52625652
62 63 56 43
584663 55
63 56 59 49
70727: 49

2029

26 26

6473103 52

43 50
66 56
66 81
5859
70 81
64 67
7747

50 59
71 107
78 78,
57 87
73 60
85 83
54 61

22263225
57 60 38 50
4941 4370
656279 54
5072 51 51
52 48 54 56
475070 53
47 53 60 68
55444252

20 294031
68 61 81 67
59 575262
95108 71 82
72 547452
67 677183
61 69 74 68
58 838378
40 41 50 66

34263024
6764 63 58
5248 54 56
755675175
56394959
74 58 48 51
754873 52
47 58 65 78
69 55 56 59

23342534
63 41 69 89
67 58 67 68
66 71 53 70
61 59 67 85
38 60 67 49
60 60 69 74
87 68 80 61
38486671

40423726
40 37 36 60
5061 58 74
58 41 47 58
53534072
63594652
6676 72 74
63 70 80 68
53524449

“Py, = 30 days after transplanting, P, = crop maturity.



Table 6.25 Two Individual Analyses of Varlance (RCB) of Data
from Plot Sampling, One for Each Stage of Observation, for

Data In Table 6.24
D

(S)?urce e(;g;’ec Mean Suuare?
Variation Freedom P, P,
Replication 3 106.60 208.41
Treatment 8 3,451.50** 1,576.19**
Experimental error 24 297.84 172.21
Sampling error 108 149.43 76.09

Total 143

ap, = 30 days after transplanting and P, =« crop maturity; ** = F test
significant at 1% level.

Table 6.26 Plot Means (Average of Four Sampling Units per Plot)
Computed from Data In Table 6.24

Tillers, no. /4 hills
Treatment Rep. I Rep. II Rep. III Rep. IV
Number P, P, ) A P, P, P, P, P,

260 255 252 262 300 285 290 362
692 422 730 512 692 630 655 432
495 515 505 508 575 525 650 608
820 560 750 650 890 702 650 510
710 555 758 560 630 508 680 545
875 560 652 525 120 578 535 550
552 555 710 550 680 620 658 720
588 568 748 570 755 620 740 702
740 658 598 482 492 598 558 495

DO 001N AW

Table 6.27 Pooled Analysis of Variance of Data from Plot Sampling (RCB Deslign)
In Tatle 6.24

Source Degree Sum
of of of Mean Computed ~ Tabular £
Variation Freedon?® Squares Square F* 5% 1%
Replication r—1=3 86.36 28.79
Treatment (7') t—1=8 9,151.68  1,143.96 13.20° 2,36 3.36
Error(a) (r=1{t-1)=24 207961 86.65
Growth stage (P) p—1=1 1,538.28  1,538.28 46.47** 421 7.68
TP (=1 p-1)=8 913.01 114.13 3.45¢* 2,30 3.26
Erroz(b) t(r=1p—1)=27 893.81 3310

Total rp—-1=171 14,662.75

9 = number of treatments, r = number of replications, and p = number of stages of
observation.
be* w sipnificant at 1% level.

270


http:14,662.75
http:1,538.28
http:1,538.28
http:2,079.61
http:1,143.96
http:9,151.68
http:1,576.19
http:3,451.50

Measurement Over Time with Plot Sampling 271

the sampling error MS. For our example, the F test for homogeneity of
variance is applied to the two sampling error MS:

149.43

‘609 16

F=

The computed F value is larger than the corresponding tabular F value of
1.56, with f, = f, = 108 degrees of freedom and at the 1% level of signifi-
cance. Hence, the F test is highly significant indicating that the sampling
error variances at the two growth stages differ significantly. The sampling
error variance is significantly higher at P, than at P,. Thus, no pooled
sampling error variance is computed.

Note that information on the pooled sampling error variance, or o1, the
individual sampling error variances, is useful in the development of sam-
pling technique {see Chapter 15, Section 15.2).



CHAPTER 7
Problem Data

Analysis of variance, which we discuss in Chapters 2 through 6, is valid for use
only if the basic research data satisfy certain conditions. Some of those
conditions are implied, others are specified. In field experiments, for example,
it is implied that all plots are grown successfully and all necessary data are
taken and recorded. In addition, it is specified that the data satisfy all the
mathematical assumptions underlying the analysis of variance.

We use the term problem data for any set of data that does not satisfy the
implied or the stated conditions for a valid analysis of variance. In this
chapter, we examine two groups of problem data that are commonly encoun-
tered in agricultural research:

» Missing data.
« Data that violate some assumptions of the analysis of variance.

For each group, we discuss the common causes of the problem datas
occurrence and the corresponding remedial measures. :

7.1 MISSING DATA

A missing data situation occurs whenever a valid observation is not available
for any one of the experimental units. Occurrence of missing data results in
two major difficulties—loss of information and nonapplicability of the stan-
dard analysis of variance. We examine some of the more common causes of
data loss in agricultural research, the corresponding guidelines for declaring
such data as missing, and the procedure for analyzing data with one or more
missing observations.

7.1.1 Common Causes of Missing Dala
Even though date gathering in field experiments is usually done with extreme

care, numerous factors beyond the researcher’s control can t‘ontnbute to
missing data.

272
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7.L.1.1 Improper Treatment. Improper treatment is declared when an
experiment has one or inore experimental plots that do not receive the
intended treatment. Nonapplication, application of an incorrect dose, and
wrong timing of application are common cases of improper treatment. Any
observation made on a plot where treatment has not been properly applied
should be considered invalid. There is, however, an exception when improper
treatment occurs in all replications of a treatment. If the rescarcher wishes to
retain the modified treatment, all measurements can be considered valid if the
treatment and the experimental objectives are properly revised.

7.1.1.2  Destruction of Experimental Plants. Most field experiments aim
for a perfect stand in all experimental plots but that is not always achieved.
Poor germination, physical damage durin,, crop culture, and pest damage are
common causes of the destruction of experimental plants. When the perczntage
of destroyed plants in a plot is small, as is usually the case, proper thinning
(Chapter 14, Section 14.3) or correction for missing plants (Chapter 13, Section
13.3.3) will usually result in a valid observation and avoidance of a case of
missing data. However, in rare instances, the percentage of destroyed plants in
a plot may be so high that no valid observation can be made for the particular
plot. When that happens, missing data must be declared.

It is extremely important, however, to carefully examine a stand-deficient
plot before declaring missing data. The destruction of the experimental plants
must not be the result of the treatment effect. If a plot has no surviving plants
because it has been grazed by stray cattle or vandalized by thieves, each of
which is clearly not treatment related, missing data should be appropriately
declared. But, for example, if a control plot (i.., nontreated plot) in an
insecticide trial is totally damaged by the insects being controlled, the destruc-
tion is a logical consequence of treatment. Thus, the corresponding plot data
should be entered (i.c., zero yield if all plants in the plot are destroyed, or the
actuai ‘ow yield value if some plants survive) insteaa of treating it as missing
data.

Ar, incorrect declaration of missing data can easily lead to an incorrect
conclusion. The usual result of an incorrect declaration of missing data on crop
yield is the inflation of the associated treatment mean. For example, for a
treatment with all plants in one plot destroyed by stray cattle and, therefore,
declared missing, the computation of its mean is based on the average over the
remaining (r — 1) replications, where r is the total number of replications. If,
on the other hand, the cause of the plot destruction is treaument related and
plot yield is, therefore, recorded as zero, then the treatment mean is comy sted
as the mean of r instead of (r — 1) replications.

In most instances, the distinction between a treatment-related cause a;.d a
nontreatment-related cause of plot destruction is not clear cut. We give two
examples to illustrate the difficulties commonly encountered and provide
guidelines for arriving at a correct decision.
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Example 1. If the plants in a plot of a rice variety trial are destroyed by
brown planthoppers, should the researcher consider its yield value to be zero or
should he treat it as missing data? What if the destruction were caused by rats
or by drought?

To answer any of the foregoing questinns, the researcher must examine the
relationship between the objective of the experiment and the cause of plot
destruction. Obviously, the objective of the trial is to evaluate the relative
performance of the test varieties. In such a trial the superiority of one variety
over another is usually defined in terms of a prescribed set of criteria, which
depends on the specific test conditions. Thus, if one of the criteria for
superiority is resistance to brown planthoppers, the destruction of the rice
plants by brown planthoppers is definitely treatment related.

On the other hand, if the trial’s objective is to estimate yield potential under
complete pest protection and the brown planthopper infestation in the particu-
lar plot was solely due to the researcher’s failure to implement proper control,
the plot destruction should be considered as nontreatment related and missing
data declared.

In the same manner, plots destroyed by rats or drought are usually classified
as missing data, unless the trial is designed to evaluate varietal resistance to
rats or to drought.

Example 2. When all plants in a plot are destroyed, what values should be
given to yield components and other plant characters measured at harvest?
Should their values be automatically classified as missing or should they be
taken as zero? For example, when all rice plants in a plot are destroyed, what
value should be entered for 100-grain weight? What about plant height, panicle
number, L..iicle length, or percent unfilled grains?

To ans—er these questions, a researcher must first determine whether the
value of yield in the affected plot is considered as zero or as missing data. If
yield cf the affected plot is treated as missing data, all plant characters
measured at harvest and all yield components of that plot should also be
considered as missing data. If, however, yield is considered to be zero (i.e., if
the destruction is considered to be treatment related) the following guidelines

apply:

- For characters whose measurement depends on the existence of some yield,
such as 100-grain weight and panicle length, they should be treated as
missing data.

» For characters that can be measured even if no yield is available, such as
plant height, panicle number, and percent unfilled grains, the decision
should be based on how the data are to be used. If the data are used to
assist in explaining the yield differences among treatments, its actual values
should be taken. For example, information on short stunted plants or on the
100% unfilled grains would be useful in explaining the cause of the zero
yield obtained.
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7.1.1.3 Loss of Harvested Samples. Many plant characters cannot be
conveniently recorded, either in the field or immediately after harvest.

» Harvested samples may require additional processing before the required
data can be measured. For example, grain yield of rice can be measured
only after drying, threshing, and cleaning are completed.

* Some characters may involve long sampling and measurement processes or
may require specialized and elaborate measurirg devices. Leaf area, 100-
grain weight, and protein content are generally measured in a laboratory
instead of in the field.

For such data, field samples (leaves in the case of leaf area; matured grains
in the case of yield, 100-grain weight, or protein content) are usually removed
from each plot and processed in a laboratory before the required data are
recorded. It is not uncommon for some portion of the samples to be lost
between the time of harvesting and the actual -Jata recording. Because no
measurement of such characters is possible, missing data should be declared.

7114 Illogical Data. In contrast to the cases of missing data where the
problem is recognized before data are recorded, illogical data are usually
recognized after the data have been recorded and transcribed.

Data may be considered illogical if their values are too extreme to be
considered within the logical range of the normal behavior of the experimental
materials. However, only illogical data resulting from some kind of error can
be considered as missing. Comn.on errors resulting in illogical data are misread
obscrvation, incorrect transcription, and improper application of the sampling
technique or the measuring instrument.

If illogical data are detected early enough, their causes, or the specific types
of error committed, can usually be traced and the data corrected, or adjusted,
accordingly. For example, a misread or incorrectly recorded observation in the
measurement of plant height, if detected immediately, can be corrected by
remeasuring the sample plants. For characters in which the samples used for
determination are not destroyed immediately after measurement, such as seed
weight and protein content, a remeasurement is generally possible. Thus, it is a
good practice for the researcher to examine all data sets immediately after data
collection so that subsequent correction of suspicious or illogical data is
possible,

We emphasize at this point that data that a researcher suspects to be
illogical should not be treated as missing simply because they do not conform
to the researcher’s preconceived ideas or hypotheses. An observation consid-
ered to be illogical by virtue of the fact that it falls outside the researcher’s
expected range of values can be judged missing only if it can be shown to be
caused by an error, as previously discussed. An observation must not be
rejected and treated as missing data without proper justification.
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7.1.2 Missing Data Formula Technique

When an experiment has one or more observations missing, the standard
computational procedures of the analysis of variance for the various designs
(as described in Chapters 2 through 4), except CRD, no longer apply. In such
cases, either the missing data formula technique or the analysis of covariance
technique should be applied. We describe the missing data formula technique
here. The analysis of covariance technique is explained in Chapter 10.

In the missing data formula technique, an estimate of a single missing
observation is provided through an appropriate formula according to the
experimental design used. This estimate is used to replace the missing data and
the augmented data set is then subjected, with some slight modifications, to the
standard analysis of variance.

We emphasize here that an estimate of the missing data obtained through
the missing data formula technique does not supply any additional information
to the incomplete set of data—once the data is lost, no amount of statistical
manipulation can retrieve it. What the procedure attempts to do is to allow the
researcher to compute the analysis of variance in the usual manner (i.e., as if
the data were complete) without resorting to the more complex procedures
needed for incomplete data sets.

The missing data formula tuchnique is described for five experimental
designs: randomized complete block, latin square, split-plot, strip-plot, and
split-split-plot. For each design, the formula for estimating the missing data
and the modifications needed in the analysis of variance and in pair compari-
sons* of treatment means are given. The iterative procedure for cases with
more than one missing observation is also discussed.

7.1.2.1 Randomized Complete Block Design. The missing data in a ran-
domized complete block design is estimated as:

x= (r=1(-1)

where

X =estimate of the missing data
t =number of treatments
r =number of replications
B, =total of observed values of the replication that con-
tains the missing data
T, =total of observed values of the treatment that con-
tains the missing data
G, =grand total of all observed values

*Procedures for all other types of mean comparison discussed in Chapter 5 can be directly applied
to the augmented dala sct without modification.
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The missing data is replaced by the computed value of X and the usual
computational procedures for the analysis of variance (Chapter 2, Section
2.2.3) are applied to the augmented data set with some modifications.

The procedures are illustrated with data of Table 2.5 of Chapter 2, with the
value of the fourth treatment (100 kg seed/ha) in replication II (i.e., yield of
4,831 kg/ha) assumed to be missing, as shown in Table 7.1. The procedures for
the computation of the analysis of variance and pair comparisons of treatment
means are;

O stepr 1. Estimate the missing d:.ta, using the preceding formula and the
values of totals in Table 7.1 as:

_ 4(26,453) + 6(14,560) — 114,199

X @-D6-1)

= 5,265 kg/ha

O sTep 2. Replace the missing data of Table 7.1 by its estimated value
computed in step 1, as shown in Table 7.2; and do analysis of variance of
the augmented data set based on the standard procedure of Chapter 2,
Section 2.2.3.

O ster 3. Make the following modifications to the analysis of variance
obtained in step 2:

+ Subtract one from both the total and error d.f. For our example, the
total d.f. of 23 becomes 22 and the error d.f. of 15 becomes 14.

Table 7.1 Data from a RCB Design, with One Missing Observation
Grain Yield, kg /ha

Treatment, Treatment
kgseed/ha  Rep.1 Rep. Il Rep. III Rep. IV Total
25 5,113 5,398 5,307 4,678 20,496
50 5,346 5,952 4,719 4,264 20,281
75 5272 5,713 5,483 4,749 21,217
100 5,164 m° 4,986 4410 (14,560 = T,)
125 4,804 4,848 4,432 4,748 18,832
150 5,254 4,542 4,919 4,098 18,813
Rep. total 30,953 (26,453 = B,) 29,846 26,947
Grand total (114,199 = G,)

“m = missing data,
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Table 7.2 Data in Table 7. with the Missing Data Replaced by the Value
Estimated from the Missing Data Formula Technique

Grain Yield, kg/ha

Treatment, Treatment
kg sced/ha Rep. 1 Rep.II  Rep. I Rep. IV Total
25 5,113 5,398 5,307 4,678 20,496
50 5,346 5,952 4,719 4,264 20,281
75 5,272 5713 5,483 4,749 21,217
100 5,164 5,265 4,986 4,410 19,825
125 4,804 4,848 4,432 4,748 18,832
150 5,254 4,542 4,919 4,098 18,813
Rep. total 30,953 31,718 29,846 26,947
Grand total 119,464

“Estimate of the missing data from the missing data formula technique.

+ Compute the correction factor for bias B as:

B= [Bo -(‘ - l)Xlz

t(t-1)
_ 126,453 — (6 — 1)(5,265))>
h 6(6 — 1)
= 546

And subtract the computed B value of 546 from the treatment sum of
squares and the total sum of squares. For our example, the total SS and
the treatment S, computed in step 2 from the augmented data of Table
1.2, are 4,869,966 and 1,140,501, respectively, Subtracting the B value of
546 from these SS values, we obtain the adjusted treatment SS and the
adjusted total SS as:

Adjusted treatment SS = 1,140,501 — 546
= 1,139,955
Adjusted total SS = 4,869,966 — 546
= 4,869,420
The resulting analysis of variance is shown in Table 7.3,

O STEP 4. For pair comparisons of treatment means where one of the
treatments has missing data, compute the standard error of the mean
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Table 7.3 Analysis of Varlance (RCB Design) of Data in Table 7.2 with One
Missing Value Estimated by the Missing Data Formula Technique

Source Degree Sum
of of of Mean Computed Tabular F
Variation Freedom Squares Square Fe 5% 1%
Replication 3 2,188,739 729,580
Treatment 5 1,139,955 227,991 2,07™ 296 4.69
Error 14 1,540,726 110,052

Total 22 4,869,420

“™ = pot significant.

difference s as:

Sk \/52[':,%+7(r-—1;(ﬁ3]

where 52 is the error mean square from the analysis of variance of step 3, r is
the number of replications, and ¢ is the number of treatments.

For example, to compare the mean of the fourth treatment (the treatment
with missing data) with any one of the other treatments, s;is computed as:

sj= \/110,052[% + m]

= 257 kg/ha

This computed s; is appropriate for use either in the computation of the
LSD values (Chapter 5, Section 5.1.1) or the DMRT values (Chapter 5,
Section 5.1.2). For illustration, the computation of the LSD values is shown
even though the F test in the anal, sis of variance is not significant. Using ¢,
as the tabular ¢ value at the a level of significance, obtained from Appendix
C with 14 d.{., the LSD values for comparing the fourth treatment and any
other treatment is computed as:

LSD, = (1,)(s7)
LSD , = (2.145)(257) = 551 kg/ha

LSD,, = (2.977)(257) = 765 kg/ha
7.1.22 Latin Square Design. The missing data in a Latin square design is
estimated as:
t(R,+ C,+T,)-2G,
(r=1)(t-2)

X
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where

¢t =number of treatments

R, =total of observed values of the row that contains
the missing data

C, =total of observed values of the column that contains
the missing data

T, =total of observed values of the treatment that con-
tains the missing data

G, =grand total of all observed values

For illustration, we use data from a Latin square design shown in Table 2.7
of Chapter 2. We assume that the yield value in the fourth row and the third
column (i.e., 1.655) is missing. The procedures involved are:

O ster 1. Compute the estimate of the missing data, using the foregoing
formula:

X = [4(3.515 + 4.490 + 4.200) — 2(19.710)]
(3)(2)

= 1.567 1/ha

O step 2. Enter the estimated value obtained in step 1 in the table with all
other observed values, and perform the usual analysis of variance on the
augmented data set, with the following modifications:

« Subtract one from both the total and error d.f. For our example, the
total d.f. of 15 becomes 14 and the error d. f. of 6 becomes 5.

» Compute the correction factor for bias B as:

_[6,-R,-¢,~(1-DT)’
[(¢ = 1)(¢ - 2)]

B

_ [19.710 - 3.515 — 4.490 — (4 - 1)(4.200)]°
[(4 - 1)@ -2)]

= 0.022251

And subtract this computed B value from the treatment SS and the total
SS.
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The final analysis of variance is shown in Table 7.4,

O step 3. For pair comparisons of treatment means where one of the
treatments has missing data, compute the standard error of the mean
difference as:

=3+ =)

where s? is the error mean square from the analysis of variance. For our
example, to compare the mean of treatment A (the treatment with missing
data) with any one of the other treatments, s; is computed as:

o e R —

= 0.12995

7.1.2.3 Split-Plot Design. The missing data in a split-plot design is esti- -
mated as:

™M, + bT, - P,

X=6-Dr-1)

Table 7.4 Analysis of Varlance (Latin Square Design) of Data in Table
2,7 (Chapter 2), with One Value’ Assumed Missing and Estimated by the
Missing Data Formula Technique

Source Degree Sum

of of of Mean Computed Tabular F
Variation Freedom Squares Square Ft 5% 1%
Row 3 0.039142 0.013047 <1 —_ —
<olumn 3 0.793429 0.264476 10.44* 541 12.06
Treatment 3 0.383438 0.127813 5.05™ 541 12.06
Error© 5 0.126658 0.025332

Total 14 1.342667

“Yield value of 1.655 t/ha in the fourth row and the third column is assumed missing,
b* = significant at 5% level, ™ = not significant.

‘Although error d.f. is inadequate for valid test of significance (see Chapter 2, Scction
2.1.2.1. step 6), for illustration purposes, such deficiency is ignored.
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where

b =level of suoplot factor
r =number of replications
M, =total of observed values of the specific main plot
that contains the missing data
T, =total of observed values of the treatment combina-
tion that contains the missing data
P, =total of observed values of the main-plot treatment
that contains the missing data

Note that the foregoing missing data formula for a split-plot design is the
same as that for the randomized complete block design (Section 7.1.2.1) with
main plot replacing replication. For illustration, we assume that the yield of
treatment N,V, in replication II of Table 3.7 of Chapter 3 (i.e., 6,420) is
missing. The procedures of the missing data formula technique follow:

D step 1. Compute the estimate of the missing data, using the foregoing
formula. For our example, the values of the parameters needed for estimat-
ing the missing data are:

b = 4, the level of the subplot factor (i.e., variety)
r = 3, the number of replications

M, = 17,595, the observed total of the N, main plot
in replication II (6,127 + 5,724 + 5,744)

T, = 12,780, the observed total of N,V; (6,076 + 6,704)
P, = 63,975, the observed total of N,(6.076 + 6,704 + 6,008 + 6,127

+ ++ - + 4,146)

Thus, the estimate of the missing data is computed as:

_ 3(17,595) + 4(12,780) — 63,975
3(2)

= 6,655 kg/ha

X

O step 2. Enter the estimate of the missing data, computed in step 1, in the
table with the other observed values and construct the analysis of variance
on the augmented data set in the usual manner, with one subtracted from
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both the total d. /. and the error(b) d.f. For our example, the total d.f. and
the error(b) d.f. become 70 and 35, and the final analysis of variance is
shown in Table 7.5.

STEP 3. For pair comparisons of treatment means where one of the
treatments has missing data, compute the standard error of the mean
difference s following the appropriate formula given in Table 7.6. For our
example, to compare the mean of N, and the mean of any other nitrogen
level, urder V), the sjis computed as:

=

b? ]
Z{Eu+E,,_(b— 1)+2(r_1)(b_m}

s
d rb

2{141 148 + 358 779[(4 - 1) + =5
(3)(4)

2(2)(3) }

= 531.64 kg/ha
To compare the mean of ¥, and the mean of any other variety under the
Table 7.5 Anslysis of Varlance (Split-Plot Design) of Data in Table 3.7

(Chapter 3) w.th One Value’ Assumed Missing and Estimated by the
Missing Data Formula Technique

Source Dcgree Sum

of of of Mecan ~ Computed Tabular F
Variation Freedom  Squares Square F* 5% 1%
Replication 2 1,164,605 582,302

Nitrogen (N) 5 30,615,088 6,123,018  43.38"° 333 5.64
Error(a) 10 1,411,480 141,148

Variety (V) 3 90,395,489 30,131,830  83.98** 2.87 4.40
NxV 15 69,100,765 4,606,718 12.84%¢ 1.96 2.60
Error(b) 35 12,557,261 358,719

Total 70 205,244,690

“Yield value of 6,420 kg/ha of treatment N,V in replication 11 is assumed
missing.
bes u significant at 1% level.
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Ta'.» 7.6 Standard Error of the Mean Difference (8;) In a Split-Plot Deslign
with Missing Data

Typc of Pair Comparison

Number Between s;¢
1 Two main-plot means (aver- -
aged over all subplot treat- 2(E, + JE,)
ments) rb
2 Two subplot mecans (averaged b
over all main-plot treatments) ZE"(I + %)
ra
3 Two subplot mcans at the same . fb
main-plot treatment th(l + —a_)
r
4 Two main-plot means At the - -
same or different subplot \=cat- \/2[ E, + E,[(b-1)+fb?])
ments rh

“For onc missing observation, f = 1/[2(r — 1)(b — 1)] and, for morc than onc missing
observation, f = k/[2(r — d){b — k + ¢ ~ 1)} (sce Section 7.1.2.6). E, = Error(a) MS,
E, = Error(h) MS, r = number of replications, ¢ = number of main-plot treatments,
and b = number of subplot treatments.

same nitrogen level, on the other hand, the s;is computed as:

b
2E, _l T ar-D6-1)]
Sg= ’
2(358,779){1 + 4
- | 2(6)(2)(3) |
3
= 502.47 kg/ha

7.1.2.4 Strip-Plot Design. The missing data in a strip-plot design is
estimated as:

_ a(bT,— P,) + r(aH, + bV, — B,) — bS, + G,

X a-Db-1D(-1)
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where

a =level of horizontal factor
b =level of vertical factor
r =number of replications
T, =total of observed values of the treatment that
contains the missing data
P, =1otal of observed values of the specific level of
the horizontal factor that contains the missing data
H, =1otal of observed values of the horizontal
strip that contains the missing data
V, =total of observed values of the vertical strip
that contains the missing data
B, =total of observed values of the replication that
contains the missing data
S, =total of observed values of the specific level of
the vertical factor that zontains the missing data
G, =total of all observed values

For illustration, assume that the yicld of treatment ¥, N, in replication 111 of
Table 3.11 of Chapter 3 (i.e., 4,425) is missing. The procedures are:

O step 1. Compute the estimate of the missing data, using the foregoing
formula. For our example, the values of the parameters needed for estimat-
ing the missing data are:

a = 6, the level of horizontal factor (i.c., variety)
b = 3, the level of vertical factor (i.e., nitrogen)
r = 3, the number of replications
T, = 6,718, the observed total of treatment v, N,
(3,896 + 2,822)
P, = 23,816, the obscrved total of ¥, (2,572 + 3,724
+3,326 + .-+ + 3,214)
H, = 6,540, the observed total of ¥, in replication 1
(3,326 + 3,214)
V, = 29,912, the observed total of N, in replication 111
(4,889 + 7,177 + 7,019 + 4,816 + 6,011)
B, = 96,094, the obscrved total of replication 111
(4,384 + 4,889 + 8,582 + - + 3,326 + 3,214)
9, = 94,183, the observed total of N, (4,076 + 6,431
+4,889 + 5,630 + --- + 2.322)
G, = 281,232, the observed total of all values
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The estimate of the missing data is then computed as:
X = (6[3(6,718) — 23,816] + 3[6(6,540) + 3(29,912) - 96,094]
—3(94,183) + 281,232} /(5)(2)(2)

= 3,768 kg/ha
O step 2. Euter the estimate of the missing data, obtained in step 1, in the
table with the other observed values and compute the analysis of variance
based on the augmented cata set in the usual manner, but with one
subtracted from both the total d.f. and the error(c) d.f. The final analysis
of variance is shown in Table 7.8.

7.1.2.5 Split-Split-Plot Design. The missing data in a split-split-plot de-
sign is estimated as:
¥ M, + T, - P,
(c=1)(r-1)

where
¢ =levei of the sub-subplot factor
r =nu.nber of replications
M, =toial of observed values of the specific subplot
that contains the missing data
T, = tal of observed values of the treatment that
contains the missing data
P, =total of observed values of all subplots containing
the same set of treatments as that of the missing data

Table 7.7 Analysls of Variance (Strip-Plot Design) of Data In Table
3.11 (Chapter 3) with One Value’ Assumed Missing and Estimated by
the Miseing Data Formula Technique

Source Degree Sum

of j’rr of Mecan  Computed Tabular F
Variation Frcedom  Squares Square F* 5% 1%
Replication 2 8,850,049 4,425,024

Varicty (V) 5 59,967,970 11,993,594 8.15** 333 5.64
Error(a) 10 14,709,970 1,470,997

Nitrogen (N) 2 50,444,651 25,222,326 ‘ —_— -
Error(b) 4 3,072,36 768,091

VXN 10 23,447,863 2,344,786 5.52%* 238 343
Error(c) 19 8,072,974 424,893

Total 52 168,565,841

aYield value of 4,425 kg/ha of trcatment VN, in replication III is assumed
missing.

bes w significant at 1% level.

“Brror(b) d.f. is not adequate for valid test of significance.
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For illustration, v ¢ assume that the yield of treatment N,M,V, in replica-
tion 111 of Table 4.4 of Chapter 4 (i.e., 5.345) is missing. The procedures are:

O step 1. Compute the values of the parameters needed for estimating the
missing data, using the foregoing formula:

¢ =3, the level of the sub-subplot factor (i.e., variety)
r =3, the number of replications
M, =13.942, the observed total of subplot Ny M, in
replication 111 (6.164 + 7.778)
T, =10.997, the observed total of treatment
Ny M,V (5255 + 5.742)
P, =57.883, the observed total of all subplots

containing N, M, (5.255 + 5.742 + 6.992 + --.
+7.778)

Then compute the estimate of the missing data as:

_ 3(13.942) + 3(10.997) — 57.883
(2)(2)

O step 2. Enter the estimate of the missing data, obtained in step 1, in the
table with the other observed values and compute the analysis of variance
based on the augmented data set in the usual manner, but with one
subtracted from both the total d.f. and the error(c) d.f. The final analysis
of variance is shown in Table 7.8,

X

=424 1/ha

7.1,2.6 Mure Than One Missing Observation. The missing data formula
technique, which is discussed for the various designs in Sections 7.1.2.1
through 7.1.2.5, is not directly applicable to the case of more than one missing
observation in any design, except for a split-plot or a split-split-plot design
where the two or more missing data satisfy the following conditions:

1. For a split-plot design, no two missing data share the same treatment
combination or tke same main-plot treatment. For ecxample, the two missing
data could be a,b, of replication I and a, b, of replication II1.

2. For a split-split-plot design, no two missing data sharc the same
treatment combination or the same subplot X main-plot treatment combina-
tion. For example, the two missing data could be a,b,c, of rep