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To ourson, Victor 



Preface 

There is universal acceptance of statistics as an essential tool for all types of 
research. That acceptance and ever-proliferating areas of research specializa­
tion have led to corresponding increases in the number and diversity of 
available statistical procedures. In agricultural research, for example, there are 
different statistical techniques for crop and animal research, for laboratory and 
field experiments, for genevic and physiological research, and so on. Although 
this diversit" indicates the aailability of appropriate statistical techniques for 
most research problems, il. also indicates the difficulty of matching the best 
technique to a specific expe, 2ment. Obviously, this difficulty increases as more 
procedures develop. 

Choosing the correct st'tistical procedure for a given experiment must be 
bas;ed on expertise in statistics and in the subject matter of the experiment. 
Thorough knowledge of only one of the two is not enough. Such a choice, 
therefore, should be made by: 

A,.subject matter specialist with some training in experimental stat,istics 
SA,statistician with some background and experience in the subject matter of 

ihe experiment 
* 	 The joint effort and cooperation of a statistician and a subject matter 

specialist 

For most agricultural research institutions in the developing countries, the 
presence of trained statisticians is a luxury. Of the already small number of 
such statisticians, only a small fraction have the interest and experience i­
agricultural research necessary for effective consultation. Thus, we feel the best 
alternative is to give agricultural researchers a statistical background so that 
they can correctly choose the statistical technique most appropriate for their 
experiment. The major objective of this book is to provide the developing­
couutry researcher that background. 

For research institutions in the developed countries, the shortage of trained 
statisticians may not be as acute as in the developing countries. Nevertheless, 
the subject matter specialist must be able to communicate with the consulting 
statistician. Thus, for the developed-country researcher, this volume should 
help forge a closer researcher-statistician relationship. 
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viii Preface 

We have tried to create a book that any subject matter specialist can use. 
First, we chose only the simpler and more commonly used statistical proce­
dures in agricultural research, with special emphasis on field experiments with 
crops. In fact, our examples are mostly concerned with rice, the most im­
portant crop in Asia and the crop most familiar to us. Our examples, however, 
have applicability to a wide range of annual crops. In addition, we have used a 
minimum of mathematical and statistical theories and jargon and a maximum 
of actual examples. 

This is a second edition of an International Rice Research Institute publica­
tion with a similar title and we made extensive revisions to ail but three of the 
original chapters. We added four new chapters. The primary emphases of the 
working chapters are as follows: 

Chapters 2 to 4 cover the most commonly used experimental designs for 
single-factor, two-factor, and three-or-more-factor experiments. For each de­
sign, the corresponding randomization and analysis of variance procedures are 
described in detail. 

Chapter 5 gives the procedures for comparing specific treatment means: 
LSD and DMRT for pair comparison, and single and multiple d.f. contrast 
methods for group comparison. 

Chapters 6 to 8 detail the modifications of the procedures described in 
Chapters 2 to 4 necessary to handle the following special cases: 

" Experiments with more than one observation per experimental unit 
* Experiments with missing values or in which data violate one or more 

assumptions of the analysis of variance 
" Experiments that are repeated over time or site 

Chapters 9 to 11 give the three most commonly used statistical techniques 
for data analysis in agricultural research besides the analysis of variance. These 
techniques are regression and correlation, covariance, and chi-square. We also 
include a detailed discussion of the common misuses of the regression and 
correlation analysis. 

Chapters 12 to 14 cover the most important problems commonly encoun­
tered in conducting field experiments and the corresponding techniques for 
coping with them. The problems are: 

* Soil heterogeneity 
" Competition effects 
" Mechanical errors 

Chapter 15 describes the principles and procedures for developing an 
appropriate sampling plan for a replicated field experiment. 

Chapter 16 gives the problems and procedures for research in farmers' 
fields. In the developing countries where farm yields are much lower than 
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experiment-station yields, the appropriate environment for comparing new and 
existing technologies is the actual farmers' fields and not the favorable environ­
ment of the experiment stations. This poses a major challenge to existing 
statistical procedures and substantial adjustments are required. 

Chapter 17 covers the serious pitfalls and provides guidelines for the 
presentation of research results. Most of these guidelines were generated from 
actual experience. 

We are grateful to the International Rice Research Institute (IRRI) and the 
University of the Philippines at Los Bafios (UPLB) for granting us the study 
leaves needed to work on this edition; and the Food Research Institute, 
Stanford University, and the College of Natural Resources, University of 
California at Berkeley, for being our hosts during our leaves. 

Most of the examples were obtained from scientists at IRRI. We are 
grateful to them for the use of their data. 

We thank the research staff of IRRI's Department of Statistics for their 
valuable assistance in searching and processing the suitable examples; and the 
secretarial staff for their excellent typing and patience in proofreading the 
manuscript. We are grateful to Walter G. Rockwood who suggested modifica­
tions to make this book more readable. 

We appreciate permission from the Literary Executor of the late Sir Ronald 
A. Fisher, F.R.S., Dr. Frank Yates, F '.S., and Longman Group Ltd., London 
to reprint Table III, "Distribution of Probability," from their book Statistical 
Tables for Biological, Agricultural and Medical Research (6th edition, 1974). 

KWANCHAI A. GOMEZ 
ARTURO A. GOMEZ 

Los Blaw, Philippines 
Seifember 1983 
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CHAPTER 1 

Elements of Experimentation 

In the early 1950s, a Filipino journalist, disappointed with the chronic shortage
of rice in his country, decided to test the yield potential of existing rice 
cultivars and the opportunity for substantially increasing low yields in farmers' 
fields. He planted a single rice seed-from an ordinary farm-on a well-pre­
pared plot and carefully nurtured the developing seedling to maturity. At 
harvest, he counted more than 1000 seeds produced by the single plant. The 
journalist concluded that Filipino farmers who normally use 50 kg of grains to 
plant a hectare, could harvest 50 tons (0.05 x 1000) from a hectare of land 
instead of the disappointingly low national average of 1.2 t/ha.

As in the case of the Filipino journalist, agricultural research seeks answers 
to key questions in agricultural production whose resolution could lead to 
significant changes and improvements in existing agricultural practices. Unlike 
the journalist's experiment, however, scientific research must be designed 
precisely and rigorously to answer these key questions. 

In agricultural research, the key questions to be answered are generally 
expressed as a statement of hypothesis that has to be verified or disproved
through experimentation. These hypotheses are usually suggested by past
experiences, observations, and, at times, by theoretical considerations. For 
example, in the case of the Filipino journalist, visits to selected farms may have 
impressed him as he saw the high yield of some selected rice plants and 
visualized the potential for duplicating that high yield uniformly on a farm and 
even over many farms. He therefore hypothesized that rice yields in farmers' 
fields were way below their potential and that, with better husbandry, rice 
yields could be substantially increased. 

Another example is a Filipino maize breeder who is apprehensive about the 
low rate of adoption of new high-yielding hybrids by farmers in the Province 
of Mindanao, a major maize-growing area in the Philippines. He visits th,
maize-growing areas in Mindanao and observes that the hybrids are more 
vigorous and more productive than the native varieties in disease-free areas. 
However, in many fields infested with downy mildew, a destructive and 
prevalent maize disease in the area, the hybrids are substantially more severely
diseased than the native varieties. The breeder suspects, and therefore hypothe­

I 



2 Elements of Experimentation 

sizes, that the new hybrids are not widely grown in Mindanao primarily 
because they are more susceptible to downy mildew than the native varieties. 

Theoretical considerations may play a major role in arriving at a hypothesis. 
For example, it can be shown theoretically that a rice crop removes more 
nitrogen from the soil than is naturally replenished during one growing season. 
One may, therefore, hypothesize that in order to maintain a high productivity 
level on any rice farm, supplementary nitrogen must be added to every crop. 

Once a hypothesis is framed, the next step is to design a procedure for its 
verification. This is the experimental procedure, which tsually consists of four 
phases: 

1. 	 Selecting the appropriate materials to test 

2. 	 Specifying the characters to measure 

3. 	 Selecting the procedure to measure those characters 

4. 	 Specifying the procedure to determine whether the measurements made 
support the hypothesis 

In general, the first two phases are fairly easy for a subject matter specialist 
to specify. In our example of the maize breeder, the test materi "swould 
probably be the native and the newly developed varieties. The characters to be 
measured would probably be disease infection and grain yield. For the 
example on maintaining productivity of rice farms, the test variety would 
probably be one of the recommended rice varieties and the fertilizer levels to 
be tested would cover the suspected range of nitrogen needed. The characters 
to be measured would include grain yield and other related agronomic char­
acters. 

On the other hand, the procedures regarding how the measurements are to 
be made and how these measurements can be used to prove or disprove a 
hypothesis depend heavily on techniques developed by statisticians. These two 
tasks constitute much of what is generally termed the design of an experiment, 
which has three essential components: 

1. 	 Estimate of error 

2. 	 Control of error 
3. 	 Proper interpretation of results 

1.1 ESTIMATE OF ERROR 

Consider a plant breeder who wishes to compare the yield of a new rice variety 
A to that of a standard variety B of known and tested properties. He lays out 
two plots of equal size, side by side, and sows one to variety A and the other to 
variety B. Grain yield for each plot is then measured and the variety with 
higher yield is judged as better. Despite the simplicity and commonsense 
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appeal of the procedure just outlined, it has one important flaw. It presumes
that any difference between the yields of the two plots is caused by the varieties 
and nothing else. This certainly is not true. Even if the same variety were 
planted on both plots, the yield would differ. Other factors, such as soil 
fertility, moisture, and damage by insects, diseases, and birds also affect rice 
yields. 

Because these other factors affect yields, a satisfactory evaluation of the two 
varieties must involve a procedure that can separate varietal difference from 
other sources ef variation. That is, the plant breeder must be able to design an 
experiment that allows him to decide whether the difference observed is caused 
by varietal difference or by other factors. 

The logic behind the decision is simple. Two rice varieties planted in two 
adjacent plots will be considered different i. their yielding ability only if the 
observed yield difference is larger than that expected if both plots were planted 
to the same variety. Hence, the researcher needs to know not only the yield
difference between plots planted to different varieties, but also the yield 
difference between plots planted to the same variety.

The difference among experimental plots treated alike is called experimental 
error. This error is the primary basis for deciding whether an observed 
difference is real or just due to chance. Clearly, every experiment must be 
designed to have a measure of the experimental error. 

1.1.1 Replication 

In the same way that at least two plots of the same variety are needed to
 
determine the difference among plots treated alike, experimental error can be
 
measured only if there 
are at least two plots planted to the same variety (or
receiving the same treatment). Thus, to obtain a measure of experimental error, 
replication is needed. 

1.1.2 Randomization 

There is more involved in getting a measure of experimental error than simply 
planting several plots to the same variety. For example, suppose, in comparing 
two rice varieties, the plant breeder plants varieties A and B each in four plots 
as shown in Figure 1.1. If the area has a unidirectional fertility gradient so that 
there is a gradual reduction of productivity from left to right, variety B would 
then be handicapped because it is always on the right side of variety A and 
always in a relatively less fertile area. Thus, the comparison between the yield 
performances of variety A and variety B would be biased in favor of A. A part
of the yield difference between the two varieties would be due to the difference 
in the fertility levels and not to the varietal difference. 

To avoid such bias, varieties must be assigned to experimental plots so that 
a particular variety is not consistently favored or handicapped. This can be 
achieved by randomly assigning varieties to the experimental plots. Random­
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Plot Plot Plot Plot Plot Plot Plot Plot 
2 3 4 5 6 7 8 

A B A BA a A B 

Figure 1.1 A systematic arrangement of plots planted to two rice varieties A and B. This scheme 

does not provide a valid estimate of cxpcriraental error. 

ization ensures that each variety will have an equal chance of being assigned to 

any experimental plot and, consequently, of being grown in any particular 

environment existing in the experimental site. 

1.2 CONTROL OF ERROR 

Because the ability to detect existing differences among treatments increases as 
a good experiment incorporates allthe size of the experimental error decreases, 


possible means of minimizing the experimental error. Three commonly used
 

techniques for controlling experimental error in agricultral research are:
 

1. Blocking 
2. Proper plot technique 

3. Data analysis 

1.2.1 Blocking 

By putting experimental units that are as similar as possible together in the 
to as a block) and by assigning all treatmentssame group (generally referred 

into each block separately and independently, variation among blocks can be 

measured and removed from experimental error. In field experiments where 

substantial variation within an experimental field can be expected, significant 

reduction in experimental error is usually achieved with the use of proper 

blocking. We emphasize the importance of blocking in the control of error in 

Chapters 2-4, with blocking as an important component in almost all experi­

mental designs discussed. 

1.2.2 Proper Plot Technique 

For almost all types of experiment, it is absolutely essential that all other 

factors aside from those considered as treatments be maintained uniformly for 
in variety trials where the treatmentsall experimental units. For example, 
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consist solely of the test varieties, it is required that all other factors such as 
soil nutrients, solar energy, plant population, pest incidence, and an almost 
infinite number of other environmental factors are maintained uniformly for 
all plots in the experiment. Clearly, the requirement is almost impossible to 
satisfy. Nevertheless, it is essential that the most important ones be watched 
closely to ensure that variability among experimental plots is minimized. This 
is the primary concern of a good plot technique 

For field experiments with crops, the important sources of variability among 
plots treated alike are soil heterogeneity, competition effects, and mcchanical 
errors. The techniques appropriate for coping with each of these important 
sources of variation are discussed in Chapters 12-14. 

1.2.3 Data Analysis 

In cases where blocking alone may not be able to achieve adequate control of 
experimental error, proper choice of data analysis can help greatly. Covariance 
anal'sis is most commonly used for this purpose. By measuring one or more 
covariates- the characters whose functional relationships to the character of 
primary interest are known-the analysis of covariance can reduce the vari­
ability among experimental units by adjusting their values to a common value 
of the covariates. For example, in an animal feeding trial, the initial weight of 
the animals usually differs. Using this initial weight as the covariate, final 
weight after the animals are subjected to various feeds (i.e., treatments) can be 
adjusted to the values that would have been attained had all experimental 
animals started with the same body weight. Or, in a rice field experiment where 
rats damaged some of the test plots, covariance analysis with rat damage as the 
covariate can adjust plot yields to the levels that they should have been with no 
rat damage in any plot. 

1.3 PROPER INTERPRETATION OF RESULTS 

An important feature of the design of experiments is its ability to uniformly 
maintain all environmental factors that are not a part of the treatments being 
evaluated. This uniformity is both an advantage and a weakness of a controlled 
exper;ment. Although maintaining uniformity is vital to the measurement and 
reduction of experimental error, which are so essential in hypothesis testing, 
this same feature Ereatly limits the applicability and generalization of the 
experimental results, a limitation that must always be considered in the 
interpretation of results. 

Consider the plant breeder's experiment comparing varieties A and B 
(Section 1.1). It is obvious that the choice of management practices (such as 
fertilization and weed control) or of the site and crop season in which the trial 
is conducted (such as in a rainy or dry environment) will greatly affect the 
relative performance of the two varieties. In rice and maize, for example, it has 
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been shown that the newly developed, improved varieties are greatly superior 

to the native varieties when both are grown in a good environment and with 

good management; but the improved varieties are no better, or even poorer, 

when both are grown by the traditional farmer's practices. 
Clearly the result of an experiment is, strictly speaking, applicable only to 

conditions that are the same as, or similar to, that under which the experiment 

was conducted. This limitation is especially troublesome because most agricul­

tural research is done on experiment stations where average productivity is 

higher than that for ordinary farms. In addition, the environment surrounding 

a single experiment can hardly represent the variation over space and time that 

is so typical of commercial farms. Consequently, field experiments with crops 
and years, in research stationsare usually conducted for several crop seasons 

and on farmers' fields, to insure that the results will apply over a wide range of 

environments. This is our primary concern in Chapters 8 and 16. 



CHAPTER 2 

Single-Factor Experiments 

Experiments in which only a single factor varies while all others are kept 
constant are called single-factor experiments. In such experiments, the treat­
ments consist solely of the different levels of the single variable factor. All 
other factors are applied uniformly to all plots at a single prescribed level. For 
example, most crop variety trials are single-factor experiments in which the 
single variable factor is variety and the factor levels (i.e., treatments) are the 
different varieties. Only the variety planted differs from one experimental plot 
to another and all management factors, such as fertilizer, insect control, and 
water management, are applied uniformly to all plots. Other examples of 
single-factor experiment are: 

" Fertilizer trials where several rates of a single fertilizer element are tested.
 
" Insecticide trials where several insecticides are tested.
 
- Plant-population trials where several plant densities are tested.
 

There are two groups of experimental design that are applicable to a 
single-factor experiment. One group is the family of complete block designs,
which is suited for experiments with a small number of treatments and is 
characterized by blocks, each of which contains at least one complete set of 
treatments. The other group is the family of incomplete block designs, which is 
suited for experiments with a large number of treatments and is characterized 
by blocks, each of which contains only i fraction of the treatments to be 
tested. 

We describe three complete block designs (completely randomized, random­
ized complete block, and latin square designs) and two incomplete block 
designs (lauice and group balanced block designs). For each design, we 
illustrate the procedures for randomization, plot layout, and analysis of 
variance with actual experiments. 

7 
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2.1 COMPLETELY RANDOMIZED DESIGN 

where the treatments areA completely randomized design (CRD) is one 
assigned completely at random so that each experimental unit has the same 

chance of receiving any one treatment. For the CRD, any difference among 

experimental units receiving the same treatment is considered as experimental 

error. Hence, the CRD is only appropriate for experiments with homogeneous 

experimental units, such as laboratory experiments, where environmental effects 

are relatively easy to control. For field experiments, where there is generally 

large variation among experimental plots, in such environmental factors as soil, 

the CRD is rarely used. 

2.1.1 Randomization and Layout 

The step-by-step procedures for randomization and layout of a CRD are given 

here for a field experiment with four treatments A, B, C, and D, each 

replicated five times. 

o1 	 STEP 1. Determine the total number of experimental plots (n) as the 

product of the number of treatments (t) and the number of replications (r); 

that is, n = (r)(t). For our example, n = (5)(4) = 20. 

o STEP 2. Assign a plot number to each experimental plot in any convenient 

manner; for example, consecutively from 1 to n. For our example, the plot 

numbers 1,..., 20 are assigned to the 20 experimental plots as shown in 

Figure 2.1. 

o 	STEP 3. Assign the treatments to the experimental plots by any of the 

following randomization schemes: 

A. 	 By table of random numbers. The steps involved are: 

STEP A1. Locate a starting point in a table of random numbers 

(Appendix A) by closing your eyes and pointing a finger to any position 

Plot no - 1 2 3 4 

Treatment- - B A D B 

5 6 7 8 

D C A B 

9 10 II 12 
C D D C 

13 14 15 16 

B C A C Figure 2.1 A sample layout of a completely randomized 
17 1B 19 20 design with four treatments (A, B, C, and D) each 

A B A D replicated five times. 
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in a page. For our example, the starting point is at the intersection of 
the sixth row and the twelfth (single) column, as shown here. 

Appendix A. Table of Random Numbers 

14620 95430 12951 81953 17629 
09724 85125 48477 42783 70473 
56919 17803 95781 85069 61594 
97310 78209 51263 52396 82681 
07585 28040 26939 64531 70570 

25950 85189 69374 37904 06759 
82937 16405 81497 20863 94072 
60819 27364 59081 72635 49180 
59041 38475 03615 84093 49731 
74208 69516 79530 47649 53046 

39412 03642 87497 29735 14308 
48480 50075 11804 24956 72182 
95318 28749 49512 35408 21814 
72094 16385 90185 72635 86259 
63158 49753 84279 56496 30618 

19082 73645 09182 73649 56823 
15232 84146 87729 65584 83641 
94252 77489 62434 20965 20247 
72020 18895 84948 53072 74573 
48392 06359 47040 05695 79799 

37950 77387 35495 48192 84518 
09394 59842 39573 51630 78548 
34800 28055 91570 99154 39603 
36435 75946 85712 06293 85621 
28187 31824 52265 80494 66428 

STEP A2. Using the starting point obtained in step A,, read downward 
vertically to obtain n = 20 distinct three-digit random numbers. Three­
digit numbers are preferred because they are less likely to include ties 
than one- or two-digit numbers. For our example, starting at the 
intersection of the sixth row and the twelfth column, the 20 distinct 
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are as shown here together with theirthree-digit random numbers 
corresponding sequence of appearance. 

Random Random 
Number Sequence Number Sequence 

937 1 918 11 

149 2 772 12 

908 3 243 13 

361 4 494 14 
15953 5 704 

749 6 549 16 

180 7 957 17 

951 8 157 18 

018 9 571 19 

427 10 226 20 

SmP A 3. Rank the n random numbers obtained in step A2 in ascend­
ing or descending order. For our example, the 20 random numbers are 

ranked from the smallest to the largest, as shown in the following: 

Random Random 

Number Sequence Rank Number Sequence Rank 

17 11 16
937 1 918 

149 2 2 772 12 14 

15 13 6908 3 243 

361 4 7 494 14 9 

19 15 12953 5 704 

749 6 13 549 16 10 

4 17180 7 957 20 

951 8 18 157 18 3 

018 9 1 571 19 11 

427 10 8 226 20 5 

sTEP A4. Divide the n ranks derived in step A3 into t groups, each 

consisting of r numbers, according to the sequence in which the random 

numbers appeared. For our example, the 20 ranks are divided into four 
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groups, each consisting of five numbers, as follows: 

Group Number Ranks in the Group 

1 17, 2, 15, 7, 19 
2 13, 4, 18, 1, 8 
3 16, 14, 6, 9, 12 
4 10, 20, 3, 11, 5 

Smp A5. Assign the t treatments to the n experimental plots, by using
the group number of step A4 as the treatment number and the 
corresponding ranks in each group as the plot number in which the 
corresponding treatment is to be assigned. For our example, the first 
group is assigned to treatment A and plots numbered 17, 2, 15, 7, and 
19 are assigned to receive this treatment; the second group is assigned 
to treatment B with plots numbered 13, 4, 18, 1, and 8; the third group
is assigned to treatment C with plots numbered 16, 14, 6, 9, and 12;
and the fourth group to treatment D with plots numbered 10, 20, 3, 11,
and 5. The final layout of the experiment is shown in Figure 2.1. 

B. 	 By drawing cards. The steps involved are: 
STEP B1. From a deck of ordinary playing cards, draw n cards, one at 
a time, mixing the remaining cards after every draw. This procedure 
cannot be used when the total number of experimental units exceeds 52 
because there are only 52 cards in a pack. 

For our example, the 20 selected cards and the corresponding 
sequence in which each card was drawn may be shown below: 

Sequence 1 2 3 4 5 6 7 8 910 

Sequence 11 12 13 14 15 17 18 1916 20 

STEP B2. Rank the 20 cards drawn in step B, according to the suit 

rank (4 * 4) and number of the card (2 is lowest, A is 
highest). 

For our example, the 20 cards are ranked from the smallest to the 
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largest as follows: 
Sequence 1 2 

Rank 14 7 

3 

9 

4 

15 

5 

5 

6 

11 

7 

2 

8 

19 

9 

13 

10 

18 

Sequence 11 12 13 14 15 16 17 18 19 20
 

Rank 16 8 10 1 3 20 6 17 12 4
 

STEP B3. Assign the t treatments to the n plots by using the rank 
obtained in step B2 as the plot number. Follow the procedure in steps 
A4 and As. For our example, the four treatments are assigned to the 20 
experimental plots as follows: 

Treatment Plot Assignment 

A 14, 7, 9, 15, 5 

B 11, 2, 19, 13, 18 
C 16, 8, 10, 1, 3 
D 20, 6, 17, 12, 4 

C. 	 By drawing lots. The steps involved are: 
STEP C1. Prepare n identical pieces of paper and divide them into I 
groups, each group with r pieces of paper. Label each piece of paper of 
the 	same group with the same letter (or number) corr iponding to a 
treatment. Uniformly fold each of the n labeled pieces of paper, mix 
them thoroughly, and place them in a container. For our example, there 
should be 20 pieces of paper, five each with treatments A, B, C, and D 
appearing on them. 
sTEP C2. Draw one piece of paper at a time, without replacement and 
with constant shaking of the container after each draw to mix its 
content. For our example, the label and the corresponding sequence in 
which each piece of paper is drawn may be as follows: 

Treatment label: D B A B C A D C B D 
Sequence: 1 2 3 4 5 6 7 8 9 10 
Treatment label: D A A B B C D C C A 

Sequence: 11 12 13 14 15 16 17 18 19 20
 

STEP C3. Assign the treatments to plots based on the correspond­
ing treatment label and sequence, drawn in step C2. For our example, 
treatment A would be assigned to plots numbered 3, 6, 12, 13, and 20; 
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treatment B to plots numbered 2, 4, 9, 14, and 15; treatment C to plots 
numbered 5, 8, 16, 18, and 19; and treatment D to plots numbered 1, 7, 
10, 11, and 17. 

2.1.2 Analysis of Variance 

There are two sources of variation among the n observations obtained from a 
CRD trial. One is the treatment variation, the other is experimental error. The 
relative size of the two is used to indicate whether the observed difference 
among treatments is real or is due to chance. The treatment difference is said 
to be real if treatment variation is sufficiently larger than experimental error. 

A major advantage of the CRD is the simplicity in the computation of its 
analysis of variance, especially when the number of replications is not uniform 
for all treatments. For most other designs, the analysis of variance becomes 
complicated when the loss of data in some plots results in unequal replications 
among treatments tested (see Chapter 7, Section 7.1). 

2.1.2.1 Equal Replication. The steps involved in the analysis of variance 
for data from a CRD experiment with an equal number of replications are 
given below. We use data from an experiment on chemical control of brown 
planthoppers and stem borers in rice (Table 2.1). 

o 	STEP 1. Group the data by treatments and calculate the treatment totals 
(T) and grand total (G). For our example, the results are shown in Table 
2.1. 

El 	 STEP 2. Construct an outline of the analysis of variance as follows: 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Treatment 

Experimental errgr 

Total 

o 	STEP 3. Using t to represent the number of treatments and r, the number of 
replications, determine the degree of freedom (d.f.) for each source of 
variation as follows: 

Total d.f. = (r)(t) - I = (4)(7) - I = 27 
Treatment d.f. = t - 1 = 7 - 1 = 6 
Error d.f. = t(r- 1) = 7(4 - 1)= 21 

The error d.f. can also be obtained through subtraction as: 

Error d.f. = Total d.f. - Treatment d.f. = 27 - 6 = 21 
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Table 2.1 Grain Yield of Rice Resulting from Use of Different Follar 
and Granular Insecticides for the Control of Brown Planthoppers and 

Stem Borers, from a CR0 Experiment with 4 (r) Replications and 7 (t) 
Treatments 

Treatment 
Total Treatment 

Treatment Grain Yield, kg/ha (T) Mean 

Dol-Mix (1 kg) 2,537 2,069 2,104 1,797 8,507 2,127 

Dol-Mix(2 kg) 3,366 2,591 2,21 Z 2,544 10,712 2,678 

DDT + -y-BHC 2,536 2,459 2,827 2,385 10,207 2,552 

Azodrin 2,387 2,453 1,556 2,116 8,512 2,128 

Dimecron-Boom 1,997 1,679 1,649 1,859 7,184 1,796 

Dimecron-Knap 1,796 1,704 1,904 1,320 6,724 1,681 
Control 1,401 1,516 1,270 1,077 5,264 1,316 

Grand total (G) 57,110 
Grand mean 2,040 

0 STEP 4. Using X to represent the measurement of the ith plot, T as the 
total of the ith treatment, an! n as the total number of experimental plots 
[i.e., n = (r)(1)], calculate the correction factor and the various sums of 
squares (SS) as: 

2Correction factor (C. F.) = 
n 

n 

Total SS= X -C.F. 
'-I 

i-
Treatment SS = rr-

Error SS = Total SS - Treatment SS 

Throughout this book, we use the symbol E to represent "the sum of." For 
example, the expression G = X, + X2 + .". + X,, can be written as G = 

-t X or simply G = EX. For our example, using the T values and the G 
value from Table 2.1, the sums of squares are computed as: 

C.F.= (57,110)2 = 116,484,004 

(4)(7) 

Total SS = [(2,537)2 + (2,069)2 + "' + (1,270)2 + (1,077)2] 

- 116,484,004
 

= 7,577,412
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Treatment SS = (8,507)2 + (10'712)2 + + (5,264)2 _ 116,484,004 
4 

= 	5.587,174 

Error SS = 7,577,412 - 5,587,174 - 1,990,238 

o 	STEP 5. Calculate the mean square (MS) for each source of variation by
dividing each SS by its corresponding d.f: 

Treatment MS Treatment SS 
t-1
 

5,587,174 
931,196
6 = 

Error MS Error SS 

1(r- 1) 

1,990,238
 
= 94,773
(7)(3) 

o 	STEP 6. Calculate the F value for testing significance of the treatment 
difference as:
 

Treatment MS 
Error MS 

931,196 
=98- 94,773 -9.83 

Note here that the F value should be computed only when the error d.f. is 
large enough for a reliable estimate of the error variance. As a general
guideline, the F value should be computed only when the error d.f. is six or 
more. 

o 	STEP 7. Obtain the tabular F values from Appendix E,with f = treatment 
d.f. = (t - 1) and f2 = error d.f. = (r - 1). For our example, the tabular 
F values with f, = 6 and f2 = 21 degrees of freedom are 2.57 for the 5% 
level of significance and 3.81 for the 1%level. 

o3 STEP 8. Enter all the values computed in steps 3 to 7 in the outline of the 
analysis of variance constructed in step 2. For our example, the result is 
shown in Table 2.2. 

O1 	 STEP 9. Compare the computed Fvalue of step 6 with the tabular F values 
of step 7, and decide on the significance of the difference among treatments 
using the following rules: 

1. 	 If the computed F value is larger than the tabular F value at the 1% 
level of significance, the treatment difference is said to be highly signifi­
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Table 2.2 Analysis of Variance (CRD with Equal Replication) of Rice 
Yield Data InTable 2.1a 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fb 

Tabular F 
5% 1% 

Treatment 6 5,587,174 931,196 9.83** 2.57 3.81 
Experimental error 

Total 
21 
27 

1,990,238 
7,577,412 

94,773 

aCV _ 15.1%.b**_significant at 1%level. 

cant. Such a result is generally indicated by placing two asterisks on the 
computed F value in the analysis of variance. 

2. 	 If the computed F value is larger than the tabular F value at the 5% 
level of significance but smaller than or equal to the tabular F value at 
the 1% level of significance, the treatment difference is said to be 
significant. Such a result is indicated by placing one asterisk on the 
computed Fvalue in the analysis of variance. 

3. 	 If the computed F value is smaller than or equal to the tabular F value 
at the 5%level of significance, the treatment difference is said to be 
nonsignificant. Such a result is indicated by placing ns on the computed 
F value in the analysis of variance. 

Note that a nonsignificant F test in the analysis of variance indicates the 
failure of the experiment to detect any difference among treatments. It does 
not, in any way, prove that all treatments are the same, because the failure 
to detect treatment difference, based on the nonsignificant F test, could be 
the result of either a very small or nil treatment difference or a very large 
experimental error, or both. Thus, whenever the F test is nonsignificant, the 
researcher should examine the size of the experimental error and the 
numerical difference among treatment means. If both values are large, 
the trial may be repeated and efforts made to reduce the experimental error 
so that the difference among treatments, if any, can be detected. On the 

other hand, if both values are small, the difference among treatments is 
probably too small to be of any economic value and, thus, no additional 
trials are needed. 

For our example, the computed F value of 9.83 is larger than the tabular 
F valuc at the 1% level of significance of 3.81. Hence, the treatment 
difference is said to be highly significant. In other words, chances are less 
than 1 in 100 that all the observed differences among the seven treatment 
means could be due to chance. It should be noted that such a significant F 
test verifies the existence of some differences among the treatments tested 
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but does not specify the particular pair (or pairs) of treatments that differ 
significantly. To obtain this information, procedures for comparing treat­
ment means, discussed in Chapter 5, are needed. 

0 	sTEP 10. Compute the grand mean and the coefficient of variation cv as 
follows: 

G 
-= Grand mean 
n 

/Error MS 
Grand mean 

For our example,; 

57,110 
Grand mean = 28 2,040 

cv =- × 100 = 15.1% 

The cv indicates the degree of precision with which the treatments are 
compared and is a good index of the reliability of the experiment. It 
expresses the experimental error as percentage of the mean; thus, the higher 
the cv value, the lower is the reliability of the experiment. The cv value is 
generally placed below the analysis of variance table, as shown in Table 2.2. 

The cv varies greatly with the type of experiment, the crop grown, and the 
character measured. An experienced researcher, however, can make a rea­
sonably good judgement on the acceptability of a particular cv value for a 
given type of experiment. Our experience with field experiments in trans­
planted rice, for example, indicates that, for data on rice yield, the accepta­
ble range of cv is 6 to 8%for variety trials, 10 to 12% for fertilizer trials, and 
13 to 15% for insecticide and herbicide trials. The cv for other plant 
characters usually differs from that of yield. For example, in a field 
experiment where the cv for rice yield is about 10%, that for tiller number 
would be about 20% and that for plant height, about 3%. 

2.1.2.2 Unequal Replication. Because the computational procedure for 
the CRD is not overly complicated when the number of replications differs 
among treatments, the CRD is commonly used for studies where the experi­
mental material makes it difficult to use an equal number of replications for all 
treatments. Some examples of these cases are: 

Animal feeding experiments where the number of animals for each breed is 
not the same. 
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" Experiments for comparing body length of different species of insect caught 
in an insect trap. 

" Experiments that are originally set up with an equal number of replications 
but some experimental units are likely to be lost or destroyed during 
experimentation. 

The steps involved in the analysis of variance for data from a CRD experimnt 
with an unequal number of replications are given below. We use data from an 
experiment on performance of postemergence herbicides in dryland rice (Tabic 
2.3). 

3 smP 1. Follow steps I and 2 of Section 2.1.2.1. 

13 	 smP 2. Using i to represent the number of treatments and n for the total 
number of observations, determine the degree of freedom for each source of 
variation, as follows: 

Total d.f. = n - 1 

=40-1=39 

Treatment d.f . = I - 1 

= 11 - 1 = 10 

Error d.f. = Total d.f. - Treatment d.f. 

-	 39 - 10 = 29 

O 	sTEP 3. With the treatment totals (T) and the grand total (G) of Table 2.3, 
compute the correction factor and the various sums of squares, as follows: 

=C.F. n 

= 	(103,301)2 =266,777,415 
40 

Total SS= X12- C.F. 
i-1 

= [(3,187)2 + (4,610)2 + ... + (1,030)2] - 266,777,415 

= 20,209,724 



Table 2.3 Grain Yield of Rice Grown In a Dryland Field with Different Types, Rates,and Times of Application of Postemergence Herbicides, from a CRD Experiment with
Unequal Number of Replications 

Treatment 

Type 
Propanil/Bromoxynil 
Propanii/2,4-D-B 
Propanil/Bromoyynl 
Propanil/loxynil 
Propanil/CHCH 
Phenyedipham 
Propanil/Bromoxynil 
Propanil/2,4-D-IPE 
Propanil/loxynil 
Handweeded twice 
Control 

Grand total (G) 
Grand mean 

Time of 
Rate,0 application b 

kg ai./ha DAS 
2.0/0.25 21 
3.0/1.00 28 
2.0/0.25 14 
2.0/0.50 14 
3.0/1.50 21 
1.5 14 
2.0/0.25 28 
3.0/1.00 28 
2.0/0.50 28 

- 15 and 35 
-

'a.i. - active ingredient. 
bDAS ­days after seeding. 

Grain Yield, kg/ha 
3,187 4,610 3,562 3,217 
3,390 2,875 2,775 
2,797 3,W,i4 2,505 3,490 
2,832 3,103 3,448 2,255 
2,233 2,743 2,727 
2,952 2,272 2,470 
2,858 2,895 2,458 1,723 
2,308 2,335 1,975 
2,013 1,788 2,248 2,115 
3,202 3,060 2,240 2,690 
1,192 1,652 1,075 1,030 

Treatment 
Total Treatment, 
(T) Mean 

14,576 3,644 
9,040 3,013 

11,793 2,948 
11,638 2,910 
7,703 2,568 
7,694 2,565 
9,934 2,484 
6,618 2,206 
8,164 2,041 

11,192 2,798
 
4,949 1,237
 

103,301
 
2,583
 

http:2.0/0.50
http:3.0/1.00
http:2.0/0.25
http:3.0/1.50
http:2.0/0.50
http:2.0/0.25
http:3.0/1.00
http:2.0/0.25
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Table 2.4 Analysis of Variance (CRD with Unequal Replication) of 
Grain Yield Data InTable 2.3a 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fb 

Tabular F 
5% 1% 

Treatment 10 15,090,304 1,509,030 8.55* 2.18 3.00 
Experimental 

error 29 5,119,420 176,532 
Total 39 20,209,724 

"cv - 16.3%. 
significant at 1%level.h** -

Treatment SS = - -C.F. 

[(14,76)2 +(9, )2 + + (4949)2 266,777,415 

= 15,090,304 

Error SS = Total SS - Treatment SS 

= 20,209,724 - 15,090,304 = 5,119,420 

[3 sup 4. Follow steps 5 to 10 of Section 2.1.2.1. The completed analysis of 
the F testvariance for our example is given in Table 2.4. The result of 

indicates a highly significant difference among treatment means. 

2.2 	 RANDOMIZED COMPLETE BLOCK DESIGN 

The randomized complete block (RCB) design is one of the most widely used 

experimental designs in agricultural research. The design is especially suited for 

field experiments where the number of treatments is not large and the 

experimental area has a predictable productivity gradient. The primary dis­

tinguishing feature of the RCB design is the presence of blocks of equal size, 

each of which contains all the treatments. 

2.2.1 	 Blocking Technique 

The primary purpose of blocking is to reduce experimental error by eliminat­

ing the contribution of known sources of variation among experimental units. 

This is done by grouping the experimental units into blocks such that vari­
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ability within each block is minimized and variability among blo. ks is 
maximized. Because only the variation within a block becomes part of the 
experimental error, blocking is most effective when the experimental area has a 
predictable pattern of variability. With a predictable pattern, plot shape and 
block orientation can be chosen so that much of the variation is accounted for 
by the difference among blocks, and experimental plots within the same block 
are kept as uniform as possible. 

There are two important decisions that have to be made in arriving at an 
appropriate and effective blocking technique. These are: 

" The selection of the source of variability to be used as the basis for blocking. 
" The 	selection of the block shape and orientation. 

An ideal source of variation to use as the basis for blocking is one that is 
large and highly predictable. Examples are: 

" Soil heterogeneity, in a fertilizer or variety trial where yield data is the 
primary character of interest. 

" Direction of insect migration, in an insecticide trial where insect infestation 
is the primary character of interest. 

" Slope of the field, in a study of plant reaction to water stress. 

After identifying the specific source of variability to be used as the basis for 
blocking, the size ind shape of the blocks must be selected to maximize 
variability among blocks. The guidelines for this decision are: 

1. 	 When the gradient is unidirectional (i.e., there is only one gradient), use 
long and narrow blocks. Furthermore, orient these blocks so their 
length is perpendicular to the direction of the gradient. 

2. 	 When the fertility gradient occurs in two directions with one gradient 
much stronger than the other, ignore the weaker gradient and follow the 
preceding guideline for the case of the unidirectional gradient. 

3. 	 W' -n the fertility gradient occurs in two directions with both gradients
equally strong and perpendicular to each other, choose one of these 
alternatives: 
" Use blocks that are as square as possible. 
" 	 Use long and narrow blocks with their length perpendicular to the 

direction of one gradient (see guideline 1) and use the covariance 
technique (see Chapter 10, Section 10.1.1) to take care of the other 
gradient. 

" Use the latin square design (see Section 2.3) with two-way blockings, 
one for each gradient. 

4. 	 When the pattern of variability is not predictable, blocks should be as 
square as possible. 
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Whenever blocking is used, the identity of the blocks and the purpose for 

their use must be consistent throughout the experiment. That is, whenever a 

source of variation exists that is beyond the control of the researcher, he should 

assure that such variation occurs among blocks rather than within blocks. For 

example, if certain operations such as application of insecticides or data 

collection cannot be completed for the whole experiment in one day, the task 

should be completed for all plots of the same block in the same day. In this 

way, variation among days (which may be enhanced by ',weather factors) 

becomes a part of block variation and is, thus, excluded from the experimental 

error. If more than one observer is to make measurements in the trial, the same 

observer should be assigned to make measurements for all plots of the same 

block (see also Chapter 14, Section 14.8). In this way, the variation among 

observers, if any, would constitute a part of block variation instead of the 

experimental error. 

2.2.2 Randomization and Layout 

The randomization process for a RCB design is applied separately and 

independently to each of the blocks. We use a field experiment with six 

treatments A, B, C, D, E, F and four replications to illustrate the procedure. 

o3 	 STEP 1. Divide the experimental area into r equal blocks, where r is the 

number of replications, following the blocking technique described in Sec-

Gradient 

Block I Block IL Block MII Block ] 

Figure 2.2 Division of an experimental area into four blocks, each consisting of six plots, for a 
randomized complete block d:sign with six treatments and four replications. Blocking isdone such 
that blocks are rectangular and perpendicular to the direction of the unidirectional gradient 
(indicated by the arrow). 
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4 

C E 

2 5 

D a 

3 6 

F A Fikure 2.3 Plot numbering and random assignment of six treatments
(A, B, C,D, E, and F) to the six plots in the first block of the field 

Block I layout of Fig. 2.2. 

tion 2.2.1. For our example, the experimental area is divided into four 
blocks as shown in Figure 2.2. Assuming that there is a unidirectional 
fertility gradient along the length of the experimental field, block shape is 
made rectangular and perpendicular to the direction of the gradient. 

3 STrP 2. Subdivide the first block into t experimental plots, where t is the 
number of treatments. Number the t plots consecutively from I to t, and 
assign t treatments at random to the t plots following any of the randomiza­
tion schemes for the CRD described in Section 2.1.1. For our example, 
block I is subdivided into six equal-sized plots, which are numbered 
consecutively from top to bottom and from left to right (Figure 2.3); and, 
the six treatments are assigned at random to the six plots using the table of 
random numbers (see Section 2.1.1, step 3A) as follows: 

Select six three-digit random numbers. We start at the intersection of the 
sixteenth row and twelfth column of Appendix A and read downward 
vertically, to get the following: 

Random Number Sequence 

918 1
 

772 2
 

243 3
 

494 4 
704 5 
549 6 
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Rank the random numbers from the smallest to the largest, as follows: 

Random Number Sequence Rank 

918 1 6 
772 2 5 
243 3 1 
494 4 2 

704 5 4 

549 6 3 

Assign the six treatments to the six plots by using the sequence in which 
the random numbers occurred as the treatment number and the corre­
sponding rank as the plot number to which the particular treatment is to 
be assigned. Thus, treatment A is assigned to plot 6, treatment B to plot 
5, treatment C to plot 1, treatment D to plot 2, treatment E to plot 4, and 
treatment F to plot 3. The layout of the first block is shown in Figure 2.3. 

0 	STEP 3. Repeat step 2 completely for each of the remaining blocks. For our 
example, the final layout is shown in Figure 2.4. 

It is worthwhile, at this point, to emphasi ze the major difference between a 
CRD and a RCB design. Randomization in the CRD is done without any 
restriction, but for the RCB design, all treatments must appear in each block. 
This difference can be illustrated by comparing the RCB design layout of 
Figure 2.4 with a hypothetical layout of the same trial based on a CRD, as 

4 7 to 13 16 19 22 

C E A C F A E A 

2 5 8 II 14 17 20 23 

D B E D D B C F 

3 6 9 12 15 18 21 24 

F A F B C E D B 

Block I Block U Block M Olock 1Z 

Figure 2.4 A sample layout of a randomized complete block design with six treatments (A, B, C, 
D, E, and F) and four replications. 
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4 7 10 13 16 19 22 

B F C C E E A F 

2 5 8 11 14 17 20 23 

E A A A B 0 F B 

3 6 9 12 15 18 2! 24 

C B D C F E D D 

Figure 2.5 A hypothetical layout of a completely randomized design with six treatments (A, B, C, 
D, E, and F) and four replications. 

shown in Figure 2.5. Note that each treatment in a CRD layout can appear 
anywhere among the 24 plots in the field. For example, in the CRD layout, 
treatment A appears in three adjacent plots (plots 5, 8, and 11). This is not 
possible in a RCB layout. 

2.2.3 Analysis of Variance 

There arc ,threesources of variability in a RCB design: treatment, replication 
(or block), and experimental error. Note that this is one more than that for a 
CRD, because of the addition of replication, which corresponds to the variabil­
ity among blocks. 

To illustrate the steps involved in the analysis of variance for data from a 
RCB design we use data from an experiment that compared six rates of 
seeding of a rice variety IR8 (Table 2.5). 

o 	STEP 1. Group the data by treatments and replications and calculate 
treatment totals (T), replication totals (R), and grand total (G), as shown in 
Table 2.5. 

O3 	 sTEP 2. Outline the analysis of variance as follows: 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Replication 
Treatment 
Error 

Total 
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Table 2.5 Grain Yield of Rice Variety IRS with Six Different Rates of Seeding, 
from aRCB Experiment with Four Replications 

Treatment 
Treatment, Grain Yield, kg/ha Total Treatment 
kg seed/ha Rep. I Rep. II Rep. III Rep. IV (T) Mean 

25 5,113 5,398 5,307 4,678 20,496 5,124 
50 5,346 5,952 4,719 4,264 20,281 5,070 
75 5,272 5,713 5,483 4,749 21,217 5,304 

100 5,164 4,831 4,986, 4,410 19,391 4,848 
125 4,804 4,848 4432 4,748 18,832 4,708 
150 5,254 4,542 4,919 4,098 18,813 4,703 

Rep. total (R) 30,953 31,284 29,846 26,947 
Grand total (G) 119,030 
Grand mean 4,960 

3 sTEP 3. Using r to represent the number of replications and t, the number 
of treatments, detcrmine the degree of freedom for each source of variation 
as: 

Total d.f. =rt - 1 = 24 - 1 = 23 
Replication d.j. = r - 1 = 4 - 1 = 3 
Treatment d.f. = t - 1 = 6 - 1 =5 
Error d.f. = (r - 1)(t - 1) = (3)(5) = 15 

Note that as in the CRD, the error d.f. can also be computed by 
subtraction, as follows: 

Error d.f. = Total d.f. - Replication d.f. - Treatment d.f. 

= 23 - 3 - 5 = 15 

3 srEP 4. Compute the correction factor and the various sums of squares 
(SS) as follows: 

C.F.= G2
 
rt
 

_ (119,030)2 
(4)(6) 590,339,204 
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t r 
TotalSS-'E E24-C.F.
 

i-i J-1
 

= [(5,113)2 + (5,398)2 + ... + (4,098)21 - 590,339,204 

- 4,801,068 
rERil 

Replication SS - J-1 - C.F.
I 

(30,953)2 + (31,284)2 	+ (29,846)2 + (26,947)2 
6 

- 590,339,204 

= 1,944,361 

t T2 

Treatment SS 	 - C. F. 
r 

+ ... +(18,813)2(20,496)2 
590,339,2044 

= 1,198,331 

Error SS = Total SS - Replication SS - Treatment SS 

= 4,801,068 - 1,944,361 - 1,198,331 = 1,658,376 

o sTEP 5. Compute the mean square for each source of variation by dividing 
each sum of squares by its corresponding degree of freedom as: 

Replication SS
Replication MS 

r- 1 

1,944,361 = 648,120 
3 

Treatment SSTreatment MS 	 t:-I 

1,198,331 .239,666 

5 
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Error MS = Error SS 
(r- 1)(t- 1) 

=1,658,376 = 110,558 
15 

C3 srEP 6. Compute the F value for testing the treatment difference as: 

Treatment MS
Error MS 

_ 239,666 
110,558 

0 	STEP 7. Compare the computed F value with the tabular F values (from 
Appendix E) with f, = treatment d.f. and /2 = error d.f. and make conclu­
sions following the guidelines given in step 9 of Section 2.1.2.1. 

For our example, the tabular F values with f, = 5 and f2 = 15 degrees of 
freedom are 2.90 at the 5% level of significance and 4.56 at the 1% level. 
Because the computed F value of 2.17 is smaller than the tabular F value at 
the 5%level of significance, we conclude that the experiment failed to show 
any significant difference among the six treatments. 

13 	 STEP 8. Compute the coefficient of variation as: 

CError MScv = ×x100 
Grand mean 

11,558F1058x 100 = 6.7% 
4,960 

o 	sTEP 9. Enter all values computed in steps 3 to 8 in the analysis of variance 
outline of step 2. The final result is shown in Table 2.6. 

Table 2.6 Analysis of Variance (RCB) of Grain Yield Data InTable 2.5" 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Replication 3 1,944,361 648,120 
Treatment 5 1,198,331 239,666 2.17n' 2.90 4.56 
Error 15 1,658,376 110,558 

Total 23 4,801,068 

'cu - 6.7%. 
h'ns ­ not significant. 
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2.2.4 Block Efficiency 

Blocking maximizes the difference among blocks, leaving the difference among 
plots of the same block as small as possible. Thus, the result of every RCB 
experiment should be examined to see how t'.iis objective has been achieved. 
The procedure for doing this is presented with the same data we used in 
Section 2.2.3 (Table 2.5). 

0 	 s'rEP 1. Determine the level of significance of the replication variation by 
computing the F value for replication as: 

= 	Replication MSF(replication) 
Error MS 

and test its significance by comparing it to the tabular F values with 
f' = (r - 1) and f2 = (r - 1)(t - 1) degrees of freedom. Blocking is consid­
ered effective in reducing the experimental error if F(replication) is signifi­
cant (i.e., when the computed F value is greater than the tabular F value). 

For our example, the compuled F value for testing block difference is 
computed as: 

648,120
F(replication) = 110,558 = 5.86 

and the tabular F vat es with f, = 3 and f2 = 15 degrees of freedom are 3.29 
at the 5% level of significance and 5.42 at the 1% level. Because the 
computed F value is larger than the tabular F value at the 1% level of 
significance, the difference among blocks is highly significant. 

o 	STEP 2. Determine the magnitude of the reduction in experimental error 
due to blocking by computing the relative efficiency (R. E.) parameter as: 

(r 	- 1)Eb + r(t - I)E,RE. = 
(r - 1)E, 

where Eb is the replication mean square and E, is the error mean square in 
the RCB analysis of variance. 

If the error d.f. is less than 20, the R.E. value should be multiplied by 
the adjustment factor k defined as: 

k = 	 [(r- I)(/t- 1) + 1] [t(r - 1) + 31 
[(r- 1)(t- 1) + 3][I(r- 1) + 1] 

Note that in the equation for R. E., E, in the denominator is the error for 
the RCB design, and the numerator is the comparable error had the CRD 
been used. Because the difference in the magnitude of experimental error 
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between a CRD and a RCB design is essentially due to blocking, the value 
of the relative efficiency is indicative of the gain in precision due to 
blocking. 

For our example, the R.E. value is computed as: 

R.E. = (3)(648,120) + 4(5)(110,558) = 1.63 
(24 - 1)(110,558)
 

Because the error d.f. is only 15, the adjustment factor is computed as: 
k= [(3)(5) + 1][6(3) + 31 =0.982 

[(3)(5) + 3][6(3) + 11 

and the adjusted R.E. value is computed as: 

Adjusted R.E. = (k)(R.E.) 

= 	(0.982)(1.63) 

= 	1.60 

The results indicate that the use of the RCB design instead of a CRD design 
increased experimental precision by 60%. 

2.3 LATIN SQUARE DESIGN 

The major feature of the latin square (LS) design is its capacity to simulta­
neously handle two known sources of variation among experimental units. It 
treats the sources as two independent blocking criteria, instead of only one as 
in the RCB design. The two-directional blocking in a LS design, commonly 
referred to as row-blocking and column-blocking, is accomplished by ensuring 
that every treatment occurs only once in each row-block and once in each 
column-block. This procedure makes it possible to estimate variation among 
row-blocks as well as among column-blocks and to remove them from experi­
mental error. 

Some examples of cases where the LS design can be appropriately used are: 

" 	 Field trials in which the experimental area has two fertility gradients 
running perpeudicular to each other, or has a unidirectional fertility gradi­
ent but also has residual effects from previous trials (see also Chapter 10, 
Section 10.1.1.2). 

" 	 Insecticide field trials where the insect migration has a predictable direction 
that is perpendicular to the dominant fertility gradient of the experimental 
field. 

• 	 Greenhouse trials in which the experimental pots are arranged in straight 
line perpendicular to the glass or screen walls, such that the difference 

http:0.982)(1.63
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among rows of pots and the distance from the glass wall (or screen wall) are 
expected to be the two major sources of variability among the experimental 
pots. 
Laboratory trials with replication over tifne, such that the difference among 
experimental units conducted at the same time and among those conducted 
over time constitute the two known sources of variability. 

The presence of row-blocking and column-blocking in a LS design, while 
useful in taking care of two independent sources of variation, also becomes a 
major restriction in the use of the design. This is so because the requirement 
tha" all treatments appear in each row-block and in each column-block can be 
satisfied only if the number of replications is equal to the number of treat­
ments. As a rest.'t, when the number of treatments is large the design becomes 
impiactical because of the large number of replications required. On the other 
hand, when the number of treatments is small the degree of freedom associated 
with the experimental error becomes too small for the error to be reliably 
estimated. 

Thus, in practice, the LS design is applicable only for experiments in which 
the number of treatments is not less than four and not more than eight.
Because of such limitation, the LS design has not been widely used in 
agricultural experiments despite its great potential for controlling experimental 
error. 

2.3.1 Randomization and Layout 

The process of randomization and layout for a LS design is shown below for 
an experiment with five treatments A, B, C, D, and E. 

0 	STEP 1. Select a sample LS plan with five treatments from Appendix K. 
For our example, the 5 x 5 latin square plan from Appendix K is: 

A B C D E 
B A E C D 
C D A E B 
D E B A C 
E C D B A 

0 	SmP 2. Randomize the row arrangement of the plan selected in step 1, 
following one of the randomization schemes described in Section 2.1.1. For 
this experiment, the table-of-random-numbers method of Section 2.1.1 is 
applied. 
* 	Select five three-digit random numbers from Appendix A; for example, 

628, 846, 475, 902, and 452. 
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" 	 Rank the selected random numbers from lowest to highest: 

Random Number Sequence Rank 

628 	 1 3
 

846 2 4 

475 3 2 

902 4 5 

452 5 1 

Use the rank to represent the existing row number of the selected plan 
and the sequence to represent the r,,w number of the new plan. For our 
example, the third row of the selected plan (rank = 3) becomes the first 
row (sequence = 1) of the new plan; the fourth row of the selected plan 
becomes the second row of the new plan; and so on. The new plan, after 
the row randomization is: 

C D A E B 
D E B A C 
B A E C D 
E C D B A 
A B C D E 

13 	 sm'P 3. Randomize the column arrangement, using the same procedure 
used for row arrangement in step 2. For our example, the five random 
numbers selected and their ranks are: 

Random Number Sequence Rank 

792 1 4 

032 '2 1 
947 3 5 

293 4 3 
196 5 2 

The rank will now be used to represent the column number of the plan 
obtained in step 2 (i.e., with rearranged rows) and the sequence will be used 
to represent the column number of the final plan. 

For our example, the fourth column of the plan obtained in step 2 
becomes the first column of the final plan, the first column of the plan of 
step 2 becomes the second column of the final plan, and so on. The final 
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plan, which becomes the layout of the experiment is: 

Row 
Number 

1 
2 
3 
4 
5 

2.3.2 Analysis of Variance 

Column Number 

1 2 3 4 5 

E C B A D 
A D C B E 
C B D E A 
B E A D C 
D A E C B 

There are four sources of variation in a LS de-ign, two more than that for the 
CRD and one more than that for the RCB design. The sources of variation are 
row, column, treatment, and experimental error. 

To illustrate the computation procedure for the analysis of variance of a LS 
design, we use data on grain yield of three promising maize hybrids (A, B,and 
D) and of a check (C) from an advanced yield trial with a 4 X 4 latin square 
design (Table 2.7). 

The step-by-step procedures in the construction of the analysis of variance are: 

o 	STEP 1. Arrange the raw data according to their row and column designa­
tions, with the corresponding treatment clearly specified for each observa­
tion, as shown in Table 2.7. 

o 	STEP 2. Compute row totals (R), column totals (C), and the grand total 
(G) as shown in Table 2.7. Compute treatment totals (T) and treatment 

Table 2.7 Grain Yield of Three Promising Maize Hybrids (A, B, and D) 
and aCheck Variety (C)from an Experiment with Latin Square Design 

Row 
Row Grain Yicld, t/ha Total 

Number Col. 1 Col. 2 Col. 3 Col. 4 (R) 

1 1.640(B) 1.210(D) 1.425(C) 1.345(A) 5.620 
2 1.475(C) 1.185(A) 1.400(D) 1.290(B) 5.350 
3 
4 

1.670(A) 
1.565(D) 

0.710(C) 
1.290(B) 

1.665(B) 
1.655(A) 

1.180(D) 
0.660(C) 

5.225 
5.170 

Column total (C) 
Grand total (G) 

6.350 4.395 6.145 4.475 
21.365 
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means as follows: 

Treatment Total Mean 

A 5.855 1.464 
B 5.885 1.471 
C 4.270 1.068 
D 5.355 1.339 

03 	 STEP 3. Outline the analysis of variance as follows: 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square F 5% 1% 

Row 
Column 
Treatment 
Error 

Total 

13 	 sTEp 4. Using t to represent the number of treatments, determine the 
degree of freedom for each source of variation as: 

12Total d.f. = - 1 = 16 - 1 = 15 

Row d.f. = Column d.f. = Treatment d.f. = t - 1 =4 - 1 = 3 

Errord.f.- (t- 1)(t- 2) = (4- 1)(4- 2) = 6 

The error d.f can also be obtained by subtraction as: 

Error d.f. = Totad d.f. - Row d.f - Column d.f .- Treatment d.f. 

= 15 - 3-33-3 = 6 

0 	smrP 5. Compute the correction factor and the various sums of squares as: 

C.F.G 

"'(21.365)2 . 28.528952 
16 
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Total SS _ZX 2 - C.F. 

= [(1.640)2 +(1.210)2 + +(0.660)'] - 28.528952 

-1.413923 

Row SS t - C.F. 

(5.620) 2 +(5.350)2 +(5.225)2 +(5.170)2 

4 

-28.528952 

= 0.030154 

Column SS = X - C.F. 
I 

(6.350) 2 + (4.395)2 + (6.145)2 + (4.475)2 

4 

-28.528952
 

= 0.827342
 

Treatment SS = T - C.F. 
I 

(5.855)2 +(5.885)2 +(4.270)2 +(5.355)2 

4 

-28.528952 

= 0.426842 

Error SS = Total SS - Row SS - Column SS - Treatment SS 

= 1.413923 - 0.030154 - 0.827342 - 0.426842 

= 0.129585 

1sup 6. Compute the mean square for each source of variation by dividing 
the sum of squares by its corresponding degree of freedom: 

= Row SSRow MS t-1 

0.030154_0.03015 = 0.010051 
3 
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Column SS 

Column MS C- t SS 

0.827342___ --0.275781 
3 

Treatment SS 
Treatment MS = T t- 11 

0.426842 
= 33 = 0.142281 

Error SSError MS = 
(t- 1)(t- 2)
 

0.129585 = = 0.021598(3)(2)(3)(2)
 

3 STEP 7. Compute the F value for testing the treatment effect as: 

Treatment MS 
Error MS 

0.142281 
0.021598 

3 STEP 8. Compare the computed F value with the tabular F value, from 

Appendix E, with f, = treatment d.f. = t - 1 and f2 = error d.f.= 
(t - 1)(t - 2) and make conclusions following the guidelines in step 9 of 

Section 2.1.2.1. 
For our example, the tabular F values, from Appendix E, with f, = 3 and 

f2 = 6 degrees of freedom, are 4.76 at the 5% level of significance and 9.78 

at the 1% level. Because the computed F value is higher than the tabular F 

value at the 5% level of significance but lower than the tabular F value at the 

1% level, the treatment difference is significant at the 5% level of signifi­
cance. 

o 	 Smp 9. Compute the coefficient of variation as: 

/Error MS 

Grand mean 

/0.021598 x 100 11.0% 
1.335 

o 	sTrP 10. Enter all values computed in steps 4 to 9 in the analysis of 

variance outline of step 3, as shown in Table 2.8. 
Note that although the F test in the analysis of variance indicates 

significant differences among the mean yields of the four maize varieties 
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Table 2.8 Analysis of Variance (LS Design) of Grain Yield Data In Table 2.7a 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square Fb 5% 1% 

Row 3 0.030154 0.010051 
Column 3 0.827342 0.275781 
Treatment 3 0.426842 0.142281 6.59* 4.76 9.78 
Error 6 0.129585 0.021598 

Total 15 1.413923 

"cv- 11.0%. 
h= significant at 5%level. 

tested, it does not identify the specific pairs or groups of varieties that 
differed. For example, the F test is not able to answer the question of 
whether every one of the three hybrids gave significantly higher yield than 
that of the check variety or whether there is any significant difference among 
the three hybrids. To answer these questions, the procedures for mean 
comparisons discussed in Chapter 5 should be used. 

2.3.3 Efficiencies of Row- and Column-Blockings 

As in the RCB design, where the efficiency of one-way blocking indicates the 
gain in precision relative to the CRD (see Section 2.2.4), the efficiencies of both 
row- and column-blockings in a LS design indicate the gain in precision 
relative to either the CRD or the RCB design. The procedures are: 

C 	SiuP 1. Test the level of significance of the differences among row- and 
column-blocks: 

A. 	 Compute the F values for testing the row difference and column 
difference as: 

Row MS 
F(row) = Error MS 

0.010051- <1 
0.021598 

F(column) = Column MS
Error MS 

=	0.275781 
0.021598 

B. 	 Compare each of the computed F values that is larger than I with 
the tabular F values (from Appendix E) with f, = t - 1 and f2 = 

It - lXt - 2) degrees of freedom. For our example, the computed 
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F(row) value is smaller than 1 and, hence, is not significant. For the 
computed F(column) value, the corresponding tabular F values with 
f= 3 and 12 = 6 degrees of freedom are 4.76 at the 5% level of 
significance and 9.78 at the 1%level. Because the computed F(column) 
value is greater than both tabular F values, the difference among 
column-blocks is significant at the 1%level. These results indicate the 
success of column-blocking, but not that of row-blocking, in reducing 
experimental error. 

0 	STEP 2. Compute the relative efficiency parameter of the LS design relative 
to the CRD or RCB design: 
• 	 The relative efficiency of a LS design as compared to a CRD: 

= 	E, + E, +(t - 1)E,R.E.(CRD) 
(t 	+ 1)Eo 

where E, is the row mean square, E, is the column mean square, and E, is 
the error mean square in the LS analysis of variance; and t is the number 
of treatments. 

For our example, the R.E. is computed as: 

RE(CRD) = 0.010051 + 0.275781 + (4 - 1)(0.021598) 

(4 + 1)(0.021598) 

-	 3.25 

This indicates that the use of a LS design in the present example is 
estimated to increase the experimental precision by 225%. This result 
implies that, if the CRD had been used, an estimated 2.25 times more 
replications would have been required to detect the treatment difference 
of the same magnitude as that detected with the LS design. 
The relative efficiency of a LS design as compared to a RCB design can 
be computed in two ways-when rows are considered as biocks, and 
when columns are considered as blocks, of the RCB design. These two 
relative efficiencies are computed as: 

1)E,R.E.(RCB, row)= E, +(1 
(t)(Er.) 

R.E.(RCB, column) = E 	 +(t1)Ee 
(th )(E) 

where E,, Eo, Er, and t are as defined in the preceding formula. 
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When the error d.f. in the LS analysis of variance is less than 20, the 
R. E. value should be multiplied by the adjustment factor k defined as: 

[(t- 1)(t- 2) + 1][(t- 1)2 + 3] 

[(t- 1)(t- 2) + 31[(- 1)2 + 1] 

For our example, the values of the relative efficiency of the LS design 
compared to a RCB design with rows as blocks and with columns as 
blocks are computed as: 

R.E.(RCB, row) = 0.010051 + (4 - 1)(0.021598) 

4(0.021598) 

= 0.87 

= 0.275781 +(4 - 1)(0.021598)R.E.(RCB, column) 
4(0.021598) 

= 3.94 

Because the error d.f. of the LS design is only 6, the adjustment factor k 
is computed as: 

k = 	 [(4 - 1)(4 - 2) + 11[(4 - 1)2 + 31_ = 0.93 
[(4 - 1)(4 - 2) + 3] [(4 - 1)' + 11 

And, 	the adjusted R.E. values are computed as: 

R.E.(RCB, row)= (0.87)(0.93) = 0.81 

R.E.(RCB, column) = (3.94)(0.93) = 3.66 

The results indicate that the additional column-blocking, made possi­
ble by the use of a LS design, is estimated to have increased the 
experimental precision over that of the RCB design with rows as blocks 
by 266%; whereas the additional row-blocking in the LS design did not 
increase precision over the RCB design with columns as blocks. Hence, 
for this trial, a RCB design with columns as blocks would have been as 
efficient as a LS design. 

2.4 LATTICE DESIGN 

Theoretically, the complete block designs, such as the RCB and the LS designs 
discussed in Sections 2.2 and 2.3, are applicable to experiments with any 

http:3.94)(0.93
http:0.87)(0.93
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number of treatments. However, these complete block designs become less 
efficient as the number of treatments increases, primarily because block size 
increases proportionally with the number of treatments, and the homogeneity 
of experimental plots within a large block is difficult to maintain. That is, the 
experimental error of a complete block design is generally expected to increase 
with the number of treatments. 

An alternative set of designs for single-factor experiments having a large 
number of treatments is the inconplee block designs, one of which is the lattice 
design. As the name implies, each block in an incomplete block design does 
not contain all treatments and a reasonably small block size can be maintained 
even if the number of treatments is large. With smaller blocks, the homogene­
ity of experimental units in the same block is easier to maintain and a higher 
degree of precision can generally be expected. 

The improved precision with the use of an incomplete block design is 
achieved with some costs. The major ones are: 

" Inflexible number of treatments or replications or both 
" Unequal degrees of precision in the comparison of treatment means 
" Complex data analysis 

Although there is no concrete rule as to how large the number of treatments 
should be before the use of an incomplete block design should be considered, 
the following guidelines may be helpful: 

Variability in the Experimental Material. The advantage of an incomplete 
block design over the complete block design is enhanced by an increased 
variability in the experimental material. In general, whenever block size in a 
RCB design is too large to maintain a reasonable level of uniformity among 
experimental units within the same block, the use of an incomplete block 
design should be seriously considered. For example, in irrigated rice paddies 
where the experimental plots are expected to be relatively homogeneous, a 
RCB design would probably be adequate for a variety trial with as many as, 
say, 25 varieties. On the other hand, with the same experiment on a dryland 
field, where the experimental plots are expected to be less homogeneous, a 
lattice design may be more efficient. 
Computing Facilities and Services. Data analysis for an incomplete block 
design is more complex than that for a complete block design. Thus, in 
situations where adequate computing facilities and services are not easily 
available, incomplete block designs may have to be considered only as the 
last measure. 

In general, an incomplete block design, with its reduced block size, is 
expected to give a higher degree of precision than a complete block design. 
Thus, the use of an incomplete block design should generally be preferred so 
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long as the resources required for its use (e.g., more replications, inflexible 
number of treatments, and more complex analysis) can be satisfied. 

The lattice design is the incomplete block design most commonly used in 
agricultural research. There is sufficient flexibility in the design to make its 
application simpler than most other incomplete block designs. This section is 

devoted primarily to two of the most commonly used lattice designs, the 

balanced lattice and the partially balanced lattice designs. Both require that the 

number of treatments must be a perfect square. 

2.4.1 Balanced Lattice 

The balanced lattice design is characterized by the following basic features: 

1. 	 The number of treatments (t) must be a perfect square (i.e., t = k 2, 
such as 25, 36, 49, 64, 81, 100, etc.). Although this requirement may 

seem stringent at first, it is usually easy to satisfy in practice. As the 
number of treatments becomes large, adding a few more or eliminating 
some less important treatments is usually easy to accomplish. For 
example, if a plant breeder wishes to test the performance of 80 varieties 
in a balanced lattice design, all he needs to do is add one more variety 
for a perfect square. Or if he has 82 or 83 varieties to start he can easily 
eliminate one or two. 

2. 	 The block size (k) is equal to the square root of the number of 
treatments (i.e., k = 11/2). 

3. 	 The number of replications (r) is one more than the block size [i.e., 
r = (k + 1)]. That is, the number of replications required is 6 for 25 
treatments, 7 ior 36 treatments, 8 for 49 treatments, and so on. 

2.4.L Rand,.' ization and Layout. We illustrate the randomization and 

layout of a balanced lattice design with a field experiment involving nine 

treatments. There are four replications, each consisting of three incomplete 

blocks with each block containing three experimental plots. The steps to follow 
are: 

O STEP 1. Divide the experimental area into r = (k + 1) replications, each 
k2containing t = experimental plots. For our example, the experimental 

area is divided into r = 4 replications, each containing t = 9 experimental 
plots, as shown in Figure 2.6. 

O STEP 2. Divide each replication into k incomplete blocks, each containing k 
experimental plots. In choosing the shape and size of the incomplete block, 
follow the blocking technique discussed in Section 2.2.1 to achieve maxi­

mum homogeneity among plots in the same incomplete block. For our 
example, each replication is divided into k = 3 incomplete blocks, each 
containing k = 3 experimental plots (Figure 2.6). 
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Blaocki 2 3 10 Il 12 19 20 21 28 29 30 

Block2 4 5 6 13 14 15 22 23 24 31 32 33 

Block3 7 8 9 16 17 18 25 26 27 34 35 36 

Replication I Replication IE Replication M Replication X 

Figure 2.6 Division of the experimental area, consisting of 36 plots (1,2,...,36) into four 
replications, each containing three incomplete blocks of three plots each, as the first step in laying 
out a 3 X 3 balanced lattice design. 

o1 	 STEP 3. Select from Appendix L a basic balanced lattice plan correspond­
ing to the number of treatments to be tested. For our example, the basic 
plan for the 3 X 3 balanced lattice design is shown in Table 2.9. 

o1 	 STEP 4. Randomize the replication arrangement of the selected basic plan, 
following an appropriate randomization scheme of Section 2.1.1. For our 
example, the table-of-random-numbers method is applied: 
. Select four three-digit random numbers from Appendix A; for example, 

372, 217, 963, and 404.
 
. Rank them from lowest to highest as:
 

Random Number Sequence Rank 

372 1 2 
217 2 1 
963 3 4 
404 4 3 

a 	Use the sequence to represent the existing replication number of the 
basic plan and the rank to represent the replication number of the new 

Table 2.9 Basic Plan of a 3 X 3Balanced Lattice Design 
Involving Nine Treatments (1,2,..., 9) In Blocks of Three 
Units and Four Replications 

Incomplete 
Block Treatment Number 

Number Rep. I Rep. II Rep. III Rep. IV 

1 123 147 159 168 
2 456 258 267 249 
3 789 369 348 357 
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plan. Thus, the first replication of the basic plan (sequence = 1) becomes 
the second replication of the new plan (rank = 2), the second replication 
of the basic plan becomes the first replication of the new plan, and so on. 
The outcome of the new plan at this step is: 

Incomplete 	 Treatment Number
Block 	 TreatmentNumber 

Number Rep. I Rep. II Rep. III Rep. IV 

1 147 123 168 159 
2 258 456 249 267 
3 369 789 357 348 

1	STEP 5. Randomize the incomplete blocks within each replication following 
an appropriate randomization scheme of Section 2.1.1. For our example, the 
same randomization scheme used in step 4 is used to randomly reassign 
three incomplete blocks in each of the four replications. After four indepen­
dent randomization processes, the reassigned incomplete blocks may be 
shown as: 

IncompleteBlock Number Reassigned Incompletein Basic Block Number in New Plan 
Plan Rep. I Rep. II Rep. III Rep. IV 

1 3 2 3 1 
2 2 1 1 3 
3 1 3 2 2 

As shown, for replication I, block I of the basic plan becomes block 3 of 
the new plan, block 2 retains the same pnsition, and block 3 of the basic 
plan becomes block I of the new plan. For replication I1, block 1 of the 
basic plan becomes block 2 of the new plan, block 2 of the basic plan 
becomes block 1 of the new plan, and so on. The outcome of the new plan 
at this step is: 

Incomplete 	 Treatment NumberBlock 	 TreatmentNumber 

Number Rep. I Rep. II Rep. III Rep. IV 

1 369 456 357 159 
2 258 123 168 348 
3 147 789 249 267 
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0 STEP 6. Randomize the treatment arrangement within each incomplete 
block. For our example, randomly reassign the three treatments in each of 
the 12 incomplete blocks, following the same randomization scheme used in 
steps 4 and 5. After 12 independent randomization processes, the reassigned 
treatment sequences may be shown as: 

Reassigned Treatment Sequence in New Plan 
Treatment 
Sequence Rep. I Rep. II 

in Basic Plan Block 1 Block 2 Block 3 Block 1 Block 2 Block 3 

1 2 3 2 2 3 3 
2 3 2 3 1 2 2 
3 1 1 1 3 1 1 

Reassigned Treatment Sequence in New Plan 
Treatment 

Rep. IvSequence Rep. III 
in Basic Plan Block 1 Block 2 Block 3 Block I Block 2 Block 3 

1 3 3 1 1 3 2 
2 2 1 2 3 1 3 
3 1 2 3 2 2 1 

In this case, for incomplete block 1 of replication I, treatment sequence 1 
of the basic plan (treatment 3) becomes treatment sequence 2 of the new 
plan, treatment sequence 2 of the basic plan (treatment 6) becomes treat­
ment sequence 3 of the new plan, and treatment sequence 3 of the basic plan 
(treatment 9) becomes treatment sequence 1 of the new plan, and so on. The 
outcome of the new plan at this step is: 

Incomplete Treatment Number
Block TreatmentNmber 

Number Rep. I Rep. II Rep. III Rep. IV 

1 936 546 753 195 

2 852 321 681 483 

3 714 987 249 726 

0 STEP 7. Apply the final outcome of the randomization process of step 6 to 
the field layout of Figure 2.6 resulting in the final layout of Figure 2.7. Note 
that an important feature in the layout of a balanced lattice design is that 
every pair of treatments occurs together only once in the same block. For 
example, treatment 1 appears only once with treatments 4 and 7 in block 3 
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3lockI T9 T3 T6 T5 T4 T6 T7 T5 T3 Tt T9 Ti 

llock 2 TO T5 T3 T, T 	 Ta T3T2 T2 T6 T T4 

llock 3 1 T"	 Ta7 1 T4 T9 T7 T2 T4 T9 T7 T2 Ta 

Replication I Replication II Replication T Replication T 

igure 2.7 A sample layout of a 3 x 3 	balanced lattice design, involving nine treatments 
r,, 2 ... 7,).TO 

of replication I; with treatments 2 and 3 in block 2 of replication It; with 
treatments 6 and 8 in block 2 of replication III; and with treatments 5 and 9 
in block 1 of replication IV. As a consequence of this feature, the degree of 
precision for comparing each pair of trea'ments in a balanced lattice design 
is the same for all pairs. 

2.4.1.2 Analysisof Variance. There are four sources of variation that can 
be accounted for in a balanced lattice design: replication, treatment, incom­
plete block, and experimental error. Relative to the RCJ; design, the incom­
plete block is an additional source of variation and re,1ects the differences 
imong incomplete block, cf the same replication. 

The computational procedure for the analysis of variance of a balanced 
,attice design is illustrated using data on tiller count from a field experiment 
nvolving 16 rice fertilizer treatments. The experiment followed a 4 X 4 bal­
inced lattice design with five replications. The data are shown in Table 2.10, 
vith the blocks and treatments rearranged according to the basic plan for the 
1 x 4 balanced lattice design of Appendix L. Such a rearrangement is not 
iecessary for the computation of the analysis of variance but we do it here to 
'acilitate the understanding of the analytical procedure to be presented. The 
;teps involved are: 

I 	STEP 1. Calculate the block totals (B) and replication totals (R), as shown 
in Table 2.10. 

3 STEP 2. Calculate the treatment totals (T) and the grand total (G), as 
shown in column 2 of Table 2.11. 

1 STEP 3. For each treatment, calculate the B, value as the sum of block 
totals over all blocks in which the particular treatment appears. For exam­
ple, treatment 5 in our example was tested in blocks 2, 5, 10, 15, and 20 
(Table 2.10,. Thus, B, for treatment 5 is computed as the sum of the block 
totals of blocks 2, 5, 10, 15, and 20, or B, = 616 + 639 + 654 + 675 + 827 
= 3,411. 
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Table 2.10 Tiller Number per Square Meter from 16 Fertilizer Treatments Tested 
Ina 4 X 4 Balanced Lattice Design" 

Block Block 
Block 
Number Tiller, no./m 2 

Total 
(B) 

Block 
Number Tiller, no./m 2 

Total 
(B) 

(1) 
Rep. I 

(2) (3) (4) (1) 
Rep. II 

(5) (9) (13) 

1 147 152 167 150 616 5 140 165 182 152 639 
(5) (6) (7) (8) (10) (2) (14) (6) 

2 127 
(9) 

155 
(10) 

162 
(11) 

172 
(12) 

616 6 97 
(7) 

155 
(15) 

192 
(3) 

142 
(11) 

586 

3 147 100 192 177 616 7 155 182 192 192 721 
(13) (14) (15) (16) (16) (8) (12) (4) 

4 155 195 192 205 747 8 182 207 232 162 783 
Rep. total R, 2593 Rep. total R 2 2729 

Rep. III Rep. IV 

9 
(1) 

155 
(6) 

162 
(11) 
177 

(16) 
152 646 13 

(1) 
220 

(14) 
202 

(7) 
175 

(12) 
205 802 

(5) (2) (15) (12) (13) (2) (11) (8) 
10 182 130 177 165 654 14 205 152 180 187 724 

(9) (14) (3) (8) (5) (10) (3) (16) 
11 137 185 152 152 626 15 165 150 200 160 675 

(13) (10) (7) (4) (9) (6) (15) (4) 
12 185 122 182 192 681 16 155 177 185 172 689 

Rep. total R3 2607 Rep. total R4 2890 

Rep. V 
(1) (10) (15) (8) 

17 147 112 177 147 583 
(9) (2) (7) (16) 

18 180 205 190 167 742 
(13) (6) (3) (12) 

19 172 
(5) 

212 
(14) 

197 
(11) 

192 
(4) 

773 

20 177 220 205 225 827 
Rep. total R3 2925 

aThe values enclosed in parentheses correspond to the treatment numbers. 

The B, values for all 16 treatments are shown in column 3 of Table 2.11. 
Note that the sum of B, values over all treatments must equal (k)(G), where 
k is the block size. 

o3 STEP 4. For each treatment, calculate: 

W= kr-(k + 1)Bt + G 
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Table 2.11 Computations of the Adjusted and Unadjusted Treatment Totals 
for the 4 x 4 Balanced Lattice Data In Table 2.10 

Treatment Block 
Treatment Total Total W - T -
Number (T) (B) 4T- 5B, + G T+pW M'--5 

1 809 3,286 552 829 166 
2 794 3,322 312 805 161 
3 908 3,411 323 920 184 
4 901 3,596 -630 878 176 
5 816 3,411 -45 814 163 
6 848 3,310 588 869 174 
7 864 3,562 -608 842 168 
8 865 3,332 546 885 177 
9 801 3,312 390 815 163 

10 581 3,141 365 594 119 
11 946 3,534 -140 941 188 
12 971 3,628 -510 953 191 
13 869 3,564 -598 848 170 
14 994 3,588 -218 986 197 
15 913 3,394 428 928 186 
16 866 3,593 -755 839 168 
Sum 13,746 (G) 54,984 0 - -

For our example, the W value for treatment 5 is computed as: 

W5 = 4(816) -(5)(3,411) + 13,746 = -45 

The W values for all 16 treatments are presented in column 4 of Table 
2.11. Note that the sum of W values over all treatments must be zero. 

3 STEP 5. Construct an outline of the analysis of variance, specifying the 
sources of variation and their corresponding degrees of freedom as: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Replication k = 4 
k2Treatment(unadj.) - 1 = 15 

k 2Block(adj.) - 1 = 15 
Intrablock error (k - 1Xk 2 - 1) = 45 
Treatment(adj.) [(k2 - 1)-- 15] 
Effective error [(k - 1Xk 2 - 1) = 45] 

Total k2 (k + 1) - 1 = 79 
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13 	 sTnp 6. Compute the total SS, the replication SS, and the treatment 
(unadjusted) SS as: 

G2 
C.F.=- 2G 

(k 2 )(k + 1) 

S(13,746)2 2,361,906 

(16)(5) 

Total SS = - C.F. 

= 	[(147)2 + (152)2 +.. - 2,361,906+ +(225)2] 

= 	58,856 
R2 

=iReplication SS k---' C.F. 

(2,595)2 + (2,729)2 + .. + (2,95)'
16i25)2 - 2,361,906 

= 	5,946 

Treatment(unadj.) SS = C.F.
(k +1) 

= (809)2 + (794)2 + "'. + (866)2 - 2,361,906 
5 

= 	26,995 

E3 	 Slp 7. Compute the block(adjusted) SS (i.e., the sum of squares for block 
within replication adjusted for treatment effects) as: 

t 

~W2 

Block(adj.) SS = I-1 
(k 3)(k + 1) 

+ (-755) 2 
(552)2 +(312)2 + 

(64)(5) 

= 	11,382 
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o3 	 sTp 8. Compute the intrablock error SS as: 

Intrablock error SS = Total SS - Replication SS 

-Treatment(unadj.) SS - Block(adj.) SS 

-	 58,856 - 5,946 - 26,995 - 11,382 

= 	 14,533 

o 	sTEp 9. Compute the block(adj.) mean square and the intrablock error 
mean square as: 

Block(adj.) SS
Block(adj.) MS 

k- 1 

11,382 
- 75915 

Intrablock error SS 
= 

Intrablock error MS 
(k 	- 1)(k 2 - 1) 

14,533 =323 

(3)(15) 

o3 	 sTEP 10. For each treatment, calculate the adjusted treatment total T' as: 

T' = T+ W 

where 

Block(adj.) MS - Intrablock error MS 

k 2 [Block(adj.) MS] 

Note that if the intrablock error MS is greater than the block(adj.) MS, 11 
is taken to be zero and no adjustme't for treatment nor any further 
adjustment is necessary. The F test for significance of treatment effect is 
then made in the usual manner as the ratio of the treatment(unadj.) MS and 
intrablock error MS, and steps 10 to 14 and step 17 can be ignored. 

For our example, the intrablock error MS is smaller than the block(adj.) 
MS. Hence, the adjustment factor p is computed as: 

759 - 323 - 0.0359 
= 16(759) 
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The T' value for treatment 5, for example, is computed as T = 816 + 
(0.0359X-45) = 814. The results of T' values for all 16 treatments are 
shown in column 5 of Table 2.11. 

o STEP 11. For each treatment, calculate the adjusted treatment mean M' as: 

T'= k+1 

For our example, the M' value for treatment 5 is computed as Ms' 
814/5 = 163. The results of M' values for all 16 treatments are presented in, 
the last column of Table 2.11. 

o3 sTEP 12. Compute the adjusted treatment mean square as: 

Treatment(adj.)MS (k + 1)(k 2 - ) ­

[ I%~ ] [82 +(805)2 + ... +(839)2] 

(13,746)2 
16 f 

- 1,602 

0 STEP 13. Compute the effective error MS are: 

Effective error MS. = (Intrablock error MS)(1 + k/t) 

= 323[1 + 4(0.0359)] 

= 369 

Compute the corresponding cv value as: 

I/Effecrive error MS
 
Grand mean
 

= - x 100 = 11.2% 
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I STEP 14. Compute the F value for testing the treatment difference as: 

F Treatment(adj.) MS
Effective error MS 

_ 
1,602
369 39=4.34 

o 	STEP 15. Compare the computed F value to the tabular F values, from 
Appendix E, with f, = (k2 - 1) = 15 and f 2 = (k - 1)(k 2 - 1) = 45 de­
grees of freedom. Because the computed F value is larger than the tabular F 
value at the 1%level of significance, the treatment difference is judged to be 
highly significant. 

o 	STEP 16. Enter all values computed in steps 6 to 9 and 12 to 15 in the 
analysis of variance outline of step 5. The final result is shown in Table 2.12. 

o 	STEP 17. Estimate the gain in precision of a balanced lattice design relative 
to the RCB design as: 

R.E. = 100[Block(adj.) SS + Intrablock error SS] 
2k(k - 1)(Effective error MS) 

= 100(11,382 + 14,533) = 117% 
(4)(16 - 1)(369)
 

Table 2.12 Analysis of Variance (a 4 x 4 Balanced Lattice Design) 
of Tiller Number Data In Table 2.10a 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fb 

Tabular F 
5% 1% 

Replication 
Treatment(unadj.) 
Block(adj.) 
Intrablock error 
Treatment(adj.) 
Effective error 

Total 

4 
15 
15 
45 

(15) 
(45) 
79 

5,946 
26,995 
11,382 
14,533 

-
-

58,856 

759 
323 

1,602 
369 

4,34** 1.90 2.47 

acv - 11.2%. 
b**- significant at 1%level. 
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That is, the use of the 4 x 4 balanced lattice design is estimated to have 
increased the experimental precision by 17% over that which would have 
been obtained with a RCB design. 

2.4.2 Partially Balanced Lattice 

The partially balanced lattice design is similar to the balanced lattice design 
but allows for a more flexible choice of the number of replications. While the 
partially balanced lattice design requires that the number of treatments must 
be a perfect square and that the block size is equal to the square root of this 
treatment number, the number of replications is not prescribed as a function of 
the number of treatments. In fact, any number of replications can be used in a 
partially balanced lattice design. 

With two replications, the partially balanced lattice design is referred to as a 
simple lattice; with three replications, a triple lattice; with four replications, a 
quadruple lattice; and so on. However, such flexibility in the choice of the 
number of replications results in a loss of symmetry in the arrangement of 
treatments over blocks (i.e., some treatment pairs never appear together in the 
same incomplete block). Consequently, the treatment pairs that are tested in 
the same incomplete block are compared with a level of precision that is higher 
than for those that are not tested in the same incomplete block. Because there 
is more than one level of precision for comparing treatment means, data 
analysis becomes more complicated. 

2.4.2.1 Randomization and Layout. The procedures for randomization 
and layout of a partially balanced lattice design are similar to those for a 
balanced lattice design described in Section 2.4.1.1, except for the modification 
in the number of replications. For example, with a 3 x 3 simple lattice (i.e., a 
partially balanced lattice with two replications) the same procedures we 
described in Section 2.4.1.1 can be followed using only the first two replica­
tions. With a triple lattice (i.e., a partially balanced lattice with three replica­
tions) the first three replications of the basic plan of the corresponding 
balanced lattice design would be used. 

When the number of replications (r) of a partially balanced lattice design 
exceeds three and is an even number, the basic plan can be obtained: 

as the first r replications of the basic plan of the balanced lattice design 
having the same number of treatments, or 

as the first r/p replications of the basic plan of the balanced lattice design 
having the same number of treatments, repeated p times (with rerandomiza­
tion each time). 

For example, for a 5 X 5 quadruple lattice design (i.e., a partially balanced 
lattice design with four replications) the basic plan can be obtained either as 
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Block I T10  T25 T5 T15  T2 T6 T9 1 10 T8 T7 

Block 2 T14  T19  T24  T9 T4 T23 T24  T21 T25  T22 

Block 3 T2 T17  T12 T22  T7 T4 T1 T3 TZ T5 

T16 Tit T T20 T19Block 4 T21  T6 T1 T16  T18 17  

Block 5 T13 T3 ITa T1t T2 3 T14 TiI TI To3 T12 

Replication I Replicoton II 

Block I T17 T20 1T 19  T16 Tie T6 T1 I T21  T1 T16 

Block 2 T12  Tit T15  T13  T14 T5 T20  TM T25 T" 

Block 3 T, T4 T5 T2 T3 T2 T7 T22  T12  T17 

Block 4 T24  T25  T22  T21  T23 T9 T14 T4 T24  T149 

Block 5 LT 9 T7 TS T6 TIo T18  T23  T8 T3 T13 

Replication IU Replication 1Z 

Figure 2.8 A sample layout or a 5 x 5 quadruple lattice design with two repetitions(replications I 
and IV; and replications 11 and I1), involving 25 treatments (T, T ... T25). 

the first four replications of the 5 x 5 balanced lattice design or as the 5 x 5 
simple lattice design repea.ed twice (i.e., p = 2). 

In general, the procedure of using the basic plan without repetition is 
slightly preferred because it comes closer to the symmetry achieved in a 
balanced lattice design. For a partially balanced lattice design with p repeti­
tions, the process of randomization will be done p times, separately and 
independently. For example, for the 5 x 5 quadruple lattice design with p = 2, 
the process of randomization is applied twice-as if there were two 5 X 5 
simple lattice designs. 

Two sample field layouts of a 5 x 5 quadruple lattice design, one with 
repetition and another without repetition, aie shown in Figures 2.8 and 2.9. 

2.4.2.2 Analysis of Variance. The procedure for the analysis of variance 
of a partially balanced lattice design is discussed separately for a case with 
repetition and one without repetition. A 9 x 9 triple lattice design is used to 
illustrate the case without repetition; a 5 x 5 quadruple lattice is used to 
illustrate the case with repetition. 

http:repea.ed
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T23 TIOI T14  TI2 T11 	 T13  T15  T17  T4 T11 

T, T22 TG T9Block 2 T4 T5 T3 T2 T5 T3 

Block 3 T20 T17 Ti8 Te T19  T21  T8 T2 T14 TZO 

Block 4 T22 T24  	 TZ5 T2 1 T2 3  T24  12 T6 I1T 5 Tie 

]TBlock 5 To T7 T0 T9 T T7 1 T! T25 T 9 

Replication I 	 Replication TE 

Block I T4 T12  T20 T9 T., T6 T11 I 1 T 16  T21
 

Block 2 To T5 T1e TI, T22  T17 T2 T 2 T22 T7
 

Block 3 T6 T24 T10  T,3 T2 T9 T4 T14 T24 T9
 

Block 4 T7 T4 T15  T2 i TIS T23  Ta T3 18 T13
 

Block 5 T6 T14 T 3 T17 T2 , T T. T T. T5
 

Rephcaton Mn Replication X 

A sample layout of a 5 x 5 quadruple lattice design without repetuion, involving 25Figure 2.9 

treatments (T, T2 . ..-T25).
 

2.4.2.2.1 Design without Repetition. To illustrate the analysis of variance 
of a partially balanced lattice design without repetition, we use a 9 X 9 triple 

lattice design that evaluates the performance of 81 rice varieties. The yield 
data, rearranged according to the basic plan of Appendix L, are given in Table 
2.13. The steps in the analysis of variance procedure are: 

o 	STEP 1. Calculate the block totals (B) and the replication totals (R) as 
shown in Table 2.13. Then, compute the grand total: 

G = R, + R 2 + R 3 

= 323.25 + 300.62 + 301.18 = 925.05 

o 	sTEP 2. Calculate the treatment totals (T) as shown in Table 2.14. 



Table 2.13 Grain Yield Data from a Trial of 81 Upland Rice 
Varieties Conducted In a 9 x 9 Triple Lattice Design" 

Block
 
Block 
 Total
 

Number Grain Yield, t/ha (B)
 

Rep. I 
(1) (2) (3) (4) (5) (6) (7) (8) (9) 

1 2.70 1.60 4.45 2.91 2.78 3.32 1.70 4.72 4.79 28.97
(10) (11) (12) (13) (14) (15) (16) (17) (18) 

2 4.20 5.22 3.96 1.51 3.48 4.69 1.57 2.61 3.16 30.40 
(19) (20) (21) (22) (23) (24) (25) (26) (27) 

3 4.63 3.33 6.31 6.08 1.86 4.10 5.72 5.87 4.20 42.10 
(28) (29) (30) (31) (32) (33) (34) (35) (36) 

4 3.74' 3.05 5.16 4.76 3.75 3.66 4.52 4.64 5.36 38.64 
(37) (38) (39) (40) (41) (42) (43) (44) (45)

5 4.76 4.43 5.36 4.73 5.30 3.93 3.37 3.74 4.06 39.68 
(46) (47) (48) (49) (50) (51) (52) (53) (54)

6 3.45 2.56 2.39 2.30 3.54 3.66 1.20 3.34 4.04 26.48 
(55) (56) (57) (58) (59) (60) (61) (62) (63) 

7 3.99 4.48 2.69 3.95 2.59 3.99 4.37 4.24 3.70 34.00 
(64) (65) (66) (67) (68) (69) (70) (71) (72)

8 5.29 3.58 2.14 5.54 5.14 5.73 3.38 3.63 5.08 39.51 
(73) (74) (75) (76) (77) (78) (79) (80) (81) 

9 3.76 6.45 3.96 3.64 4.42 6.57 6.39 3.39 4.89 43.47 
Rep. total R, 323.25 

Rep. I1 
(1) (10) (19) (28) (37) (46) (55) (64) (73) 

1 3.06 2.08 2.95 3.75 4.08 3.88 2.14 3.68 2.85 28.47 
(2) (11) (20) (29) (38) (47) (56) (65) (74)

2 1.61 5.30 2.75 4.06 3.89 2.60 4.19 3.14 4.82 32.36 
(3) (12) (21) (30) (39) (48) (57) (66) (75) 

3 4.19 3.33 4.67 4.99 4.58 3.17 2.69 2.57 3.82 34.01 
(4) (13) (22) (31) (40) (49) (58) (67) (76) 

4 2.99 2.50 4.87 3.71 4.85 2.87 3.79 5.28 3.32 34.18 
(5) (14) (23) (32) (41) (50) (59) (68) (77) 

5 3.81 3.48 1.87 4.34 4.36 3.24 3.62 4.49 3.62 32.83 
(6) (15) (24) (33) (42) (51) (60) (69) (78)

6 3.34 3.30 3.68 3.84 4.25 3.90 3.64 5.09 6.10 37.14 
(7) (16) (25) (34) (43) (52) (61) (70) (79)

7 2.98 2.69 5.55 3.52 4.03 1.20 4.36 3.18 6.77 34.28 
(8) (17) (26) (35) (44) (53) (62) (71) (80)

8 4.20 2.69 5.14 4.32 3.47 3.41 3.74 3.67 2.27 32.91 
(9) (18) (27) (36) (45) (54) (63) (72) (81) 

9 4.75 2.59 3.94 4.51 3.10 3.59 2.70 4.40 4.86 34.44 
Rep. total R 2 300.62 

55 
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Table 2.13 (Continued) 

Block 
Block Total 

Number Grain Yield, t/ha (B) 

Rep. III 
(1) (12) (20) (34) (45) (53) (58) (70) (77) 

1 3.52 2.18 3.50 3.30 3.88 2.45 3.75 4.45 4.14 31.17 
(2) (10) (21) (35) (43) (54) (59) (67) (78) 

2 .79 3.58 4.83 3.63 3.02 4.20 3.59 5.06 6.51 35.21 
(3) (11) (19) (36) (44) (52) (60) (68) (76) 

3 4.69 5.33 4.43 5.31 4.13 1.98 4.66 4.50 4.50 39.53 
(4) (15) (23) (28) (39) (47) (61) (72) (80) 

4 3.06 4.30 2.02 3.57 5.80 2.58 4.27 4.84 2.74 33.18 
(5) (13) (24) (29) (37) (48) (62) (70) '(81) 

5 3.79 .88 3.40 4.92 2.12 1.89 3.73 3.51 3.50 27.74 
(6) (14) (22) (30) (38) (46) (63) (71) (79) 

6 3.34 3.94 5.72 5.34 4.47 4.18 2.70 3.96 3.48 37.13 
(7) (18) (26) (31) (42) (50) (55) (66) (74) 

7 2.35 2.87 5.50 2.72 4.20 2.87 2.99 1.62 5.33 30.45 
(8) (16) (27) (32) (40) (51) (56) (64) (75) 

8 4.51 1.26 4.20 3.19 4.76 3.35 3.61 4.52 3.38 32.78 
(9) (17) (25) (33) (41) (49) (57) (65) (73) 

9 4.21 3.17 5.03 3.34 5.31 3.05 3.19 2.63 4.06 33.99 
Rep. total R 3 301.18 

"The values enclosed in parentheses correspond to the treatment numbers. 

E3 	 STEP 3. Construct an outline of the analysis of variance of a 9 X 9 triple 
lattice design as: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Replication 	 r - 1 = 2 
Block(adj.) 	 r(k - 1) = 24 

k2
Treatment(unadj.) 	 - 1 = 80 
Intrablock error (k - 1Xrk - k - 1) = 136 
Treatment(adj.) 	 [(k2 - 1)= (80)] 

Total 	 (r)(k2 ) - 1 = 242 

Here, r is the number of replications and k is the block size. 



Table 2.14 Treatment Totals Computed from Data In Table 2.13 

Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment Treatment 

Total Total Total Total Total Total Total Total Total 
No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) No. (T) 

1 9.28 2 4.00 3 13.33 4 8.96 5 10.38 6 10.00 7 7.03 8 13.43 9 13.75 
10 9.86 11 15.85 12 9.47 13 4.89 14 10.90 15 12.29 16 5.52 17 8.47 18 8.62 
19 12.01 20 9.58 21 15.81 22 16.67 23 5.75 24 11.18 25 16.30 26 16.51 27 12.34 
28 11.06 29 12.03 30 15.49 31 11.19 32 11.28 33 10.84 34 11.34 35 12.59 36 15.18 
37 10.96 38 12.79 39 15.74 40 14.34 41 14.97 42 12.38 43 10.42 44 11.34 45 11.04 
46 11.51 47 7.74 48 7.45 49 8.22 50 9.65 51 10.91 52 4.38 53 9.20 54 11.83 
55 9.12 56 12.28 57 8.57 58 11.49 59 9.80 60 12.29 61 13.00 62 11.71 63 9.10 
64 13.49 65 9.35 66 6.33 67 15.88 68 14.13 69 15.27 70 10.07 71 11.26 72 14.32 
73 10.67 74 16.60 75 11.16 76 11.46 77 12.18 78 19.18 79 16.64 80 8.40 81 13.25 



58 Single-Factor Experiments 

0 	sEP 4. Compute the total SS, replication SS, and treatment (unadj.) SS in 
the standard manner: 

C.F. = G2 

(r)(k2 ) 

=(925.05)2 . 3,521.4712 
(3)(81) 

Total SS =E X 2 - C.F. 

= [(2.70)2 +(1.60)2 + +(4.06) 2] - 3,521.4712 

= 308.9883 
y'R2
 

Replication SS = R2 2- C.F.
k 


_ (323.25)2 +(300.62)2 + (301.18) _ 3,521.4712 
81 

= 4.1132 

Treatment(unadj.) SS =E 2 C.F. 

r 

(9.28)2 +(4.00)2 + +(13.25)2 _3,521.4712 

-	 256.7386 

o3 	 STEP 5. For each block, calculate: 

Cb = M - rB 

where M is the sum of treatment totals for all treatments appearing in that 
particular block and B is the block total. For example, blo. k 2 of replication 
II contained treatments 2, 11, 20, 29, 38, 47, 56, 65, and 74 (Table 2.13). 
Hence, the M value for block 2 of replication II is: 

M = T 2 + TI + + 	 TS T65 + 7 74T20 T29 + T38 + T47 + 6 + 


= 4.00 + 15.85 + .. + 16.60 = 100.22
 

and the corresponding Cb value is:
 

C b = 100.22 - 3(32.36) = 3.14
 

The Cb values for the 27 blocks are presented in Table 2.15.
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Table 2.15 The Cb Values Computed from a 9 x 9 Triple Lattice Design 
Data In Tables 2.13 and 2.14 

Rep. I Rep. II Rep. Ii1 
Block Block Block 

Number Cb Number Cb Number Cb 
1 3.25 1 12.55 1 5.34 
2 -5.33 2 3.14 2 3.74 
3 -10.15 3 1.32 3 -8.62 
4 -4.92 4 0,16 4 -2.28 
5 -5.06 5 0.55 5 8.70 
6 1.45 6 2.92 6 2.97 
7 -4.64 7 -8.14 7 6.08 
8 -8.43 8 4.18 8 6.41 
9 -10.87 9 6.11 9 -0.83 

Total -44.70 Total 23.19 Total 21.51 

o 	STEP 6. For each replication, calculate the sum of Cb values over all blocks 
(i.e., Re): 

For replication I, 

R,(I) - 3.25 - 5.33 + ... 10.87 = -44.70 

For replication II, 

R(II) = 12.55 + 3.1-, + ... + 6.11 = 23.19 

For replication Il, 

R(lIl) = 5.34 + 3.74 + ... 0.83 = 21.51 

Note that the Rc values should add to zero (i.e., -44.70 + 23.19 + 21.51, 
0). 

o 	sTEP 7. Calculate the block(adj.) SS as: 

Block(adj.) SS ==E '5
(k)(r)(r - 1) (k 2 )(r)(r - 1) 

(3.25)2 +(-5.33)2 + ... +(-0.83) 2 

(9)(3)(3 - 1) 

(-44.70)2 + (23.19)2 +(21.51)2 

(81)(3)(3 - 1)
 

12.1492 
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o 	srrn 8. Calculate the intrablock error SS as: 

Intrablock error SS = Total SS - Replication SS - Treatment(unadj.) SS 

-	 Block(adj.) SS 

= 308.9883 - 4.1132 -'256.7386 - 12.1492 

= 	35.9873 

3 sEp 9. Calculate the intrablock error mean square and block(adj.) mean 
square as: 

lntrablock error S 
(k -=1)(rkIntrablock error MS (k -1)(rk 

e 
- k-

SS 
1' 

ffi35.9873 =0.2646 
(9- 1)[(3)(9) - 9- 1] 

- Block(adj.) SSBlk'd) MS r(k - 1) 

12.1492 
=0.50623(9-1) 

O 	STEP 10. Calculate the adjustment factor I. For a triple lattice, the formula 
is 

1 2 
MSE 3MSB- MSE 

k + 3MSB- MSE) 

where MSE is the intrablock erroi-mean square and MSB is the block(adj.) 
mean square. 

Note that if MSB is less than MSE, p is taken to be zero and no further 
adjustment is made. The F test for significance of treatment effect is made in 
the usual manner as the ratio of treatment(unadj.) MS and intrablock error 
MS, and steps 10 to 14 and step 17 can be ignored. 
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For our example, the MSB value of 0.5062 is larger than the MSE value 
of 0.2646; and, thus, the adjustment factor is computed as: 

[ 124 2J 
0.2646 3(0.5062) - 0.2646 

9 2 +2 

+0.2646 0.264613(0.5062)2-

= 0.0265 

o1 sTP 11. For eac'. treatment, calculate the adjusted treatment total 7"as: 

T' = T + IAFCb 

where the summation runs over all blocks in which the particular treatment 
appears. For example, the adjusted treatment total for treatment number 2 
is computed as: 

T2 = 4.00 + 0.0265(3.25 + 3.14 + 3.74) = 4.27 

Note that for mean comparisons (see Chapter 5) the adjusted treatment 
means are used. They are computed simply by dividing these individual 
adjusted treatment totals by the number of replications. 

o sTEP 12. Compute the adjusted treatment SS: 

Treatment(adj.) SS - Treatment(unadj.) SS - A 

A = MSE (3MSB- MSE) 

x [(MSE)B. -(k - 1)(MSE)(rMSB - MSE)] 

EB2 ER 2 

Bu k k2 

For our example,
 

(28.97)2 + (30.40)2 + ... + (33.99)2
 

.- 9
 

(323.25)2 + (300.62)2 + (301.18)2 

81 

= 49.4653 

http:0.0265(3.25
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2][ 1
0.2646 3(0.5062) - 0.2646 

x (0.2646(49.4653) 

- ,(0.2646)[3(0.5062) - 0.2646]1 

, 22.7921 

Treatment(adj.) SS = 256.7386 - 22.7921 

= 233.9465 

0 STEP 13. Compute the treatment(adj.) mean square as: 

Treatmeit(adj.) MS = Treatment(adj.) SS 
k- 1 

233.9465
 
- 80 =2.924380
 

3	STEP 14. Compute the F test for teting the significance of treatment 
difference as: 

F= Treatment(adj.) MS
Intrablock error MS 

2.9243 
= 	11.05

-0.2646 

Compute the corresponding cv value as: 

/ X 1Vintrablock MS
Grand mean 

= /.2-646 
X 100 --13.5%.8 

3 smrP 15. Compare the computed F value to the tabular F values of 
Appendix E, with ft = (k 2 - 1) = 80 and f2 = (k - 1)(rk - k - 1) = 136 
degrees of freedom. Because the computed F value is greater than the 
tabular F value at the 1%level of significance, the F test indicates a highly 
significant treatment difference. 

1 	sTEP 16. Enter all values computed in steps 4 to 9 and 12 to 15 in the 
analysis of variance outline of step 3. The final result is shown in Table 2.16. 



Lattice Design 63 

Table 2.16 Analysis of Variance (a 9 x 9 Triple Lattice Design) of Data InTable 2.13a 

Soirce 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Replication 2 4.1132 
Block(adj.) 24 12.1492 0.5062 
Treatment(unadj.) 80 256.7386 
Intrablock error 136 35.9873 0.2646 
Treatment(adj.) (80) 233.9465 2.9243 11.05"* 1.38 1.57 

Total 242 308.988; 

acv ­ 13.5%. 
- significant at 1%level. 

3 STEp 17. Estimate the gain in precision of a partially balanced lattice 
design relative to the RCB design, as follows: 

A. Compute the effective error mean square. For a partially balanced 
lattice design, there are two error terms involved: one for comparisons 
between treatments appearing in the same block [i.e., Error MS(1)] and 
another for comparisons between treatments not appearing in the same 
block [i.e., Error MS(2)]. For a triple lattice, the formulas are: 

[ 	 -6M l)fiMSEMS 
Error MS(1) = +(- 2) 

L SE+ 3MSB - MSE 

I-	 9 
SE- +(k - 3)

Error MS(2) = 2 2 
+MSE3MSB - MSE 

With a large experiment, these two values may not differ much. And, 
for simplicity, the average error MS may be computed and used for 
comparing any pair of means (i.e., without the need to distinguish 
whether or not the pair of treatments appeared together in the same 
block or not). For a triple lattice, the formula is: 

9 
Av. error MS = (k +-S) 2_ +(k - 2) 

(k++1) [ + 2 

MSE 3MSB - MS-E 
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For our examp
computed as: 

le, the value of the two error mean squares are 

6 

Error MS(i) 9(0.9 2646)2 0.2646 2 +7 

0.2--6 3(0.5062) - 0.2646 

= 0.2786 

Error MS(2) = (0.2646) 
9 2 

[.2646 

9 
0.2646 

2 

3(0.5062) - 0.2646 

+ 

= 0.2856 

As expected, the two values of error MS do not differ much and, 
hence, the average error MS can be used. It is computed as: 

9
 
Av. 	error MS = 0.2646 0.2646 +710 2 2 

0.2646 + 3(0.5062) - 0.2646 

= 0.2835 

B. 	 Compute the efficiency of the partially balanced lattice design relative 
to a comparable RCB design as: 

~~ ErrorMS[Block(adj.) SS + Intrablock errorSS ][ 100 
rk- 1')+ (k - 1)(rk - k - 1) ErorM 

For our example, the three values of the relative efficiency corre­
sponding to Error MS(l), Error MS(2), and Av. error MS are com­
puted as: 

12.1492+ 359873 \(100 
R.E.(1) = 

_ 

24 + 16 0.2786), 108.0% 

R.E(2)=12.1492 + 35.9873 \(100 153 
24 + 136 0.28 105.3 

R.E.(a=12.1492 + 35.9873 \(100 1061 
24 + 136 2 = 106.1%o 

2.4.2.2.2 Design with Repetition. For the analysis of variance of a par­
tially balanced lattice design with repetition, we use a 5 x 5 quadruple lattice 



Lattice Design 65 

whose basic plan is obtained by repeating a simple lattice design (i.e., base 
design) twice. Data on grain yield for the 25 rice varieties used as treatments 
(rearranged according to the basic plan) are shown in Table 2.17. Note that 
replications I and II are from the first two replications of the basic plan of the 
5 x 5 balanced lattice design (Appendix L) and replications III and IV are 
repetition of replications I and 1I. 

The steps involved in the analysis of variance are: 

0 	 STEP 1. Calculate the block totals (B) and replication totals (R) as shown 
in Table 2.17. Then, compute the grand total (G) as G = ER = 147,059 + 
152,078 + 151,484 + 155,805 = 606,426. 

o1 	 STEP 2. Calculate the treatment totals (T) as shown in Table 2.18. 

Ol 	 STEP 3. Construct an outline of the analysis of variance of a partially 
balanced lattice design with repetition as: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Replication 	 (n)(p) - I = 3 
Block(adj.) (n)(p)(k - 1) = 16
 

Component(a) [n(p - 1)(k - 1) = 81
 
Component(b) [n(k - 1) = 8]
 

Treatment(unadj.) 	 (k 2 - 1) = 24 

Intrablock error (k - 1)(npk - k - 1) = 56
 
Treatment(adj.) [k 2 - 1 = 24]
 

Total (n)(p)(k 2 ) - 1 = 99
 

Here, n is the number of replications in the base design and p is the 
number of repetitions (i.e., the number of times the base design is repeated). 
As before, k is the block size. In our example, the base design is simple 
lattice so that n = 2 and, because this base design is used twice, p = 2. 

o 	STEP 4. Compute the total SS, replication SS, and treatment(unadj.) SS, in 
the standard manner as: 

C.F.= G 2 
(n)(p)(k 2 ) 

=	(606,426)2 = 3,677,524,934 

(2)(2)(25) 



Table 2.17 Grain Yield Data from a Rice Variety Trial Conducted in a 5 x 5 Quadruple Lattice Design with Repetion 

Rep. I Rep. II Rep. III Rep. IV 

Block Bl-ck Block Block 
Block Treatment Yield, Total Treatment Yield, Total Treatment Yield, Total Treatment Yield, Total 

Number Number kg/ha (B) Number kg/ha (B) Number kg/ha (B) Number kg/ha (B) 

1 1 4,723 1 6,262 1 5,975 1 5,228 
2 4,977 6 5,690 2 5,915 6 5,302 
3 6,247 11 6,498 3 6,914 11 5,190 
4 5.325 16 8,011 4 6,389 16 7,127 
5 7,139 21 5.887 5 7,542 21 5,323 

28,411 32,348 32-735 28.170 
2 6 5,444 2 5,038 6 4,750 2 5,681 

7 5,567 7 4,615 7 5,983 7 6,146 
8 5,809 12 5,520 8 5,339 12 6,032 
9 5,086 17 6,063 9 4,615 17 7,066 

10 6,849 22 6,486 10 5,336 22 6,680 
28,755 27,722 26,023 31,605 

3 11 5,237 3 6,057 11 5,073 3 6,750 
12 5,174 8 6,397 12 6,110 8 6,567 
13 5,395 13 5,214 13 6,001 13 5,786 
14 5,112 18 7,093 14 5,486 18 7,159 
15 5,637 23 7,002 15 6,415 23 7,268 

26,555 31,763 29,085 33,530 



4 	 16 5,793 4 5,291 16 6,064 4 6,020
17 6,008 9 4,864 17 6,405 9 5,136
18 6,864 14 5,453, 18 6,856 14 6,413
19 5,026 19 4,917 19 4,654 19 5,760
20 6,348 24 6,318 - 20 5,986 24 6,856

30,039 26,843 29,965 30,1855 21 5,321 5 7,685 21 5,750 5 7,173
22 6,870 10 5,985 22 6,539 10 5,626
23 7,512- 15 6,107 23 7,576 15 6,310
24 6,648 20 6,710 24 7,372 20 6,529
25 6,948 25 6,915 25 6,439 25 6,677

33,299 33,402 33,676 32,315
Rep. total (R) 147,059 152,078 151,484 155,805 
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Table 2.18 Treatment Totals Computed from Data InTable 2.17 

Treatment Treatment Treatment Treatment Treatment 

Total Total Total Total Total 
Number (T) Number (T) Number (T) Number (T) Number (T) 

1 22,188 2 21,611 3 25,968 4 23,025 5 29,539 
6 21,186 7 22,311 8 24,112 9 19,701 10 23,796 

11 21,998 12 22,836 13 22,396 14 22,464 15 24,469 
16 26,995 17 25,542 18 27,972 19 20,357 20 25,573 
21 22,281 22 26,575 23 29,358 24 27,194 25 26,979 

X 2Total SS = - C.F. 

= [(4,723)2 + (4,977)2 + ... + (6,677)21 - 3,677,524,934 

= 63,513,102 

Replication SS -- - C.F. 

(147,059)2 + (152,078)2 + (151,484)2 +(155,805)2 

25 

-3,677,524,934 

- 1,541,779 

Treatment(unadj.) SS = (n)(p) - C.F. 

(22,188)2 + (21,611)2 + + (26,979)2 
(2)(2) 

-3,677,524,934 

= 45,726,281 

1O 	 smP 5. For each block in each repetition, compute the S value as the sum 
of block totals over all replications in that repetition and, for each S value, 
compute the corresponding C value, as: 

C = E T - nS
 

where n is as defined in step 3, T is the treatment total, and the summation
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is made only over the treatments appearing in the block corresponding to 
the particular S value involved. 

For our example, there are two repetitions, each consisting of two 
replications-replication I and replication III in repetition 1 and replication 
II and replication IV in repetition 2. Hence, the first S value, corresponding 
to block 1 from replications I and Ill, is computed as S = 28,411 + 32,735 
= 61,146. Because the five treatments in block 1 of repetition I are 
treatments 1, 2, 3, 4, and 5 (Table 2.17), the first C value, corresponding to 
the first S value, is compute as: 

C = (22,188 + 21,611 + 25,968 + 23,025 + 29,539) - 2(61,146) 

= 	122,331 - 122,292 = 39 

The computations of all S values and C values are illustrated and shown 
in Table 2.19. Compute the total C values over all blocks in a repetition (i.e., 
Rj,j = 1,..., p). For our example, the two R, values are 9,340 for repetition 
1 and - 9,340 for repetition 2. The sum of all R, values must be zero. 

0 	sTEP 6. Let B denote the block total; D, the sum of S values for each 
repetition; and A, the sum of block totals for each replication. Compute the 

Table 2.19 Computation of the S Values and the Corresponding 
C Values, Based on Block Totals (Table 2.17) Rearranged In 
Palm of Blocks Containing the Same Set of Treatments 

Block Total 

Block 1st 2nd 
Number Replication Replication S C 

Repetition 1 
1 28,411 32,735 61,146 39 
2 28,755 26,023 54,778 1,550 
3 26,555 29,085 55,640 2,883 
4 30,039 29,965 60,004 6,431 
5 33,299 33,676 66,975 -1,563 
Total 147,059 151,484 298,543 9,340 

Repetition 2 
1 32,348 28,170 60,518 -6,388 
2 27,722 31,605 59,327 221 
3 31,763 33,530 65,293 -780 
4 26,843 30,185 57,028 -1,315 
5 33,402 32,315 65,717 -1,078 
Total 152,078 155,805 307,883 -9,340 
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two components, (a) and (b), of the block(adj.) SS as: 

A. Component(a) SS X - Y - Z 

where 
2 E j; 

k pk2 

p 

E2s 
2 E-D 

Pk pk2 

p 

" J-1Z EAA2 EDj 
k2 pk2 

For our example, the parameters and the component(a) SS are 
computed as: 

"'.+ (32,315)2 
= (28,411)2 + (28,755)2 + 

X 

5 

(298,543)2 + (307,883)2
 

(2)(25)
 

- 3,701,833,230 - 3,678,397,290
 

- 23,435,940
 

(61,146)2 + (54,778)2 + ". + (65,717)2 - 3678,397,290(2)(5) 

= 15,364,391 

(147,059)2 + (152,078)2 + (151,484)2 + (155,805)2 

25 

-3,678,397,290 

= 669,423 

Component(a) SS = 23,435,940 - 15,364,391 - 669,423 

= 7,402,126 
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Ec" 	 EM
 

_	 2B. Component(b) SS 
(k)(n)(p)(n - 1) (k 2 )(n)(p,(n - 1) 

(39)2 + (1,550)2 + " + (- 1,078)' 

(5)(2)(2)(1) 

(9,340)2 +(-9,340)2 

(25)(2)(2)(1)
 

= 3,198,865 

o STEP 7. Compute the block(adj.) SS as the sum of compotient(a) SS and 

component(b) SS computed in step 6: 

Block(adj.) SS = Component(a) SS + Component(b) SS 

= 7,402,126 + 3,198,865 

= 10,600,991 

o 	STEP 8. Compute the intrablock error SS as: 

Intrablock error SS = Total SS - Replication SS - Treatment(unadj.) SS 

-Block(adj.) SS 

= 63,513,102 - 1,541,779 - 45,726,281 - 10,600,991 

= 5,644,051 

" 	sTEP 9. Compute the block(adj.) mean square and the intrablock error 
mean square as: 

MSB = Block(adj.) SS 
np(k- 1). 

10,600,991 = 662,562 
(2)(2)(4) 

Intrablock error SS
(k - 1)(npk - k - 1) 

5,644,051 
-	 1) = 100,787(4)(20 - 5 
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[I SlP 10. Compute the adjustment factor Aas: 

p (MSB - MSE) 

kip(, - l1)MSB +(p - 1)MSE] 

2(662,562 - 100,787) 

5[2(662,562) + (100,787)] 

= 0.15759 

o3 srm, 11. For each treatment, compute the adjusted treatment total as: 

T'= T+pu2C 

where the summation runs over all blocks in which the particular treatment 
appears. For example, using the data of Tables 2.18 and 2.19, the adjusted 
treatment total for treatment number 1, which appeared in block 1 of both 
repetitions, is computed as: 

T'= 22,188 + 0.15759(39 - 6,388) = 21,187 

The results of all T' values are shown in Table 2.20. 

3 STEP 12. Compute the adjusted treatment sum of squares as: 

Treatment(adj.) SS = Treatment(unadj.) SS - A 

A= k(n - 1)1t (n)(Y) _ opnn~)S 1
I (n - 1)(1 ) Component(b) SS 

where Y is as defined by formula in step 6. 

Table 2.20 Adjusted Treatment Totals Computed from Data InTables 2.18 and 2.19 

Treatment Treatment Treatment Treatment Treatment 

Total TotalTotal Total Total 
Number (T') Number (T') Number (T') Number (T') Number (T') 

1 21,187 2 21,652 25,851 4 22,824 5 29,375 
6 20,424 7 22,590 8 24,233 9 19,738 10 23,870 

11 21,446 12 23,325 13 22,727 14 22,711 15 24,754 
16 27,002 17 26,590 18 28,863 19 21,163 20 26,417 
21 21,028 22 26,364 23 28,989 24 26,740 25 26,563 
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For our example, we have 

5()0!i59) (2(15,364,391)3,9,6
A 5s(1).(0.1575 [1 + 5(0.15759)1 

-"11,021,636 

Treatment(adj.) SS = 45,726,281 - 11,021,636 

= 34,704,645 

" 	sTEP 13. Compute the adjusted treatment mean square as: 

Treatment(adj.) S$ 
-Treatment(adj.) MS 

k2 -
SS 

1 

_ 34,704,645 
25 - 1 

= 	1,446,027 

" 	sTEP 14. Compute the F value as: 

F = Treatment(adj.) MS 
Intrablock error MS 

_ 1,446,027 14.35 
100,787 

Compute the corresponding cv value as: 

llntrablock error MS 
Grand mean 

rIOO,787 x 100 = 5.2% 
6,064 

o 	STEP 15. Compare the computed F value with the tabular F value, from 
Appendix E, with f,= (k 2 - 1) = 24 and /2 = (k - 1)(npk - k - 1) = 56 
degrees of freedom, at a desired level of significance. Because the computed 
F value is greater than the corresponding tabular F value at the 1%level of 
significance, a highly significant difference among treatments is indicated. 

O 	STEP 16. Enter all values computed in steps 4 to 9 and 12 to 14 in the 
analysis of variance outline of step 3. The final result is shown in Table 2.21. 
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Table 2.21 Analysis of Variance (a 5 X 5 Quadruple Lattice Design) of 
Data In Table 2.17a 

Source 
of 
Variation 

Replication 
Block(adj.) 

Component(a) 
Component(b) 

Treatment(unadj.) 
Intrablock error 
Treatment(adj.) 

Total 

"cv - 5.2%. 

Degree 
of 

Freedom 

3 
16 
(8) 
(8) 
24 
56 

(24) 
99 


Sum 
of 

Squares 

1,541,779 
10,600,991 

7,402,126 
3,198,865 

45,726,281 
5,644,051 

34,704,645 
63,513,102 

Mean Computed Tabular F 

Square Fb 5% 1% 

662,562 

100,787 
1,446,027 14.35* 1.72 2.14 

b**. - significant at 1%level. 

0 sTEP 17. Compute the values of the two effective error mean square as: 

A. For comparing 	treatments appearing in the same block: 

Error MS(1) = MSE[1 +(n - 1)1&] 

= 100,787[1 +(2 - 1)(0.15759)] 

= 116,670 

B. 	 For comparing treatments not appearing in the same block:
 

Error MS(2) = MSE(1 + nit)
 

= 100,787[1 + 2(0.15759)] 

= 132,553 

Note that when the average effective error MS is to be used (see step 17 

of Section 2.4.2.2.1), compute it as: 

]1 + (n-)-(kj
Av. errorMS=MSE 

100,7?7[I + 2(5)(0.15759)]-i 

= 127,259 
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0 smp 18. Compute the efficiency relative to the RCB design as: 

R E _ [ Block(adj.) SS + Intrablock error SS 100 
[(n)(p)(k - 1) +(k - l)(npk-k- 1) Error MS] 

where Error MS refers to the appropriate effective error MS. 
For our example, the three values of the relative efficiency corresponding

to Error MS(1), Error MS(2), and Av. error MS are computed as: 

R.E. (1) 10,600,991 + 5,644,051 100 

= 193.4% 

R.E. (2)= [ 10600,991 + 5,644,051] 100 1 
1 72l32,553j 

- 170.2% 

R.E. (av.) = (10600,991 + 5,644,051)( 100) 

- 177.3% 

2.5 GROUP BALANCED BLOCK DESIGN 

The primary feature of the group balanced block design is the grouping of 
treatments into homogeneous blocks based on selected characteristics of the 
treatments. Whereas the lattice design achieves homogeneity within blocks by
grouping experimentalplots based on some known patterns of heterogeneity in 
the experimental area, the group balanced block design achieves the same 
objective by grouping treatments based on some known characteristics of the 
treatments. 

In a group balanced block design, treatments belonging to the same group 
are always tested in the same block, but those belonging to different groups are 
never tested together in the same block. Hence, the precision with which the 
different treatments are compared is not the same for all comparisons. Treat­
ments belonging to the same group are compared with a higher degree of 
precision than those belonging to different groups. 

The group balanced block design is commonly used in variety trials where 
varieties with similar morphological characters are put together in the same 
group. Two of the most commonly used criteria for grouping of varieties are: 

* Plant height, in order to avoid the expected large competition effects (see
Chapter 13, Section 13.1.2) when plants with widely different heights are 
grown in adjacent plots. 
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Growth duration, in order to minimize competition effects and to facilitate 

harvest operations. 

Another type of trials using the group balanced block design is that involving 

chemical insect control in which treatments may be subdivided into similar 

spray operations to facilitate the field application of chemicals. 
We outline procedures for randomization, layout, and analysis of v.-riance 

for a group balanced block design, using a trial involving 45 rice varietiLs with 

three replications. Based on growth duration, varieties are divided into group A 

for varieties with less than 105 days in growth duration, group B for 105 to 115 

days, and group C for longer than 115 days. Each group consists of 15 

varieties. 

2.5.1 Randomization and Layout 

The steps involved in the randomization and layout are: 

" 	sup 1. Based on the prescribed grouping criterion, group the treatments 

into s groups, each consisting of t/s treatments, where t is the total number 

of treatments. For our example, the varieties are grouped into three groups, 

A, 	B, and C each consisting of 15 varieties, according to their expected 

growth duration. 

o 	STEP 2. Divide the experimental area into r replications, each consisting of 

t experimental plots. For our example, the experimental area is divided into 

three replications, each consisting of (3)(15) = 45 experimental plots. 

o 	STEP 3. Divide each replication into s blocks, each consisting of f/s 

experimental plots. For our example, each of the three replications is 

divided into three blocks, each consisting of 45/3 = 15 experimental plots. 

o STEP 4.. Using one of the randomization schemes described in Section 2.1.1, 

assign the s groups at random to the s blocks of the first replication. Then, 

independently repeat the process for the remaining replications. 
For our example, the varietal groups A, B, and C are assigned at random 

to the three blocks of replication I, then replication II, and finally replica­

tion III. The ,esult is shown in Figure 2.10. 

o 	sTEP 5. To each of the three blocks per replication, assign at random the 

t/s treatments belonging to the group that was assigned in step 4 to the 

particular block. For our example, starting with the first block of replication 

I, randomly assign the 15 varieties of group A to the 15 plots in the block. 

Repeat this process for the remaining eight blocks, independently of each 

other. The final result is shown in Figure 2.11. 

2.5.2 Analysis of Variance 

are 

shown below using the data in Table 2.22 and the layout in Figure 2.11. 
The steps in the analysis of variance of a group balanced block design 
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Figure 2.10 Random assignment of three groups of varieties (A, B, and C) into three blocks in 
each of the three replicat;ons, representing the first step 'n the randomization process of a group 
balanced block design. 
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Figure Z.11 A sample layout of a group balanced block design involving 45 varieties, divided into 
three groups, each consisting of 15 varieties, tested in three replications. 

Table 2.22 Grain Yield Data of 45 Rice Varieties Tested In a 
Group Balanced Block Design, with 15 Varieties per Groulf 

Variety
Variety GrainYield, t/ha Total 

Number Rep. I Rep. II Rep. III (T) 

1 4.252 3.548 3.114 10.914 
2 3.463 2.720 2.789 8.972 
3 3.228 2.797 2.860 8.885 
4 4.153 3.672 3.738 11.563 
5 3.672 2.781 2.788 9.241 
6 3.337 2.803 2.936 9.076 
7 3.498 3.725 2.627 9.850 
8 3.222 3.142 2.922 9.286 
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Table 2.22 (Continued) 

Variety 

Variety Grain Yield, t/ba Total 
Number Rep. I Rep. II Rep. III (T) 

9 3.161 3.108 2.779 9.048 
10 3.781 3.906 3.295 10.982 
11 3.763 3.709 3.612 11.084 
12 3.177 3.742 2.933 9.852 
13 3.000 2.843 2.776 8.619 
14 4.040 3.251 3.220 10.511 
15 3.790 3.027 3.125 9.942 
16 3.955 3.030 3.000 9.985 
17 3.843 3.207 3.285 10.335 
18 3.558 3.271 3.154 9.983 
19 3.488 3.278 2.784 9.550 
20 2.957 3.284 2.816 9.057 
21 3.237 2.835 3.018 9.090 
22 3.617 2.985 2.958 9.560 
23 4.193 3.639 3.428 11.260 
24 3.611 3.023 2.805 9.439 
25 3.328 2.955 3.031 9.314 
26 4.082 3.089 2.987 10.158 
27 4.063 3.367 3.931 11.361 

,28 3.597 3.211 3.238 10.046 
29 3.268 3.913 3.057 10.238 
30 4.030 3.223 3.867 11.120 
31 3.943 3.133 3.357 10.433 
32 2.799 3.184 2.746 8.729 
33 3.479 3.377 4.036 10.892 
3', 3.498 2.912 3.479 9.889 
35 3.431 2.879 3.505 9.815 
36 4.140 4.107 3.563 11.810 
37 4.051 4.206 3.563 11.820 
38 3.647 2.863 2.848 9.358 
39 4.262 3.197 3.680 11.139 
40 4.256 3.091 3.751 11.098 
41 4.501 3.770 3.825 12.096 
42 4.334 3.666 4.222 12.222 
43 4.416 3.824 3.096 11.336 
44 3.578 3.252 4.091 10.921 
45 4.270 3.896 4.312 12.478 

Rep. total (R) 166.969 
Grand total (G) 

148.441 146.947 
462.357 

'Group A consists of varieties 1-15, group B consists of varieties 
16-30, and group C consists of varieties 31-45. 
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] smp 1. Outline the analysis of variance of a group balanced block design 
with t treatments, s groups, and r replications as: 

Source Degree Sum 
of of of Mean': 
Variation Freedom Squarer Square 

Replication r - 1 
Treatment gro, s - 1 
Error(a) (r - 1Xs - 1) 

Treatments within group I - 1 
S 

Treatments within group 2 - 1 
S 

Treatments within group s t _ 1 
S 

Error(b) s(r- l)( i 1) 

Total (rXt) - 1 

DsmP 2. Compute the treatment totals (T), replication totals (R), and the 
grand total (G), as shown in Table 2.22. 

3 STEP 3. Construct the replication x group two-way table of totals (RS) 
and compute the group totals (S), as shown in Table 2.23. Then compute 
the correction factor, total SS, replication SS, group SS, and error(a) SS 
as: 

C.F.--I
 
rt
 

= (462.357)'= 1,583.511077
(3)(45) 

Total SS = , X 2 - C.F. 

- [(4.252)2 + +(4.312) 2] - 1,583.511077 

29.353898 

ER2 

Replication SS = tR2 - C.F. 

(166.969)2 + (148.441)2 + (146.947)2 
45 

- 1,583.511077 

- 5.528884 
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Table 2.23 The Replication x Group Table of Yield Totals 
Computed from Data InTable 2.22 

Yield Total (RS) 
S 

Group 
total 

Group Rep. I Rep. II Rep. III (S) 

A 53.537 48.774 45.514 147.825 
B 54.827 48.310 47.359 150.496 
C 58.605 51.357 54.074 164.036 

yEs 2 

GroupSS = - - C.F. 

[(147.825)2 + (150.496)2 + (164.036)21 

(3)(45)/(3) 

-1,583.511077 

= 3.357499 

Error(a) SS = t - C.F.- Replication SS - Group SS 

S[(53537)2 + ... +(54.074)2] - 1,583.511077 

(45)/(3) 

-5.528884 - 3.357499 

= 0.632773 

0 	sTEP 4. Compute the sum of squares among treatments within the ith 

group as: t/s 

ET21r 
Treatments within group i SS 

r rt/s 

where T is the total of thejth treatment in the ith group and S, is the total 

of the ith group. 
For our example, the sum of squares among varieties within each of the 

three groups is computed as: 

SA/ETAVarieties within group A SS 3 (3)(45)/(3) 

+ (9.942)2 (147.825)2...= (10.914)2 + 
3 45 

= 4.154795 
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= -Varieties within group B SS 
3 (3)(45)/(3) 

= (9.985)2 + .. + (11.120)2 (150.496)2 

3 45 

= 2.591050 

-
Varieties within group C SS 


3 (3)(45)/3
 

(10.433)2 + ... + (12.478)2 (164.036)2 
3 45 

= 5.706299 

Here, T, TB, and Tc refer to the treatment totals, and SA, SB, and Sc 
refer to the group totals, of group A, group B, and group C, respectively. 

o STmp 5. Compute the error(b) SS as: 

Error(b) SS = Total SS - (the sum of all other SS) 

= 29.353898 -(5.528884 + 3.357499 + 0.632773 

+4.154795 + 2.591050 + 5.706299) 

- 7.382598 

o STmp 6. Compute the mean square for each source of variation by dividing 
the SS by its d.f. as: 

= Replication SSReplication MS 
r- 1 

5.528884 
- 2 2.764442 

- Group SSGroup MS 
S-1 

3.357499 
- 1.6787502 

Error(a) SSError(a) MS 
(r - 1)(s - 1) 

0.632773 
- (2)(2) = 0.158193 
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Varieties within grouo A MS -Varieties within group A SS 
(t/s) - 1 

4.154795 
14 = 0.296771 

Varieties within group B MS Vffi/)Varieties within group B SS
(1l ) - 1 

2.591050 
0.185075 

V 

14 

-=I 
Varieties within group C SSVarieties within group C MS 

(t/s) - 1 

5.706299
 
_=0.40759314 

Error(b) SSErro~b) 1)[(tls) ­Error(b)MSS =s~r - 1] 

7.382598 
- 84 =0.08788884
 

3 STEP 7. Compute the following F values: 

= Group MS
F(group) 

Error(a) MS 

1.678750
 
=1061*
0.158193 

Varieties within group A MS 
F(varieties within group A ) = Error(b) MS 

0.296771 
= 3.38 

- 0.087888 

Varieties within group B MS 
F(varieties within group B) - Error(b) MS 

0.185075 
= 2.11 = 0.087888 

Varieties within group C MS 

F(varieties within group C) =Error(b) MS 

0.407593 
- 0.087888 = 4.64 

Although the error (a) d.f. of 4 is not adequate for valid test of significance (see Section 2.1.2.1, 
step 6), for illustration purposes, such a deficiency has been ignored. 
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0 	:m"EP 8. For each computed F value, obtain its corresponding tabular F 
value, from Appendix E, at the prescribed level of significance, withf = d.f. 
of the numerator MS and f2 = d.f. of the denominator MS. 

For our example, the tabular F values corresponding to the computed 
F(group) value, with f, = 2 and f2 = 4 degrees of freedom, are 6.94 at the 
5% level of significance and 18.00 at the 1% level; those corresponding to 
each of the three computed F(varieties within group) values, with f, = 14 
and f2 = 84 degrees of freedom, are 1.81 at the 5%level of significance and 
2.31 at the 1% level. 

o sTEP 9. Compute the two coefficients of variation corresponding to the two 
values of the error mean square as: 

-or(a) MS 
c 	(a)= Grand mean x 100 

,,0.158193
- 9 x 100 = 11.6% 

3.425 

b Error(b) MS 
cv~b).. Grand mean x 100 

_ v-0.0878888 × 100 = 8.7% 
3.425 

o 	STEP 10. Enter all values obtained in steps 3 to 9 in the analysis of variance 
outline of step 1, as shown in Table 2.24. Results indicate a significant 
difference among the means of the three groups of varieties and significant 
differences among the varieties in each of the three groups. 

Table 2.24 Analysis of Variance (Group Balanced Block Design) for Data In 
Table 2.220 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Replication 2 5.528884 2.764442 
Varietal group 2 3 357499 1.678750 10.610 6.94 18.00 
Error(a) 4 0.632773 0.158193 
Varieties within group A 14 4.154795 0.296771 3.3800 1.81 2.31 
Varieties within group B 14 2.591050 0 185075 2.11" 1.81 2.31 
Varieties within group C 14 5.706299 0 407593 4.6400 1.81 2.31 
Error(b) 84 7.382598 0.087888 

Total 134 29.353898 

"cv (a) - 11.6%, cv (b) - 8.7%. 
b** _ significant at 1%level, * ­ significant at 5%level. 



CHAPTER 3 

Two-Factor Experiments 

Biological organisms are simultaneously exposed to many growth factors 
during their lifetime. Because an organism's response to any single factor may 
vary with the level of the other factors, single-factor experiments are often 
criticized for their narrowness. Indeed, the result of a single-factor experiment 
is, strictly speaking, applicable only to the particular level in which the other 
factors were maintained in the trial. 

Thus, when response to the factor of interest is expected to differ under 
different levels of the other factors, avoid single-factor experiments and con­
sider instead the use of a factorial experiment designed to handle simulta­
neously two or more variable factors. 

3.1 INTERACTION BETWEEN TWO FACTORS 

Two factors are said to interact if the effect of one factor changes as the level 
of the other factor changes. We shall define and describe the measurement of 
the interaction effect based on an experiment with two factors A and B, each 
with two levels (ao and a, for factor A and bo and b, for factor B). The four 
treatment combinations are denoted by a0bo, albo, a0 bl, and albl. In addition, 
we define and describe the measurement of the simple effect and the main effect 
of each of the two factors A and B because these effects are closely related to, 
and are in fact an immediate step toward the computation of, the interaction 
effect. 

To illustrate the computation of these three types of effects, consider the two 
sets of data presented in Table 3.1 for two varieties X and Y and two nitrogen 
rates No and NI; one set with no interaction and another with interaction. 

O3 	 cup 1. Compute the simple effect of factor A as the difference between its 
two levels at a given level of factor B. That is: 
" The simple effect of A at bo = albo - a0bo 
" The simple effect of A at b, = alb, - a0 b, 

84 
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Table 3.1 Two Hypothetical Sets of 2x2 Factorial 
Data: One with, and Another without, Interaction 
between Two Factors (Variety and Nitrogen Rate) 

Rice Yield, t/ha 
0kg N/ha 60 kg N/ha 

Variety (NO) (N) Av. 

No interaction 
X 1.0 3.0 2.0 
Y 2.0 4.0 3.0 
Av. 1.5 3.5 

Interaction present 
X 1.0 1.0 1.0 
Y 2.0 4.0 3.0 
Av. 1.5 2.5 

In the same manner, compute the simple effect of factor B at each of the 
two levels of factor A as: 
The simple effect of B at ao = a0b1 - aobo 

* The simple effect of B at a, = alb, - albo 

For our example (Table 3.1), the computations based on data of the 
set with interaction are: 

Simple effect of variety at No = 2.0 - 1.0 = 1.0 t/ha 

Simple effect of variety at N, = 4.0 - 1.0 = 3.0 t/ha 

Simple effect of nitrogen of X = 1.0 - 1.0 = 0.0 t/ha 

Simple effect of nitrogen of Y = 4.0 - 2.0 = 2.0 t/ha 

And the computations based on data of the set without interaction 

are:
 

Simple effect of variety at No = 2.0 - 1.0 = 1.0 t/ha
 

Simple effect of variety at N, = 4.0 - 3.0 = 1.0 t/ha
 

Simple effect of nitrogen of X = 3.0 - 1.0 = 2.0 tl/ha
 

Simple effect of nitrogen of Y = 4.0 - 2.0 = 2.0 t/ha
 



86 Two-FactorExperiments 

[ sTEP 2. Compute the main effect of factor A as the average of the simple 
effects of factor A over all levels of factor B as: 

The main effect of A = (1/2) (simple effect of A at b0 

+ simple effect of A at bl) 

(1/2)[(albo - a0bo) +(alb, - aob)] 

In the same manner, compute the main effect of factor B as-


The main effect of B = (1/2)(simple effect of B at ao
 

+ simple effect of B at a)
 

(1/2)[(aobi 7 a0bo) +(atbj- abo)]
 

For our example, the computations based on data of the set with 
interaction are: 

Main effect of variety = (1/2)(1.0 + 3.0) = 2.0 t/ha 

Main effect of nitrogen = (1/2)(0.0 + 2.0) = 1.0 t/ha 

And the computations based on data without interaction are: 

Main effect of variety = (1/2)(1.0 + 1.0) = 1.0 t/ha 

Main effect of nitrogen = (1/2)(2.0 + 2.0) = 2.0 t/ba 

3 sTEP 3. Compute the interaction effect between factor A and factor B as a 
function of the difference between the simple effects of A at the two levels of 
B or the difference between the simple effects of B at the two levels of A: 

A X B = (1/2)(simple effect of A at b, - simple effect of A at bo) 

= (1/2)[(alb, - a0 bl) -(albo - aobo)] 

or, 

A X B = (1/2)(simple effect of B at a, - simple effect of B at ao) 

= (1/2)[(alb, - albo) -(aob - aobo)] 
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For our example, the computations of the variety X nitrogen interaction 
effect based on data of the set with interaction are: 

V X N = (1/2)(simple effect of variety at N, 

- simple effect of variety at NO) 

- (1/2)(3.0 -- 1.0) = 1.0 t/ha 

or, 

V X N = (1/2)(simple effect of nitrogen of Y 

-simple effect of nitrogen of X) 

= (1/2)(2.0 - 0.0) = 1.0 t/ha 

And the computations of the variety x nitrogen interaction effect based 
on data of the set without interaction are: 

V X N = 1/2(1.0 - 1.0) = 0.0 t/ha 

or, 

V x N = 1/2(2.0 - 2.0) = 0.0 t/ha 

A graphical representation of the nitrogen response of the two varieties is 
shown in Figure 3.a for the no-interaction data and in Figure 3.1c for the 
with-interaction data having an interaction effect of 1.0 t/ha. Cases with lower 
and highe, irteraction effects than 1.0 t/ha are illustrated in Figures 3.1b and 
3.1d. Figure 3.1b shows the nitrogen response to be positive for both varieties 
but with higher response for variety Y (2.0 t/ha) than for variety X (1.0 t/ha), 
giving an interaction effect of 0.5 t/ha. Figure 3.1d shows a large positive 
nitrogen response for X (2.0 t/ha) and an equally large but negative response 
for variety Y, giving an interaction effect of 2.0 t/ha. 

From the foregoing numerical computation and graphical representations of 
the interaction effects, three points should be noted: 

1. An interaction effect between two factors can be measured only if the 
two factors are tested together in the same experiment (i.e., in a factorial 
experiment). 

2. When interaction is absent (as in Figure 3.1a) the simple effect of a 
factor is the same for all levels of the other factors and equals the main effect. 
For our example, the simple effects of variety at No and N, are both 1.0 t/ha, 
which is the same as its main effect. That is, when interaction is absent, the 
results from separate single-factor experiments (i.e., one for each factor) are 
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Figure 3.1 Graphical representation of the different magnitudes of interaction between varieties 

(X and Y) and nitrogen rates (N0 and N) with (a) showing no interaction, (b) and (c) showing 

intermediate interactions, and (d) showing high interaction. 

equivalent to those from a factorial experiment with all factors tested together. 
In our example, the varietal effect would have been estimated at 1.0 t/ha 
regardless of whether: 

" The two varieties are tested under No in a single-factor experiment, 
" The two varieties are tested under N, in a single-factor experiment, or 

* 	The two varieties are tested in combination with the two nitrogen rates in a 
two-factor experiment. 
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3. When interaction is present (as in Figures 3.1b, 3.1c, and 3.1d) the 
simple effect of a factor changes as the level of the other factor changes. 
Consequently, the main effect is different from the simple effects. For example, 
in Figure 3.1c, the simple effects of nitrogen are 0.0 t/ha for variety X and 2.0 
t/ha for variety Y, and its main effect is thus 1.0 t/ha. In other words, 
although there was a large response to nitrogen application in variety Y, there 
was none in variety X. Or, in Figure 3.1d, variety Y outyielded variety X by 2.0 
t/ha under No but gave a 2.0 t/ha lower yield under N,. If the mean yields of 
the two varieties were calculated over the two nitrogen rates, the two variety 
means would be the same (i.e., 2.5 t/ha). Thus, if we look at the difference 
between these two variety means (i.e., main effect of variety), we would have 
concluded that there was no varietal difference. It is therefore clear that when 
an interaction effect between two factors is present: 

" 	 The simple effects and not the main effects should be examined. 
* 	 The result from a single-factor experiment is applicable only to the particu­

lar level in which the other factors were maintained in the experiment and 
there can be no generalization of the result to cover any other levels. 

3.2 FACTORIAL EXPERIMENT 

An experiment in which the treatments consist of all possible combinations of 
the selected levels in two or more factors is referred to as a factorial experi­
ment.* For example, an experiment involving two factors, each at two levels, 
such as two varieties and two nitrogen rates, is referred to as a 2 X 2 or a 22 
factorial experiment. Its treatments consist of the following four possible 
combinations of the two levels in each of the two factors. 

Treatment CombinationTreatment 
Number Variety N rate, kg/ha 

I X 0 
2 X 60 
3 Y 0 
4 Y 60 

If the 22 factorial experiment is expanded to include a third factor, say weed 
control at two levels, the experiment becomes a 2 x 2 x 2 or a 2' factorial 

*The term complete factorial experiwnt is sometimes used when the treatments include all 
combinations of the selected lewels of the variable factors. In contrast, the term incomplete 
factorial experiment isused when only a fraction rof all the combinations istested. Throughout this 
book, however, we refer to complete factorial experiments as factonal experiments and use the 
term incomplete factorial, otherwise. 
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experiment, with the following eight treatment combinations: 

Treatment Treatment Combination 
Number Variety N rate, kg/ha Weed Control 

I X 0 With 
2 X 0 Without 
3 X 60 With 
4 X 60 Without 
5 Y 0 With 
6 Y 0 Without 
7 Y 60 With 
8 Y 60 Without 

Note that the tem factorialdescribes a specific way in which the treatments 
are formed and dues not, in any way, refer to the experimental design used. 
For example, if the foregoing 23 factorial experiment is in a randomized 
complete block design, then the correct description of the experiment would be 
2' factorial experiment in a randomized complete block dcsign. 

The total number of treatments in a factorial experiment is the product of 
the levels in each factor; in the 22 factorial example, the number of treatments 
is 2 X 2 = 4, in the 2' factorial the number of treatment- is 2 x 2 x 2 = 8. 
The number of treatments increases rapidly with an increase in the number of 
factors or an increase in the level in each factor. For a factorial experiment 
involving five varieties, four nitrogen rates, and three weed-control methods, 
the total number of treatments would be 5 x 4 x 3 = 60. 

Thus, avoid indiscriminate use of factorial experiments because of their 
large size, complexity, and cost. Furthermore, it is not wise to commit oneself 
to a large experiment at the beginning of the investigation when several small 
preliminary experiments may offer promising results. For example, a plant 
breeder has collected 30 new rice varieties from a neighboring c intry and 
wants to assess their reaction to the local environment. Because the environ­
ment is expected to vary in terms of soil fertility, moisture levels, and so on, 
the ideal experiment would be one that tests the 30 varieties in a factorial 
experiment involving such other variable factors as fertilizer, moisture level, 
and population density. Such an experiment, however, becomes extremely large 
as variable factors other than varieties are added. Even if only one factor, say 
nitrogen fertilizer with three levels, were included the number of treatments 
would increase from 30 to 90. 

Such a large experiment would mean difficulties in financing, in obtaining 
an adequate experimental area, in controlling soil heterogeneity, and so on. 
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Thus, the more prac,.cal approach would be to test the 30 varieties first in a 
single-factor experiment, and then use the results to select a few varieties for 
further studies in more detail. For example, the initial single-factor experiment 
may show that only five varieties are outstanding enough to warrant further 
testing. These five varieties could then be put into a factorial experiment with 
three levels of nitrogen, resulting in an experiment with 15 treatments rather 
than the 90 treatments needed with a factorial experiment with 30 varieties. 
Thus, although a factorial experiment provides valuable information on inter­
action, and is without question more informative than a single-factor experi­
ment, practical consideration may limit its use. 

For most factorial experiments, the number of treatments is usually too 
large for an efficient use of a complete block design. Furthermore, incomplete 
block designs such as the lattice designs (Chapter 2, Section 2.4) are not 
appropriate for factorial experiments. There are, however, special types of 
design, developed specifically for factorial experiments, that are comparable to 
the incomplete block designs for single-factor experiments. Such designs, which 
are suitable for two-factor experiments and are commonly used in agricultural 
research, are discussed here. 

3.3 COMPLETE BLOCK DESIGN 

Any of the complete block designs discussed in Chapter 2 for single-factor 
experiments is applicable to a factorial experiment. The procedures for ran­
domization and layout of the individual designs are directly applicable by 
simply ignoring the factor composition of the factorial treatments and consid­
ering all the treatments as if they were unrelated For the analysis of variance, 
the computations discussed for individual designs are also directly applicable. 
However, additional computational steps are required to partition the treat­
ment sum of squares into factorial components corresponding to the main 
effects of individual factors and to their interactions. The procedure for such 
partitioning is the same for all complete block designs and is, therefore, 
illustrated for only cne case, namely, that of a randomized complete block 
(RCB) design. 

We illustrate the step-by-step procedures for the analysis of variance of a 
two-factor experiment in a RCB design with an experiment involving five rates 
of nitrogen fertilizer, three rice varieties, and four replications. The list of the 
15 factorial treatment combinations is shown in Table 3.2, the experimental 
layout in Figure 3.2, and the data in Table 3.3. 

o 	STEP 1. Denote the number of replications by r, the level of factor A (i.e., 
variety) by a, and the level of factor B (i.e., nitrogen) by b. Construct the 



Table 3.2 The 3 x 5 Factorial Treatment Combinations of Three Rice 

Varieties and Five Nitrogen Levels 

Factorial Treatment Combination 

Nitrogen Level, 6966 P1215936 Milfor 6(2) 
kg/ha (V,) (1/2 ) (V3) 

O(NO) NOV, NOV 2 NOV3 
40(NI) N, V, NIV2 NI V3 
70(Nz) N2V1 N2V2 N2V3 
100(N 3 ) N3V Ny2 N3V3 

130(N4 ) N4 V N4 V2 N4V3 

Table 3.3 Grain Yield of Three Rice Varieties Tested with Five Levels 
of Nitrogen In a RCB Design" 

Grain Yield, t/ha Treatment 

Nitrogen Level, 
kg/ha 

Rep. 
I 

Rep. 
II 

Rep. 
III 

Rep. 
IV 

Total 
(T) 

V, 
No 
N, 
N2 
N3 
N4 

3.852 
4.788 
4.576 
6.034 
5.874 

2.606 
4.936 
4.454 
5.276 
5.916 

3.144 
4.562 
4.884 
5.906 
5.984 

2.894 
4.608 
3.924 
5.652 
5.518 

12.496 
18.894 
17.838 
22.868 
23.292 

V2 

NO 
N, 
N2 
N3 
N4 

2.846 
4.956 
5.928 
5.664 
5.458 

3.794 
5.128 
5.698 
5.362 
5.546 

4.108 
4.150 
5.810 
6.458 
5.786 

3.444 
4.990 
4.308 
5.474 
5.932 

14.192 
19.224 
21.744 
22.958 
22.722 

V3 

NO 
N, 
N2 
N3 

4.192 
5.250 
5.822 
5.888 

3.754 
4.582 
4.848 
5.524 

3.738 
4.896 
5.678 
6.042 

3.428 
4.286 
4.932 
4.756 

15.112 
19.014 
21.280 
22.210 

N4 
Rep. total (R) 
Grand total (G) 

5.864 
76.992 

6.264 
73.688 

6.056 
77.202 

5.362 
69.508 

23.546 

297.390 

"For description of treatments, see Table 3.2. 

92 
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V2 N, V,N4 V, N, V2 N3V3 N2 

Rep. I V3 N0 V N3 V3 N4 V! N2 V3N3 

V3 N, VN 0V2 N4 V2 N0 V2N2 

V2 N3 V3 N3 V,N, V2 No V2 N , 

Rep. n V1 N3 V3 N2 V, N2 V, N4 V2N4 

V No V3 N4 V2N2 V3 N VBao 

VN, V3 No VNo V3 N, VN4 

Rep.m V2 N2 V, N2 V, N3 V2N 4 V3N4 

V2 No V3 NZ V2 N, V2 N3 V3N3 

V, N2 V2N2 V2N4 V No V2No 
- _ VN O V- A sample layout of a 3 x 5 factorialVN VN VN Figure 3.2 

Rep. 3Z V N3 V3 N, V, N4 V, N, V2 N3 experiment involving three varietics (V, V2, and 
- 1V3) and five nitrogen rates (NO, NI, N2, N3, and 

V N4 ) in a randomized complete block design withV3 No V2 N, V3 N2 V3 N3 3 N4 

I - I I Ifour replications.
 

outline of the analysis of variance as: 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Replication 	 r - 1 = 3 
Treatment ab - 1 = 14 

Variety (A) a - I = (2) 
Nitrogen (B) b - I = (4) 
A XB (a - IXb - 1)= (8) 

Error (r - lXab - 1) = 42 
Total rab - I = 59 

o 	STEP 2. Compute treatment totals (T), replication totals (R), and the 
grand total (G), as shown in Table 3.3; and compute the total SS, replica­
tion SS, treatment SS, and error SS, following the procedure described in 
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Chapter 2, Section 2.2.3: 

C.F.=­
rab 

=(297.390)2 . 1,474.014 

(4)(3)(5) 

Total SS _ EX 2 - C.F. 

- [(3.852)2 +(2.606)2 + ... +(5.362)2 ] - 1,474.014 

= 53.530 

ER 2
 

Replication SS = -- C.F.

ab 

M(76.992)2 + ... + (69.508)2 1,474.014 
(3)(5) 

- 2.599 

E T 2Treatment SS = - C.F. 
r 

(12.496)2 + ... +(23.546) 2 _ 1,474.014 
4 

= 44.578 

E.'ror SS = Total SS - Replication SS - Treatment SS 

= 53.530 - 2.599 - 44.578 

= 6.353 

The preliminary analysis of variance, with the various SS just computed, 
is as shown in Table 3.4. 

o3 sTEP 3. Construct the factor A x factor B two-way table of totals, with 
factor A totals and factor B totals computed. For our example, the variety 
x nitrogen table of totals (AB) with variety totals (A) and nitrogen totals 

(B) computed is shown in Table 3.5. 
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Table 1.4 Preliminary Analysis of Variance for Data In Table 3.3 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square Fa 5% 1% 

Replication 3 2.599 0.866 5.74** 2.83 4.29 
Treatment 14 44.578 3.184 21.09"* 1.4 2.54 
Error 42 6.353 0.151 

Total 59 53.530 

as* - significant at 1%level. 

0 	 STEP 4. Compute the three factorial components of the treatment sum of 
squares as: 

2
EA

ASS= rb-- C.F. 

=(95.388)2 +(100.840)2 +(101.162)2 1,474.014 

(4)(5) 

= 1.052 

BSS EB2 -C.F. 
ra 

= (41.800)2 + ... + (69.560) 2 _ 1,474.014 

(4)(3) 

- 41.234 

Table 3.5 The Variety x Nitrogen Table of Totals from Data In Tablo 3.3 
Nitrogen 

Yield Total (AB) Total 

Nitrogen V, V2 V3 (B) 

No 12.496 14.192 15.112 41.800 
18.894 19.224 19.014 57.132 

N2 17.838 21.744 21.280 60.862 
N3 22.868 22.958 22.210 68.036 
N4 23.292 22.722 23.546 69.560 

Variety total (A) 95.388 100.840 101.162 297.390 

NI 
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A X B SS = Treatment SS - A SS - B SS 

= 44.578 - 1.052 - 41.234 

= 2.292 

0 STEP 5. Compute the mean square for each source of variation by dividing 
the SS by its d.f.: 

A MS =A SS 
a-I 

1.052 0526 
2 

= B SSBMS b-1 

= 41.234 = 10.308
4 

A X BSSA X B MS ­
(a-1)(b-1) 

= 2.292- = 0.286 
(2)(4) 

= Error SSError MS 
(r- 1)(ab- 1) 

6.353
(3)[(3)(5) - 1] 

" sr 6. Compute the F value for each of the three factorial components as: 

A MS
F(A) = Error MS 

0.526 
3.480.151 

B MS 
F(B) = Error MS 

10.308 
= 68.26= .5 

F(AxB) = A XBMS 

Error MS 

0.286 
.890.151 
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Table 3.6 Analysis of Variance of Data In Table 3.3 from a 3 x 5 Factorial 
Experiment In RCB Design" 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Replication 3 2.599 0.866 5.74** 2.83 4.29 
Treatment 14 44.578 3.184 21.09* 1.94 2.54 

Variety(A) (2) 1.052 0.526 3.48* 3.22 5.15 
Nitrogen(B) (4) 41.234 10.308 68.26** 2.59 3.80 
A X B (8) 2.292 0.286 1.89' 2.17 2.96 

Error 42 6.353 0.151 
Total 59 53.530 

"cv - 7.8%. 
significant at 1%level, significant at 5%level, m not significant.b** 	 * ­

0 	STEP 7. Compare each of the computed F values with the tabular F value, 
from Appendix E, with f, = d.f. of the numerator MS and f2 = d.f.of the 
denominator MS, at a prescrioed level of significance. For example, the 
computed F(A) value is compared with the tabular F values (with f, = 2 
and f2 = 42 degrees of freedom) of 3.22 at the 5% level of significance and 
5.15 at the 1% kevel. The result indicates that the main effect of factor A 
(variety) is significant at the 5% level of significance. 

o3 	 STEP 8. Compute the coefficient of variation as: 

/Error MSco = x 100 
Grand mean 

SX100 = 7.8% 
-4.956 

o1 	 sup 9. Enter all values obtained in steps 4 to 8 in the preliminary analysis 
of variance of step 2, as shown in Table 3.6. The results show a nonsignifi­
cant interaction between variety and nitrogen, indicating that the varietal 
difference was not significantly affected by the nitrogen level applied and 
that the nitrogen effect did not differ significantly with the varieties tested. 
Main effects both of variety and of nitrogen were significant. 

3.4 SPLIT-PLOT DESIGN 

The split-plot design is specifically suited for a two-factor experiment that has 
more treatments than can be accommodated by a complete block design. In a 
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split-plot design, one of the factors is assigned to the main plot. The assigned 
factor is called the main-plot factor. The main plot is divided into subplots to 
which the second factor, called the subplot factor, is assigned. Thus, each main 
plot becomes a block for the subplot treatments (i.e., the levels of the subplot 
factor). 

With a split-plot design, the precision for the measurement of the effects of 
the main-plot factor is sacrificed to improve that of the subplot factor. 
Measurement of the main effect of the subplot factor and its interaction with 
the main-plot factor is more precise than that obtainable with a randomized 
complete block design. On the other hand, the measurement of the effects of 
the main-plot treatments (i.e., the levels of the main-plot factor) is less precise 
than that obtainable with a randomized complete block design. 

Because, with the split-plot design, plot size and precision of measurement 
of the effects are not the same for both factors, the assignment of a particular 
factor to either the main plot or the subplot is extremely important. To make 
such a choice, the following guidelines are suggested: 

1. Degree of Precision. For a greater degree oi precision for factor B than 
for factor A, assign factor B to the subplot and factor A to the main plot. For 
example, a plant breeder who plans to evaluate 10 promising rice varieties with 
three levels of fertilizatiui in a 10 x 3 factorial experiment would probably 
wish to have greater precision for varietal comparison than for fertilizer 
response. Thus, he would designate variety as the subplot factor and fertilizer 
as the main-plot factor. 

On the other hand, an agronomist who wishes to study fertilizer responses 
of the 10 promising varieties developed by the plant breeder would probably 

-want greater precision for fertiliz; response than for varietal effect and would 
assign variety to main plot and fertilizer to subplot. 

2. Relative Size of the Main Effects. If the main effect of one factor 
(factor B) is expected to be much larger and easier to detect than that of the 
other factor (factor A), factor B can be assigned to the main plot and factor A 
to the subplot. This increases the chance of detecting the difference among 
levels of factor A which has a smaller effect. For example, in a fertilizer X 
variety experiment, the researcher may assign variety to the subplot and 
fertilizer to the main plot because he expects the fertilizer effect to be much 
larger than .e varietal effect. 

3. Management Practices. The cultural practices required by a factor may 
dictate the use of large plots. For practical expediency, such a factor may be 
assigned to the main plot. For example, in an experiment to evaluate water 
management and variety, it may be desirable to assign water management to 
the main plot to minimize water movement betwcen adjacent plots, facilitate 
the simulation of the water level required, and reduce border effects. Or, in an 
experiment to evaluate the performance of several rice varieties with different 
fertilizer rates, the researcher may assign the main plot to fertilizer to minimize 
the need to separate plots receiving different fertilizer levels. 
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o 5 	 _o00 	 0 

Replication I Replication I. Replicotion I 

Figure 3.3 Division of the experimental area into three blocks (ieplications) each consisting of six 
main plots, as the first step in laying out of a split-plot experiment involving three replications and 
six main-plot treatments. 

In a split-plot design, both the procedure for randomization and that for 
analysis of variance are accomplished in two stages-one on the main-plot 
level and another on the subplot level. At each level, the procedures of the 
randomized complete block design*, as described in Chapter 2, are applicable. 

3.4.1 Randomizatien and Layout 

There are two separate randomization processes in a split-plot design-one for 
the main plot and another for the subplot. In each replication, main-plot 
treatments are first randomly assigned to the main plots followed by a random 
assignment of the subplot treatments within each main plot. Each is done by 
any of the randomization schemes of Chapter 2, Section 2.1.1. 

The steps in the randomization and layout of a split-plot design are shown, 
using a as the number of main-plot treatments, b as the number of subplot 
treatments, and r as the number of replications. For illustration, a two-factor 
experiment involving six levels of nitrogen (main-plot treatments) and four rice 
varieties (subplot treatments) in three replications is used. 

o 	STEP 1. Divide the experimental area into r = 3 blocks, each of which is 
further divided into a = 6 main plots, as shown in Figure 3.3. 

The assignment of the main-plot factor can, in fact, follow any of the complete block designs, 
namely, completely randomized design, randomized complete block, and latin square; but we 
consider only the randomized complete block because it is the most appropriate and the most 
commonly used for agricultural experiments. 
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N4 N3 N No N5 N2 NI No N5 N2 N4 N3 No N, N4 N5 N3 N2 

Replication I 	 Replication H Replication M 

Figure 3.4 Random assignment of six nitrogen levels (NO, NI, N2, N3, N4, and N5) to the six main 

plots in each of the three replications of Figuic 3.3. 

0 	STEP 2. Following the RCB randomization procedu,: with a = 6 treat­
ments and r = 3 replications (Chapter 2, Section 2.2.2) randomly assign the 
6 nitrogen treatments to the 6 main plots in each of the 3 blocks. The result 
may be as shown in Figure 3.4. 

o1 	 STEP 3. Divide each of the (r)(a) = 18 main plots into b = 4 subplots and, 
following the RCB randomization procedure for b = 4 treatments and 

N N, N, No NIN4 N3 NI No N5 2 No N5 N4 N3 N4 N5 N3 N2 

V2 V, VI V2 V4V 3 V, V4 V3 VI VI V3 V4 V3 V3 Vt V2 VI 

VI V4 V2 V3 V3 V2 V VI V4 V2 V4 V2 V2 V V2 V3 V3 V4 

V VI 	 V2 V?V3 V2 4 VI V2 V2 V2 VI V4 V2 V4 VI VI V4 V4 

V| 	 V VI V3V4 V3 V3 V4 V4 V4 V3 V2 V3 V3 VI V3 VZ V4 

L ---L - - L-.L--I , . I L I 
Replication I Replicotion 11 Replication III 

Figure 3.5 A sample layout of a split-plot design involving four rice varieties ( V1 , V2 , V3. and V4 ) 
as subplot treatments and six nitrogen levels (NO, NI, N2 , N3 , N4 , and N) as main-plot treatments, 
in three replications. 
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(rXa) = 18 replications, randomly assign the 4 varieties to the 4 subplots in 
each of the 18 main plots. The result may be as shown in Figure 3.5. 

Note that field layout of a split-plot design as illustrated by Figure 3.5 
has the following important features: 

1. 	 The size of the main plot is b times the size of the subplot. In our 
example with 4 varieties (b = 4) the size of the main plot is 4 times 
the subplot size. 

2. 	 Each main-plot treatment is tested r times whereas each subplot 
treatment is tested (a)(r) times. Thus, the number of times a subplot 
treatment is tested will always be larger than that for the main plot 
and is the primary reason for more precision for the subplot treat­
ments relative to the main-plo, treatments. In our example, each of 
the 6 levels of nitrogen was teLed 3 times but each of the 4 varieties 
was tested 18 times. 

3.4.2 Analysis of Variance 

The analysis of variance of a split-plot design is divided into the main-plot 
analysis and the subplot analysis. We show the computations involved in the 
analysis with data from the two-factor experiment (six levels of nitrogen and 
four rice varieties) shown in Figure 3.5. Grain yield data are shown in Table 
3.7. 

Let A denote the main-plot factor and B, the subplot factor. Compute 
analysis of variance: 

0 	sup 1. Construct an outline of the analysis of variance for a split-plot 
design as: 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square F 5% 1% 

Replication r ­1 ­ 2 
Main-plot factor(A) a - I - 5 
Error(a) (r- 1)(a - 1)- 10 
Subplot factor(B) b ­ 1 - 3 
A XB (a-1)(b-1)-15 
Error(b) a(r ­ 1)(b - 1) ­ 36 

Total rab- 1 - 71 

0 	STEP 2. Construct two tables of totals: 

A. 	 The replication X factor A two-way table of totals, with the replication 
totals, factor A totals, and grand total computed. For our example, the 



Table 3.7 Grain Yield Data of Four Rice 
Varietiee Grown with Six Levels of Nitrogen 
In a SplK-Plot Design with Three Replications 

Variety 


V(IR8) 

V2 (IR5) 

V3(C4-63) 
V4 (Peta) 

V, 
V2 

V3 
V4 

V 
V2 
V3 
V4 

V1 
V2 

V3 

V4 

V1 

V2 
V3 
V4 

V 
V2 
V3 
V4 

Rep. I 

4,430 
3,944 
3,464 
4,126 

5,418 
6,502 
4,768 
5,192 

6,076 
6,008 
6,244 
4,546 

6,462 
7,139 
5,792 
2,774 

7,290 
7,682 
7,080 
1,414 

8,452 
6,228 
5,594 
2,248 

Grain Yield, kg/ha 

Rep. II Rep. III 

No(O kg N/ha) 
4,478 3,850 
5,314 3,660 
2,944 3,142 
4,482 4,836 

N,(60 kg N/ha) 
5,166 6,432 
5,858 5,586 
6,004 5,556 
4,604 4,652 

N2(90 kg N/ha) 
6,420 6,704 
6,127 6,642 
5,724 6,014 
5,744 4,146 

Nj(120 kg N/ha)
 

7,056 6,680 
6,982 6,564 
5,880 6,370 
5,036 3,638 

N4(15o kg N/ha) 

7,848 7,552 
6,594 6,576 
6,662 6,320 
1,960 2,766 

Nj(180 kg N/ha) 

8,832 8,818 
7,387 6,006 
7,122 5,480 
1,380 2,014 

102 
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Table 3.8 The Replication x Nitrogen Table of Yield Totals Computed 
from Data In Table 3.7 

Yield Total (RA)Yield__Tota___RA) _ 
Nitrogen

Total 
Nitrogen Rep. I Rep. II Rep. III (A) 

No 15,964 17,218 15,488 48,670 
N1 21,880 21,632 22,226 65,738 
N2 22,874 24,015 23,506 70,395 
N3 22,167 24,954 23,252 70,373 
N 4 23,466 23,064 23,214 69,744 
N5 22,522 24,721 22,318 69,561 

Rep. total (R) 128,873 135,604 130,004 
Grand total (G) 394,481 

replication X nitrogen table of totals (RA), with the replication totals 
(R), nitrogen totals (A), and the grand total (G) computed, is shown in 
Table 3.8. 

B. 	 The factor A x factor B two-way table of totals, with factor B totals 
computed. For our example, the nitrogen x variety table of totals 
(A B), with the variety totals (B) computed, is shown in Table 3.9. 

0 	 STEP 3. Compute the correction factor and sums of squares for the main­
plot analysis as: 

G2 
G2C.F.-
rab 

(394,481)2 . 2,161,323,047 
(3)(6)(4) 

Table 3.9 The Nitrogen x Variety Table of Yield Totals Computed 

from Data In Table 3.7 

Yield Total (AB) 

Nitrogi n V, V2 	 V4V3 

No 12,758 12,918 9,550 13,444 
N 17,016 17,946 16,328 14,448 
N2 19,200 18,777 17,982 14,436 
N3 20,198 20,685 18,042 11,448 
N4 22,690 20,852 20,062 6,140 
N 26,102 19,621 18,196 5,642 

Variety total (B) 117,964 110,799 100,160 65,558 
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Total SS _ EX 2 - C.F. 

= [(4,430)2 + ... + (2,014)2] - 2,161,323,047 

- 204,747,916 

ER2
 

Replication SS - -2 - C.F.
 

= (128,873)2 +(135'604)2 +(130'004)2 2,161,323,047 
(6)(4) 

- 1,082,577
 

A (nitrogen) SS - - C.F.

rb 

(48,670)2 + ... + (69,561)2 - 2,161,323,047 

(3)(4) 

- 30,429,200 

Error(a) SS - E(RA) 2 _ C.F - Replication SS - A SS
b 

+ "" +(22,318)2 - 2,161,323,047
- (15,964)2 

(4) 

-1,082,577 - 30,429,200 

- 1,419,678 

3 srEp 4. Compute the sums of squares for the subplot analysis as: 

B (variety) SS E 2 C.F. 
ra 

+ (65,558)2 -	 2,161,323,047
= (117,964)2 	 + "' 

(3)(6) 

- 89,888,101 
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B SS - ASS 
105 

r 

- (12,758)2 + . +(5,642) 2 

3 

- 2,161,323,047 

-89,888,101 - 30,429,200 

59,343,487 

Error(b) SS Total SS - (sum of all other SS) 

= 	204,747,916 -(1,082,577 + 30,429,200 + 1,419,678 

+ 89,888,101 + 69,343,487) 

= 12,584,873 

01 	 STEP 5. For each source of variation, compute the mean square by dividing 
the SS by its corresponding d.f.: 

Replication MS = Replication SS 
r- 1 

=1,082,577 = 541,228 
2 

SSA 	MS =Aa-1 

30,429,200 -6,085,840 
5 

Error(a)MS = Error(a) SS 
(r- 1)(a- 1) 

= 	1,419,678 = 141,968 
10 

B MS = b-i 

89,888,10131 = 29,962,700 
3 
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A x BMS = A X BSS 
(a- 1)(b- 1) 

= 69,343,487
15 

= 4,622,899 

Error(b) SS 
rror(b) MS a(r- 1)(b- 1) 

= 	12,584,873 . 349,580 
36 

n 	 step 6. Compute the F value for each effect that needs to be tested, by 
dividing each mean square by its corresponding error term: 

A MS 
Error(a) MS 

= 6,085,840 42.87 
141,968 

B MS 
Error(b) MS 

= 29,962,700 85.71 
349,580 

x B) = A XBMSF(A 
Error(b) MS 

= 4,622,899 13.22 
349,580 

[ 	 sTp 7. For each effect whose computed F value is not less than 1, obtain 

the corresponding tabular F value, from Appendix E, with f, = d.f. of the 
numerator MS and f2 = d.f. of the denominator MS, at the prescribed level 

of significance. For example, the tabular F values for F(A X B) are 1.96 at 

the 5% level of significance and 2.58 at the 1% level. 

[ 	 STEP 8. Compute the two coefficients of variation, one corresponding to the 

main-plot analysis and another corresponding to the subplot analysis: 

cError(a) MS 
cv(a)= Grand mean x 100 

=V4,968 x 100 6.9%5,479 
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cv(b) = VError(b) MS 
Grand mean x 100 

_ 349,580 
- X 100 = 10.8%5,479 

The value of cv(a) indicates the degree of precision attached to the 
main-plot factor. The value of cv(b) indicates the precision of the subplot
factor and its interaction with the main-plot factor. The value of cv(b) is 
expected to be smaller than that of cv(a) because, as indicated earlier, the 
factor assigned to the main plot is expected to be measured with less 
precision than that assigned to the subplot. This trend does not always hold,
however, as shown by this example in which the value of cv(b) is larger than 
that of cv(a). The cause for such an unexpected outcome is beyond the 
scope of this book. If such results occur frequently, a competent statistician 
should be consulted. 

0 STEP 9. Enter all values obtained from steps 3 to 8 in the analysis of 
variance outline of step 1, as shown in Table 3.10; and compare each of the 
computed F values with its corresponding tabular F values and indicate its 
significance by the appropriate asterisk notation (see Chapter 2, Section 
2.1.2). 

For our example, all the three effects (the two main effects and the 
interaction effect) are highly significant. With a significant interaction, 
caution must be exercised when interpreting the results (see Section 3.1). For 
proper comparisons between treatment means when the interaction effect is 
present, see Chapter 5, Section 5.2.4. 

Table 3.10 Analysis of Variance of Data In Table 3.7 from a 4 x 6 
Factorial Experiment Ina Split-Plot Design" 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 

Square 
Computed 

Fb 
Tabular F 
5% 1% 

Replication 
Nitrogen (A) 
Error(a) 
Variety (B) 

2 
5 

10 
3 

1.082,577 
30,429,200 

1,419,678 
89,888,101 

541,228 
6,085,840 

141,968 
29,962,700 

42.87** 

85.71** 

3.33 

2.86 

5.64 

4.38 
A x B 
Error(b) 

Total 

15 
36 
71 

69,343,487 
12,584,873 

204,747,916 

4,622,899 
349,580 

13.22* 1.96 2.58 

"cv(a) - 6.9%, cv(b) - 10.8%. 
-**.significant at 1%level. 
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3.5 STRIP-PLOT DESIGN 

The strip-plot design is specifically suited for a two-factor experiment in which 
twothe desired precision for measuring the interaction effect between the 

factors is higher than that for measuring the main effect of either one of the 

two factors. This is accomplished with the use of three plot sizes: 

the verticalfactor1. 	 Vertical-stripplot for the first factor-

the horizontalfactor
2. Horizontal-stripplot for the second factor-

3. Intersection plot for the interaction between 	the two factors 

The vertical-strip plot and the horizontal-strip plot are always perpendicular to 

each other. However, there is no relationship between their sizes, unlike the 

case of main plot and subplot of the split-plot design. The intersection plot is, 

of course, 	the smallest. Thus, in a strip-plot design, the degrees of precision 

with the main effects of both factors are sacrificed in order to
associated 

improve the precision of the interaction effect.
 

3.5.1 Randomization and Layout 

The procedure for randomization and layout of a strip-plot design consists of 

two independent randomization processes-one for the horizontal factor and 
two processes are

another for the vertical factor. The order in which these 

performed is immaterial. 
Let A represent the horizontal factor and B the vertical factor, and a and b 

their levels. As in all previous cases, r represents the number ofrepresent 
a 	tw3-factor experimentreplications. We illustrate the steps involved 	 with 

rice varieties (horizontal treatments) and three nitrogen ratesinvolving six 
(vertical treatments) tested in a strip-plot design with three replications. 

" 	STEP 1. Assign horizontal plots by dividing the experimental area into 

r = 3 blocks and dividing each of those into a = 6 horizontal strips. Follow 

the randomization procedure for a randomized complete block design with 

a = 6 treatments and r = 3 replications (see Chapter 2, Section 2.2.2) and 

randomly assign the six varieties to the six horizontal strips in each of the 

three blocks, separately and independently. The result is shown in Figure 

3.6. 

Assign vertical plots by dividing each block into b = 3 verticalo STEP 2. 
strips. Follow the randomization procedure for a randomized complete 

block with b = 3 treatments and r = 3 replications (see Chapter 2, Section 
rates to the three vertical2.2.2) and randomly assign the three nitrogen 

strips in each of the three blocks, separately and independently. The final 

layout is shown in Figure 3.7. 
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V6 V4 V5vs V2 V2 
V3 V6 V3 

V2V 3 V4 
V4 v, V6 

V V5 VI 

Replication I Replication I1 Replication Ir 

Figure 3.6 Random assignment of six varieties (VI, V2, V3, V4, V, and V6) to the horizontal 
strips in a strip-plot design with three replications. 

3.5.2 Analysis of Variance 

The analysis of variance of a strip-plot design is divided into three parts: the 
horizontal-factor analysis, the vertical-factor analysis, and the int'raction analy­
sis. We show the computational procedure with data from a two-factor 
experiment involving six rice varieties (horizontal factor) and three nitrogen
levels (vertical factor) tested in three replications. The field layout is shown in 
Figure 3.7; the data is in Table 3.11. 

o 	STEP 1. Construct an outline of the analysis of variance for a strip-plot 
design as: 

Source 
of 
Variation 

Degree
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
F 

Tabular F 
5% 1% 

Replication r ­ 1 ­ 2 
Horizontal factor (A) a ­ 1 - 5 
Error(a) (r ­ 1)(a - 1)- 10 
Vertical factor (B) b ­1 - 2 
Error(b) (r ­ 1)(b - 1) ­4 
A xB (a-1)(b-1)-10 
Error(c) (r ­ 1)(a - 1)(b - 1)- 20 

Total rab - 1 - 53 

D STEP 2. Construct three tables of totals: 

1. 	 The replication x horizontal-factor table of totals with replication totals, 
horizontal-factor totals, and grand total computed. For our example, the 
replication X variety table of totals (RA) with replication totals (R),
variety totals (A), and the grand total (G) computed is shown in Table 
3.12. 



N, N3 N2 N3 N2 Nt N3 N1 N2 

V V4 V5 

Vs V2 V2 

V3 V6 V3
 

V2 V3 V4
 
V1 VV4 6 

V, f V5 V, 

Replicotion I Replicohon 1E Replicaton III 

Figure 3.7 A sample layout of astrip-plot design with six varietics (VI VI, V3, 4, V5. and V6) as 
N2, and N3) as vertical treatments, in threehorizontal treatments and three nitrogen rates (NI, 

replications. 

Table 3.11 Data on Grain Yield of Six Varieties 
of Rice, Broadcast Seeded and Grown with 
Three Nitrogen Rates In a Strip-plot Design 
with Three Replications 

Nitrogen Grain Yield, kg/ha 
Rate, 

kg/ha Rep. I 

0 (N1) 2,373 
60 (N2) 4,076 
120 (N3) 7,254 

0 4,007 
60 5,630 
120 7,053 

0 2,620 
60 4,676 
120 7,666 

0 2,726 
60 4,838 
120 6,881 

0 4,447 
60 5,549 
120 6,880 

0 2,572 
60 3,896 
120 1,556 

Rep. II 

IR8( V ) 
3,958 
6,431 
6,808 

IR127-80(V.,) 

5,795 
7,334 
8,284 

IR305-4-12(Vj ) 

4,508 
6,672 
7,328 

IR400-2-5(V4) 

5,630 
7,007 
7,735 

IR665-58( V5) 

3,276 
5,340 
5,080 

Peta (V) 

3,724 
2,822 
2,706 

Rep. III 

4,384 
4,889 
8,582 

5,001 
7,177 
6,297 

5,621 
7,019 
8,611 

3,821 
4,816 
6,667 

4,582 
6,011 
6,076 

3,326 
4,425 
3,214 

110 
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2. 	 The replication X vertical-factor table of totals with the vertical-factor 

totals computed. For our example, the replication X nitrogen table of 
totals (RB) with nitrogen totals (B) computed is shown in Table 3.13. 

3. 	 The horizontal-factor X vertical-factor table of totals. For our example, 
the variety X nitrogen table of totals (AB) is shown in Table 3.14. 

" 	STEP 3. Compute the correction factor and the total sum of squares as: 

G2
 
C.F. 	-­

rab
 

= 	(285,657)2 = 1,511,109,660 
(3)(6)(3) 

Total SS= EX 2 - C.F. 

= 	[(2,373)2 + +(3,214)' ] - 1,511,109,660 

= 167,005,649 

o 	STEP 4. Compute the sums of squares for the horizontal analysis as: 

Y2R 2
 

Replication SS = -- - C. F.
 

= (84,700)2 +(100,438)2 +(100,519)2 _ 1,511,109,660 
(6)(3) 

= 9,220,962 

A (variety)SS = A 2 - CF. 

~vaney, rb 

- (48,755)2 + ... +(28,241)2 1,511,109,660 

(3)(3) 

= 57,100,201 
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Error(a) SS = E(RA) 2 - C.F.- Replication SS - ASS
b 

= (13,703)2 + 	 ""*+ (10,965)' - 1,511,109,660
3 

-9,220,962 - 57,100,201 

= 14,922,620 

Table 3.12 The RepllcatlonVadety Table of Yield Totals Computed 
from Data In Table 3.11 

Variety 
Yield Total (RA) Total 

Variety Rep. I Rep. II Rep. III (A) 

V, 13,703 17,197 17,855 48,755 
V2 16,690 21,413 18,475 56,578 
V3 14,962 18,508 21,251 54,721 
V4 14,445 20,372 15,304 50,121 
V5 16,876 13,696 16,669 47,241 
V6 8,024 9,252 10,965 28,241 

Rep. total (R) 84,700 100,438 100,519 
Grand total (G) 285,657 

Table 3.13 The Replication x Nitrogen Table of Yield Totals 
Computed from Data In Table 3.11 

Nitrogen 

Yield Total (RB) Total 

Nitrogen Rep. I Rep. II Rep. III (B) 

N, 18,745 26,891 26,735 72,371 
N2 28,665 35,606 34,337 98,608 

37,290 37,941 39,447 114,678N3 

Table 3.14 The Variety x Nitrogen Table of Yield 

Totals Computed from Data In Table 3.11 

Yield Total (AB) 

Variety N, N2 N3 

V 	 10,715 15,396 22,644 
14,803 20,141 21,634V2 

V3 12,749 18,367 23,605 
V4 12,177 16,661 21,283 
V5 12,305 16,900 18,036 
V6 9,622 11,143 7,476 
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" 	STEP 5. Compute the sums of squares for the vertical analysis as: 

YZB 2
 

B (nitrogen) SS - E-- - C.F.
 ra
 

(72,371)2 +(98,608)2 +(114,678)2 _1,511,109,660 
(3)(6) 

= 	50,676,061 

Error(b) SS - E(RB) 2 _ C.F.- Replication SS - B SS 
a 

(18,745)2 + ... + (39,447) 2 

= 6 -1,511,109,660 

- 9,220,962 - 50,676,061 

- 2,974,909 

O 	 STEP 6. Compute the sums of squares for the interaction analysis as: 

A x B (variety X nitrogen) SS -E(AB)2C.F.- A SS - B SS 

+ 	 ... + (7,476)2(10,715)2 

3 

-1,511,109,660 

- 57,100,201 - 50,676,061 

= 23,877,980 

Error(c) SS - Total SS - (the sum of all other SS) 

= 	167,005,649 -(9,220,962 + 57,100,201 + 14,922,620 

+ 50,676,061 + 2,974,909 + 23,877,980) 

= 	8,232,916 

" 	STEP 7. Compute the mean square for each source of variation by dividing 
the SS by its d.f.: 

Replication MS 9,220,962 4,610,481 

A MS - 57,100,201
5 =11,420,040 
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Eror(a)MS -14,922,620 1,492,262 
10 

B MS = 50,676,061 = B M= 2 - 25,338,031 

Error(b) MS -2,974,909 = 743,727 
4 

A X B MS = 23,877,980 2,387,798
10 

Efror(c) MS =8,232,916 = 411,646
20 

o 	 sTeP 8. Compute the F values as: 

A MS 
Error(a) MS 

B MS 
Error(b) MS 

AX BMSF(A x B) = 
Error(c) MS 

For our example, because the d.f. for error (b) MS is only 4, which is 
considered inadcquate for a reliable estimate of the error variance (see 
Chapter 2, Section 2.1.2), no test of significance for the main effect of factor 
B is to be made. Hence, the two other F values are computed as: 

F(A) = 11,420,040 7.65 
1,492,262 

F(A x B) = 2,387,798
411,646 = 5.80 

o3 	 smp 9. For each effect whose computed F value is not less than 1, obtain 
the corresponding tabular F value, from Appendix E, with f]= d.f. of the 
numerator MS and f2 = d.f. of the denominator MS at the prescribed level 
of significance. 

For our example, the tabular F values corresponding to the computed 
F(A x B) value, with f, = 10 and f2 = 20 degrees of freedom, are 2.35 at 

the 5% level of significance and 3.37 at the 1%level. 
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O 	STEP 10. Compute the three coefficients of variation corresponding to the 

three error mean squares as: 

cError(a)MS 
cv(a)= Grand Mean X 100 

cvb Errer(b) WS 0 
cv(b)= Grand Meav 100 

×cc)-Grand Mean X 100cv(c) Error(c) M 10 

The cv(a) value indicates the degree of precision associated with the 
horizontal factor, cv(b) with the vertical factor, and cv(c) with the interac­
tion between the two factors. The value of cv(c) is expected to be the 
smallest and the precision for measuring the interaction effect is, thus, the 
highest. For cv(a) and cv(b), however, there is no basis to expect one to be 
greater or smaller then the other. 

For our example, because the d.f. for error(b) MS is inadequate, cv(b) is 
not computed. The cv values for the two other error terms are computed as: 

cv1a= 1492,262 
cv(a) = A ,262 X 100 = 23.1% 

cv(c) = 5,290 X 100 = 12.1% 

Table 3.15 Analysis of Variance of Data InTable 3.11 from a 3 x 6 
Factorial Experiment Ina Strip-plot Deslgn _ 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fh 5% 1% 

Replication 2 9,220,962 4,610,481 
Variety (A) 5 57,100,201 11,420,040 7.65*0 3.33 5.64 
Error(a) 
Nitrogen (B) 

10 
2 

14,922,620 
50,676,061 

1,492,262 
25,338,031 C - _ 

Error(b) 4 2,974,909 743,727 
A x B 10 23,877,980 2,387,798 5.80** 2.35 3.37 
Error(c) 20 8,232,916 411,646 

Total 53 167,005,649 

"cv(a) ­ 23.1%, cv(c) ­ 12.1%. 
boo _ significant at 1%level. 
cError(b) d.f is not adequate for valid test of significance. 
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03 sup 11. Enter all values computed in steps 3 to 10 in the analysis of 
variance outline of step 1, as shown in Table 3.15. Compare each computed 
F value with its corresponding tabular F values and designate the significant 
results with the appropriate asterisk notation (see Chapter 2, Section 2.1.2). 
For our example, both F values, one corresponding to the main effect of 
variety and another to the interaction between variety and nitrogen, are 
significant. With a significant interaction, caution must be exercised when 

meaninterpreting the results. See Chapter 5, Section 5.2.4 for appropriate 
comparisons. 

3.6 GROUP BALANCED BLOCK IN SPLIT-PLOT DESIGN 

The group balanced block design described in Chapter 2, Section 2.5, for 

single-factor experiments can be used for two-factor experiments. This is done 

by applying the rules for grouping of treatments (described in Section 2.5) to 

either one, or both, of the two factors. Thus, the group balanced block design 

can be superimposed on the split-plot design resulting in what is generally 
called the group balanced block in split-plot design; or it can be superimposed 
on the strip-plot design resulting in a group balanced block in strip-plot design. 

We limit our discussicn to a group balanced block in split-plot design and 

illustrate it using an .xperiment with 45 rice varieties and two fertilizer levels. 
The basic design is a split-plot design in three replications, with fertilizer as the 

main-plot factor and variety as the subplot factor. The 45 varieties are 

grouped, according to their growth duration, into group S, with less than 105 

days, group S2 with 105 to 115 days, and group F3 with longer than 115 days. 
We denote the main-plot factor by A, the subplot factor by B, the level of 

factor A by a, the level of factor B by b, the number of replications by r, the 

number of groups in which the b subplot treatments are classified by s, and the 
group identification by S1, S 2 ,....S,. 

3.6.1 Randomization and Layout 

The steps in the randomization and layout of the group balanced block in 

split-plot design are: 

o STEP 1. Divide the experimental area into r = 3 replications, each of which 
is further divided into a = 2 main plots. Following the randomization 
procedure for the standard split-plot design described in Section 3.4.1, 
randomly assign the two main-plot treatments (F and F2) to the two main 
plots in each replication. The result may be as shown in Figure 3.8. 

o STEP 2. Divide each of the six main plots (two main plots for each of the 

three replications) into three groups of plots, each group consisting of 15 
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F, Fj F, 

FF, F, 

F2 Ft F2 

Replication I Replication 11 Replication M 

Figure 3.8 Random assignment of two fertilizer rates (main-plot treatments: F and F2) to the 
two main plots in each replication, as the first step in the laying out of a group balanced block in 
iplit-plot design with three rcplications. 

plots. Using one of the randomization schemes of Chapter 2, Section 2.1.1, 
randomly assign the three groups of varieties (SI, S2, and S3) to the three 
groups of plots, separately and independently, for each of the six main plots. 
The result may be as shown in Figure 3.9. 

D STEP 3. Using the same randomization scheme as in step 2, randomly 
assign the 15 varieties of each group (i.e., treatments 1, ... 15 for group SI, 
treatments 16,..., 30 for group S2, and treatments 31,..., 45 for group S3) 
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s s2 83S1 S3 S2 S2 s3 s1 

-.. .F2- . --. . . .. - -. . F2--- -

S2 sl s3 S1 sS S 83S3 2 

Replication I Replication II Replication MTT 

Figure 3.9 A sample layout after the two fertilizer rates (F and F2) and three groups of varieties 
(S,. S and S3) arc assigned, in agroup balanced block in split-plot design with three replications., 

to the 15 plots in the corresponding group of plots. This process is repeated 
18 times (three groups per main plot and a total of six main plots). The final 
layout may be as shown in Figure 3.10. 

3.6.2 Analysis of Variance 

For illustration wt use data (Table 3.16) from the group balanced block in 
split-plot design whose layout is shown in Figure 3.10. The computational 



S1 S3 S2 S2 S3 S, St S2 

5 31 24 25 33 15 13 23 44 

10 37 28 27 42 8 9 18 34 

15 43 20 22 37 12 15 24 45 

1 35 22 17 31 5 7 25 43 

2 34 27 21 38 13 11 21 32 

14 36 18 20 35 3 14 16 35 

9 42 26 30 45 10 6 28 31 

13 32 29 16 41 14 2 19 41 

It 38 19 29 34 7 10 22 38 

8 39 21 18 44 2 3 17 33 

3 41 17 28 32 1 5 27 37 

4 33 25 24 36 If 8 30 40 

6 44 23 26 40 6 I 29 36 

7 40 30 23 43 4 12 20 42 

12 45 16 19 39 9 4 26 39 

43 25 3 40 9 24 22 9 36 

40 17 8 43 2 21 30 4 37 

45 26 15 33 4 23 26 6 38 

41 24 10 41 II 17 25 7 33 

34 19 13 31 12 19 23 3 43 

39 16 12 38 7 26 20 14 34 

36 22 1 42 tO 18 27 13 40 

2 33 27 4 35 6 16 2 21 12 32 

44 21 9 39 15 27 16 8 31 

35 20 II 34 8 28 28 2 45 

32 28 14 36 14 29 29 i 39 

37 30 5 45 I 30 18 10 44 

38 29 7 44 5 20 24 I 42 

31 18 6 37 13 25 17 5 41 

42 23 2 32 3 22 19 15 35 

S3 S2 S1 S3 S1 S2 S2 St S3 

Replication I Replication 1i. Replication rnM 

Figure 3.10 A sample layout of a group balanced block in split-plot design with two fertilizer 
•ates (F and F2) as main-plot treatments and 45 rice varieties (1,2,...,45) grouped in three 
roups (S, S2, and S3) as subplot treatments, in three replications. 
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Grain Yield of 45 Rice Varieties Tested with Two FertilizerTable 3.16 
Rates (F1 and F2) Using a Group Balanced Block In Split-plot 
Design with Fertilizer as Main-plot Factor and Variety, Classified in 

Three Groups," as the Subplot Factor; In Three Replications 

Grain Yield, t/ha 

Variety Rep. I Rep. II Rep. III 

Number F, F2 F F2 F F2 

1 4.252 4.331 3.548 5.267 3.114 4.272 

2 3.463 3.801 2.720 5.145 2.789 3.914 

3 3.228 3.828 2.797 4.498 2.860 4.163 

4 4.153 5.082 3.672 5.401 3.738 4.533 

5 3.672 4.275 2.781 5.510 2.788 4.481 

6 3.337 4.346 2.803 5.874 2.936 4.075 

7 3.498 5.557 3.725 4.666 2.627 4.781 
8 3.222 4.451 3,142 3.870 2.922 3.721 

9 3.161 4.349 3.108 5.293 2.779 4.101 

10 3.781 4.603 3.906 4.684 3.295 4.100 

11 3.763 5.188 3.709 4.887 3.612 4.798 

12 3.177 4.975 3.742 5.021 2.933 4.611 

13 3.000 4.643 2.943 5.204 2.776 3.998 
14 4.040 4.991 3.251 4.545 3.220 4.253 

15 3.790 4.313 3.027 4.742 3.125 4.411 

16 3.955 4.311 3.030 4.830 3.000 4.765 
17 3.843 4.815 3.207 4.804 3.285 4.263 

18 3.558 4.082 3.271 4.817 3.154 4.433 

19 3.488 4.140 3.278 4.197 2.784 4.237 

20 2.957 5.027 3.284 4.429 2.816 4.415 

21 3.237 4.434 2.835 4.030 3.018 3.837 
22 3.617 4.570 2.985 4.565 2.958 4.109 

23 4.193 5.025 3.639 4.760 3.428 5.225 
24 3.611 4.744 3.023 4.221 2.805 3.972 

25 3.328 4.274 2.955 4.069 3.031 3.922 

26 4.082 4.356 3.089 4.232 2.987 4.181 

27 4.063 4.391 3.367 5.069 3.931 4.782 

28 3.597 4.494 3.211 4.506 3.238 4.410 

29 3.268 4.224 3.913 4.569 3.057 4.377 

30 4.030 5.576 3.223 4.229 3.867 5.344 

31 3.943 5.056 3.133 4.512 3.357 4.373 

32 2.799 3.897 3.184 3.874 2.746 4.499 

33 3.479 4.168 3.377 4.036 4.036 4.472 

34 3.498 4.502 2.912 4.343 3.479 4.651 

35 3.431 5.018 2.879 4.590 3.505 4.510 

36 4.L40 5.494 4.107 4.856 3.563 4.523 

37 4.051 4.600 4.206 4.946 3.563 4.340 

38 3.647 4.334 2.863 4.892 2.848 4.509 
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Table 3.16 (Continued) 

Grain Yield, t/ha 

Variety Rep. I Rep. II Rep. III 
Number F F2 F F2 F F2 

39 4.262 4.852 3.197 4.530 3.680 4.371 
40 4.256 5.409 3.091 4.533 3.751 5.134 
41 4.501 5.659 3.770 5.050 3.825 4.776 
42 4.334 5.121 3.666 5.156 4.222 5.229 
43 4.416 4.785 3.824 4.969 3.096 4.870 
44 3.578 4.664 3.252 5.582 4.091 4.362 
45 4.270 4.993 3.896 5.827 4.312 4.918 

aGroup S, (less than 105 days in growth duration) consists of varieties 1 to 15; 

group S2 (105 to 115 days in growth duration) consists of varieties 16 to 30; and 
group S3 (longer than 115 days in growth duration) consists of varieties 31 to 45. 

steps in the analysis of variance are: 

3 STEp 1. Outline the analysis of variance for a group balanced block in 
split-plot design, with grouping of subplot treatments, as: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Replication r - 1 = 2 

FactorA (A) a - 1 = 1 
Error(a) (r - 1)(a - 1) = 2 

Group (S) s - 1 = 2 
A xS (a- 1)(r -1) 2 

Error(b) a(s- 1)(r- 1)= 8 
B within S1 (b/s) - 1 =14 

B within S2 (b/s) - 1=14 

B within S3 (b/s) - 1 =14 

A x (B within S1) (a - 1)[(b/s) - 1] = 14 

A x (B within S2 ) (a - 1)[(b/s) - 1] = 14 
A x (B within S 3 ) (a - 1)[(b/s) - 1] =14 
Error(c) as(r - 1)[(b/s) - 1] = 168 

Total rab - 1 = 269 
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O3 sTEP 2. Construct three tables of totals: 

1. 	 The replication x factor A x group three-way table of totals with repli­
cation X factor A totals and replication totals computed. For our exam­
ple, the replication X fertilizer X group table of totals (RAS), with 
replication X fertilizer totals (RA) and replication totals (R) computed, 
is shown in Table 3.17. 

2. 	 The factor A X factor B two-way table of totals with factor B totals, 
factor A totals, group x factor A totals, group totals, and the grand 
total computed. For our example, the fertilizer X variety table of totals 
(AB), with variety totals (B), fertili;er totals (A), group X fertilizer 
totals (SA), group totals (S), and the grand total (G) computed, is 
shown in Table 3.18. 

3 sTEP 3. Compute the correction factor and the various sums of squares in 
the standard manner as: 

GC.F. = 
rab 

(1,085.756) 2 4,366.170707 
(3)(2)(45) 

Total SS = EX 2 - C. F. 

= [(4.252)2 + ... + (4.918)2] '-4,366.170707 

= 154.171227 

Table 3.17 The Replication x Fertilizer x Group Table of Totals from Data 
InTable 3.16 

Yield Total (RAS) 

Rep. I Rep. 11 Rep.1I1 

Group F, F. F,F3 F F F, 

S, 53.537 68.733 48.774 74607 45.514 64,212 
S, 54.827 68.463 48 310 67.327 47.359 66.272 
S, 58.605 72.552 51.357 71.696 54.074 69.537 

Total (RA) 166.969 209.748 148.441 213.630 146.047 200.021 
Rep. total (R) 376.717 362 071 346.968 
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Table3.18 The Fertilizer x Variety Table of Totals from Data In Table 3.16 

Variety Yield Total (AB) Variety total 
(B) 

24.784 
21.832 
21.374 
26.579 
23.507 
23.371 
24.854 
21.328 
22.791 
24.369 
25.957 
24.459 
22.464 
24.300 
23.408 

355.377 - S, 
23.891 
24.217 
23.315 
22.124 
22.928 
21.391 
22.804 
26.270 
22.376 
21.579 
22.927 
25.603 
23.456 
23.408 
26.269 

352.558 - S2 
24.374 
20.999 
23.568 
23.385 
23.933 
26.683 
25.706 
23.093 
24.892 
26.174 
27.581 

Number F, 

1 10.914 
2 8.972 
3 8.885 
4 11.563 

9.241 
6 9.076 
7 9.850 
8 9.286 
9 9.048 

10.982 
11 11.084 
12 9.852 
13 8.619 
14 10.511 

9.942 
Total (SA) 147.825 

16 9.985 
17 10.335 
18 9.983 
19 9.550 

9.057 
21 9.090 
22 9.560 
23 11.260 
24 9.439 

9.314 
26 10.158 
27 11.361 
28 10.046 
29 10.238 

11.120 
Total (SA) 150.496 

31 10.433 
32 8.729 
33 10.892 
34 9.889 

9.815 
36 11.810 
37 11.820 
38 9.358 
39 11.139 

11.098 
41 12.096 

F2 

13.870 
12.860 
12.489 
15.016 
14.266 
14.295 
15.004 
12.042 
13.743 
13.387 
14.873 
14.607 
13.845 
13.789 
13.466 

207.552 
13.906 
13.882 
13.332 
12.574 
13.871 
12.301 
13.244 
15.010 
12.937 
12.265 
12.769 
14.242 
13.410 
13.170 
15.149 

202.062 
13.941 
12.270 
12.676 
13.496 
14.118 
14.873 
13.886 
13.735 
13.753 
15.076 
15.485 
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Table 3.18 (Continued) 

Variety Yield Total (AB) Variety total 
Number F, F2 (B) 

42 12.222 15.506 27.728 
43 11.336 14.624 25.960 
44 10.921 14.608 25.529 
45 12.478 15.738 28.216 

Total (SA) 164.036 213.785 377.821 - S3 
Fertilizer total (A) 462.357 623.399 
Grand Total (G) 1,085.756 

E2R2
 

Replication SS = --b - C.F.
 

= (376.717)2 + (362.071)2 + (346.968)2 _4,366.170707 

(2)(45) 

= 4.917070 

Y2A 2 

A(fertilizer) SS = A - C.F. 

(462.357)2 + (623.399)2 _4,366.170707 

(3)(45) 

= 96.053799 

Effor(a)SS = E(1)2 _ C.F.- Replication SS - A SS
b 

(166.969)2 + ... + (200.021)2 _4,366.170707 - 4.917070 
45 

-96.053799 

= 2.796179 

GroupSS rabS - C.F. 

_ (355377)2 + (352.558)2 + (377.821)2 _4,366.170707 

(3)(2)(45)/(3) 

= 4.258886 
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A X Group SS = rSA) _ C.F.- ASS - Group SS
rb/s 

(147.825)2 + + (213.785)2 _4,366.170707 
(3)(45)/(3) 

-96.053799 - 4.258886 

-0.627644
 

Error(b) SS _(RAS) 2 
_ C.F.- Replication SS - A SS
 

b/s
 

-Error(a) SS - Group SS - A -XGroup SS 

= (53.537)2 + "".+ (69.537)2 - 4,366.170707 - 4.917070 

45/3 

- 96.053799 - 2.796179 - 4.258886 - 0.627644 

= 2.552576 

03 	 STEP 4. Compute the sums of squares for factor B within the ith group and 
for its interaction with factor A as: 

B within SSS3= ra rab/s 

A x(Bwithin S,)SS E( B SA 
r rb/s 

-B within S, SS 

where the subscript i refers to the ith group and the summation is only over 
all those totals belonging to the ith group. For example, the summation in 
the term EB 2 only covers factor B totals of those levels of factor B 
belonging to the ith group. 

For our example, the computations for each of the three group' are: 
* 	 For S,: 

Varieties within SISS = (24.784)2 + ' + (23.408)2- (355.377)2 

(3)(2) (3)(2)(45)/3 

= 5.730485 
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A x (varieties within S,) SS = (10914)2 + 	 "'.+ (13.466)23 

(147.825)2 + (207.552)2
(3)(45)/(3) .- 5.730485 

= 2.143651 

" For S : 

+ ... + (26.269)2 (352.558)2
= (23.891)2Varieties within S2 SS 

(3)(2) (3)(2)(45)/3 

= 5.484841
 

A X(varieties wi S2 (9.985)2 + ... +(15.149)2

A(areteswthin S )SS -3 3 

- (150.496)2 + (202.062)2 -5.484841 
(3)(45)/3 

= 0.728832 
" For S3: 

- (377.821)2
+ ... + (28.216)2-(24.374)2Varieties within S3 SS 
(3)(2) (3)(2)(45)/3 

= 9.278639 

A X(varieties within S3) SS = (10.433)2 + 	 "'"+ (15.738)2
 
3
 

(164.036)2 + (213.785)2 -9.278639 
(3)(45)/3 

= 1.220758 

3 sTEP 5. Compute the Error(c) SS as: 

Error(c) SS = Total SS - (the sum of all other SS) 

= 154.171227 -(4.917070 + 96.053799 

+ 2.796179 + 4.258886 + 0.627644 

+ 2.552576 + 5.730485 + 5.484841 

+ 9.278639 + 2.143651 + 0.728832 

+ 1.220758) 

= 18.377867 



Group Balanced Block in Split-Plot Design 127 

o 	STEP 6. Compute the mean square for each source of variation by dividing 
the SS by its degree of freedom. Then, compute the F value for each effect 
to be tested by dividing its mean square by the appropriate error mean 
square. 

For our example, for either the repli,.ation or the A effect, the divisor is 
the Error(a) MS. For either the group or the (A x group) effect, the divisor 
is the error(b) MS. For all other effects, the divisor is the Error(c) MS. Note 
that because the Error(a) d.f. is only 2, which is considered inadequate for 
a reliable estimate of the error variance (see Chapter 2, Section 2.1.2), the F 
values for testing the replication effect and the A effect are not computed. 

o] 	 STEP 7. For each computed F value greater than 1, obtain the correspond­
ing tabular Fvalues, from Appendix E, with f, = d.f. of the numerator MS 
and f2 = d.f. of denominator MS, at the 5% and 1%levels of significance. 

o 	STEP 8. Compute the three coefficients of variation corresponding to the 
three error terms as: 

/Error( a) MS 
cv(a) = Gra ma x 100

Grand mean 

cError(b) MS 
cv~b)= Grand mean x 100 

cError(c) MS
 
cV~c) - Grand mean x 100
 

The cv(a) value indicates the degree of precision attached to the main-plot 
factor, the cv(b) indicates the degree of precision attached to the group 
effect and its interaction with the main-plot factor, and the cv(c) value 
refers to the effects of subplot treatments within the same group and their 
interactions with the main-plot factor. In the same manner as that of a 
standard split-plot design, the value of cu(a) is expected to be the largest, 
followed by cv(b), and finally cv(c). 

For our example, because d.f. for Error(a) MS is inadequate, no value of 
cv(a) is to be computed. The coefficients of variation for the two other error 
terms are computed as: 

c = 0(b) = 14.0%¢0.319072 x 100 

4.021 

c(c) = 0.109392
4.021 x 100 = 8.2% 

As expected, the cv(c) value is smaller than the cv(b) value. This implies 
that the degree of precision for mean comparisons involving treatments 
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Table 3.19 Analysis of Variance of Data inTable3.16 from a Group Balanced Block In Split-plot Design' 

Source Degree Sum 
Mean Computed Tabular Fof of of 

FbVariation Freedom Squares Square 5% 1% 

Replication 2 4.917070 2.458535 
-Fertilizer (A) 1 96.053799 96.053799 C ­

Error(a) 2 2.796179 1.398089 
Group (S) 2 4.258886 2.129443 6.67* 4.46 8.65 
A x S 2 0.627644 0.313822 < 1 - ­

Error(b) 8 2.552576 0.319072 
Varieties within S1 14 5.730485 0.409320 3.74** 1.75 2.19 
Varieties within S2 14 5.484841 0.391774 3.58** 1.75 2.19 
Varieties within S 3 14 9.278639 0.662760 6.06** 1.75 2.19 
A x (varieties within SI) 14 2.143651 0.153118 1.40ws 1.75 2.19 
A x (varieties within S2 ) 14 0.728832 0.052059 < 1 - -

A X (varieties within S3) 14 1.220758 0.087197 <1 ­

Error(c) 168 18.377867 0.109392 
Total 269 154.171227 

°cv(b) = 14.0%, cv(c) = 8.2%. 
-** * = significant at 5% level, = not significant.= significant at 1% level, 

cError(a) d.f. is not adequate for valid test of significance. 
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belonging to the same group would be higher than that involving treatments 
of different groups. 

01 	 STEP 9. Enter all values obtained in steps 3 to 8 in the analysis of variance 
outline of step 1. Comrnare each computed F value with its corresponding 
tabulae F values and indicate its significance by appropriate asterisk nota­
tion (see Chapter 2, Sect;on 2.1.2). The final result is shown in Table 3.19. 
The results indicate nonsignificant interaction between variety and fertilizer 
rate, highly significant differences among varieties within each and all three 
groups, and a significant difference among the three group means. 



CHAPTER 4 

Three-or-More-Factor 
Experiments 

A two-factor experiment can be expanded to include a third factor, a three-fac­
tor experiment to include a fourth factor, and so on. There are, however, two 
important consequences when factors are added to an experiment: 

1. 	 There is a rapid increase in the number of treatments to be tested, as we 
illustrated in Chapter 3. 

2. 	 There is an increase in the number and type of interaction effects. For 
example, a three-factor experiment has four interaction effects that can 
be examined. A four-factor experiment has 10 interaction effects. 

Although a large exreriment is usually not desirable because of its high cost 
and complexity, the added information gained from interaction effects among 
factors can be very valuable. Consequently, the researcher's decision on the 
number of factors that should be included in a factorial experiment is based on 
a compromise between the desire to evaluate as many interactions as possible 
and the need to keep the size of experiment within the limit of available 
resources. 

4.1 INTERACTION BETWEEN THREE OR MORE FACTORS 

Building on the definition of a two-factor interaction given in Chapter 3 
(Section 3.1), a k-factor interaction (where k > 2) may be defined as the 
difference between the effects of a particular (k - 1)-factor interaction over the 
different levels of the k th factor. For example, a three-factor interaction effect 
among factors A, B, and C (the A x B x C interaction) can be defined in any 
of the following three ways: 

1. 	The difference between the A X B interaction effects over the levels of 
factor C. 

2. 	 The difference between the A x C interaction effects over the levels of 
factor B. 

130 
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3. The difference between the B X C interaction effects over the levels of 

factor A.
 

For illustration, consider a 2 x 2 X 2 factorial experiment involvj.-i three 
factors, each with two levels. Two sets of hypothetical data, set(a) showing the 
presence of the A x B x C interaction effect, and set(b) showing its absence, 
are presented in Table 4.1. 

The A X B x C interaction effects can be measured by any of three 
methods: 

. Method I is based on the difference in the A x B interaction effects. 

o1 STEP 1. For each level of factor C, compute the A x B interaction effect, 
following the procedure in Chapter 3, Section 3.1: 

For set(a) data: 

At co: A X B interaction = ' (0.5 - 2.0) = -0.75 t/ha 

At eq: A X B interaction = 1(4.0 - 2.5) = 0.75 t/ha 

For set(b) data: 

At co: A X B interaction = 2(3.5 - 2.0) = 0.75 t/ha 

At cl: A X B interaction = 2(3.5 - 2.0) = 0.75 t/ha 

Table 4.1 Two Hypothetical Sets of Data from a2 x 2 x 2 Factorial
 
Experimenta; Set (a) Shows the Presence of the Three-factor
 
Interaction and Set (b)Shows the Absence of the Three-factor
 
Interaction
 

Level Grain Yield, t/ha 
of 
Factor Co c1 

A bo b, -bo bo b, b - b
 

(a) A X B X C interaction present
 
ao 2.0 3.0 1.0 2.5 5.0 2.5
 
al 4.0 3.5 -0.5 5.0, 9.0 4.0
 
a,- ao 2.0 0.5 - -1.5 2.5 4.0 1.5
 

(b) A X B X C interaction absent 
ao 2.0 2.5 0.5 3.0 3.5 0.5 
a, 4.0 6.0 2.0 5.0 7.0 2.0
 
a, - ao 2.0 3.5 1.5 2.0 3.5 1.5
 

"Involving three factors A, B, and C, each with two levels; ao and a,for 
factor A,b and b, for factor B, and co and c1 for factor C.o
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O3 STEP 2. Compute the A X B x C interaction effect as the difference be­
tween the A X B interaction effects at the two levels of factor C computed in 
step 1: 

For set(a): A X B X C interaction = [0.75 -(- 0.75)] --= 0.75 t/ha 

For set(b): A x B X C interaction = (0.7/5 - 0.75) = 0.00 t/ha 

* 	 Method II is based on the difference in the A X C interaction effects. 

o 	sTEP 1. For each level of factor B, compute the A X C interaction effect, 
folloAng the procedure in Chapter 3, Section 3.1" 

For set(a) data: 

At bo: A x C interaction = 1(2.5 - 2.0) = 0.25 t/ha 

At bl: A x C interaction = 1(4.0 - 0.5) = 1.75 t/ha 

For set(b) data: 

At bo: A X C interaction = 1(2.0 - 2.0) = 0.00 t/ha
 

At bl: A X Cinteraction = (3.5 - 3.5) = 0.00 t/ha
 

o3 	 SEP 2. Compute the A X B x C interaction effect as the difference be­
tween the A X C interaction effects at the two levels of factor B computed in 
step 1: 

For set(a): A X B X C interaction = f(1.75 - 0.25) = 0.75 t/ha 

For set(b): A X B x C interaction = 1(0.00 - 0.00) = 0.00 t/ha 

* 	 Method III is based on the difference in the B X C interaction effects. 

o 	STEP 1. For each level of factor A, compute the B X C interaction effect, 
following the procedure in Chapter 3, Section 3.1:
 

For set(a) data:
 

At ao: B X C interaction = 1(2.5 - 1.0) = 0.75 t/ha 

At a,: B X C interaction - fl[(4.0 -(-0.5)] = 2.25 t/ha 
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For set(b) data: 

At ao: B X C interaction = 2(0.5 - 0.5) = 0.0 t/ha 

At a,: B x C interaction = 1(2.0 - 2.0) = 0.0 t/ha 

0 STEP 2. Compute the A x B X C interaction effect as the difference be­
tween the B x C interaction effects at the two levels of factor A computed in 
step 1: 

For set(a): A X B X Cinteraction = 1(2.25 - 0.75) = 0.75 t/ha 

Forset(b): A X B X C interaction = -(0.0 - 0.0) = 0.00 t/ha 

Thus, regardless of computation method, the A X B X C interaction effect of 
set(a) data is 0.75 t/ha and of set(b) data is 0.0 t/ha. 

The foregoing procedure for computing the three-factor interaction effect 
can be easily extended to cover a four-factor interaction, a five-factor interac­
tion, and so on. For example, a four-factor interaction A x B x C X D can be 
computed in any of the following ways: 

" As the difference between the A x B X C interaction effects over the levels 
of factor D 

. As the difference between the A X B X D interaction effects over the levels 
of factor C 

" As the diffeence between the A X C X D interaction effects over the levels 
of factor B 

" As the difference between the B x C X D interaction effects over the levels 
of factor A. 

4.2 ALTERNATIVE DESIGNS 

There are many experimental designs that can be considered for use in a 
three-or-more-factor experiment. For our p:rpose, these designs be clas­can 
sified into four categories, namely, the single-factor experimental designs, the 
two-factor experimental designs, the three-or-more-factor experimental de­
signs, and the fractional factorial designs. 

4.2.1 Single-Factor Experimental Designs 

All experimental designs for single-factor experiments described in Chapter 2 
are applicable to experiments with three or more factors. This is done by 
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treating all the factorial treatment combinations as if they were levels of a 

single factor. 
For illustration, take the case of a three-factor experiment involving two 

varieties, four nitrogen levels, and three weed-control methods to be tested in 
three replications. If a randomized complete block design (RCB) is used, the 
2 x 4 x 3 = 24 factorial treatment combinations would be assigned com­
pletely at random to the 24 experinental plots in each of the three replications. 
The field layout of such a design may be as shown in Figure 4.1 and the outline 
of the corresponding analysis of variance shown in Table 4.2. Note that with a 
RCB design there is only one plot size and only one error variance for testing 
the significance of all effects (i.e., the three main effects, the three two-factor 
interaction effects, and one three-factor interaction effect) so that all effects are 
measured with the same level of precision. Thus, a complete block design, such 
as RCB, should be used only if: 

" 	 All effects (i.e., main tffects and interaction effects) are of equal importance 
and, hence, should be measured with the same level of precision. 

" The experimental units are homogeneous enough to achieve a high level of 
homogeneity within a block. 

Because an experiment with three or more factors usually involves a large 
number of treatments, homogeneity in experimental units within the same 
block is difficult to achieve and, therefore, the complete block design is not 
commonly used. 

4.2.2 Two-factor Experimental Designs 

All experimental designs for two-factor experiments described in Chapter 3 are 
applicable to experiments with three or more factors. The procedures for 
applying any of these designs to a three-factor experiment are given below. We 
illustrate the procedure with the 2 x 4 x 3 factorial experiment described in 
Section 4.2.1. 

o STEP 1. Divide the k factors to be tested into two groups, with k, factors in 
one group and k2 factors in another group (where k, + k2 = k), by putting 
those factors that are to be measured with the same level of precision in the 
same group. Each group can contain any number of factors. 

For our example with k = 3 factors, variety and weed control can be 
combined in one group and the remaining factor (nitrogen) put in another 
group. Thus, group I consists of two factors (k, = 2) and group II consists 
of one factor (k2 = 1). 

o3 	 srEP 2. Treat the factorial treatment combinations of k, factors in group I 
as the levels of a single factor called factor A, and the factorial treatment 
combinations of k2 factors in group II as the levels of a single factor called 
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Figure 4.1 A sample layout of a 2 X 4 x 3 factorial experiment involving two varieties (V and 12), four 
nitrogen levels (NO, NI, N2 , and N3 ), and three weed-control methods (W, W2 , and W3 ) arranged in a 
randomized complete block design with three replications. 
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factor B. Thus, the k-factor experiment is now converted to a two-factor 
experiment involving the two newly created factors A and B. 

For our example, the 3 x 2 = 6 factorial treatment combinations be­
tween variety and weed control in group I are treated as the six levels of the 
newly created factor A, and the four levels of nitrogen as the levels of the 
newly created factor B. Thus, the 2 X 4 X 3 factorial experiment can now 
be viewed as a 6 x 4 factorial experiment involving A and B. 

0 	STEP 3. Select an appropriate experimental design from Chapter 3 and 
apply it to the simulated two-factor experiment constituted in step 2 by 
following the corresponding procedure described in Chapter 3. 

For our example, if the split-plot design with factor B (nitrogen) as the 
subplot factor is to be used, the layout of such a design may be as shown in 
Figure 4.2 and the form of the corresponding analysis of variance shown in 
Table 4.3. 
Note that with this split-plot design, there are two plot sizes and two error 
mean squares for testing significance of the various effects: 

" 	 Error(a) MS for the main effect of variety, the main effect of weed 
control method, and their interaction effect 

• Error(b) MS for the main effect of nitrogen fertilizer and its interaction 
with the other two variable factors 

Because the error(b) MS is expected to be smaller than error(a) MS (see 

Table 4.2 Outline of the Analysis of Variance for a 2 x 4 x 3 Factorial 
Experiment In RCB Design 

Source 	 Degree Sum 
of 	 of of Mean Computed Tabular F 
Variation 	 Frccdom Squares Square F 5' 1!% 

Replication 	 r- I - 2 

Treatment vnw - I - 23
 
Variety(V) V - 1 - 1
 
Nitrogen(N) n - I - 3
 
Weed Control (W) w - 1 - 2
 
VXN (v- 1)(n- 1)- 3
 
VX W (v- 1)(w- 1)-2
 
Nx W (n- lw-1)-6
 
VXNX W (v- 1Xn- 1)(w- 1)-6
 

Error 	 (r- lXvnw - 1)-46 
Total 	 rvnw - 1 - 71 

Or - number of replications; v, n, and ware levels of the three factors V,N, and W, 
respectively. 
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Figure 4.2 A sample layout of a 2 x 4 x 3 factorial experiment involving two varieties (V and V2 ), four 
nitrogen levels (No. NI. N2, and N3 ), and three weed-control methods (W, W2. and W3) arranged in a
split-plot design with nitrogen levels as the subplot treatments, in three replications. 
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Chapter 3, Section 3.4.2) the degree of precision for measuring all effects 
concerning nitrogen is expected to be higher than that related to either 
variety or weed control. 

Thus, a split-plot design (or a strip-plot design) is appropriate for a 
three-or-more-factor experiment if both of the following conditions hold: 

" The total number of factorial treatment combinations is too large for a 
complete block design. 

" The k factors can be easily divided into two groups with identifiable 
differences in the desired level of precision attached to each group. 

4.2.3 Three-or-More-Factor Experimental Designs 

Experimental designs specifically developed for three-or-more-factor experi­
ments commonly used in agricultural research are primarily the extension of 
either the split-plot or the strip-plot design. 

For our example, a split-plot design can be extended to accommodate the 
third factor through additional subdivision of each subplot into sub-subplots, 
and further extended to accommodate the fourth factor through additional 
subdivision of each sub-subplot into sub-sub-subplots, and so on. The resulting 
designs are referred to as a split-split-plot design, a split-split-split-plot design, 
and so on. A split-split-plot design, applied to a three-factor experiment, would 
have the first factor assigned to the main plot, the second factor to the subplot, 

Table 4.3 Outline of the Analysis of Variance for a 2 x 4 x 3 Factorial Experiment In 
a Split-plot Deslgn_ 

L',h~urLC Degree Sum 

of of of Mean Computed Tabular F 
Variation FrLcdomrn Squares Square F 5% 1% 

RCpI.ation r - I - 2 
Mar.-plot factor - I - 5 

Vanct, (V) I- I -

Weed Control IV) H - I - 2 
11 It' l It,)( l - 2 

Error(a) (r - )(w - 1) - 10 
Subplot factor ( N) n - I - 3 

Main-plot factor x subplot factor: ('w - I)(n - I) - 15 
N . V (n - IXt, - I)- 3 
N 
N x 

It,
91/ It, ( 

(it- I)(w- 1)-6 
- )(1, - I}€ - 1)-() 

rror(h) iw(r ­ l)(n- 1)- 36 

Total n,,,n ­ 1 - 71 

"Applied to a simulated two-factor experiment with main-plot factor as a combination of two 
original factors V and W, and subplot factor representing the third original factor N. 
br - number of replications; v, n, and ware levels of the three original factors V,N, and W, 

respectively. 
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and the third factor to the sub-subplot. In this way, there is no need to 
combine the three factors into two groups to simulate a two-factor experiment, 
as is necessary if a split-plot design is applied to a three-factor experiment.

Similarly, the strip-plot design can be extended to incorporate the third 
factor, the fourth factor, and so on, through the subdivision of each intersec­
tion plot into subplots and further subdivision of each subplot into sub­
subplots. The resulting designs are referred to as a strip-split-plot design, a 
strip-split-split-plot design, and so on. 

4.2.4 Fractional Factorial Designs 

Unlike the designs in Sections 4.2.1 to 4.2.3, where the complete set of factoriai 
treatment combinations is to be included in the test, the fractional factorial 
design (FFD), as the name implies, includes only a fraction of the complete set 
of the factorial treatment combinations. The obvious advantage of the FFD is 
the reduction in size of the experiment, which may be desirable whenever the 
complete set of factorial treatment combinations is too large for practical
implementation. This important advantage is, however, achieved by a reduc­
tion in the number of effects that can be estimated. 

4.3 SPLIT-SPLIT-PLOT DESIGN 

The split-split-plot design is an extension of the split-plot design to accommo­
date a third factor. It is uniquely suited for a three-factor experiment where 
three different levels of precision are desired for the various effects. Each level 
of precision is assigned to the effects associated with each of the three factors. 
This design is characterized by two important features: 

1. 	 There are three plot sizes corresponding to the three factors, namely, the 
largest plot (main plot) for the main-plot factor, the intermediate plot 
(subplot) for the subplot factor, and the smallest plot (sub-subplot) for 
the sub-subplot factor. 

2. 	 There are three levels of precision, with the main-plot factor receiving 
the lowest degree of precision and the sub-subplot factor receiving the 
highest degree of precision. 

We illustrate procedures for randomization, layout, and analysis oi variance 
with a 5 x 3 x 3 factorial experiment with three replications. Treatments are 
five levels of nitrogen as the main plot, three management practices as the 
subplot, and three rice varieties as the sub-subplot. We use r to refer to the 
number of replications; A, B, and C to refer to the main-plot factor, subplot 
factor, and sub-subplot factor; and a, b, and c to refer to the treatment levels 
corresponding to factors A, B, and C. 
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4.3.1 Randomization and Layout 

There are three steps in the randomization and layout of a spli,-split-plot 

design: 

0 	 SEp 1. Divide the experimental area into r replications and each replica­

tion into a main plots. Then, randomly assign the a main-plot treatments to 

the a main plots, separately and independently, for each of the r replica­

tions, following any one of the randomization schemes of Chapter 2, Section 
2.1.1. 

For our example, the area is divided into three replications and each 

replication into five main plots. Then, the five nitrogen levels (N,, N2, N3 , 

N4 , and N5) are assigned at random to the five main plots in each 

replication. The result may be as shown in Figure 4.3. 

o 	sTEP 2. Divide each main plot into b subplots, in which the b subplot 

treatments are randomly assigned, separately and independently, for each of 

the (rXa) main plots. 

I L 
N1 

NZW W[N4 

Replication I Replication 3I Replication III 

Figure 4,3 Random assignmknt of five nitrogen levels (NI, N2, N3 , N4, and N5) to the main plots 

in each of the three replications as the first step in laying out asplit-split-plot design. 
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I:M NIM ]]N2M3 NM 
N3 

NI M N M, IN,MaJ N5M=N5M N:53 2 1 N5M31 5M] 

Rephcation I Replication 11 Replication I~n
 
Figure 4.4 Random assignment of three management practices (MI, 
 M2, and M3 ) to the three 

subplots in each of the 15 main plots as the second step in laying ou:, a split-split-plot design. 

For our example, each main plot is divided into three subplots, into 
which the three management practices (M,, M2, and M3) are assigned atrandom. This randomization process is repeated (r)(a)= 15 times. The 
result may be as shown in Figure 4.4. 

0 STEP 3. Divide each subplot into c sub-subplots, in which the c sub-subplot 

treatments are randomly assigned, separately and independently, for each of 
the (r)(a)(b) subplots.For our example, each subplot is divided into three sub-subplots, into 
which the three varieties (V,, V2, and V3) are assigned at random. This 
randomization process is repeated (r)(a)(b)=45 times. The final layout 
may be as shown in Figure 4.5. 

4.3.2 Analysis of Variance 
Grain yield data (Table 4.4) from a 5s e 3 3 factorial experiment conducted 
in a split-split-plot design, whose layout is shown in Figure 4.5, is used to 

illustrate analysis of variance. 
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r3 sTEP 1. Construct an outline of the analysis of variance for the split-split­
plot design 

Source 
of 

Degree 
of 

- Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square F 5% 1% 

Atum-plot analysts: 
Replication r - I - 2 

Main-plot factor (A) a - I ­ 4 
Error(a) (r - 1)(a ­ 1) - 8 

Subplot analysts: 
Subplot factor (B) b ­ 1 - 2 

A XB (a-1)(b- 1)-8 
Error(b) a(r ­ 1)(b - 1)- 20 

Sub-subplot anahvsts: 
Sub-subplot factor (C) c - 1 ­2 
A XC (a-l1)(c -1)-8 

BX C (b- 1)(c- l)-4 
A X 8x C (a- 1)(b - 1)(c- 1)- 16 
Error(c) ab(r - 1)(c - 1)- 60 

Total rahc - 1- 134 

N2MIV1 rVLiAV NIM 2VI NIM 3 j N1MIV2 N5MIV2 N3MZV2 NAV'~I3jNdI2V3 

N2M1V3 N2MV, INAV21N,MVN,MV,NM3V2 NI~jN3MINN N31NA23V3IN4V V 2V,~lqv, 113,v,I Vj _1 2 

2V,NMV 2 N N5MV, 
7NM 3 1 V2 iMVN2 , I N5MIV 3 N#12 

,v=NIMIv2NVINI I N5M 5MVl NMV, IN VY3 1 
NM,V,, NvN MV 3V

iii 3 M,VNIMV3 1 2vV25 MIv I ,-N 

N5M 2V,N5MV 3 4lM 1 V2N 33V, NM 3V3 NAYM "N IM3VIV 
N M V2? M_3V N M2 MV2 N 3 N 1V NM V,I NMMVV4 4M1, WM113 2V


5MVI I 2VM NM,V2 NM 3 3 N I
2VMN j 3N4 MV I V, V

N4M2V,N4M,VI N4M3V31 N2M 2 N#I2V2 N2MV, I N,4M2 N4MV, INMVI 
N4MgVM2 K 4 M3 2 NM 

IN1 2 PA M2 V3E I]2 J 3 A2NMIV4M 2 V 2 

Nl3V,Lv, I,N~Mv 
N3MdV3 Ne NM , N 3 , NM3V3 N3MIV N2M3V3 Nm1 tNane 

N3M3V4 j 3~N 1 V2 ]NM3M2V33 NMV 

N3M2N M V N M 1 22MIV V 

Replication I Replication 11 Replication REI 

Figure 4.5 A sample layout of a 5 x 3 x 3 factorial cxpentmint arranged in a split-split-plot 
designi with five nitrogen levels (NI, N2. N3, N4, and N5) as main-plot treatments, three manage­
ment practices (MI. M2, and M3) as subplot treatments, and three varieties (V1. V2, and V3) as 
sub-subplot treatments, in three replications. 
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Table 4.4 Grain Yields of Three Rice Varieties Grown under Three Management 
Practices and Five Nitrogen Levels; In a Split-split-plot Design with Nitrogen as 
Main-plot, MW'i,1aement Practice as Subplot, and Variety as Sub-subplot Factors, 
with Three Replications 

Grain Yield, t/ha 

V, 	 V3v2 

Management Rep. I Rep. II Rep III Rep. I Rep. ll Rep III Rep. I Rep. 11 Rep. III 

N, (0kg N/ha) 
M,(Minimum) 3.320 3.864 4.507 6.101 5.122 4 815 5.355 5.536 5.244 
M2(Optimum) 3.766 4.311 4.875 5096 4.873 4.166 7.442 6.462 5.584 
M3(Intensive) 4.660 5.915 5.400 6.573 5.495 4 225 7.018 8.020 7.642 

N,( 50 kg N/ha) 
" 1 3.188 4.752 4.756 5.595 6780 5390 6.706 6.546 7.092 
U 2 3.625 4.809 5.295 6.357 5.925 5.163 8.592 7.646 7.212 
U3 5.232 5.170 6.046 7.016 7.442 4.478 8.480 9.942 8.714 

N( 80 kg N/lha) 
Ul 5.468 5.788 4.422 5.442 5988 6.50Q 8.452 6.698 8.650 

5.759 6.130 5.308 6.398 6.533 6.56. 8.662 8.526 8.514U 2 
6.215 7.106 6.318 6.953 6.914 7.991 9.112 9.140 9.320U 3 

N4(110kg N/lha) 
Ul 4.246 4.842 4.863 6.209 6 768 5779 8.042 7.414 6.(02 
Al 5.255 5.742 5.345 6.992 7.856 6.164 9.080 9.016 7.778 
U3 6.829 5.869 6.011 7.565 7.626 7362 9.660 8.966 9.128 

2 

N,(140 kg N/ha) 
l 3.132 4.375 4.678 6.860 6.894 6.573 9.314 8.508 8.032 

5.389 4.315 5.896 6.857 6974 7.422 9.224 9.680 9.294 
Al, 5.217 5.389 7.309 7.254 7.812 8.950 10.360 9.896 9.712 
U 2 

0J STEP 2. Do a main-plot analysis. 

A. 	 Construct the replication X factor A two-way table of totals and com­
pute the r,.plication totals, the factor A totals, and the grand total. For 
our example, the replication x nitrogen table of totals (RA), with the 
nitrogen totals (A) and the grand total (G) computed, is shown in 
Table 4.5. 

B. 	 Compute the correction factor and the various sums of squares: 
G2 

C.F.=Grabc 

(884.846)2 
-(3)(5)(3)(3) 5,799.648
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Table 4.5 The Replication x Nitrogen Table of Yield Totals Computed 
from Data In Table 4.4 

Nitrogen 
Yield Total (RA) Total 

Nitrogen Rep. I Rep. II Rep. III (A) 

N, 
N2 

N3 

N4 
N5 

Rep. total(R) 
Grand total(G) 

49.331 
54.791 
62.461 
63.878 
63.607 

294.068 

49.598 
59.012 
62.823 
64.099 
63.843 

299.375 

46.458 
54.146 
63.601 
59.332 
67.866 

291.403 

145.387 
167.949 
188.885 
187.309 
195.316 

884.846 

Total SS = E X2 - C.F. 

- [(3.320)2 + +(9.712) 2] - 5,799.648 

= 373.540 

ER2 

Replication SS = a-- - C.F. 

(294.068)2 	+ (299.375)2 4-(291.403)2 
_ 

(5)(3)(3) 

- 5,799.648 

= 0.732 

''SS = A2 

A (ntrogen) SS rbc C.F. 

... +(195.316)2(145.387)2 	+ 

(3)(3)(3) 

- 5,799.648 

61.641 
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Error(a) SS = c - C.F.- Replication SS - A SS 

(49.331)2 + ... +(67.866)2 5,799.648 

(3)(3) 

-0.732 - 61.641 

= 4.451 

0 STEP 3. Do a subplot analysis. 

A. Construct two tables of totals: 

(i) The factor A X factor B two-way table of totals, with the factor B 
totals computed. For our example, the nitrogen X management table of 
totals (AB), with the management totals (B) computed, is shown in 
Table 4.6. 
(ii) The replication X factor A x factor B three-way table of totals. 
For our example, the replication X nitrogen X management table of 
totals (RAB) is shown in Table 4.7. 

B. Compute the various sums of squares: 

EB2 

B (management) SS = B - C.F. 
ra~c 

(265.517)2 + (291.877)2 + (327.452)2 

(3)(5)(3) 

- 5,799.648 

= 42.936 

Table 4.6 The Nitrogen x Management Table of Yield Totals 

Computed from Data InTable 4.4 

Yield Total (AB) 
Nitrogen Ml M2 M3 

N 43.864 46.575 54.948 
N2 50.805 54.624 62.520 
N3 57.417 62.399 69.069 
N4 55.065 63.228 69.016 
N5 58.366 64.051 71.899 

Management total (B) 265.517 291.877 327.452 
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Table 4.7 The Replication x Nitrogen x Management Table of Yield Totals 
Computed from Data In Table 4.4 

Yield Total (RAB) 

Management Rep. I Rep. II Rep. III 

N, (0 kg N/ha) 

M, 14.776 14.522 14.566 
M 2 16.304 15.646 14.625 
M 3 18.251 19.430 17.267 

N2(50 kg N/ha) 
M, 15.489 18.078 17.238 
M 2 18.574 18.380 17.670 
M 3 20.728 22.554 19.238 

Nj(80 kg N/ha) 
M, 19.362 18.474 19.581 
M 2 20.819 21.189 20.391 
M3 22.280 23.160 23.629 

N4 lIO kg N/ha) 
Ml 18.497 19.024 17.544 
M 2 21.327 22.614 19.287 
M 3 24.054 22.461 22.501 

NU(140 kg N/ha) 
M 19.306 19.777 19.283 
M 2 21.470 20.%9 22.612 
M 3 22.831 23.097 25.971 

E(A B)' 
A X B (nitrogen X management) SS rc C.F.- A SS - B SS rc 

+ (71.899)2(43.864)2 +
Z---------

... 
5,799.648 - 61.641(3)(3) 

- 42.936 

= 1.103 

(RAs) 2 

Efror(b) SS= C.F.- Replication SS - A SS 
C 

- Error(a)SS - BSS -A XBS 



Split-Split-PlotDesign 147 

Table 4.8 The Nitrogen x Variety Table of Yield Totals 
Computed from Data InTable 4.4 

Yield Total (AC) 
Nitrogen V, V2 V3 

N, 40.618 46.466 58.303 
N2 42.873 54.146 70.930 
N3 52.514 59.297 77.074 
N4 49.002 62.321 75.986 
N5 45.700 65.596 84.020 

Variety total (C) 230.707 287.826 366.313 

(14.776)2 + ... +(25.971 ) 2 

=3 . -5,799.648 

-0.732 - 61.641 - 4.451 - 42.936 - 1.103 

5.236 

13 smrP 4. Do a sub-subplot analysis. 

A. Construct three tables of totals: 

(i) The factor A x factor C two-way table of totals with the factor C 
totals computed. For our example, the nitrogen x variety table of totals 
(AC), with the variety totals (C) computed, is shown in Table 4.8. 
(ii) The factor B x factor C two-way table of totals. For our exam­

ple, the management X variety table of totals (BC) is shown in Table 
4.9. 
(iii) The factor A x factor B x factor C three-way table of totals. For 
our example, the nitrogen x management X variety table of totals 
(ABC) is shown in Table 4.10. 

Table 4.9 The Management x Variety Table of Yield 

Totals Computed from Data In Table 4.4 

Yield Total (BC) 
Management V, V2 V3 

M, 66.201 90.825 108.491 
M 2 75.820 93.345 122.712 
M 3 88.686 103.656 135.110 
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B. Compute the various sums of squares: 

~2 
C (variety) SS_ E - C.F. 

(230.707)2 + (287.826)2 + (366.313)2 

- 5,799.648 

206.013 

Table 4.10 The Nitrogen x Management 

Computed from Data In Table 4.4 

Management 

M, 

M2 
M 3 


M, 
M
 2 

M
 3 


M411,15.678 
M2 
M3 

Mh 

M2 
Al3 

M, 

M 2 


M 3
 

V, 

11.691 
12.952 
15.975 

12.696 
13.729 
16.448 

17.197 
19.639 

13.951 
16.342 
18.709 

12.185 
15.600 
17.915 

(3)(5)(3) 

x Variety Table of Yield Totals 

Yield Total (ABC) 

V2 V3 

N (0 kg N/ha) 
16.038 16.135 
14.135 19.488 
16.293 22.680 

N2(50 kg N/ha) 
17.765 20.344 
17.445 23.450 
18.936 27.136 

Nj(80 kg N/ha) 

17.939 23.800 
19.500 25.702 
21.858 27.572 

N4(11O kg N/ha) 
18.756 22.358 
21.012 25.874 
22.553 27.754 

N(140 kg N/ha) 
20.327 25.854 
21.253 28.198 
24.016 29.968 
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E (AC )2
 
A X CSS= rb -C.F.-ASS- CSS
 

(40.618)2 + "".+(84.020)2 - 5,799.648 

(3)(3) 

-61.641 - 206.013 

- 14.144 

E2(Bc)2
 

B X CSS = C.F.- BSS -C SS
 
ra 

(66.201)2 + ... +(135.110)2 5,799.648 
(3)(5) 

-42.936 - 206.013 

= 3.852 

E (ABC) 2 
A xBxCSS= C.F.-ASS-BSS-CSS 

r 

-A BSS-A x CSS- BxCSS 

(11.691)2 + ... +(29.968)2 _5,799.648 

-61.641 - 42.936 - 206.013 

-1.103 - 14.144 - 3.852 

= 3.699 

Error(c) SS = Total SS - (the sum of all other SS)
 

= 373.540 - (0.732 + 61.641 + 4.451
 

+42.936 + 1.103 + 5.236 + 206.013
 

+14.144 + 3.852 + 3.699) 

= 29.733 
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0 sTEP 5. For each source of variation, compute the mean square value by 
dividing the SS by its d.f.: 

Replication MS 

A MS 

Error(a) MS 

B MS 

Error(b) MS 

= Replication SS 
r- 1 

0.732 
= 0.732 = 0.36602 

A SS
a-i 

=61.641 

= 61.61= 15.41024 

Error(a) SS 
-i (r - 1)(a - 1) 

4.451
=T- = 0.5564(2)(4) 

= SS
b-1 

42 .936 
= 42 = 21.46802 

A A XBSS
(a - 1)(b - 1) 

_1.103 
= 1.0 = 0.1379 

(4)(2) 

= Error(b) SS 
a(r- 1)(b- 1) 

_5.236 

5.3= 0.2618
(5)(2)(2) 

C SS
C MS=­c-i 

206.013 
2 = 103.0065 
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A X CSS 
(a- 1)(c- 1) 

A x CMS= 

14.144 
(4)(2) 

B X CSSBx CMS­ (b - 1)(c- 1) 

3.852 
= 0.9630(2)(2) 

AXBXCSSA xBxCMS- (a - 1)(b - 1)(c - 1) 

_3.699 369 .0.2312 
(4)(2)(2) 

Eror(c)SSError(c) MS = 
ab(r- 1)(c- 1) 

29.733
-=0.4956 

(5)(3)(2)(2)
 

3 Smp 6. Compute the F value for each effect by dividing each mean square 
by its appropriate error mean square: 

A MS
F(A) = Error(a) MS 

15.4102 
- =27.700.5564 

_B 
B MS 

Error(b) MS 

21.4680 
0.2618 

F(A × B) A x BMS
Error(b) MS 

0.1379
 
= 0.2618 <
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(c) 	 = c MS 
Error(c) MS 

103.0065 
- 0.96=207.840.4956 

A XCMSF(A X AC)
Error(c) MS 

1.7680- =3.57 
0.4956 

F(B XC) BX CMS 
Error(c) MS 

0.9630 - =1.94 
0.4956 

F(A XB X C)=AXBXCMS
Error(c) MS 

0.2312 <1 
0.4956 

o 	sTEp 7. For each effect whose computed F value is not less than 1, obtain 
the-corresponding tabular F values from Appendix E, with f, = d.f. of the 
numerator MS and f2 = d.f. of the denominator MS, at the 5% and 1% 
levels of significance. 

o 	STEP 8. Compute the three coefficients of variation corresponding to the 
three error terms: 

c/Error(a) MS 

cv~a) 	= Grand mean 

60.5564 
6.55 	 X 100= 11.4% 

cError(b) MS 
cv(b) = Grand mean x 100 

_0 .26-618 
x 100 	= 7.8%.55 

VError(c) MS
cv(c)= Grand mean X 100 

= X4 =<100 10.7% 
6.55 

http:0.96=207.84
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The cv(a) value indicates the degree of precision associated with the 
main effect of the main-plot factor, the cv(b) value indicates the degree of 
precision of the main effect of the subplot factor and of its interaction with 
the main plot, and the cu(c) value indicates the degree of precision of the 
main effect of the sub-subplot factor and of all its interactions with the other 
factors. Normally, the sizes of these three coefficients of variation should 
decrease from cv(a) to cv(b) and to cu(c). 

For our example, the value of cv(a) is the largest as expected, but those 
of cu(b) and cv(c) do not follow the expected trend. As mentioned in 
Chapter 3, Section 3.4.2, such unexpected results are occasionally encoun­
tered. If they occur frequently, a competent statistician should be consulted. 

1CSTEP 9. Enter all values obtained in steps 2 to 8 in the analysis of variance 
outline of step 1, and compare each computed F value with its correspond­
ing tabular F values, and indicate its significance by the appropriate asterisk 
notation (see Chapter 2, Section 2.1.2). 

For our example, the results, shown in Table 4.11, indicate that the 
three-factor interaction (nitrogen X management X variety) is not signifi­
cant, and only one two-factor interaction (nitrogen x variety) is significant. 
For a proper interpretation of the significant interaction effect and mean 
comparisons, see appropriate procedures in Chapter 5. 

Table 4.11 Analysis of VarianceO (Split-split- plot Design) of Grain Yield Data In 
Table 4.4 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square Fh 5% 1% 

Man.pht atalr'ws 

Replication 2 0.732 0.3660 
Nitrogen (A) 4 61.641 15.4102 27.700* 3.84 7.01 
Error( a) 8 4.451 0.5564 

Subplot anah'.rts 

Management (B) 2 42.936 21.4680 82.00** 3.49 5.85 
A x B 8 1.103 0.1379 <1 - ­
Error(b) 20 5.236 0.2618 

Sub-subplot analIsis 
Variety (C) 2 206.013 103.0065 207.84** 3.15 4.98 
A x C 8 14.144 1.7680 3.5700 2.10 2.82 
B x C 4 3.852 0.9630 1.94ni 2.52 3.65 
A x B x C 16 3.699 0.2312 <1 - ­
Error(c) 60 29.733 0.4956 

Total 134 373.540 

"cu(a) - 11.4%, cu(b) - 7.8%, cv(c) - 10.7%. 
"h**= significant at 1%level, = not significant. 
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4.4 STRIP-SPLIT-PLOT DESIGN 

The strip-split-plot design is an extension of the strip-plot design (see Chapter 
3, Section 3.5) in which the intersection plot is divided into subplots to 
accommodate a third factor. The strip-split-plot design is characterized by two 
main features. 

1. 	 There are four plot sizes-the horizontal strip, the vertical strip, the 
intersection plot, and the subplot. 

2. 	 There are four levels of precision with which the effects of the various 
factors are measured, with the highest level corresponding to the sub­
plot factor and its interactions with other factors. 

The procedures for randomization, layout, and analysis of variance for the 
strip-split-plot design are given in the next two sections. We use r as the 
number of replications; A, B, and C as the vertical, horizontal, and subplot 
factors; and a, b, and c as the treatment levels corresponding to factors A, B, 
and C. A three-factor experiment designed to test the effects of two planting 
methods M, and M2 and three rates of nitrogen application N1, N2, and N3 on 
the yield of six rice varieties V1, V2, V3, V4, V,, and V6 is used for illustration. 
This experiment had three replications using nitrogen as the ve!rtical factor, 
variety as the horizontal factor, and planting method as the subplot factor. 
Grain yield data are shown in Table 4.12. 

4.4.1 Randomization and Layout 

The steps involved in the randomization and layout of a strip-split-plot design 
are: 

3 STEP 1. Apply the process of randomization and layout for the strip-plot 
design (Chapter 3, Section 3.5.1) to the vertical factor (nitrogen) and thc 
horizontal factor (variety). The result may be as shown in Figure 4.6. 

o smP 2. Divide each of the (a)(b) intersection plots in each of the r 
replications into c subplots and, following one of the randomization schemes 
of Chapter 2, Section 2.1.1, randomly assign the c subplot treatments to the 
c subplots, separately and independently, in each of the (r)(a)(b) intersec­
tion plots. 

For 	our example, each of the (3)(6) = 18 intersection plots in each 
replication is divided into two subplots and the two planting methods P 
and P2 are randomly assigned to the subplots, separately and independently, 
for each of the 54 intersection plots (18 intersection plots per replication and 
3 replications). The final layout is shown in Figure 4.7. 



Table 4.12 Grain Yields of Six Rice Varieties Tested under Two Planting Methods and Three Nitrogen Rates, 
In a Strip-split-plot Design with Three Replications 

Grain Yield, kg/ha 
P (Broadcast) Total P (Transplanted) Tot 

Variety Rep. I Rep. II Rep. III (ABC) Rep. I Rep. II Rep. III (ABC) 

NI (0 kg N/ha) 
V1(IR8) 
V2 (IR127-8-1-10) 
V3(IR305-4-12-1-3) 
V4(IR400-2-5-3-3-2) 
V5(IR665-58) 
V6 (Peta) 

2,373 
4,007 
2,620 
2,726 
4,447 
2,572 

3,958 
5,795 
4,508 
5,630 
3,276 
3,724 

4,384 
5,001 
5,621 
3,821 
4,582 
3,326 

10,715 
14,803 
12,749 
12,177 
12,305 
9,622 

2,293 
4,035 
4,527 
5,274 
4,655 
4,535 

3,528 
4,885 
4,866 
6,200 
2,7% 
5,457 

2,538 
4,583 
3,628 
4,038 
3,739 
3,537 

8,359 
13,503 
13,021 
15,512 
11,190 
13,529 

V, 
V2 
V3 
V4 
V5 
V6 

4,076 
5,630 
4,676 
4,838 
5,549 
3,896 

6,431 
7,334 
6,672 
7,007 
5,340 
2,822 

4,889 
7,177 
7,019 
4,816 
6,011 
4,425 

N,(60 kg N/ha) 
15,3% 3,085 
20,141 3,728 
18,367 4,946 
16,661 4,878 
16,900 4,646 
11,143 4,627 

7,502 
7,424 
7,611 
6,928 
5,006 
4,461 

4,362 
5,377 
6,142 
4,829 
4,666 
4,774 

14,949 
16,529 
18,699 
16,635 
14,318 
13,862 

V1 
V2 
V3 
V4 
V5 
V6 

7,254 
7,053 
7,666 
6,881 
6,880 
1,556 

6,808 
8,284 
7,328 
7,735 
5,080 
2,706 

8,582 
6,297 
8,611 
6,667 
6,076 
3,214 

N?(120 kg N/ha) 
22,644 6,661 
21,634 6,440 
23,605 8,632 
21,283 6,545 
18,036 6,995 
7,476 5,374 

6,353 
7,648 
7,101 
9.838 
4,486 
7,218 

7,759 
5,736 
7,416 
7,253 
6,564 
6,369 

20,773 
19,824 
23,149 
23,636 
18,045 
18,961 



NI N3 N2 N3 N2 N, N3 N, N2 
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Figure 4.6 Random assignment of six varieties (V, V2 , V3,V4,V, and V6) to horizontal strips 
and three nitrogen rates (N i , N2, and N3) to vertical strips, as the first step in the laying out of a 
strip-split-plot design with three replications. 

N1 N3 N2 N3 N2 N1 N N, N2 

P2 P, P PI P! P2 P2v6 -------2- - P2 , V-,, P2 

I ' P2 I P2 P2 V2 , , , 

P2 P2 P, P2 Pe2 
P ,2 :I P2 


vS V2 - - V2 . . . . . P. .  

PI P PI
P P2 P2 P2 Pi 2 P1 

v P P2 P2 P2 P2 P2 v ; PI P2V3- - - - - - - - - V6- - - - - - - - - V3- - - - - - - -
P2 PI PI P P, P2 P2 P 

P2 P 1,2 PI P P2 P, : P2 

V4 ,,,P , P VIo-p -,---- ,--P2 P2 V3- - P-2- - - - -2- - - - - - P2 P2 PI 

P,  I2P2P P P P P2 P 
F;"I ~ P2 P, 2 2' F;t~P P

PIP2 P P 2 P2 F ; P 

P2 P, P, P2 I PI P2 P2 F 
Replication I Replication I Replication M 

Figure 4.7 A sample layout of a 3 x 6 x 2 factorial experiment arranged in a strip-split-plot 
design with six varieties (V1, V2 V3, V4, V,and V) as horizontal treatments, three nitrogen rates , 


(NI, N2, and N3) as vertical treatments, and two planting methods (P and P2) as subplot 
treatments, in three replications. 
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4.4.2 Analysis of Variance 

The 	steps involved in the analysis of variance of a strip-split-plot design are: 

o 	sTEp 1. Construct an outline of the analysis of v riance for a strip-split-plot 
design as follows: 

Source 	 Degree Sum 
of of Mean Computed Tabular Fof 

Variation 	 Freedom Squares Square F 5% 1% 

Replication r - 1 - 2 

Vertical factor (A) a - 1 - 2 

Error(a) (r - 1)(a - 1)- ; 

Horizontal iactor (8) b - 1 - 5 

Error(b) (r- l)(b- 1)- 10 
A XB (a-1)(b-1)-10 
Error(c) (r - 1)(a - 1)(b - 1) - 20 

Subplot factor(C) c - 1- I 

A X C (a- 1)(c- 1)-2 
B X C (b- 1)(c- 1)-5 
A XBXC (a-1)(b-1)(c- 1)-10 

Error(d) ab(r - 1)(c - 1) - 36 

Total 	 rabc - 1 - 107 

0 	smp 2. Do a vertical analysis. 

A. 	 Compute the treatment totals (ABC) as shown in Table 4.12. 

B. 	 Construct the replication X vertical factor two-way table of totals, with 
replication totals, vertical factor totals, and the grand total computed. 
For our example, the replication X nitrogen table of totals (RA), with 
replication totals (R), nitrogen totals (A), and grand total (G) r,-m­
puted, is shown in Table 4.13. 

C. 	 Compute the correction factor and the various sums of squares: 

C.F. -Lralic 

(580,151)2 = 3,116,436,877 
I'M(3)(3)(6)(2) 

Total SS = , X2 - C.F. 

= 	[(2,373)2 + + (6,369)2 ] - 3,116,436,877 

= 307,327,796 
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Table 4.13 The Replication x Nitrogen Table of Yield Totals Computed 
from Data InTable 4.12 

Nitrogen 
Yield Total (RA) Total 

Nitrogen Rep. I Rep. II Rep. III (A) 

N, 44,064 54,623 48,798 147,485 
N2 54,575 74.538 64,487 193,600 
N3 77,937 80,585 80,544 239,066 

Rep. Total(R) 176,576 209,746 193,829 
Grand total(G) 580,151 

ER 2 

Replication SS = -- - C.F.
abc 

(176,576)2 + (209,746)2 + (193,829)2 

(3)(6)(2) 

- 3,116,436,877 

= 15,289,498 
EA2 

A (nitrogen) SS = -E-- - C.F. 

(147,485) 2 + (193,600)2 + (239,066)2 

(3)(6)(2) 

-3,116,436,877 

= 116,489,164 

E(A 2 

Error(a) SS b C.F.- Replication SS - A SS 

(44,064)2 + ... + (80,544)2 

3,116,436,877(6)(2) 

-15,289,498 - 116,489,164 

= 6,361,493 

r3 STEP 3. Do a horizontal analysis. 

A. 	 Construct the replication X horizontal factor two-way table of totals, 
with horizontal factor totals computed. For our example, the replica­
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Table 4.14 The Replication x Variety Table of Yield Totals 
Computed from Data in Table 4.12 

Yield Total (RB) Variety 
Total 

Variety Rep. I Rep. II Rep. III (B) 

V, 25,742 34,580 32,514 92,836 
V2 30,893 41,370 34,171 106,434 
V3 33,067 38,086 38,437 109,590 
V4 31,142 43,338 31,424 105,904 
V5 33,172 25,984 31,638 90,794 
V6 22,560 26,388 25,645 74,593 

tion X variety table of totals (RB) with variety totals (B) computed is 
shown in Table 4.14. 

B. Compute the various sums of squares: 

B 2 

B (variety) S =S C.F. 
rac 

= (92,836)2 + .. + (74,593)2 _ 3,166,436,877 
(3)(3)(2)
 

= 49,119,270 

E (RB)' 
Error(b) SS = - C.F.- Replication SS - B SSac
 

= (25,742)2 + ... +(25,645) 3 
3,116,436,877
(3)(2)+ 


-15,289,498 - 49,119,270 

26,721,828 

O3 Sp '4. ,,Do an interaction analysis. 

A. Construct two tables of totals. 

(i) The vertical factor x horizontal factor two-way table of totals. 
For our example, the nitrogen x variety table of totals (AB) is shown 
in Table 4.15. 
(ii) The replication x vertical factor x horitontal factor three-way ta­
ble of totals. For our example, the replication x nitrogen x variety 
table of totals (RAB) is shown in Table 4.16. 



Table 4.15 The Nitrogen x Variety Table of Yield Totals 

Computed from Data In Table 4.12 

Yield Total (AB) 

Variety N, N2 N3 

V, 19,074 30,345 43,417 
V2 28,306 36,670 41,458 
V3 25,770 37,066 46,754 
V4 27,689 33,296 44,919 
Vs 23,495 31,218 36,081 
V6 23,151 25,005 26,437 

Table 4.16 The Nitrogen x Variety x Replication Table of Yield Totals 

Computed from Data In Table 4.12 

Variety Rep. I 

V, 4,666 
V2 8,042 
V3 7,147 
V4 8,000 
V 9,102 
V 7,1076 

V1 7,161 
V2 9,358 
V3 9,622 
V4 9,716 
V 10,195 
V6 8,523 

V1 13,915 
V2 13,493 
V3 16,298 
V4 13,426 
V 13,875 
V 6,9306 

Yield Total (RAB) 

Rep. 11 Rep. III 

N, (0 kg N/ha) 

7,486 6,922 
10,680 9,584 
9,374 9,249 

11,830 7,859 
6,072 8,321 
9,181 6,863 

N2(60 kg N/ha) 
13,933 9,251 
14,758 12,554 
14,283 13,161 
13,935 9,645 
10,346 10,677 
7,283 9,199 

Nj(120 kg N/ha) 
13,161 16,341 
15,932 12,033 
14,429 16,027 
17,573 13,920 
9,566 12,640 
9,924 9,583 

160 
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B. Compute the following sums of squares: 

E,(AB) 2 

A X B SS = -C.F.- ASS - B SS rc 

= (19,074) + ... +(26,437)2 3,116,436,877 
(3)(2) 

- 116,489,154 - 49,119,270 

= 24,595,732 

Error(c)SS = (RAB) 2 C. F.- Replication SS - A SS
C 

-Error(a) SS - B SS - Error(b) SS - A X B SS 

(4,666) 2 + .. +(9,583) 2 

2 . 3,116,436,877 

-15,289,498 - 116,489,164 - 6,361,493 

-49,119,270 - 26,721,828 - 24,595,732 

i 19,106,732 

0 Sp 5. Do a subplot analysis. 

A. Construct two tables of totals. 

(i) The vertical factor X subplot factor two-way table of totals, with 
subplot factor totals computed. For our example, the nitrogen x 
planting method table of totals (AC) with planting method totals (C) 
computed is shown in Table 4.17. 

Table 4.17 The Nitrogen x Planting Method Table of Yield Totals 

Computed from Data InTable 4.12 

Yield Total (AC) 
Nitrogen P, P2 

N, 72,371 75,114 
N2 98,608 94,992 
N3 114,678 124,388 

Planting method total(C) 285,657 294,494 
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(ii) The horizontal factor X subplot factor two-way table of totals. 
For our example the variety x planting method (BC) table of totals is 
shown in Table 4.18. 

B. Compute the following sums of squares: 

y2c 
2 

C (planting method) SS = -ra C.F. 

= (285,657)2 + (294,494)2 - 3,116,436,877 
(3)(3)(6) 

= 723,078 

A CSS = (A - C.F.- A SS - C SS 
rb 

(72,371)2 + ... +(124,388)2 

(3)(6) 

-3,116,436,877 -116,489,164 

- 723,078 

= 2,468,136 

Bx CSS= -C.F.- BSS- CSS 
ra 

+ ... +(46,352)2(48,755)2 

(3)(3) 

- 3,116,436,877 - 49,119,270 

-723,078 

= 23,761,442 

Table 4.18 The Variety x Planting Method Table of Yield Totals 
Computed from Data InTable 4.12 

Yield Total (BC) 
Variety P, P2 

V1 48,755 44,081 
V2 56,578 49,856 
V3 54,721 54,869 
4 50,121 55,783 
VS 47,241 43,553 
V6 28,241 46,352 
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A X B X C SS (ABC)' _ C.F.-A SS - B SS - CSS 
r 

-A X BSS-A X CSS - BX CSS 

= 	(10,715)2 + .. +(18,961)' _3,116,436,877 

- 116,489,164 - 49,119,270 - 723,078 

-24,595,732 - 2,468,136 - 23,761,442 

= 7,512,067 

Error(d) SS = Total SS - (the sum of all other SS) 

= 307,327,796 -(15,289,498 + 116,489,164 

+6,361,493 + 49,119,270 + 26,721,828 

+24,595,732 + 19,106,732 + 723,078 

+2,468,136 + 23,761,442 

+ 7,512,067) 

= 	15,179,356 

3 	STEP 6. For each source of variation, compute the mean square value by
dividing the SS by its degree of freedom: 

Replication MS = Replication SS 
r- 1 

=15,289,498 = 7,644,749 
2 

A 	MS= ASSa-I 

116,489,164
2 = 58,244,582' 2 

Error(a) SSError(a) MS (r - 1)(a - 1) 

6,361,493 
- (2)(2) = 1,590,373 
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B SS
B MS b 1 

49,119,270 9,823,854 
5 

Error(b) SS 
Error(b) MS -=­

(r- 1)(b- 1) 

26,721,828 2,672,183 

(2)(5) 

X B SS
A ,x B MS =A 

(a- 1)(b- 1) 

24,595,732 2,459,573 

(2)(5) 

Effo ) MS Error(c) SS 
(r - 1)(a - 1)(b - 1) 

19,106,732 955,337 

(2)(2)(5) 

C SS 
=CMS c-i 

723078 = 723,0781 

AXC~JS=AAXxCSSA X C U4S -:i 
(a- 1)(c- 1) 

2,468,136 = 1,234,068 

(2)(1) 

B X CSS 
B x CMS (b- 1)(c- 1) 

23,761,442 4,752,288 
(5)(1) 

A x B x CSS 
A X B X CMS (a- 1)(b- 1)(c- 1) 

7,512,067 751,207 
(2)(5)(1) 
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Error(d) MS Error(d) SS
ab(r- 1)(c- 1) 

15,179,356 
(3)(6)(2)(1) 

0 	 STEP 7. Compute the F value for each effect by dividing each mean square, 
by its appropriate error mean square: 

F(B) 

F(A x B) 

F(C) 

F(A XC) 

F(B X C) 

F(A x B x C) 

= B MSError(b) MS 

9,823,854
 
2,672,183
 

= AX BMS 
Error(c) MS 

2,459,573
- = 2.57
955,337 

- CMSError(d) MS 

723,078 
421,649 

= A XCMS 
Error(d) MS 

1,234,068 
= 	 421,649 =2.93 

= B x CMS 
Error(d) MS 

4,752,288
= 	 421,649 =11.27 

= A x B x CMS 
Error(d) MS 

751,207
 
421,649
 

Note that' because of inadequate d.f. for error(a) MS, the F value for the 
main effect of factor A is not computed (see Chapter 2, Section 2.1.2.1). 
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o3 	 sTEP 8. For each effect whose computed F value is not less than 1, obtain 
the corresponding tabular F values from Appendix E, with f, = d.f. of the 
numerator MS and f2 = d.f. of the denominator MS, at the 5%and 1% 
levels of significance. 

o 	sTEP 9. Compute the four coefficients of variation corresponding to the 
four error mean squares, as follows: 

ca=ror(a) MS 
cv(a) = Grand mean x 100 

iError(b) MS 
cv(b) = Grnd MY x 100

Grand mean 

Error(c) MScv(c) = Grn enx 100 
Grand mean 

c/Error(d) MS 
cv~d)= Grand mean x100 

The cv(a) and cv(b) values indicate the degrees of precision associated 
with !'ie measurement of the effects of vertical and horizontal factors. The 
cv(c) value indicates the precision of the interaction effect between these 
two factors and the cv(d) value indicates the precision of all effects 
concerning the subplot factor. It is normally expected that the values of 
cv(a) and cv(b) are larger than that of cv(c), which in turn is larger than 
cv(d). 

For our example, the value of cv(a) is not computed because of inade­
quate error d.f. for error(a) MS (see step 7). The other three cv values are 
computed as: 

1/2,672,183 
cv(b) = '5,372 x 100 = 30.4% 

955,~37 
cv(c) = X 100 = 18.2% 

cv(d) = /5,372 x 100 = 12.1% 

o sTE 10. Enter all values obtained in steps 2 to 9 in the analysis of variance 
outline of step 1 and compare each computed F value to its corresponding 
tabular F values and indicate its significance by the appropriate asterisk 
notation (see Chapter 2, Section 2.1.2). 
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Table 4.19 Analysis of Variance" (Strip-split-plotDesign) of Grain Yield Data in 
Table 4.12 

Source Degree Sum 
of of of Mean Computed Tabular F 

Fb
Variation Freedom Squares Square 5% 1% 
Replication 2 15,289,498 7,644,749 
Nitrogen (A) 2 116,489,164 58,244,582 
Error(a) 4 6,361,493 1,590,373
Variety (B) 5 49,119,270 9,823,854 3.680 3.33 5.64 
Error(b) 10 26,721,828 2,672,183
A x B 10 24,595,732 2,459,573 2.57* 2.35 3.37 
Error(c) 20 19,106,732 955,337
Planting method (C) 1 723,078 723,078 1.71"' 4.11 7.39 
A X C 2 2,468,136 1,234,068 2.93"' 3.26 5.25 
BX C 5 23,761,442 4,752,288 11.2700 2.48 3.58 
A X B X C 10 7,512,067 751,207 1.78n' 2.10 2.86 
Error(d) 36 15,179,356 421,649 

Total 107 307,327,796 

"cv(b) - 30.4%, cv(c) - 18.2%, cu(d) - 12.1%. 
,significant at 1%level, 


cError(a)d.f. is not adequate for valid test of significance.
 
-** * - significant at 5%level, - not significant. 

For our example, the results (Table 4.19) show that the three-factor 
interaction is not significant, and that two of the three two-factor interac­
tions, namely, the nitrogen x variety interaction and the variety x planting 
method interaction, are significant. These results indicate that the effects of 
both nitrogen and planting method varied among varieties tested. For a 
proper interpretation of the significant interactions and appropriate mean 
comparisons, see appropriate procedures in Chapter 5. 

4.5 FRACTIONAL FACTORIAL DESIGN 

As the number of factors to be tested increases, the complete set of factorial 
treatments may become too large to be tested simultaneously in a single 
experiment. A logical alternative is an experimental design that allows testing 
of only a fraction of the total number of treatments. A design uniquely suited 
for experiments involving a large number of factors is the fractional factorial 
design (FFD). It provides a systematic way of selecting and testing only a 
fraction of the complete set of factorial treatment combinations. In exchange, 
however, there is loss of information on some preselected effects. Although this 
information loss may be serious in experiments with one or two factors, such a 
loss becomes more tolerable with a large number of factors. The number of 
interaction effects increases rapidly with the number of factors involved, which 
allows flexibility in the choice of the particular effects to be sacrificed. In fact, 
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in cases where some specific effects are known beforehand to be small or 
unimportant, use of the FFD results in minimal loss of information. 

In practice, the effects that are most commonly sacrificed by use of the FFD 
are high-order interactions- the four-factor or five-factor interactions and, at 
times, even the three-factor interaction. In almost all cases, unless the re­
searcher has prior information to indicate otherwise, he should select a set of 
treatments to be tested so that all main effects and two-factor interactions car 
be estimated. 

In agricultural research, the FFD is most commonly used in exploratory 
trials where the main objective is to examine the interactions between factcrs. 
For such trials, the most appropriate FFD are those that sacrifice only those 
interactions that involve more than two factors. 

With the FFD, the number of effects that can be measured decreases rapidly 
with the reduction in the number of treatments to be tested. Thus, when the 
number of effects to be measured is large, the number of treatments to be 
tested, even with the use of FFD, may still be too large. In such cases, further 
reduction in the size of the experiment can be achieved by reducing the 
number of replications. Although use of a FFD without replication is uncom­
mon in agricultural experiments, when FFD is applied to an exploratory trial 
the number of replications required can be reduced. For example, two replica­
tions are commonly used in an exploratory field trial in rice whereas four 
replications are used for a standard field experiment in rice. 

Another desirable feature of FFD is that it allows reduced block size by not 
requiring a block to contain all treatments to be tested. In this way, the 
homogeneity of experimental units within the same block can be improved. A 
reduction in block size is, however, accompanied by loss of information in 
addition to that already lost through the reduction in number of treatments. 

Although the FFD can be tailor-made to fit most factorial experiments, the 
procedure for doing so is complex and beyond the scope of this book. Thus, we 
describe only a few selected sets of FFD that are suited for exploratory trials in 
agricultural research. The major features of these selected designs are that 
they: 

" 	 Apply only to 2" factorial experiments where n, the number of factors, 
ranges from 5 to 7. 

" Involve only one half of the complete set of factorial treatment combina­
tions (i.e., the number of treatments is 1/2 of 2" or 2n-). 

• 	Have a block size of 16 plots or less. 
" 	 Allow all main effects and most, if not all, of the two-factor interactions to 

be estimated. 

The selected plans are given in Appendix M. Each plan provides the list of 
treatments to be tested and the specific effects that can be estimated. In the 
designation of the various treatment combinations for all plans, the letters 
a, b, c.... are used to denote the presence (or use of high level) of factors 
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A, B, C,.... Thus, the treatment combination ab in a 21 factorial experiment 
refers to the treatment combination that contains the -igh level (or presence) 
of factors A and B and low level (or absence) of factors C, D, and E, but this 
same notation (ab) in a 26 factorial experiment would refer to the treatment 
combination that contains the high level of factors A and B and low level of 
factors C, D, E, and F.In all cases, the treatment combination that consists of 
the low level of all factors is denoted by the symbol (1). 

We illustrate the procedure for randomization, layout, and analysis of 
variance of a FFD with a field experiment involving six factors A, B, C, D, E, 
and F, each at two levels (i.e., 26 factorial experiment). Only 32 treatments 
from the total of 64 complete factorial treatment combinations are tested in 
blocks of 16 plots each. With two replications, the total number of experimen­
tal plots is 64. 

4.5.1 Randomization and Layout 

The steps for randomization and layout are: 

0 	STEP 1. Choose an appropriate basic plan of a FFD in Appendix M. The 
plan should correspond to the number of factors and the number of levels of 
each factor to be tested. For basic plans that are not given in Appendix M, 
see Cochran and Cox, 1957.* Our example uses plan 3 of Appendix M. 

[] 	 STEP 2. If there is more than one block per replication, randomly assign the 
block arrangement in the basic plan to the actual blocks in the field. 

For this example, the experimental area is first divided into two replica­
tions (Rep. I and Rep. II), each consisting of 32 experimental plots. Each 
replication is further divided into two blocks (Block 1 and Block 2), each 
consisting of 16 plots. Following one of the randomization schemes of 
Chapter 2, Section 2.1.1, randomly reassign the block numbers in the basic 
plan to the blocks in the field. The result may be as follows: 

Block Number in Block Number Assignment in Field 

Basic Plan Rep. I Rep. II 

I 2 1 
II 1 2 

Note that all 16 treatments listed in block I of the basic plan are assigned 
to block 2 of replication I in the field, all 16 treatments listed in block I! of 
the basic plan are assigned to block 1 of replication I in the field, and so on. 

0 	STEP 3. Randomly reassign the treatments in each block of the basic plan 
to the experimental plots of the reassigned block in the field (from step 2). 

*W.G.Cochran and G.M.Cox. Experimental Designs. New York: Wiley, 1957, pp. 276-292. 
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For this example, follow the same randomization scheme used in step 2 
and randomly assign the 16 treatments of a given block (in the basic plan) 
to the 16 plots of the corresponding block in the field, separately and 
independently for each of the four blocks (i.e., two blocks per replication 
and two replications). The result of the four independent randomization 
processes may be as follows: 

Plot Number A.signment in Field Treatment 

Number in Rep. I Rep. II 

Basic Plan Block 1 Block 2 Block 1 Block 2 

1 6 5 4 11 
2 3 4 14 7 
3 15 10 3 6 
4 12 6 8 1 
5 1 12 7 15 
6 5 1 11 4 
7 13 3 16 14 
8 7 8 12 9 
9 2 16 9 3 

10 10 11 10 5 

11 11 15 5 8 
12 8 2 6 12 
13 4 14 1 16 
14 9 9 2 13 
15 16 13 15 2 
16 14 7 13 10 

Note that block 1 of replication I in the field was assigned to receive 
treatments of block II in the basic plan (step 2); and according to the basic 
plan used (i.e., plan 3 of Appendix M) treatment I of block II is ae. Thus, 
according to the foregoing assignment of treatments, treatment ae is as­
signed to plot 6 in block I of replication I. In the same manner, because 
treatment 2 of block II in the basic plan ib af, treatment af is assigned to 
plot 3 in block I of replication I; and so on. Tht final layout is shown in 
Figure 4.8. 

4.5.2 Analysis of Variance 

The analysis of variance procedures of a FFD, without replication and with 
replication, are illustrated. We use Yates' method for the computation of sums 
of squares. This method is suitable for manual computation of laige fractional 
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factorial experiments. Other alternative procedures are: 

" 	 The application of the standard rules for the computation of sums of 
squares in the analysis of variance (Chapter 3), by constructing two-way
tables of totals for two-facL3r interactions, three-way table of totals for 
three-factor interacticns, and so on. 

" 	The application of the single d.f.contrast method (Chapter 5), by specify­
ing a contrast for each of the main effects and interaction effects that are to 
be estimated. 

4.5.21 Design without Replication. For illustration, we use data (Table
4.20) from a FFD trial whose layout is shown in Figure 4.8. Here, only data 
from replication I of Table 4.20 is used. The computational steps in the 
analysis of variance are: 

o 	sTEP 1. Outline the analysis of variance, following that given in Appendix
M, corresponding to the basic plan used. For our example, the basic plan is 

Block I Bock 2 Block I Block 2 
Plot n o 1 2 ! 2 1 2 2 2 

Treatmwwt cd ad acdf df obdo abdf bf odef 
3 4 3 4 3 4 3 4 

of abce bWe ob of (I) ad abed 
5 6 5 6 5 6 5 6 

abcd oe () abef do d bd be 
7 8 7 9 7 8 7 8 

obcdef cf beef bcdf acede abel of ce 
9 10 9 1O 9 to 9 10 

abcf 
II 

bd 
12 

obdf of 
11 12 

oc 
II 

bc 
i2 

abcdef 
II 

bdef 
12 

Mce b 1 bc ocde ocdf bcdf P e 

13 14 13 14 13 14 13f 14 

cdef bdef aoef obdo beef cib abet Icdef 
15 16 15 16 15 16 15 16 

be odef do oc acef Wede Cd aboe 

Replicotion t Replocotion 1 

Figure 4.8 A sample layout of a fractional facwrial design with two replications: 1/2 of 26 
factorial treatments arranged in blocks of 16 plots each. 
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plan 3 of Appendix M and the outline of the analysis of variance is: 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Block 1 

Main effect 6 

Two-factor 

interaction 15 

Error 9 

Total 31 

El 	 STP 2. Determine the number of real factors (k) each at two levels, whose 
complete set of factorial treatments is equal to the number of treatments (t) 
to be tested (i.e., 2k = t). Then select the specific set of k real factors from 

Table 4.20 Grain Yield Data from a 26 Factorial Experiment Planted 
In a I Fractional Factorial Design In Blocks of 16 Experimental Plots 
Each, and with Two Replications 

Grain Yield, Grain Yield, 
t/ha t/ha 

Treatment Rep. I Rep. II Total Treatment Rep. I Rep. II Total 

Block I Block 2 

(1) 2.92 2.76 5.68 ad 3.23 3.48 6.71 
ab 3.45 3.50 6.95 ae 3.10 3.11 6.21 
ac 3.65 3.50 7.15 af 3.52 3.27 6.79 
be 3.16 3.05 6.21 bd 3.29 3.22 6.51 
de 3.29 3.03 6.32 be 3.06 3.20 6.26 
df 3.34 3.37 6.71 bf 3.27 3.27 6.54 
ef 3.28 3.23 6.51 cd 3.68 3.52 7.20 
abde 3.88 3.79 7.67 ce 3.08 3.02 6.10 
abdf 3.95 4.03 7.98 cf 3.29 3.10 6.39 
abef 3.85 3.90 7.75 abed 3.89 3.99 7.88 
acde 4.05 4.18 8.23 abce 3.71 3.80 7.51 
acdf 4.37 4.20 8.57 abcf 3.96 3.98 7.94 
acef 3.77 3.80 7.57 adef 4.27 3.98 8.25 
bcde 4.04 3.87 7.91 bdef 3.69 3.62 7.31 
bcdf 4.00 3.76 7.76 cdef 4.29 4.09 8.38 
beef 3.63 3.46 7.09 abcdef 4.80 4.78 9.58 
Total (RB) 58.63 57.43 58.13 57.43 
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the original set of n factors and designate all (n - k) factors not included in 
the set of k as dummy factors. 

For our example, the t = 32 treatment combinations correspond to a 
complete set of 2k factorial treatment combinations, with k = 5. For sim­
plicity, the first five factors A, B, C, D, and E are designated as the real 
factors and F as the dummy factor. 

" 	s-nip 3. Arrange the t treatments in a systematic order based on the k real 
factors: 

A. 	 Treatments with fewer number of letters are listed first. For example, ab 
comes before abc, and abc comes before abcde, and so on. Note that if 
treatment (1) is present in the set of t treatments, it always appears as 
the first treatment in the sequence. 

B. 	 Among treatments with the same number of letters, those involving 
letters corresponding to factors assigned to the lower-order letters come 
first. For example, ab comes before ac, ad before bc, and so on. 

C. 	 All treatment-identification letters corresponding to the dummy factors 
are ignored in the arrangement process. For our example, factor F is 
the dummy factor and, thus, af is considered simply as a and comes 
before ab. 

In this example, the systematic arrangement of the 32 treatments is 
shown in the first column of Table 4.21. Note that: 
- The treatments are listed systematically regardless of their block alloca­

tion. 
• 	 The dummy factor F is placed in parenthesis. 

" 	STEP 4. Compute the t factorial effect totals: 

A. 	 Designate the original data of the t treatments as the initial set or the to
values. For our example, the systematically arranged set of 32 to values 
are listed in the second column of Table 4.21. 

B. 	 Group the to values into t/2 successive pairs. For our example, there 
are 16 successive pairs: the first pair is 2.92 and 3.52, the second pair is 
3.27 	and 3.45, and the last pair is 4.04 and 4.80. 

C. Add the values of the two treatments in each of the t/2 pairs con­
stituted in task 2 to constitute the first half of the second set or the tl 
values. For our example, the first half of the tj values are computed as: 

6.44 	= 2.92 + 3.52 

6.72 = 3.27 + 3.45 

8.34 = 4.29 + 4.05 

8.84 = 4.04 + 4.80 



Table 4.21 Application of Yats' Method for the Computation of Sums of Squares 
of a 26 Factorial Experiment Conducted Ina I Fractional Factorial Design, without 
Replication, from Rep. I data InTable 4.20 

Factorial Effect 

Treatment Identification____________ 

Combination to 11 t2 13 14 15 Preliminary Final 

(1) 
a(f) 
b(f) 
ab 

2.92 
3.52 
3.27 
3.45 

6.44 
6.72 
6.94 
7.12 

13.16 
14.06 
13.81 
15.94 

27.22 
29.75 
27.48 
32.31 

56.97 
59.79 
3.07 
3.07 

116.76 
6.14 
2.50 
0.56 

(G) 
A 
B 
AB 

(G) 
A 
B 
AB 

c(f) 
ac 

3.29 
3.65 

6.57 
7.24 

13.29 
14.19 

1.94 
1.13 

0.97 
1.53 

5.98 
-0.08 

C 
AC 

C 
AC 

bc 3.16 8.05 15.13 1.38 -0.01 -0.48 BC BC 

abc(f) 
d(f) 
ad 

3.96 
3.34 
3.23 

7.89 
6.38 
6.91 

17.18 
0.78 
1.16 

1.69 
0.46 
0.51 

0.57 
3.03 
2.95 

-0.50 
7.36 

-0.50 

ABC 
D 
AD 

ABC(Block) 
D 
AD 

bd 3.29 6.85 0.55 1.02 0.41 -0.46 BD BD 

abd(f) 
cd 

3.95 
3.68 

7.34 
7.56 

0.58 
0.61 

0.51 
0.02 

-0.49 
-0.93 

-0.20 
2.38 

ABD 
CD 

ABD 
CD 

acd(f) 
bcd(f) 
abcd 

4.37 
4.00 
3.89 

7.57 
8.34 
8.84 

0.77 
1.17 
0.52 

-0.03 
0.36 
0.21 

0.45 
-0.71 

0.21 

-1.16 
-0.20 

0.94 

ACD 
BCD 
ABCD 

ACD 
BCD 
EF 

e 3.28 0.60 0.28 0.90 2.53 2.82 E E 

ae 3.10 0.18 0.18 2.13 4.83 0.00 AE AE 

, e 
abe(f) 
ce 

3.06 0.36 
3.85 0.80 
3.08-0.11 

0.67 
-0.16 

0.53 

0.90 
2.05 
0.38 

-0.81 
0.31 
0.05 

0.56 
0.58 

-0.08 

BE 
ABE 
CE 

BE 
ABE 
CE 

ace(f) 
bce(f) 
abce 

3.77 0.66 
3.63 0.69 
3.71-0.11 

0.49 
0.01 
0.50 

0.03 
0.16 

-0.65 

-0.51 
-0.05 
-0.15 

-0.90 
1.38 
0.92 

ACE 
BCE 
ABCE 

ACE 
BCE 
DF 

de 3.29-0.18 -0.42 -0.10 1.23 2.30 DE DE 

ade(f) 
bde(f) 
abde 

4.27 
3.69 
3.88 

0.79 
0.69 
0.08 

0.44 
0.77 

-0.80 

-0.83 
-0.04 

0.49 

1.15 
-0.35 
-0.81 

1.12 
-0.56 
-0.10 

ADE 
BDE 
ABDE 

ADE 
BDE 
CF 

cde(f) 
acde 

4.29 
4.05 

0.98 
0.19 

0.97 
-0.61 

0.86 
-1.57 

-0.73 
0.53 

-0.08 
-0.46 

CDE 
ACDE 

CDE 
BF 

bcde 4.04- 0.24 -0.79 -1.58 -2.43 1.26 BCDE AF 

abcde(f) 4.80 0.76 1.00 1.79 3.37 5.80 ABCDE F 

174
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The results of the first 16 t values are shown in the top of the third 
column of Table 4.21. 

D. 	 Subtract the first value from the second in each of the r/2 pairs
constituted in task 2 to constitute the bottom half of the t1 values. For 
our example, the second half of the ii values are computed as: 

0.60 	= 3.52 - 2.92 

0.18 = 3.45 - 3.27 

-0.24 = 4.05 - 4.29 

0.16 = 4.80 - 4.04 

The results of the last 16 tj values are shown in the bottom half of 
the third column of Table 4.21. 

E. 	 Reapply tasks B to D using the values of t1 instead of t0 to derive the 
third set or the t2 values. For our example, tasks B to D are reapplied to 
t, values to arrive at the t 2 values shown in the fourth column of Table 
4.21. 

F. 	 Repeat task E, (k ­ 2) times. Each time use the newly derived values of 
t. 	For our example, task E is repeated three more times to derive t3values, t4 values, and t5 values as shown in the fifth, sixth, and seventh 
columns of Table 4.21. 

0 	Snip 5. Identify the specific factorial effect that is represented by each of 
the values of the last set (commonly referred to as the factorial effect totals)
derived in step 4. Use the following guidelines: 

A. 	 The first value represents the grand tota, (G). 
B. 	 For the remaining (t - 1) values, asign the preliminary factorial effects 

according to the letters of the corresponding treatments, with the 
dummy factors ignored. For our example, the second t5 value corre­
sponds to treatment combination a(f) and, hence, is assigned to the A 
main effect. The fourth t5 value corresponds to treatment ab and is 
assigned to the A X B interaction effect, and so on. The results for all 
32 treatments are shown in the eighth column of Table 4.21. 

C. 	 For treatments involving the dummy factor (or factors) adjust the 
preliminary 	factorial effects derived in task B as follows: 

Based on the condittom stated in the basic plan of Ap,- -ndix M, 
identify all effects involving the dummy factor that are estimable 
(i.e., that can be estimated). For our example, the estimable effects 
involving the dummy factor F consist of the main effect of F and all 
its two-factor interactions AF, BF, CF, DF, and EF. 
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" 	Identify the aliases of all effects listed immediately above. The alias 
of any effect is defined as its generalized interaction with the defining 
contrast. The generalized interaction between any two factorial 
effects is obtained by combining all the letters that appear in the two 
effects and canceling all letters that enter twice. For example, the 
generalized interaction between ABC and AB is AABBC or C. 

For our example, because the defining contrast is ABCDEF (see 
plan 3 of Appendix M) the aliases of the six effects involving the 
dummy factor F are: F = ABCDE, AF = BCDE, BF = ACDE, 
CF = ABDE, DF = ABCE, and EF = ABCD. 

The two factorial effects involved in each pair of aliases (one to 
the left and another to the right of the equal sign) are not separable 
(i.e., can not be estimated separately). For example, for the first pair, 
F and ABCDE, the main effect of factor F cannot be separated from 
the A x B x C x D x E interaction effect and, hence, unless one of 
the pair is known to be absent there is no way to know which of the 
pairs is the contributor to the estimate obtained. 

" 	 Replace all preliminary factorial effects that are aliases of the 
estimable effects involving the dummy factors by the latter. For 
example, because A BCDE (corresponding to the last treatment in 
Table 4.21) is the alias of F, - is replaced by F. In the same manner, 
BCDE is replaced by AF, ACDE by BF, ABDE by CF, ABCE by 
DF,and ABCD by FF. 

" 	 When blocking is used, identify the factorial effects that are con­
founded with blocks. Such effects are stated for each plan of 
Appendix M. For our example, ABC is confounded with block (see 
plan 3 of Appendix M) and the preliminary factorial effect ABC is, 
therefore, replaced by the block effect. That means that the estimate 
of the ABC effect becomes the measure of the block effect. 

The final results of the factorial effect identification are shown in 
the last column of Table 4.21. 

o 	STEP 6. For each source of variation in the analysis of variance (step 1) 
identify the corresponding factorial effects. For our example, there is only 
one factorial effect (i.e., ABC) corresponding to the first source of variation 
of block. For the second source of variation (main effects) there are six 
factorial effects corresponding to the six main effects (A, B, C, D, E, and 
F). And, for the third source of variation (two-factor interactions) there are 
15 factorial effects (i.e., all 15 possible two-factor interaction effects among 
the six factors). All the remaining nine factorial effects correspond to the 
last source of variation (error). 

o STEP 7. For each source of variation in the analysis of variance of step 1, 
compute its SS as the sum of the squares of the factorial effect totals of the 
corresponding factorial effects (identified in step 6) divided by the total 
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number of treatments tested in the experiment. For our example, the various 
SS are computed as: 

= (ABC) 2 
Block SS 

32 

= (-0.5 0.007812 

32 

Main effect S --(A)2 +(B) 2 +(C) 2 +(D) 2 +(E) 2 +(F)2 

32 

= [(6.14)2 +(2.50)2 +(5.98)2 +(7.36)2 

+ (2.82)2 + (5.80)2 ] /32 

-5.483500 

Two-factor interaction SS = [(AB)' + (A C) 2 + (BC) 2 + + (CF) 2 

+(BF)2 +(AF) 2]/32 

= [(0.56)2 +(-0.08)2 +(-0.48)2 

+ ... +(-0.10) 2 +(-0.46)2 +(1.26)2]/32 

= 0.494550 

ErrorSS= [(ABD)2 +(ACD)2 +(BCD)2 + ... 

+(ADE) 2 +(BDE)2 + (CDE)2]/32 

= [(-0.20)2 +(-1.16)2 +(-0.20)2+ - +(1.12) 2 

+(-056)2 +(-0.08)2]/32 

= 0.189088 

Note that the error SS can also be computed as the difference between the 
total SS and the sum of all other SS, where the total SS is computed from 
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all factorial effect totals. For our example, the total SS and the error SS are: 
Total SS- (A) 2 +(B) 2 +(AB) 2 + + (BF)2 +(AF)2 +(F)2 

32 

2
 
= 	[(6.14)2 +(2.50)2 +(0.56)2 + .. +(-0.46) 

+(1.26)2 +(5.80)2] /32 

= 6.174950 

Error SS Total SS - Main effect SS - Two-factor interaction SS 

- Block SS 

6.174950 - 5.483500 - 0.494550 - 0.007812 

= 	0.189088 

0 	 sTEP 8. Determine the degree of freedom for each SS as the number of 
factorial effect totals used in its computation. For example, the computation 
of the block SS involves only one effect, namely ABC; hence, its d.f. is 1. 
On the other hand, there are six effect totals involved in the computation of 
the main effect SS; hence, its d.f. is 6. The results are shown in the second 
column of Table 4.22. 

o 	STEP 9. Compute the mean square for each source of variation by dividing 
each SS by its d.f: 

Block SSBlock MS = 
1 

= 	0.007812 

Table 4.22 Analysis of Variance of Data from a Fractional Factorial Design: 
I of a 2' Factorial Experiment without Replication" 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Block 1 0.007812 0.007812 <1 - -
Main effect 6 5.483500 0.913917 43.50** 3.37 5.80 
Two-factor interaction 15 0.494550 0.032970 1.57' 3.00 4.96 
Error 9 0.189088 0.021010 

Total 31 6.174950 

"Source of data: Rep. I data of Table 4.2G. 
-**_ - not significant.significant at 1%level, 
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Main effect MS = Main effect SS 
6 

5.483500 
0.9139176 

Two-factor interaction MS = Two-factor interaction SS 
15 

0.494550 
0.03297015 = 

= Error SSErrcor MS 
9 

0.189088 - = 0.021010 
9 

0 STEP 10. Compute the F value for each effect by dividing its MS by the 
error MS: 

F(blck) =i Block MSError MS 

0.007812 
<
0.021010 

F(main effct) =i Main effect MSError MS 

0.913917 
0.021010 =43.50 

F(two-factor interaction) = Two-factor interaction MS 
Error MS 

0.032970 
0.021010 =1.57 

O3 STEP 11. Compare each computed F value with the corresponding tabular 
F values, from Appendix E, with f, = d.f. of the numerator MS and 
f2 = error d.f. 

The final analysis of variance is shown in Table 4.22. The results indicate 
a highly significant main effect but not the two-factor interaction effect. 

4.5.22 Desjn with Replication. We show the computations involved in 
the analysis of viriance of a FFD with data from both replications in Table 
4.20. 
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E3 srmp 1. Outline the aralysis of variance, following that given in plan 3 of 
Appendix M: 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Replication 1 
Block 1 
Block X Replication 1 
Main effect 6 
Two-factor 

interaction 15 
Three-factor 

interaction 9 
Error 30 

Total 63 

o3 sap 2. Compute the replication x block totals (RB) as shown in Table 
4.20. Then compute the replication total for each of the two replications 
(R), the block totals for each of the two blocks (B), and the grand total (G) 
as: 

R, = 58.63 + 58.13 = 116.76 

R 2 = 57.43 + 57.43 = 114.86 

B, = 58.63 + 57.43 = 116.06 

B2 - 58.13 + 57.43 = 115.56 

G = 116.76 + 114.86 

= 116.06 + 115.56 = 231.62 

0J sMEP 3. Let r denote the number of replications, p the number of blocks in 
each replication, and t the total number of treatments tested. Compute the 
correction factor, total SS, replication SS, block SS, and block X replication 
SS as: 

G2 
GC.F. = 
rt 

= (231.62)2 = 838.247256 
(2)(32) 
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X 2Tota$S = - C.F. 

= [(2.92)2 + ... + (4.78)2 ] - 838.247256 

= 12.419344 

2

ER
 

Replication SS = - C.F. 

= (116.76)2 + (114.86)2 _ 838.247256 
32
 

= 0.056406
 

Block SS = - - C.F.t 

= (116.06)2 +(115.56)2 838.247256 
32 

= 0.003906 

Block x Replication SS = t/p - C. F. - Replication SS - Block SS 

(58.63)2 +(57.43)2 +(58.13)2 +(57.43)2 

32/2 

- 838.247256 - 0.056406 - 0.003906 

= 0.003907 

3 sTEP 4. Follow steps 2 to 7 of Section 4.5.2.1; with one modification, 
namely that the grain yield data in the second column of Table 4.21 is 
replaced by the yield totals over two replications as shown in Table 4.23. 
Then compute the various SS as follows: 

Main effect SS = (A)2 +(B)2 +(C)2 +(D)2 +(E)2 +(F)2
 

(r)(2") 

= [(13.86)2 +(6.08)2 +(11.32)2 +(14.32)2 

+ (5.68)2 + (10.62)2] /(2)(32) 

= 11.051838 
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Two-factor interaction SS = [(AB)2 + (AC) 2 + (BC) 2 + ... + (CF) 2 

+(BF)2 +(AF)21/(r)2k) 

= 	[(1.48)2 +(0.92)2 +(-1.50)2 + . 0.44)2 

+ (-0.52)2 + (1.62)2]/(2)(32) 

= 	0.787594 

Three-factor interaction SS = [( ABD)2 + (A CD) 2 + (BCD) 2 + ... 

+(ADE) 2 +(BDE) 2 +(CDE)2J/(r)(2k) 

= 	[(-0.54)2 +(-2.42)2 +(0.04)2 + .'" 

+(1.78)2 +(-0.24) 2 +(1.24)2] /(2)(32) 

= 0.238206 

Error SS = Total SS - (the sum of all other SS) 

= 	12.419344 - (0.056406 + 0.003906 + 0.003907 

+ 11.051838 + 0.787594 + 0.238206) 

- 0.277487 

0 	STEP 5. Compute the mean square for each source of variation, by dividing
the SS by its d.f. (see step 8 of Section 4.5.2.1 for the determination of d.f) 
as: 

Replication MS - Replication SS 
1
 

0.056406=ffi 0.056406 
1 

Block SSBlock MS 
1 

0.003906 
0.003906I 
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Block X Replication MS = Block X Replication SS 
1 

0.003907= = 0.003907 
1 

Table 4.23 Application of Yates' Method for the Computation of Sums of Squares 
of a 26 Factorial Experiment Conducted In a I Fractional Factorial Design, with 
Two Replications; from Data In Table 4.20 

Factorial Effect 
Treatment Identification 
Combination to t1 t2 t3 t4 t5 Preliminary Final 

(1) 5.68 12.47 25.96 53.65 112.97 231.62 (G) (G) 
a(f) 6.79 13.49 27.69 59.32 118.65 13.86 A A 
b(f) 6.54 13.54 27.91 55.00 6.97 6.08 B B 
ab 6.95 14.15 31.41 63.65 6.89 1.48 AB AB 
c(f) 6.39 13.42 26.73 4.01 2.57 11.32 C C 
ac 7.15 14.49 28.27 2.96 3.51 0.92 AC AC 
bc 6.21 15.77 29.55 3.08 0.49 -1.50 BC BC 
abc(f) 7.94 15.64 34.10 3.81 0.99 -0.50 ABC ABC(Block) 
d(f) 6.71 12.72 1.52 1.63 5.23 14.32 D D 
ad 6.71 14.01 2.49 0.94 6.09 -0.32 AD AD 
bd 6.51 13.67 1.47 2.22 0.99 -1.62 BD BD 
abd(f) 7.98 14.60 1.49 1.29 -0.07 -0.54 ABD ABD 
cd 7.20 14.57 1.19 0.27 -1.61 4.78 CD CD 
acd(f) 8.57 14.98 1.89 0.22 0.11 -2.42 ACD ACD 
bcd(f) 7.76 16.61 2.29 0.74 -1.05 0.04 BCD BCI2 
abcd 7.88 17.49 1.52 0.25 0.55 1.84 ABCD EF 
e(f) 6.51 1.11 1.02 1.73 5.67 5.68 E E 
ae 6.21 0.41 0.61 3.50 8.65 -0.08 AE AE 
be 6.26 0.76 1.07 1.54 - 1.05 0.94 BE BE 
abe(f) 7.75 1.73 -0.13 4.55 0.73 0.50 ABE ABE 
ce 6.10 0.00 1.29 0.97 -0.69 0.86 CE CE 
ace(f) 7.57 1.47 0.93 0.02 -0.93 -1.06 ACE ACE 
bce(f) 7.09 1.37 0.41 0.70 -0.05 1.72 BCE BCE 
ab'e 7.51 0.12 0.88 -0.77 -0.49 1.60 ABCE DF 
de 6.32 -0.30 -0.70 -0.41 1.77 2.98 DE DE 
ade(f) 8.25 1.49 0.97 - 1.20 3.01 1.78 ADE ADE 
bde(f) 7.31 1.47 1.47 -0.36 -0.95 -0.24 BDE BDE 
abde 7.67 0.42 -1.25 0.47 -1.47 -0.44 ABDE CF 
cde(f) 8.38 1.93 1.79 1.67 -0.79 1.24 CDE CDE 
acde 8.23 0.36 -1.05 -2.72 0.83 -0.52 ACDE BF 
bcde 7.91 -0.15 -1.57 -2.84 -4.39 1.62 BCDE AF 
abcde(f) 9.58 1.67 1.82 3.39 6.23 10.62 ABCDE F 
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-Main effect SS
'Main effect MS = Mi fetS 

6 

11.051838-fi1.841973 

6 

Two-factor interaction MS f Two-factor interaction SS 
15 

0.787594 
0.05250615 

Three-factor interaction MS f Three-factor interaction SS
9 

0.2382060 0 = 0.026467 
9 

ErrorSS
Er3Error MS 30
 

0.277487 
- 30 0.00925030
 

13 	 SEP 6. Compute the F value for each effect, by dividing its MS by thr 
error MS as: 

Freplication) =, Replication MS 
Error MS 

0.056406 
0.009250 

Block MSF(blck) fi Error MS 

0.003906 
- 0.009250<1 

X replication MS
-BlockF(block X replication) 

Error MS 

0.003907 
= 0.009250<1 
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F(main effect) =Main effect MS 
Error MS 

1.841973 
- = 199.13-


F(two-factor interaction) = Two-factor interaction MS 
Error MS 

0.052506 
=5.680.009250 

= 	Three-factor interaction MSF(three-factor interaction) 
Error MS 

0.026467 
0.009250 =2.86 

0 	 sTEP 7. Compare each computed F value with the corresponding tabular F 
values, from App.ndix E, with f, = d.f. of the numerator MS andf 2 = error 
d.f. The results indicate that the main effects, the two-factor interactions, 
and the three-factor interactions are all ,ignificant. 

The final analysis of variance is shown in Table 4.24. There are two important 
points that should be noted in the results of this analysis of variance obtained 
from two replications as compared to that without replication (Table 4.22): 

* 	 The effect of the three-factor interactions can be estimated only when there 
is replication. 

Table 4.24 Analysis of Variance of Grain Yield Data In Table 4.20, from a 
Fractional Factorial Design: I of a 2' Factorial Experiment with Two 
Replications 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Computed 
P 

Tabular F 
5% 1% 

Replication 1 0056406 0056406 
Block 1 0.003906 0.003906 
Block x replication 1 0.(X)3907 0 003907 
Main effect 6 11.051838 1841973 
Two-factor interaction 15 0.787594 0052506 
Three-factor interaction 9 0.238206 0.026467 

6.10* 
< 1 
< I 

199 13"* 
5.68* 
2.860 

4.17 7.56 
- -
- -

2.42 3.47 
2.02 2.70 
2.21 3.06 

Error 30 0.277487 0 009250 
Total 63 12.419344 

a * - significant at 1%level, - significant at 5%level. 
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Without replication, the error term is estimated as the values of the 
three-factor interaction effects; whereas, with replication, an independent 
estimate of error is available. Thus, when the three-factor interacoion effect 
is large and significant (as is the present case) the error term is highly 
overestimated and the sensitivity of the F test greatly reduced. This is clearly 
shown in our example in which the significance of the two-factor interaction 
cannot be detected in the case without replication. 



CHAPTER 5 

Comparison Between 
Treatment Means 

There are many ways to compare the means of treatments tested in an 
experiment. Only those comparisons helpful in answering the experimental 
objectives should be thoroughly examined. Consider an experiment in rice 
weed control with 15 treatments-4 with hand weeding, 10 with herbicides, 
and 1 with no weeding (control). The probable questions that may be raised, 
and the specific mean comparisons that can provide their answers, may be: 

" 	 Is any treatment effective in controlling weeds? This could be answered 
simply by comparing the mean of the nonweeded treatment with the mean 
of each of the 14 weed-control treatments. 

" 	Are there differences between the 14 weed-control treatments? If so, which 
is effective and which is not? Among the effective treatments, are there 
differences in levels of effectivity? If so, which is the best? To answer these 
questions, the mean of each of the 14 weed-control treatments is compared 
to the control's mean and those that are significantly better than the control 
are selected. In addition, the selected treatments are compared to identify 
the best among them. 

* 	 Is there any difference between the group of hand-weeding treatments and 
the group of herbicide treatments? To answer this question, the means of 
the four hand-weeding treatments are averaged and compared with the 
averaged means of the 10 herbicide treatments. 

" 	 Are there differences between the four hand-weeding treatments? If so, 
which treatment is best? To answer these questions, the four hand-weeding 
treatment means are compared to detect any significant difference among 
them and the best treatments are identified. 

" 	Are there differences among the 10 herbicide treatments? If so, which 
treatment s best? Or, which herbicide gave better performance than the 
2, 4-D treatment, the current leading herbi,.ide for rice? The comparisons 
needed for the first two questions are similar to those described previous!y, 
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except that four hand-weeding treatments replaced the 10 herbicide treat­
ments. For the third question, the mean of each herbicide treatment is 
compared with the mean of the 2, 4-D treatment to identify those herbicides 
giving significantly better performance than 2,4-D. 

If five of the 10 herbicide treatments represent five different rates of a single 
herbicide, are there grain yield differences among the rates of application? 
To answer this question, a functional relationship between the response and 
the treatment (i.e., rate of herbicide application) is evaluated to characterize 
the change in grain yield for every change in the amount of herbicide 
applied (see Chapter 9 on regression analysis). 

This weed-control experiment illustrates the diversity in the types of mean 
comparison. These different types can, however, be classified either as pair 
comparison or group comparison. In this chapter we focus on the statistical 
procedures for making these two types of comparison. 

5.1 PAP COMPAR!SON 

Pair comparison is the simplest and most commonly used comparison in 
agricultural research. There are two types: 

" 	 Planned pair comparison, in which the specific pair of treatments to be 
compared was identified before the start of the experiment. A common 
example is comparison of the control treatment with each of the other 
treatments. 

" 	 Unplanned pair compariscn, in which no specific comparison is chosen in 
advance. Instead, every possible pair of treatment means is compared to 
identify pairs of treatments that are significantly different. 

The two most commonly used test procedues for pair comparisons in 
agricultural research are the least sigmficant difference (LSD) test which is 
suited for a planned pair comparison, and Duncan's multiple range test 
(DMRT) which is applicable to an unplanned pair comp'.,ison. Other test 
procedures, such as the honestly significant difference (HSD) test and the 
Student-Newman-Keuls' multiple range test, can be found in Steel and Torrie, 
1980,* and Snedecor and Cochran, 1980. t 

5.1.1 Least Significant Difference Test 

The least significant difference (LSD) test is the simplest and the most 
commonly used procedure for makiag pair comparisons. The procedure pro­

*R. G. D. Steel and J. A. Torrie, Principles and Procedures of Statistics, 2nd cd., USA: 
McGraw-Hill, 1980. pp. 183-193. 
tG. W.Sncdccor and W,G.Cochran. Statistical Methods. USA: The Iowa State University Press, 
1980. pp. 232-237. 
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vides for a single LSD value, at a prescribed level of significance, which serves 
as the boundary between significant and nonsignificant differences between 
any pair of treatment means. That is, two treatments are declared significantly 
different at a prescribed level of significance if their difference exceeds the 
computed LSD value; otherwise they are not significantly different. 

The LSD test is most appropriate for making planned pair comparisons but, 
strictly speaking, is not valid for comparing all possible pairs of means, 
especially when the number of treatments is large. This is so because the 
number of possible pairs of treatment means increases rapidly as the number 
of treatments increases-10 possible pairs of means with 5 treatments, 45 pairs 
with 10 treatments, and 105 pairs with 15 treatments. The probability that, due 
to chance alone, at least one pair will have a difference that exceeds the LSD 
value increases with the number of treatments being tested. For example, in 
experiments where no real difference exists among all treatments, it can be 
shown that the numerical difference between the largest and the smallest 
treatment means is expected to exceed the LSD value at the 5% level of 
significance 29% of the time when 5 treatments are involved, 63% of the time 
when 10 treatments are involved, and 83% of the time when 15 treatments are 
involved. Thus avoid use of the LSD test for comparisons of all possible pairs 
of means. If the LSD test must be used, apply it only when the F test for 
treatment effect is significant and the number of treatments is not too 
large-less than six. 

The procedure for applying the LSD test to compare any two treatments, 
say lie ith and thejth treatments, involve these steps: 

O] 	 STEP 1. Compute the mean difference between the ith and thejth treat­
ment as: 

dui = X, - Xs 

where X, andRX are the means of the ith and thejth treatments. 

o 	STEP 2. Compute the LSD value at a level of significance as: 

LSD. = (t.)(sj) 

where sj is the standard error of the mean difference and ta is the tabular t 
value, from Appendix C, at a level of significance and with n = error degree 
of freedom. 

O 	 STPP 3. Compare the mean difference computed in step 1 to the LSD value 
computed in step 2 and declare the ith andjth treatments to be significantly 
different at the a level of significance, if the absolute value of d,, is greater 
than the LSD value, otherwise it is not significantly different. 

In 	 applying the foregoing procedure, it is important that the appropriate 
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standard error of the mean difference for the treatment pair being compared is 
correctly identified. This task is affected by the experimental design used, the 
number of replications of the two treatments being compared, and the specific 
type of means to be compared. Thus in the succeeding sections we illustrate the 
procedure for implementing an LSD test for various experimental designs. 
Emphasis is on how to compute the sj value to be used and other special 
modifications that may be required. 

5.1.1.1 Complete Block Design. For a complete block design where only 
one error term is involved, such as completely randomized, randomized 
complete block, or latin square, the standard error of the mean difference for 
any pair of treatment means is computed as: 

22S
dJ r 

where r is the number of replications that is common to both treatments in the 
pair and s2 is the error mean square in the analysis of variance. 

When the two treatments do not have the same number of replications, sj is 
computed as: 

S,7= S2(!~i+) 

where r and r r . the number of replications of the ith and thejth treatments. 
In a factoria, experiment, there are several types of treatment mean. For 

example, a 2 x 3 factorial experiment, involving factor A with two levels and 
factor B with three levels, has four types of mean that can be compared: 

1. The two A means, averaged over all three levels of factor B 
2. The three B means, averaged over both levels of factor A 
3. The six A means, two means at each of the three levels of factor B 
4. The six B means, three means at each of the two levels of factor A 

The type-1 mean is an average of 3r observations; the type 2 is an average 
of 2r observations; and the type 3 or type 4 is an average of r observations. 

Thus, the formula sj= (2s2/r) 1/ 2 is appropriate only for the mean dif­
ference involving either type-3 or type-4 mean. For type I and type 2, the 
divisor r in the formula should be replaced by 3r and 2r. That is, to compare 
two A means averaged over all levels of factor B, the s, value is computed as 
(2s 2/3r)1 / 2 and to compare any pair of B means averaged over all levels of 
factor A, the s, value is computed as (2s2/2r) 1/ 2 or simply (s 2/r) 1 / 2 . 
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We illustrate the LSD test procedure with two examples. One is a case with 
equal replication; the other a case with unequal replication. 

5.1.1.1.1 Equal Replication. Data from a completely randomized design 
experiment with seven treatments (six insecticide treatments and one control 
treatment) were tested in four replications (Chapter 2, Table 2.1). Assume that 
the primary objective of the experiment is to identify one or more of the six 
insecticide treatments that is better than the control treatment. For this 
example, the appropriate comparison is the series of planned pair comparisons 
in which each of the six insecticide treatment means is compared to the control 
mean. The steps involved in applying the LSD test to each of the six pair 
comparisons are: 

0 	STEP 1. Compute the mean difference between the control treatment and 
each of the six insecticide treatments, as shown in Table 5.1. 

o3 	 STEP 2. Compute the LSD value at a level of significance as: 

= t, 2sLSD, 
r 

For our example, the error mean square s2 is 94,773, the error degree of 
freedom is 21, and the number of replications is four. The tabular tvalues 
(Appendix C), with n = 21 degrees of freedom, are 2.080 at the 5%level of 

Table 5.1 Comparison between Mean Yields of a 
Control and Each of the Six Insecticide Treatments, 
Using the LSD Test (Data In Table 2.1) 

Difference from 
Mean Yield," Control,b 

Treatment kg/ha kg/ha 

Dol-Mix (1kg) 2,127 811** 
Dol-Mix (2kg) 2,678 1,362"* 
DDT + y-BHC 2,552 1,236" 
Azodrin 	 2,128 812** 
Dimecron-Boom 1,796 480*
 
Dimecron-Knap 1,681 365n-

Control 	 1,316
 

'Average of four replications.
 
b**_ significant at 1%level, *- significant at 5% level,
 
n-- not significant.
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significance and 2.831 at the 1%level. The LSD values are computed: 

L5D 0 2.080- [2(94,773) _453 kg/ha 

= 	2.831 73) 616 kg/haLSD 01 

0 	STEP 3. Compare each of the mean differences computed in step 1 to the 
LSD values computed in step 2 and indicate its significance with the 
appropriate asterisk notation (see Chapter 2, Section 2.1.2). For our exam­
ple, the mean difference between the first treatment and the control of 811 
kg/ha (Table 5.1) exceeds both computed LSD values and, thus, receives 
two asterisks to indicate that the two treatments are significantly different at 
the 1%level of significance. The results for the six pair comparisons show 
that, except for Dimecron-Knap, all insecticide treatments gave yields that 
were significantly higher than that of control. 

5.1.1.1.2 Unequal Replication. Using data from a completely randomized 
design experiment with 11 treatments (10 weed-control treatments and a 
control) and unequal replications (Chapter 2, Table 2.3), a researcher wishes to 
determine whether any of the 10 weed-control treatments is better than the 
control treatment. For this example, the appropriate comparison is the planned 
pair comparisons in which each of the 10 weed-control treatment means is 
compared to the control mean. The steps involved in applying the LSD test to 
each of these 10 pair comparisons are: 

o1 	 s-EP 1. Compute the mean difference between the control treatment and 
each of the 10 weed-control treatments, as shown in column 4 of Table 5.2. 

o 	STEP 2. Compute the LSD value at a level of significance. Because some 
treatments have four replications and others have three, two sets of LSD 

2values must be computed. Using the error mean square s of 176,532 
(Chapter 2, Table 2.4), the error degree of freedom of 29, and the tabular t 
values with 29 degrees of freedom of 2.045 at the 5% level of significance 
and 2.756 at the 1% level, the two sets of LSD values are computed: 

For comparing the control mean (with four replications) and each 
weed-control treatment having four replications, compute the LSD values 
by the same formula as in Section 5.1.1.1.1, step 2: 

2(176,532)
LSD.05 = 2.045 = 608 kg/ha 

LSD 01 = 2.756 2(176,532) = 819 kg/haV 4 
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Table 5.9 Comparison between Mean Yields of Each of the 10 Treatments 
and the Control Treatment, Using the LSD Test with Unequal Replication 
(Data In Table 2.3) 

Difference 
Mean from 

Treatment Replications, Yield, Control," LSD Values 
Number no. kg/ba kg/ha 5% 1% 

1 4 3,644 2,407** 608 819 
2 3 3,013 1,776** 656 884 
3 4 2,948 1,711* 608 819 
4 4 2,910 1,673* 608 819 
5 3 2,568 1,331** 656 884 
6 3 2,565 1,328** 656 884 
7 4 2,484 1,247** 608 819 
8 3 2,206 969** 656 884 
9 4 2,041 804* 608 819 

10 4 2,798 1,561* 608 819 
II(Control) 4 1,237 ­

a** - significant at 1%level, * - significant at 5%level. 

For comparing the control mean (with four replications) and each 
weed-control treatment having three replications, compute the LSD 
values following the formula: 

LSD. = (t)(sd) 

where 

Sj= rS2(+) 

Thus, 

LSD 0s = 2.045176,532 (1/3 + 1/4) 

= 656 kg/ha 

LSD 01 = 2.756V176,532 (1/3 + 1/4) 

= 884 kg/ha 

o STEP 3. Compare each of the mean differences computed in step 1 to its 
corresponding LSD values computed in step 2 and place the appropriate 

Nangnguyen
Highlight

Nangnguyen
Highlight

Nangnguyen
Highlight

Nangnguyen
Highlight

Nangnguyen
Highlight



194 Comparison Between Treatment Means 

asterisk notation (see Chapter 2, Section 2.1.2). The mean difference be­
tween the first treatment (four replications) and the control (four replica­
tions) is 2,407 kg/ha. Compare it to the first set of LSD values in step 
2-608 kg/ha and 819 kg/ha. Because the mean difference is higher than 
the corresponding LSD value at the 1%level of significance, it is declared 
significant at the 1%level of significance and is indicated with two asterisks. 

On the other hand, the mean difference between the second treatment 
(with three replications) and the control (with four replications) is 1,776 
kg/ha. Compare it to the second set of LSD values in step 2-656 kg/ha 
and 884 kg/ha. Because the mean difference is also higher than the 
corresponding LSD value at the 1% level of significance, it is declared 
significant at the 1%level of significance and is indicated with two asterisks. 

The test results for all pairs shown in Table 5.2, indicate that all 
weed-control treatments gave significantly higher yields than that of the 
control treatment. 

5.1.1.2 Balanced lattice Design. The application of the LSD test to data 
from a balanced lattice design ipvolves two important adjustments: 

" The adjusted treatment mean is used in computing the mean difference. 
" The effective error mean square is used in computing the standard error of 

the mean difference. 

For illustration, consider the 4 x 4 balanced lattice design described in 
Chapter 2 and the corresponding data in Table 2.10. Assume that one of the 16 
treatments (treatment 10) is the no-fertilizer control treatment and that the 
researcher wishes to determine whether there is any significant response to each 
of the 15 fertilizer treatments. For this purpose, the appropriate mean compari­
son is the planned pair comparis(,ns in which each of the 15 fertilizer 
treatments is compared with the control treatment. The steps involved in 
applying the LSD test are: 

o 	STEP 1. Compute the mean difference between the control (treatment 10) 
and each of the 15 fertilizer treatments, using the adjusted treatment means 
(see Chapter 2, Section 2.4.1.2) shown in Table 5.3. 

o 	STEP 2. Compute the LSD value at a level of significance as: 

LSD, -- 2(effective error MS) 

where effective error MS is as defined in Chapter 2, Section 2.4.1.2, step 13. 
For our example, each treatment is replicated five times and the effective 

error MS with 45 degrees of freedom is 369. The tabular t values (Appendix 
C) with n = 45 degrees of freedom are 2.016 at the 5%level of significance 
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Table 5.3 Comparison between Mean Tiller 
Count of Each of the 15 Fertilizer Treatmonts with 
That of Control, Using the LSD Test (Data In Table 
2.10) 

Difference 
Treatment Adjusted Mean, from Control," 
Number no./m 2 no./m 2 

1 166 47** 
2 161 42** 
3 184 65* 
4 176 57** 
5 163 44** 
6 174 55** 
7 168 49**
 
8 177 58**
 
9 
 163 44**
 

10(control) 119 ­
11 188 69** 
12 191 72**
 
13 170 51"*
 
14 1F7 78**
 
15 186 67**
 
16 168 49**
 

a** - sitiificant at 1%level. 

and 2.693 at the 1% level. Thus, the LSD values are: 

LSD.0 5 = 2.016 3L(2f _ 24/m 2 

5 

LSD.01 = 2.693 52(369)_ 33/m' 
V 5 

o3 STEP 3. Compare the mean difference Lf each pair of treatments computed 
in step 1 to the LSD values computed in step 2 and place the appropriate 
asterisk notation (see Chapter 2, Section 2.1.2). For example, the mean 
difference between treatment 1 and the control treatment of 47 tillers/m 2 

exceeds both computed LSD values and is indicated with two asterisks. The 
results for all 15 pairs are highly significant (Table 5.3). 

5.L1.3 PartiallyBalanced Lattice Design. As in the case of the balanced 
lattice design (Section 5.1.1.2), the application of the LSD test to data from a 
partially balanced lattice design involves two important adjustments: 

* The adjusted treatment mean is used in the computation of the mean 
difference.
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• The appropriate effective error mean square is used in the computation of 
the standard error of the mean difference. 

But unlike the balanced lattice design where there is only one standard error 
of the mean difference, there are two standard errors of the mean difference for 
a partially balanced lattice design-one corresponds to treatment pairs that 
were tested in the same incomplete block and another corresponds to treat­
ment pairs that never appeared together in the same incomplete block. For the 
first set, the effective error MS(l) is used; for the second, the effective error 
MS(2) is used (see Chapter 2, Section 2.4.2.2.1, step 17 for formulas). 

Consider the varietal test in a 9 x 9 triple lattice design, as described in 
Chapter 2, Section 2.4.2, with the data shown in Table 2.13. Assume that the 
researcher wishes to identify varieties that significantly outyielded the local 
variety (variety no. 2). For this purpose, the appropriate mean comparison is 
the planned pair comparisons in which each of the 80 test varieties is compared 
to the local ariety. The steps involved in applying the LSD test are: 

O STEP 1. Compute the mean difference between the local variety and each of 
the 80 test varieties based on the adjusted treatment means, and indicate 
whether each pair was or was not tested together in the same incomplete 
block, as shown in Table 5.4. 

0 STEP 2. Compute the two sets of LSD values: 
" For comparing two treatments that were tested together in an incomplete 

block: 

LSD.=./2[effective error MS(l)] 
r 

where effective error MS(1) is as defined in Chapter 2. 
" For comparing two treatments that were not tested together in an 

incomplete block: 

LSD, /2[effective error MS(2)] 

where effective error MS(2) is as defined in Chapter 2. 
For our example, each variety is replicated three times, the effective error 
MS(1) is 0.2786, and the effective error MS(2) is 0.2856. The tabular t values 
(Appendix C) with n = 136 degrees of freedom are 1.975 at the 5% level of 
significance and 2.606 at the 1%level. Thus, the two sets of LSD values are 
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Table 5.4 Comparison between Adjusted Mean Yield of 80 Rice VarieUes and That of 
Local Variety, Using the LSD Test (Data In Table 2.13) 

Difference Difference Difference 
Adjusted from Local Adjusted from Local Adjusted from Local 

Variety Mean," Variety,b Variely Mean," Variety," Variety Mean," Vrncty,O 
Number t/ha t/ha Number t/ha t/ha Number t/ha t/ha 

1 3.28 1.86*0 29 4.07 2.65** 56 4.14 2.7200 
3 4.41 2.9900 30 5.16 3.74"* 57 2.82 1.40"* 
4 3.00 1.580* 31 3.75 2.3300 58 3.84 2.42*0 
5 3.57 2.15"* 32 3.78 2.36** 59 3.26 1.84"* 
6 3.41 1.99"* 33 3.59 2.17*0 60 4.01 2.59*0 
7 2.35 0,930 34 3.71 2.29*0 61 4.20 2.7800 
8 4.60 3.1800 35 4.22 2.80"* 62 3.98 2.56"* 
9 4.66 3.24"* 36 4.99 3.57"* 63 3.07 1.6500 

10 3.38 1.96"* 37 3.80 2.38*0 64 4.59 3.1700 
11 5.19 3.770* 38 4.27 2.850* 65 3.06 1.64"* 
12 3.17 1.7500 39 5.19 3.774* 66 2.10 0.68"' 
13 1.66 0.24 n' 40 4.80 3.380* 67 5.26 3.84"* 
14 3.62 2.2000 41 4.94 3.52** 68 4.56 3.14 * 
15 4.06 2.6400 42 4.16 2.74** 69 5.09 3.67** 
16 1.78 0.36" 43 3.39 1.97"* 70 3.29 1.87"* 
17 2.81 1.3900 44 3.70 2.2840 71 3.74 2.32$* 
18 2.93 1.51"* 45 3.74 2.320* 72 4.73 3.31"* 
19 3.95 2.5300 46 3.99 2.57*4 73 3.56 2.14"* 
20 3.18 1.76"* 47 2.60 1.1800 74 5.52 4.1000 
21 5.23 3.8100 48 2.58 1.16'* 75 3.69 2.27*0 
22 5.50 4.0800 49 2.75 1.3300 76 3.65 2.23'*
 
23 1.81 0.39" 50 3.29 1.870* 77 4.02 2.6004 
24 3.74 2.32"" 51 3.73 2.31"* 78 6.36 4.9400 
25 5.26 3.84*0 52 1.32 -0.10"' 79 5.40 3.98*" 
26 5.50 4.0804 53 3.16 1.74*0 80 2.72 1.30'*
 
27 4.13 2.7100 54 4.04 2.6200 81 4.45 3030* 
28 3.73 2.31"" 55 3.16 1.74"*
 

"Italicized means are from varieties that were tested together with the local variety in the 

same incomplete block.
 
I** - significant at 1% level, - significant at 5% level, "' - not significant.
 

computed as: 

. For comparing two varieties that were tested together in an incomplete 
block, the LSD values are computed following the first formula given: 

LSD(1).05 = 1.975 2(0.2786 = 0.85 t/ha 

LSD(1).01 - 2.606 2(0.2786) = 1.12 t/ha
V 3 

http:LSD(1).01
http:LSD(1).05
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. For comparing two varieties that were not tested together in an incom­
plete block, the LSD values are computed following the second formula 
given: 

LSD(2). 05  1.975 2(0.2856) = 0.86 t/ha 

LSD(2).01 = 2.606 2(0.2856) = 1.14 t/ha 

Note that whenever the two effective error MS do not differ much, the use 
of the average error MS (see Chapter 2, Section 2.4.2.2.1, step 17) is 

appropriate, and only one set of LSD values needs to be computed as: 

LSD .= t. _/ 2(av. effectiver error MS) 

This LSD value can be used for comparing any pair of treatn,' nts regardless 
of their block configuration. In this example, the use of the average effective 

error MS of 0.2835 is applicable. Hence, the only set of LSD values needed 

is computed as: 

LSD.05 = 1.975[2(0.2835) = 0.86 t/ha 

LSD 0 = 2.606-[2(0.2835) = 1.13 t/ha 

Although this set of LSD values is applicable to the comparison of any pair 
of treatment means, for illustration purposes, in succeeding steps, we will 
use the two sets of LSD values computed from effective error MS(l) and 
effective error MS(2). 

13 	 STEP 3. Compare the mean difference of each pair of varieties computed in 
step 1 to the appropriate set of LSD values computed in step 2. Use LSD(1) 
values for pairs that were tested together in an incomplete block, otherwise 
use LSD(2) values. For example, because variety no. I and the local variety 
were tested together in an incomplete block, their mean difference of 1.86 
t/ha is compared with the LSD(l) values of 0.85 and 1.12 t/ha. The result 
indicates a highly significant difference between variety no. 1 and local 
variety. On the other hand, because variety no. 12 was not tested together 
with the local variety in any block, their mean difference of 1.75 t/ha is 

http:LSD(2).01
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compared with the LSD(2) values of 0.86 and 1.14 t/ha. The results for all 
pairs are shown in Table 5.4. 

5.LL4 Split-PlotDesign. In a split-plot design, with two variable factors 
and two error terms, there are four different types of pair comparison. Each 
requires its own set of LSD values. These comparisons are: 

" Comparison between two main-plot treatment means averaged over all 
subplot treatments. 

" Comparison between two subplot treatment means averaged over all main­
plot treatments. 

" Comparison between two subplot treatment means at the same main-plot 
treatment. 

" Comparison between two main-plot treatment means at the same or differ­
ent subplot treatments (i.e., means of any two treatment combinations). 

Table 5.5 gives the formula for computing the appropriate standard error of 
the mean difference sj for each of these types of pair comparison. When the 
computation of sj involves more than one error term, 	such as in comparison 
type 4, the standard tabular tvalues from Appendix C cannot be used directly
and the weighted tabular tvalues need to be computed. The formulas for 
weighted tabular t values are given in Table 5.6. 

Consider the 6 x 4 factorial experiment whose data are shown in Tables 3.7 
through 3.9 of Chapter 3. The analysis of variance (Table 3.10) shows a highly 

Table 5.5 	 Standard Error of the Mean Difference for Each of the Four Types of 

Pair Comparison In a Split-plot Design 

Type of Pair Comparison 
a
Number Bctwcen 	 sj

I 	 Two main-plot means (aver­
aged over all subplot treat- 2E' 
ments) rb 

2 	 Two subplot means (averaged j2Eh
 
over all main-plot treatments) ra
 
Two subplot means at the same
 
main-plot treatment V-r
 

4 	 Two nain-plot means at the V/2[(b -1) Eh+ E] 
same or different subplot treat- rb 
ments 

'E.- error(a) MS, Eh - error(b) MS, r - no. of replications, a - no. of main-plot 
treatments, and b - no. of subplot treatments. 

3 
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Table 5.6 The Weighted Tabular t Values Associated with the Different 
Mean Comparisons In Tables 5.5, 5.8, and 5.10, Whose Standard Error of 
the Mean Difference Involves More Than One Error Mean Square 

Treatment Comparison
 

Source
 

Table Comparison Weighted Tabular
 
Number Number Number I Value"
 

(b - 1)Ehtb + Etat
1 5.5 (b- )E + Ea 

(b - 1)E:, + Eata 
3 ( )E,+Et2 5.8 

(b - 1)E, + E. 
3 58 4(a - 1)E, t+ Ett b 

(a - 1)E, + Eb 
3(b - 1)ECh + Eo 

(b - 1)Eh + E. 

510 9 (c - I)Et ,+ Ehtb 
(c - 1)E, + Eb 

6 5.10 10(c - 1)Et,+ Ehb 
(c - 1)Ec + Eb,, 

5.10 10 (c- 1)E,tC +Er, 

(c - 1)E , + E,., 

b(c - 1)Ejtc +(b - 1)E,t + Eata 
8 5.10 12 bc1E+b1EEb(c - 1)Ec + (b - 1)Eb+ E-, 

"For definitions of a, b,c, Ea, E,, and E ,see Tables 5.5, 5.8, and 5.10; t,, tb, 

and t, are the tabular tvalues from Appendix C with n - d.f. corresponding to 

Ea, Eb, and Ec, respectively. 

significant interaction between nitrogen and variety, indicating that varietal 

effects varied with the rate of nitrogen applied. Hence, comparison between 

nitrogen means averaged over all varieties or between variety means averaged 

over all nitrogen rates is not useful (see Chapter 3, Section 3.1). 
The more appropriate mean comparisons are those between variety means 

under the same nitrogen rate or between nitrogen-rate means of the same 

variety. However, because pair comparison between nitrogen-rate means of the 

same variety is not appropriate because of the quantitative nature of the 

nitrogen-rate treatments, only the comparison between variety means with 

the same nitrogen rate is illustrated. 
The steps involved in the computation of the LSD test for comparing two 

variety means with the same nitrogen rate (i.e., two subplot means at the same 

main-plot treatment) are: 
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o 	SEP 1. Compute the standard error of the mean difference following the 

formula for comparison type 3 of Table 5.5: 

Vr 

.2(-349,580)= 3 482.8 kg/ha 

where the Eb value of 349,580 is obtained from the error(b) MS in the 
analysis of variance of Table 3.10. 

o 	STEp 2. From Appendix C, obtain the tabular t values with n = error(b)
d.f.= 36 degrees of freedom as 2.029 at the 5% level of significance and 
2.722 at the 1% level. 

" 	 sTEP 3. Following the formula LSD. = (tXs7) compute the LSD values 
•'. 	 the 5% and 1%levels of significance: 

LSDo5 = (2.029)(482.8) - 980 kg/ha 

LSD 0 1 = (2.722)(482.8) = 1,314 kg/ha 

o3 	 Sp 4. Construct the variety X nitrogen two-way table of means with the 
LSD values for comparing two variety means at the same nitrogen rate as 
shown in Table 5.7. For each pair of varieties (with the same nitrogen rate) 

Table 5.7 Mean Yields of Four Rice VarieUes Tested 
with Six Rates of Nitrogen In a Split-plot Design (Data 
In Table 3.7) 

Nitrogen MeanYield, kg/ha 
Rate, MeanYield___k __ha 
kg/ha IR8 IR5 C4-63 Peta 

0 4,253 4,306 3,183 4,481 
60 5,672 5,982 5,443 4,816 
90 6,400 6,259 5,994 4,812 

12C 6,733 6,895 6,014 3,816
150 7,563 6,951 6,687 2,047
180 8,701 6,540 6,065 1,881 

'Average of three replications. The LSD values for compar­
ing two varieties under the same nitrogen rate are 980 
kg/ha at the 5% level of significance and 1,314 kg/ha at 
the 1%level. 
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to be compared, compute the mean difference and compare it to the LSD 

values. For example, one mean difference of interest may be between Peta 

and IR8 at 0 kg N/ha, which is computed as 4,481 - 4,253 = 228 kg/ha. 

Because this mean difference is smaller than the LSD value at the 5%level 

of significance, it is not significant. 

5.1.1.5 Strip-Plot Design. As in the case of the split-plot design (Section 

5.1.1.4) a strip-plot design has four types of pair comparison, each requiring its 

own set of LSD values. These four types and the appropriate formulas for the 

computation of the corresponding sjvalues are shown in Table 5.8. 

The procedure for applying the LSD test to pair comparison in a strip-plot 

design is illustrated with a 6 x 3 factorial experiment. Data and analysis of 

vaiance 	are given in Tables 3.11 through 3.15 of Chapter 3. Because the 
is significant (Table 3.15),interaction effect between variety and nitrogen 

the only appropriate type of pair comparison is that among varieties under the 

same nitrogen rate (see related discussion in Section 5.1.1.4). 
The steps in the computation of the LSD values for comparing two varieties 

grown with the same nitrogen rate are: 

[ 	 STEP 1. Compute the sd value, following the formula for comparison type 3 

of Table 5.8: 

2[(b - I)E, + El 
sj = rb 

- 2[(2)(411,6,16) + 1,492,2621 

-	 717.3 kg/ha 

o 	STEP 2. Because there are two error terms (E and E,) involved in the 

formula used in step 1, compute the weighted tabular t values as: 

" From Appendix C, obtain the tabular I values corresponding to E,, with 

n = 10 d.f. (i.e., t,) and the tabular t values corresponding to E, with 

20 d.f. (i.e., 1,) at the 5%and 1%levels of significance:n = 

t,(.05) = 2.228 and t,,(.01) = 3.169 

t,(.05) = 2.086 and t,(.01) - 2.845 

" 	 Compute the weighted tabular t values, following the corresponding 

formula given in Table 5.6 (i.e., formula 2): 

(b 	- 1)E-et + Et,,a 

(b 	 - 1)EE + E 
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Thble 5.8 Standard Error of the Mean Difference for Each of the Four 
Types of Pair Comparison Ina Strip-plot Design 

Type of Pair Comparison 
Number Between a 

1 Two horizontal means (aver- 2Ea 
aged over all vertical treat- 2rb 
ments) 

2 Two vertical means (averaged 12Eb 
over all horizontal treatments) ra 

3 Two horizontal means at the 
same level of vertical factor 

2[(b - 1)E, + E,] 
rb 

4 Two vertical means at the same 2[(a - 1) E, + Eb] 
level of horizontal factor ra 

aEa - error(a) MS, Eb - error(b) MS, E, - error(c) MS, r - no. of replica­
tions, a - levels of horizontal-strip factor, and b- levels of vertical-strip 
factor. 

t'(.05) = (2)(411,646)(2.086) + (1,492,262)(2.228) 

(2)(411,646) + 1,492,262
 

= 	2.178 

t'(.01) =(2)(411,646)(2.845) + (1,492,262)(3.169) 
(2)(411,646) + 1,492,262 

-	 3.054 

" 	 STEP 3. Compute the LSD values at the 5% and 1% levels of significance: 

LSD.05 - t'(.05)(sj) 

= (2.178)(717.3) = 1,562 kg/ha 

LSD.01 = t'(.01)(sj) 

= (3.054)(717.3) = 2,191 kg/ha 

o 	sTEp 4. Construct the variety x nitrogen two-way table of means, with the 
LSD values (computed in step 3) indicated, as shown in Table 5.9. For 
example, to determine whether the mean yield of IR8 is significantly
diffiernt from that of Peta at a rate of 0 kg N/ha, their mean difference 
(3,572 - 3,207 = 365 kg/ha) is compared to the computed LSD values of 
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Table 5.9 Mean Yields of Six Rice Varieties Tested with Three Nitrogen Rates
 
In a Strip-plot Design (Data InTable 3.11)
 

Mean Yield" kg/ha 

Variety 0 kg N/ha 60 kg N/ha 120 kg N/ha 

1R8 3,572 5,132 7,548
 
IR127-80 4,934 6,714 7,211
 
IR305-4-12 4,250 6,122 7,868
 
IR400-2-5 4,059 5,554 7.094
 

IR665-58 4,102 5,633 6,012
 
Peta 3,207 3,714 2,492
 

'Average of three replications. The LSD values for comparing two varieties with the
 

same nitrogen rate are 1,562 kg/ha at the 5% level of significance and 2,191 kg/ha at
 

the 1%level.
 

1,56 7 and 2,191 kg/ha. Because the mean difference is smaller than the LSD 
value at the 5%level of significance, the mean yields of Peta and IR8 at 0 kg 
N/ha are not significantly different. 

5.1.L6 Split-Split-Plot Design. For a split-split-plot design, there are 12 

types of pair comparison, each requiring its own set of LSD values. These pair 

comparisons, together with the appropriate formulas for computing the corre­

sponding sdvalues, are shown in Table 5.10. 
The procedure for applying the LSD test to pair comparison in a split-split­

plot design is illustrated with a 5 x 3 x 3 factorial experiment. The data and 

analysis are given in Tables 4.4 through 4.11 of Chapter 4. From the analysis 

of variance (Table 4.11), all three main effects and one interaction effect 

between nitrogen and variety are significant. Consequently, only the following 

types of mean comparison should be tested: 

1. 	 Comparison between the three management practices averaged over all 

varieties and nitrogen rates- because none of the interaction effects 
involving management practices is significant. 

2. 	 Comparison between the three varieties averaged over all management 
practices but at the same nitrogen rate-because the nitrogen x variety 
interaction is significant. 

3. 	 Comparison between the five nitrogen rates averaged over all manage­
ment practices but with the same variety-because the nitrogen x 
variety interaction is significant. 

Because pair comparison is appropriate only for comparisons 1 and 2 and 

not for comparison 3 where the treatments involved (i.e., nitrogen rates) are 

quantitative, we give the LSD-test procedures only for comparisons 1 and 2. 



Table 5.10 Standard Error of the Mean Difference for Each of the 12 Typebs of Pair 

Comparison Ina Split-split-plotdesign 

Type of Pair Comparison
 

Number Between ja
 

1 	 Two main-plot means (aver- 2Ea
 
aged over all subplot and sub­
subplot treatments) rbc
 

/ _ b
2 Two subplot means (averaged 
over all main-plot and sub­
subplot treatments) V rac 

3 	 Two subplot means (averaged 
over all sub-subplot treat- 2Eh 
ments) at the same or different V 
levels of main-plot factor 

4 	 Two sub-subplot means (aver­
aged over all main-plot and
 
subplot treatments) Irab
 

5 	 Two sub-subplot means at the
 
same level of main-plot factor 2E
 
(averaged over all subplot -'
 
treatments)
 

6 	 Two sub-subplot means at the
 
same level of subplot factor j 2 ,
 
(averaged over all main-plot V ra
 
treatments)
 

7 Two sub-subplot means at the
 
same combination of main-plot 
 Vr
and subplot treatments 

8 	 Two main-plot means (aver­
aged over all sub-subplot treat- 2[(b - 1)Eb + E.]

ments) at the same or different rbc
 
levels of subplot factor
 

9 	 Two subplot means (averaged
 
over all main-plot treatments) 2[(c - 1)E, + E]

Pt the same or different levels rac
 
of sub-suuplot factor
 

10 	 Two subplot means at the same 2[(c - 1) E, + E;,
 
combination of main-plot and [ c
 
sub-subplot treatments 
 rc
 

11 	 Two main-plot means (aver­
aged over all subplot treat- 2[(c - 1)E, + E.]

ments) at the same or different rbc
 
levels of sub-subplot factor
 

12 
 Two main-plot means at the I 2[b(c - 1)E, +(b - 1)E, + E,,] 
same combination of subplot __1 
and sub-subplot treatments rbc 

'E,,- error(a) MS,F.,= crror(b) MS,E, - error(c) MS, r = number of replications, 
a - number of main-plot treatments, b - number of subplot treatments, and c - number 
Df sub-subplot treatments. 

205
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For comparison 1 (comparison between the three management practices 
averaged over all varieties and nitrogen rates) the steps for applying the LSD 
test are:
 

3 STEP 1. Compute the sjvalue, following the formula for comparison type 2 
of Table 5.10: 

[2 E-b 
Sd rac 

= 	 2(0.2618) = 0.108 t/ha 

(3)(5)(3) 

O3STEP 2. From Appendix C, obtain the tabular t values with n = error(b) 
d.f. = 20 d.f. as 2.086 at the 5%level of significance and 2.845 at the 1% 
level. 

o3 	 STEP 3. Compute the LSD values at the 5%and 1%levels of significance: 

LSD. 	= (t.)(sj ) 

LSD.0 = (2.086)(0.108) = 0.225 t/ha 

LSD.o1 --(2.845)(0.108) = 0.307 t/ha 

o 	STEP 4. Compute the mean yields of the three management practices 
averaged over all nitrogen rates and varieties: 

Management Mean Yield,
 
Practice t/ha
 

M, 5.900 
, 6.486 

7.277M3 

o 	STEP 5. Using the mean yields computed in step 4, compute the mean 
difference for any pair of management practices of interest and compare it 
with the LSD values computed in step 3. For example, to compare M, and 
M2 the mean difference is computed as 6.486 - 5.900 = 0.586 t/ha. Because 
the computed mean difference is higher than the LSD value at the 1%level 
of significance, the difference between Ml and M 2 is declared highly signifi­
cant. 
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For comparison 2 (comparison between the three varieties averaged over all 
management practices but at the same nitrogen rate) the step-by-step proce­
dures for applying the LSD test are: 

o 	STEP 1. Compute the s, value, following the formula for comparison type 5 
of Table 5.10: 

Sj = 	_f"c 
V rb 

= 	,2(0.4956) = V (3)(3) = 0.332 t/ha 

o 	STEP 2. From Appendix C, obtain the tabular I values with n = error(c) 
d.f. = 60 d.f. as 2.000 at the 5% level of significance and 2.660 at the 1% 
level. 

o 	STEP 3. Compute the LSD value, at the 5% and 1% levels of significance: 

LSD. = (t)(sj) 

LSD 05 = (2.000)(0.332) = 0.664 t/ha 

LSD.01 = (2.660)(0.332) = 0.883 t/ha 

o 	STEP 4. Consti,'ct the variety x nitrogen two-way table of means averaged 
over the three management practices, as shown in Table 5.11. To compare 
any pair of variety means at the same nitrogen rate, compute the mean 
difference and compare it to the LSD values computed in step 3. For 
example, to compare V, and V2 at 140 kg N/ha, the mean difference is 
7.288 - 5.078 = 2.210 t/ha. Because this mean difference is higher than the 
LSD value at the 1% level of significance, the mean yields of V, and V2 at 
140 kg N/ha are declared highly significantly different. 

5.1.2 Duncan's Multiple Range Test 

For experiments that require the evaluation of all possible pairs of treatment 
means, the LSD test is usually not suitable. This is especially true when the 
total number of treatments is large (see Section 5.1.1). In such cases, Duncan's 
multiple range test (DMRT) is useful. 

The procedure for applying the DMRT is similar to that for the LSD test; 
DMRT involves the computation of numerical boundaries that allow for the 
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Table 5.11 Mean Yields of Three Rice 
Varieties Grown with Five Nitrogen Rates 
In a Split-split-plotDesign (Data In Table 
4.7) 

Nitrogen Mean Yield, t/ha 
Rate, 
kg/ha V, V2 V3 

0 4.513 5.163 6.478 
50 4.764 6.016 7.881 
80 5.835 6.589 8.564 

110 5.445 6.925 8.443 
140 5.078 7.288 9.336 

0Avera~e of three management practices, each 

replicated three times. The LSD values for 
comparing two varieties with the same nitro­
gen rates are 0.664 #./haat the 5% level of 
significance and 0.883 t/ha at the 1%level. 

classification of the difference between any two treatment means as significant 

or nonsignificant. However, unlike the LSD test in which only a single value is 

required lor any pair comparison at a prescribed level of significance, the 

DMRT rquires computation of a series of values, each corresponding to a 

specific se, of pair comparisons. 
The procedure for computing the DMRT values, as for the LSD test, 

depends primarily on the specific sd of the pair of treatmen'ws being compared. 

Because the procedures for computing the appropriate sj value for the various 

experimental designs are already discussed for the LSD test in Section 5.1.1, 

we illustrate the procedure for applying the DMRT for only one case-a 

single-factor experiment in a completely randomized design. 

The steps for computation of the DMRT values for comparing all possible 

pairs of means are given for a completely randomized design experiment 

testing seven insecticide treatments in four replications. The data and analysis 

of variance are given in Tables 2.1 and 2.2 of Chapter 2. 

o STEP 1. Rank all the treatment means in decreasing (or increasing) order. It 

is customary to rank the treatment means according to the order of 

preference. For yield data, means are usually ranked from the highest-yield­

ing treatment to the lowest-yielding treatment. For data on pest incidence, 

means are usually ranked from the least-infested treatment to the most 

severely infested treatment. 
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For our example, the seven treatment means arranged in decreasing order 
of yield are: 

Treatment Mean Yield, kg/ha Rank 

T2: Dol-Mix (2 kg) 2,678 1 
T3: DDT + y-BHC 2,552 2 
T4: Azodrin 2,128 3 
T: Dol-Mix (1 kg) 2,127 4 
T5:Dimecron-Boom 1,796 5 
T6: Dimecron-Knap 1,681 6 
T7:Control 1,316 7 

o sTEP 2. Compute the sj value following the appropriate procedures for 
specific designs described in Section 5.1.1. For our example, s, is computed 
as: 

2s2 

2(94,773) = 217.68 kg/ha 

o smp 3. Compute the (I - 1) values of the shortest significant ranges as: 

RP = QO(SA forp = 2,3,...,t 

where t is the total number of treatments, s, is the standard error of the 
mean difference computed in step 2, r values are the tabular values of the 
significant studentized ranges obtained from Appendix F, and p is the dis­
tance in rank between the pairs of treatment means to be compared (i.e., 
p = 2 for the two means with consecutive rankings and p = t for the highest 
and lowest means). 

For our example, the rp values with error d.f. of 21 and at the 5% level of 
significance are obtained from Appendix F as: 

p rp(.05) 

2 2.94 
3 3.09 
4 3.18 
5 3.24 
6 3.30 
7 3.33 
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The (t - 1) = 6 R. values are then computed: 

Rp = 
p (r ) 

2 (2.94)(217.68) = 453 

3 (3.09)(217.68) = 476 

F. 

4 (3.18)(217.68) - 489 

5 (3.24)(217.68) =_9 
F 429 

6 (3.30)(217.68) - 508 

7 (3.33)(217.68) = 513 

0 	 smEP 4. Identify and group together all treatment means that do not differ 

significantly from each other: 

A. 	 Compute the difference between the largest treatment mean and the 

largest RP value (the RP value at p = t) computed in step 3, and declare 
all treatment means whose values are less than the computed difference 
as significantly different from the largest treatment mean. 

Next, compute the range between the remaining treatment means 
(i.e., those means whose values are larger than or equal to the difference 
between the largest mean and the largest RP value) and compare this 
range with the value of RP at p = m where ni is the number of 
treatments in the group. If the computed range is smaller than the 
corresponding RP value, all the ni treatment means in the group are 
declared not significantly different from each other. 

Finally, in tile array of means in step 1, draw a vertical line 
connecting all means that have been declared not significantly different 
from each other. 

For our example, the difference between the largest R, value (the RP 
value at p = 7) of 513 and the largest treatment mean (T2 mean) of 
2,678 is 2,678 - 513 = 2,165 kg/ha. From the array of means obtained 
in 	step 1, all treatment means, except that of T3, are less than the 

http:3.33)(217.68
http:3.30)(217.68
http:3.24)(217.68
http:3.18)(217.68
http:3.09)(217.68
http:2.94)(217.68
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computed difference of 2,165 kg/ha. Hence, they are declared signifi­
cantly different from T2 . 

From the m = 2 remaining treatment means (T2 and T3) whose 
values are larger than the computed difference of 2,165 kg/ha, compute 
the range as 2,678 - 2,552 = 126 kg/ha and compare it to the RP 
value at p = m = 2 of 453. Because the computed difference is smaller 
than the R, value at p = 2, T2 mean and T3 mean are declared not 
significantly different from each other. A vertical line is then drawn to 
connect these two means in the array of means, as shown following: 

Mean Yield, 

Treatment kg/ha 

T2 2,678 

T3 2,552 
T4 2,128 
T 2,127 
Ts 1,796 

T6 1,681 

T7 1,316 

B. 	 Compute the difference between the second largest treatment mean and 
the second largest RP value (the RP value at p = I - 1) computed in 
step 3, and declare all treatment means whose values are less than this 
difference as significantly different from the second largest treatment 
mean. For the in, remaining treatment means whose values are larger 
than or equal to the computed difference, compute its range and 
compare it with the appropriate RP value (RP at p = m,). Declare all 
treatments within the range not significantly different from each other 
if the range is smaller than the corresponding R, value. 

For our example, the difference between the second largest RP value 
(the RP value at p = 6) and the second largest treatment mean (T3 
mean) is computed as 2,552 - 508 = 2,044 kg/ha. Because the means 
of treatments T,, T6, and T7 are less than 2,044 kg/ha, they are 
declared significantly different from the mean of T3 . 

The n, = 3 remaining treatment means, which have not been de­
clared significantly different, are 3, T4, and T. Its range is computed 
as T -- T, = 2,552 - 2,127 = 425 kg/ha, which is compared to the 
corresponding RP value at p = m, = 3 of 476 kg/ha. Because the range 
is smaller than the RP value at p = 3, the three remaining means are 
not significantly different from each other. A vertical line is then drawn 
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to connect the means of T3, T4, and T1, as shown following: 

Mean Yield, 
Treatment kg/ha 

T2 2,678 
T3 2,552 
T4 2,128 
T, 2,127 
T5 1,796 
T6 1,681 
T7 	 1,316 

C. 	 Continue the process with the third largest treatment mean, then the 
fourth, and so on, until all treatment means have been properly 
compared. For our example, the process is continued with the third 
largest treatment mean. The difference between the third largest treat­
ment mean (T4 mean) and the third largest RP value (RP value at 
p = 5) is computed as 2,128 - 499 = 1,629 kg/ha. Only the mean of 
treatment T7 is less than the computed difference of 1,629 kg/ha. Thus, 
T7 is declared significantly different from T4. The four remaining 
treatments, which have not been declared significantly different, are T4, 
T1, T, and T6 . Its range is computed as T4 - T6 = 2,128 - 1,681 = 447 
kg/ha. Because the computed range is less than the corresponding RP 
value at p = 4 of 489 kg/ha, all the four remaining means are declared 
not significantly different from each other. A vertical line is then drawn 
to connect the means of T4, T1, Ts, and T6, as shown following: 

Mean Yield, 

Treatment kg/ha 

2 2,678 

T3 2,552 

T4 2,128 

T, 2,127 
T 1,796 
T6 1,681 
T7 1,316 

At this point, the same process can be continued with the fourth 
largest treatment mean, and so on. However, because the mean of T7 is 
the only one outside the groupings already made, it is simpler just to 
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compare the T7 mean, using the appropriate Rp values, with the rest of 
the means (namely: TI, T5, and T). These comparisons are made as 
follows: 

T, vs. 7: 2,127 - 1,316 = 811 > RP (atp = 4) of 489 

7 vs. 77: 1,796 - 1,316 = 480 > . , (atp = 3) of 476 

6 vs. T-: 1,681 - 1,316 = 365 < RP (atp = 2) of 453 

Of the three comparisons, the only one whose difference is less than 
the corresponding RP value is that between T6 and 7'7. Thus, T6 and T7 
are declared not significantly different from each other. A vertical line 
is then drawn to connect the means of T6 and T7, as shown following: 

Mean Yield, 
Treatment kg/ha 

T2 2,678 
T3 2,552 

T4 2,128 
T, 2,127 
T5 1,796 

T6 1,681 

T7 1,316 

Because the last treatment in the array (?7) has been reached, the 
process of grouping together all treatment means that do not differ 
significantly from each other is completed. 

1o STEP 5. Present the test results in one of the two following ways: 

1. 	 Use the line notation if the sequence of the treatments in the presenta­
tion of the results can be arranged according to their ranks, as shown in 
Table 5.12. 

2. 	 Use the alphabet notation if the desired sequence of the treatments in the 
presentation of the results is not to be based on their ranks. The 
alphabet notation can be derived from the line notation simply by 
assigning the same alphabet to all treatment means connected by the 
same vertical line. It is customay to use a for the first line, b for the 
second, c for the third, and so on. For our example, a, b, c, and d are 



Table 5.12 DMRT for Comparing All Possible 
Pairs of Treatment Means, from a CRD 
Experiment Involving Seven Treatments, 
Using the Line Notation (Data In Table 2.1) 

Mean Yield,
 
Treatment kg/haa DMRTb
 

T2 	 2,678
 
2,552
T3 
2,128T4 

Ti 2,127
 
TS 1,796
 

1,681
T6 
1,316T7 

"Average of four replications.
 
'Any two means connected by the same vertical
 

line are not significantly different at the 5%level of
 
significance.
 

Table 5.13 DMRT for Comparing All Possible 
Pairs of Treatment Means, from a CRD 
Experiment Involving Seven Treatments, 
Using the Alphabet Notation (Data In 
Table 2.1) 

Mean Yield, 

Treatment kg/haa DMRTb 

T, 2,127 bc 
T2 2,678 a 

T3 
T4 

2,552 
2,128 

ab 
bc 

T 1,796 c 
T6 1,681 cd 
T7 1,316 d 

"Average of four replications.
 
bAny two means having a common letter are not
 

significantly different at the 5% level of signifi­
cance.
 

214 



Group Comparison 215 

assigned to the four vertical lines in Table 5.12 as follows: 

Mean Yield, 
Treatment kg/ha 

T2 2,678 a 

3 
T4
T 

2,5521 b 
2,128
2,127 

c 

T 1,796 
T6 1,681 d 

T7 1,316 1 

The final presentation using the alphabet notation is shown in Table 
5.13. Note that one or more letters can be assigned to each treatment. 
For example, only one letter, a, is assigned to T2 while two letters, ab, 
are assigned to T3. 

5.2 GROUP COMPARISON 

For group comparison, more than two treatments are involved in each com­
parison. There are four types of comparison: 

• 	 Between-group comparison, in which treatments are classified into s (where 
s > 2) meaningful groups, each group consising of one or more treatments, 
and 'he aggregate mean of each group is compared to that of the others. 

" Within-group comparison, which is primarily designed to compare treat­
ments belonging to a subset of all the treatments tested. This subset 
generally corresponds to a group of treatments used in the between-group 
comparison. In some instances, the subset of the treatments in which the 
within-group comparison is to be made may be selected independently of 
the between-group comparison. 

" 	 Trend comparison, wiich is designed to examine the functional relationship 
between treatment levels and treatment means. Consequently, it is applica­
ble only to treatments that are quantitative, such as rate of herbicide 
application, rate of fertilizer application, and distance of planting. 

" Factorial comparison, which, as the name implies, is applicable only to 
factorial treatments in which specific sets of treatment means ire compared 
to investigate the main effects of the factors tested and, in particular, the 
nature of their interaction. 
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The most commonly used test procedure for making a group comparison is 

to partition the treatment sum of squares into meaningful components. The 

procedures is similar to that of the analysis of variance where the total sum of 

squares is partitioned into a fixed set of components directed by the experi­

mental design used. For example, the total SS in the RCB design has three 

components, namely, replication, treatment, and experimental error. With 

further partitioning of the treatment SS into one or more components, specific 

causes of the difference between treatment means can be determined and the 

most important ones readily identified. 
The procedure for partitioning the treatment SS consists essentially of: 

" Selecting a desired set of group comparisons to clearly meet the experimen­

tal objective. The relationship between an experimental objective and the 

selected set of group comparisons is clearly illustrated by the weed-control 
experiment described in Section 5.1. 

" Computing the SS for each desired group comparison and testing the 

significance of each comparison by an F test. 

Each component of a partitioned treatment SS can be either a single d.f.or 
a multiple d.f.contrast. 

A single d.f. contrast is a linear function of the treatment totals: 

L = cT 1+ c2T2 + + c Tt - ., 1I-1 

where T is the treatment total of the ith treatment, t is the total number of 
treatments, and c1 is the contrast coefficient associated with the ith treatment. 
The sum of the contrast coefficients is equal to zero: 

CiC= 0 

i-i 

The SS for the single d.f. contrast L is computed as: 

Lr(2c2)
SS(L) 

Two single d.f. contrasts are said to be orthogonal if the sum of cross 
products of their coefficients equals zero. That is, the two single d.f. contrasts: 

L, = c 11T1 + c 12 T2 + .. + cT 

L2 =c 21T + c 22T2 + ... + c21T 
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are said to be orthogonal if the following condition holds: 

t 

CUC21= C11C21 + C12C22 + "'" + ClIC21 = 0 
a-I 

A group -of p single d.f. contrasts, where p > 2, is said to be mutually 
orthogonal if each pair, and all pairs, of the contrasts in the group are 
orthogonal. For an experiment with t treatments, the maximum number of 
mutually orthogonal single d.f. contrasts that can be constructed is (t - 1) or 
the d.f. for the treatment SS. Also, for any set of (t - 1) mutually orthogonal 
single d.f. contrasts, the sum of their SS equals the treatment SS. That is: 

SS(LI) + SS(L 2 ) + ... + SS(L,_ 1 ) = Treatment SS 

where LI, L2 . .. , L,-, are (t - 1) mutually orthogonal single d.f. contrasts. 
The single d.f. contrast method is applicable to all four types of group 

comparison defined earlier, and any group comparison can be represented by 
one or more single d.f. contrasts. 

A muliple d.f. contrast represents a group of single d.f. contrasts, and is 
usually defined in terms of a between-group comparison as: 

M = g 1 vs. g 2 vs. g3 vs. ' vs. gs 

where g, is th,' ith group consisting of m, treatments and there is no overlap­
ping of treatments among the s groups (i.e., no single treatment appears in 
more than one group). 

The SS for the multiple d.f. contrast M with (s - 1) d.f. is computed as: 

G-i)2 
r G21 

SS( M) =r m'-l 

r Sm, 
J-1 

where G, is the sum of the treatment totals over the m, treatments in the g, 
group, and r is the number of replications. 

We describe the partitioning of the treatment SS, either by the single d.f. 
contrast method or the multiple d.f. contrast method, to implement each of 
the four types of group comparison: between-group comparison, within-group 
comparison, trend comparison, and factorial comparison. 

5.2.1 Between-Group Comparison 

A between-group comparison involving s groups can be represented by a 
multiple d.f. contrast or as a set of (s - 1) mutually orthogonal single d.f. 
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contrasts. The basis for choosing between those is the total number of groups 
involved (the size of s) and the additional comparisons needed. With a large ., 
the set of mutually orthogonal single d.f. contrasts would be large and the 
computational procedure would become lengthy. However, because many of 
these contrasts may be useful for subsequent within-group comparisons, the 
additional computation could be justified. 

5.2.1.1 Single d. Contrast Method The primary task in the use of single 
d.f. contrast mefhod is the construction of an appropriate set of (s - 1) 
mutually orthogonal single d.f. contrasts involving the s treatment groups. 
Although there are several ways in which such a set of (s - 1) mutually 
orthogonal contrasts can be derived, we illustrate a simplified procedure using 
an example of five treatment groups (s = 5). Let g,, g2, g3, g4, and g5 represent 
the original five treatment groups; and MI, n 2, M 3, M4, and m5 represent the 
corresponding number of treatments in each group. 

o 	STEP 1. From the s original treatment groups, identify a set of (s - 1) 
between-group comparisons each of which involves only two groups of 
treatments. 

A. 	 Place the original treatment groups first into two sets in any manner 
desired. For our example, g, g2, and g3 may be placed in the first set 
and g4 and g5 in the secoid set. These two sets comprise the first newly 
created between-group comparison (i.e., comparison 1 of Table 5.14). 

B. 	 Examine each of the two sets derived in step 1A to see if either, or both, 
has more than two original treatment groups. If any set does, further 
subdivide that set until all sets contain no more than two original 
treatment groups per set. For our example, because set 2 of comparison 
1 contains only two original treatment groups (g4 and gs) no further 
regrouping is required. On the other hand, set I contains three original 

Table 5.14 The Construction of a Set of Four Mutually Orthogonal 
Single d.t. Contrasts to Represent a Between-group Comparison 
Involving Five Groups of Treatments (g1, g 2 , g 3 , g 4 , and g5 ) 
Each Consisting of Two Treatments 

Letween-group Comparison 

Number Set 1 Set 2 Single d.f. Contrast" 
+ 	 + +

1 g,g 2 ,g1 g 4 ,g 5 2(G G 2 G3 ) - 3(G 4 G5 ) 

2 g1 2G, - (G2 + G 3)g2,g 3 

3 92 g 3 G 2 - G 1 

4 94 gs 	 G4 - G5
 

"G, is the sum of treatment totals over all treatments in group g,. 
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treatment groups (g1 , g2, and g3) and should thus be further regrouped. 
We placed g, in one set and g2 and g3 in another, resulting in the 
second newly created between-group comparison (i.e. comparison 2 of 
Table 5.14). Because neither of these two ncw sets in comparison 2 
consists of more than two original treatment groups, the regrouping 
process is terminated. 

C. 	 Split each set that involves two original treatment groups into two sets 
of one original treatment group each. For example, there are at this 
point two sets that have two original treatment groups: (g4, g3) of 
comparison I and (g2 , g3) of comparison 2. Hence, split each of these 
two sets into new sets, each consisting of one original treatment group 
(i.e., comparisons 3 and 4 of Table 5.14). 

0 	STEP 2. Represent each of the (s - 1) between-group comparisons derived 
in step I by its corresponding single d.f. contrast. A between-group com­
parison involving two treatment groups (s = 2) can always be represented 
by the following single d.f contrast: 

L = cIG, - c 2G2 

where G, is the sum of the treatment totals of all ni treatments belonging to 
the first group, G2 is the sum of the treatment totals of all m2 treatments 
belonging to the second group, and cl and c2 are the contrast coefficients 
that satisfy the condition: 

mlc I = m 2c 2 

For example, comparison 1 of Table 5.14 with set 1 consisting of the first 
three original treatment groups (g1, g2, g3) and set 2 consisting of the last 
two (g4, g.) can be represented by the single d.f.contrast: 

L = a, (G + G2 + GO - a2(G4 + G5 ) 

where G, is the sum of the treatment totals of m1 treatments in group g, 
(i = 1,... ,5) and a, and a2 are constants such that: 

(MI + m2 + m 3)al = (M4 + m5)a2 

For example, if each mi = 2, then the single d.f.contrast for comparison 

I of Table 5.14 would be: 

L = 2(G + G2 + G3) - 3(G4 + GS) 

The single d.f.contrast for all four between-group comparisons involving 
five groups of treatments created in step 1, assuming that m1 = 2, are shown 
in Table 5.14. 
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Once the appropriate set of single d.f. contrasts associated with the desired 
between-group comparison is specified, the corresponding computation of its 
SS and the test for its significance are fairly straightforward. 

We illustrate the procedure for doing this with data from the RCB experi­
ment with four replications and six rates (kg/ha) of seeding (T = 25, T2 = 50, 
T3 = 75, T4 = 100, T = 125, and T6 = 150) shown in Table 2.5 of Chapter 2. 
It is assumed that the researcher wishes to compare between three groups of 
treatments, with T, and T2 in the first group (gl), T3 and T4 in the second 
group (g 2 ), and T and T6 in the third group (g3). Thus: 

M = g1 vs. g2 v. g3 

Following the procedure just outlined for constructing a set of (s - 1)single 
d.f. contrasts, the appropriate set of two single d.f. contrasts for our example 
may be: 

L, = 2g, -(g 2 + g3 ) 

= 2(T1 + T2) -(T3 + T4 + T5 + T6 ) 

L2 = 92 - g 3 

= (T3 + T4 ) -(TS +T) 

The step-by-step procedures for computing the SS and for testing its 
significance are: 

o STEP 1. Verify the orthogonality among the (s - 1) single d.f. contrasts. 
For our example, orthogonality of the two single d.f. contrasts L1 and L 2 is 
verified because the sum of the cross products of their contrast coefficients 
(Fi.t-c 1c2 ) is zero [i.e., (2)(0) + (2)(0) + (-1)(1) + (-1)(1) + (-1)(-1) 
+ (-1)(-1) = 01. 

o STEP 2. Compute the SS for each of the (s - 1) single d.f. contrasts. For 
our example, with r = 4 and the values of treatment total taken from Table 
2.5 of Chapter 2, the SS for L, and L2 are computed as: 

+ 19,391 + 18,832 + 18,813)] 2 

SS(L) = [2(20,496 + 20,281) -(21,217 
4(4 + 4 + 1 + 1 + 1 + 1) 

= 227,013
 

SS(L 2) = [(21,217 + 19,391) -(18,832 + 18,813)]2
 

4(1 + 1 + 1 + 1) 

= 548,711 
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" 	 STEP 3. Compute the SS for the original between-group comparison involv­
ing s groups as the sum of the (s - 1) SS computed in step 2. For our 
example, the SS for the original between-group comparison M involving 
three groups is computed as: 

SS(M) - SS(L 1 ) + Ss(L 2 ) 227,013 + 548,711 

= 	775,724 

o 	STEP 4. Compute the F value as: 

ss(M) 

(s-)
Error MS 

where error MS is from the analysis of variance. For our example, with error 
MS of 110,558 (Table 2.6), the F value is computed as: 

775,724 
2
 

F = = 3.51110,558 

o 	STEP 5. Compare the computed F value with the tabular F values (Appen­
dix E) with f, = (s - 1) and f 2 = error d.f. For our example, the tabular F 
values with f1 = 2 and f 2 = 15 d.f. are 3.68 at the 5% level of significance 
and 6.36 at the 1% level. Because the computed F value is smaller than the 
tabular F value at the 5% level of significance, the means of the three groups 
of treatment do not differ significantly from each other. 

5.2.1.2 Multiple df. Contrast Method To illustrate the procedure for 
using a multiple d.f. contrast to make between-group comparison, we use the 
same set of data and same group comparison that was used to illustrate the 
single d.f. contrast method in Section 5.2.1.1. The steps are: 

o] 	STEP 1. For each of the s groups, compu' the sum of treatment totals of 
all treatments in the group. For our example, the total for each of the three 
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groups is computed as: 

Group Number of 
Number Treatments Treatment Total 

1 2 G= T,+ T2 = 40,777
 
2 2 G2 =T 3 + T4 = 40,608
 
3 2 G3 =T 5 + T6 = 37,645
 

Total 6 G1 + G2 + G3 = 119,030
 

13 	SEP, 2. Compute the SS of,the between-group comparison involving s 
groups as: 

SS(U) ' 1 m,G, ( G)r 
Si- r min,1 

t-1
 

For our example, the SS of the between-group comparison involving 
three groups is computed as: 

SS(M) G1 + _ (GI + G2 +G3 )
(4)(2) (4)(6) 

(40,777)2 + (40,608)2 + (37,645)2 

8 

(119,030)2 
24 

= 	591,114,927 - 590,339,204 

= 	775,723 

Note that this SS, except for rounding error, is equal to the SS computed by 
the single d.f.contrast method in Section 5.2.1.1. 

13 	 smP 3. Follow steps 4 and 5 of the single d.f. contrast method in Section 
5.2.1.1. 

5.2.2 Within-Group Comparison 

Although both the single d.f. and the multiple d.f. contrast methods are 
applicable to a within-group comparison, themultiple d.f. is simpler and is 
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preferred in practice. We illustrate both methods using the maize yield data in 
Table 2.7 of Chapter 2, assuming that the researcher wishes to determine the 
significance of the difference among the three hybrids A, B, and D. 

52.2.1 Single Edf. Contrast Mcthod The procedure for applying the 
single d.f. contrast method to the within-group comparison is essentially the 
same as that for the between-group comparison described in Section 5.2.1. The 
s treatments in the within-group comparison are treated as if they are s groups 
in the between-group comparison. The procedures are: 

o1 	 STEP 1. Construct a set of two orthogonal single d.f. contrasts to represent 
the desired within-group comparison involving three treatments (W = A vs. 
B vs. D) as: 

L, 	= T + Tb - 2 Td 

L 2 =-T-Tb 

where T, Tb, and Td are the treatment totals of the three hybrids A, B, 
and D. 

o 	STEP 2. Verify the orthogonality of the two single d.f. contrasts L, and L 2 
constructed in step 1. Because the sum nf cross products of the contrast 
coefficients of L, and L2 is zero [i.e., (1)(1) + (1X- 1) + (-2)(0) = 0] their 
orthogonality is verified. 

o 	STEP 3. Compute the SS for each single d.f. contrast using the formula 
SS(L) = L 2/r(Ec2) as: 

SS(L) = [5.855 + 5.885 - 2(5.355)]2 0.044204
(4)(1 + 1 + 4) 

(5.855 - 5.885)2SS(L 2) = 
(4)(1 + 1) 0.000112
 

o 	STEp 4. Compute the SS for the desired within-group comparison (W), 
with 2 d.f., as the sum of the two SS computed in step 3: 

ss(w) = SS(L,) + SS(L 2) 

= 	0.044204 + 0.000112 = 0.044316 
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o3 sTp 5. Compute the F value as: 

sS(W) 
(s- 1) 

Error MS 

0.044316 
22 1.03 

0.021598 

•0 STEP 6. Because the computed F value is smaller than the corresponding 
tabular F value (Appendix E) with f, = 2 and f2 = 6 degrees of freedom and 
at the 5%level of significance of 5.14, there is no significant difference in 
mean yield among the three maize hybrids. 

5.2.2.2 Multiple df. Contrast Method The procedures for applying the 
multiple d.f. contrast method to the within-group comparison are: 

3 STMP 1. Compute the SS of a within-group comparison involving s treat­
ments as: 

ET
2 

SS(W ) =- -1 I --1 ) 
r rs 

where T is the total of the ith treatment and r is the number of replications 
common to all s treatments. This SS has (s - 1) degrees of freedom. 

For our example, the SS of the within-group comparison involving three 
treatments (W = A vs. B vs. D) is computed as: 

2 +T 2 (4)(3) 
- sb2+ 4 d (T + T + d) 2 

SS(W) 

(5.855)2 + (5.885)2 + (5.355)' 
4 

+ 5.885 + 5.355)2(5.855 
12 

- 0.044317 

Note that this SS, except for rounding error, is the same as that computed 
earlier through the single d.f. contrast method. 

0 srP 2. Follow steps 5 and 6 of Section 5.2.2.1. 
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5.2.3 Trend Comparison 

With quantitative treatments, such as plant density or rate of fertilizer applied, 
there is continuity from one treatment levcl to another and the number of 
possible treatment levels that could be tested is infiuite. Although only a finite 
number of treatment levels can be tested in a trial, the researcher's interest 
usually covers the whole range of treatments. Consequently, the types of mean 
comparison that fcus on the specific treatments tested are not adequate. A 
more appropriate approach is to examine the functional relationship between 
response and treatment that covers the whole range of the treatment levels 
tested. 

For example, in a rice fertilizer trial where nitrogen rates of 0, 30, 60, 90, 
and 120 kg N/ha are tested, a researcher is not interested simply in establish­
ing that grain yield at 30 kg N/ha is higher than that at 0 kg N/ha, and that 
grain yield at 60 kg N/ha is still higher than that at 30 kg N/ha, and so on. 
Instead, the interest is that of describing yield response over the whole range of 
nitrogen rates tested. Even though a certain specific nitrogen rate, for example 
45 kg N/ha, was not actually tested, it is desirable to estimate what the yield 
would have been if 45 kg N/ha had been tested. This is achieved by examining 
a nitrogen response function that can describe the change in yield for every 
change in the rate of nitrogen applied. This type of analysis is referred to as 
trend comparison. 

Although trend comparison can be made for any prescribed functional 
relationship, the simplest ai most commonly used is the one based on 
polynomials (see Chapter 9 for more informatic.n on polynomials and other 
types of functional relationship). An n th degree polynomial describing the 
relationship between a dependent variable Yand an independent variable X is 
represented by: 

Y = a +/ 1 X + / 2X2 + + AX 

where a is the intercept and fP, (i = 1,... ,n) is the partial regression coefficient 
associated with the ith degree polynomial. 

The trend comparison procedure based on polynomials, usually referred to 
as the method of orthogonal polynomials, seeks the lowest degree polynomial 
that can adequately represent the relationship between a dependent variable Y 
(usually represented by crop or non-crop response) and an independent 
variable X (usually represented by the treatment level). The procedure consists 
of: 

1. 	 Construction of a set of mutually orthogonal single d.f. contrasts, with 
the first contrast representing the first degree polynomial (linear), the 
second contrast representing the second degree polynomial (quadratic), 
and so on. The number of polynomials that can be examined depends 
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on the number of paired observations (n) or, generally, the number of 
treatments tested (t). In fact, the highest degree polynomial that can be 
examined is equal to (n - 1) or (t - 1). 

2. 	 Computation of the SS, and the test of significance, for each contrast. 
3. 	 Selection of the specific degree polynomial that best describes the 

relationship between the treatment and the response. For example, in 
the polynomial equation given, if only fl is significant, then the 
relationship is linear; and, if only P, and P2, or only P2, is significant, 
then the relationship is quadratic; etc. 

We illustrate the method of orthogonal polynomials for two cases. One has 
treatments of equal intervals; the other has treatments of unequal intervals. 

5.2.3.1 ireatments with Equal Intervals. For treatments with equal inter­
vals, we use rice yield data from a RCB experiment where six rates (kg/ha) of 
seeding (T, = 25, T2 = 50, T3 = 75, T4 = 100, Ts = 125, and T6 = 150) were 
tested in four replications (Table 2.5 of Chapter 2). Note that the treatments 
have an equal interval of 25 kg seed/ha. T1; steps involved in applying the 
orthogonal polynomial method to comrare the trends among the six treatment 
means follow: 

" 	STEP 1. From Appendix G, obtain the set of (I - 1) single d.f. contrasts 
representing the orthogonal polynomials, where t is the number of treat­
ments tested. For our example, the five single d.f.contrasts representing the 
orthogonal polynomials are listed in terms of its contrast coefficients and the 
corresponding sum of squares of the coefficients: 

Orthogonal Polynomial Coefficient Sum of 
Degree of 	 (c) Squares
Polynomial T, T T 4 TT T6 (c 2) 

Linear(lst) -5 -3 -1 +1 +3 +5 70
 
Quadratic(2nd) +5 -1 -4 -4 -1 +5 84
 
Cubic(3rd) -5 +7 +4 -4 -7 +5 180
 
Quartic(4th) +1 -3 +2 +2 -3 +1 28
 
Quintic(5th) -1 +5 -10 +10 -5 +1 252
 

o 	STEP 2. Compute the SS for each single d.f.contrast, or each orthogonal 
polynomial, derived in step 1. For our example, with r = 4 and using the 
treatment totals in Table 2.5 and the formula SS(L) = EL2/r(Ec2), the SS 
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for each degree of polynomial is computed as: 

SS1 = [(-5)(20,496) +(-3)(20,281) +(-1)(21,217) 

+ (1)(19,391) + (3)(18,832) + (5)(18,813)] /(4)(70) 

= 760,035
 

SS2 = [(5)(20,496) +(-1)(20,281) +(-4)(21,217)
 

+(-4)(19,391) +(-1)(18,832) +(5)(18,813)12/(4)(84) 

= 74,a.05
 

SS3 = [(- 5)(20,496) + (7)(20,281) + (4)(21,217)
 

+(-4)(19,391) + (-7)(18,832) + (5)(18,813)]2/(4)(180) 

= 113,301 

SS4 = [(1)(20,496) +(-3)(20,281) +(2)(21,217) 

+ (2)(19,391) + (- 3)(18,832) + (1)(18,813)12/(4)(28) 

= 90,630
 

SS5 = [(- 1)(20,496) + (5)(20,281) + (-10)(21,217)
 

+(10)(19,391) +(-5)(18,832) +(1)(18,813)12/(4)(252) 

= 159,960 

where the subscripts 1, 2, 3, 4, and 5 of the SS refer to the first, second, 
third, fourth, and fifth degree polynomial, respectively. 

o sTP 3. Compute the F value for each degree polynomial by dividing each 
SS computed in step 2 by the error m.,an square from the analysis of 
variance. With the error MS of 110,558 from Table 2.6, the F value 
corresponding to each SS computed in step 2 is: 

SS,
F = Error MS1 

760,035 6 
110,558 
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SS2 
F2 = ErrorMS 

74,405 
- =110,558U(58 =060.67 

F3 = Error MS 

113,301 = 
110,558 

SS4F4 =fi rror MS 

90,630 = - -0.82 
110,558 

SS 
Fs = Error MS 

159,960 
- 110,558 1.45 

0 	sTEP 4. Compare each computed F value with the tabular F value (Ap­
pendix E) with f =' 1 and f2 = error d.f. at the prescribed level of signifi­
cance. The tabular F values with f1 = 1 and f2 = 15 degrees of freedom are 
4.54 at the 5% level of significance and 8.68 at the 1% level. Except for F, 
all other computed F values are smaller than the tabular F value at the 5% 
level of significance. Thus, the results indicate that only the first degree 
polynomial is significant, or that the relationship between yield and seeding 
rate is linear within the range of the seeding rates tested. 

" STEP 5. Pool the SS over all polynomials that are at least two degrees 
higher than the highest significant polynomial. This pooled SS value is 
usually referred to as the residual SS. 

For our example, because all degree polynomials, except the first, are not 
significant, the third, fourth, and fifth degree polynomials are pooled. That 
is, the residual SS, with three d.f., is computed as the sum of the SS 
corresponding to the third, fourth, and fifth degree polynomials: 

Residual SS = SS3 + SS4 + SSs 

= 	113,301 + 90,630 + 159,960 

= 	363,891 

The residual d.f. is equal to the number of SS pooled; three in this case. 
The residual mean square and the corresponding F value can be computed, 
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in the usual manner: 

Residual SSResidual MS 
Residual d.f. 

363,8913 = 121,297 

Residual MS
Error MS 

121,297-= 1.10 
110,558 

The computed F value can be compared with the tabular F value with 
f'= residual d.f. and f2 = error d.f. at the prescribed level of significance. 
For our example, the tabular F values with f,= 3 andf 2 = 15 d.f. are 3.29 
at the 5% level of significance and 5.42 at the 1% level. As expected, the 
combined effects of the third, fourth, and fifth degree polynomials are not 
significant at the 5%level of significance. 

0 	STEP 6. Enter all values obtained in steps 2 to 5 in the analysis of variance 
table. The final results are shown in Table 5.15. 

5.2.3.2 Treatments with Unequal Intervals. In the orthogonal polynomial 
method, the only difference between the case of equal intervals and that of 
unequal intervals is in the derivation of the appropriate set of mutually 
orthogonal single d.f. contrasts to represent the orthogonal polynomials. 
Instead of obtaining the contrast coefficients directly from a standardized 
table, such as Appendix G, the contrast coefficients must be derived for each 
case of unequal treatment intervals. However, once the contrast coefficients are 

Table 5.15 Analysis of Variance with the Treatment Sum of Squares 
Partitioned Following the Procedure of Trend Comparison (Data In 
Table 2.5) 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fa 

Tabular F 
5% 1% 

Replication 
Seeding rate 

Linear 
Quadratic 
Residual 

Error 
Total 

3 
5 

(1) 
(1) 
(3) 
15 
23 

1,944,361 
1,198,331 

760,035 
74,405 

363,891 
1,658,376 
4,801,068 

239,666 
760,035 

74,405 
121,297 
110,558 

2.17" 
6.87* 

< 1 
1.10' 

2.90 
4.54 
-

3.29 

4.56 
8.68 
-

5.42 

U, 
 significant at 5%level, m- not significant. 
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specified, the computational procedures are the same for both cases. Thus, we 
focus mainly on the procedure for deriving the orthogonal polynomial coeffi­
cients for the case of unequal intervals. 

The procedures for deriving the orthogonal polynomial coefficients for 
treatments with unequal intervals are complex, especially when higher-degree 
polynomials are involved. For simplicity, we discuss only the derivation of 
orthogonal polynomial coefficients of up to the third degree, but for any 
number of treatments. This limitation is not too restrictive in agricultural 
research because most biological responses to environmental factors can be 
adequately described by polynomials that are no higher than the third degree. 

Consider a trial where the treatments consist of four nitrogen rates-0, 60, 
90, and 120 kg N/ha. Note that the intervals between successive treatments are 
not the same. The steps involved in the derivation of the three sets of 
orthogonal polynomial coefficients (i.e., first, second, and third degree poly­
nomials) are: 

o3 	 STEP 1. Code the treatments to the smallest integers. For our example, the 
codes X,, X2, X3, and X4, corresponding to the four nitrogen rates, are 
obtained by dividing each nitrogen rate by 30: 

Nitrogen Rate, Code 

kg/ha (M) 

0 0 
60 2 
90 3 

120 4 

o 	STEP 2. Compute the three sets of orthogonal polynomial coefficients, 
corresponding to the first (linear), second (quadratic), and third (cubic) 
degree polynomials as: 

Li = a + X, 

Q= b + cX + X 

C, = d + eX, + fX2 + X11 

where Li, Q1, and C (i 1.... ) are the coefficients of the ith treatment 
corresponding to linear, quadratic, and cubic, respectively; t is the number 
of treatments; and a, b, c, d, e, and f are the parameters that need to be 
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estimated from the following six equations:* 

EL,=Ia+ EX,=o 
! ta + 

EQ,=tb+cEX+ X2 =-o 
I-I 1-1 1-1 

I I t t 

+f EX,2+Fc,= t+ eEX, , EXj=o
i-1 I-! 1-1 ,i-1 

EL ,= E (a +X,)(b + cX, +X2) -0 
i-1 Ii1
 

LC,= (a+ X,)(d+eX1+fX,2 + X1
3) = 0i-1 1-1 

Qjc (b+cX,+ X)(d+ex,+IX,2+X3)o
/-1 i-1 

The general solution of the six parameters and the computation of their 
particular values, for our example, are: 

EX
 
t 

-9
4 

2 
b = (yX)(IX 3) -(EX2)

(EX2) _(EX)" 

(9)(99) -(29)2 10 
4(29) -(9)2 7 

C (Ex)(Ex 2) - t(Ex 3)
t(rFx 2) -_(FX)2 

(9)(29) - 4(99) 27 

4(29) -(9)2 7 

*The first three equations are derived from the definition of single d.f contrast that the sum of its
coefficients must be zero. The last three equations are derived from the orthogonality conditions 
that the sum of the cross products of coefficients for each pair of contrasts must be zero. 
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f (I:X - + EX4[tIFX,- (Ex)(yx2)][(FX)2 ,(rX2)] 

+Ex3[(Ex2)2 - (Ex)( x3)]} 

/{ x[,EXX - (EX) 2] +ExF[(' x)( x2) - ,Ex3l 

+EX2[(.X)(FX3) - (Ex2)21) 

= 1,299[(9)2 - 4(29)] + 353[4(99) - 9(29)] + 991(29)2 - 9(99)] 

353[4(29) -(9)2] + 99[(9)(29) - 4(99)] + 29[(9)(99) - (29)2] 

69 

f[(Ex,)(Ex12) - t(x,i3)] +[(Ex,)(FxI3)- (Fx4)] 

(- )[(9)(29)- 4(99)] + [(9)(99) - 4(353)] 

-(9)24(29) 

512
 
55
 

e(EX,) +f(EX) + EX3 

(12 )(9) + (_69)(29) +99
 

4
 

12
 
55
 

The values of the parameters a, b, c, d, e, and f computed are then used 
in the equations in step 2 to compute the values of Li, Qj, and C, for each 
nitrogen rate. 

For example, for 0 kg N/ha, the three coefficients are computed as: 

L, a + X, 

9 9 
= -- +o= 
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lb + cX1 +X 

10 27 ()+ -10 
7 7' /* 7 

= d + eX 4 fX 0 + X ­

12 512 12 

And, for 60 kg N/ha, they are: 

L2 a + X2 

=f -- 9+2=f 1 
4 4 

Q2 = b + cX2 + X2 , 

10 27 (2) + (2)2 16 

C2 = d + eX4 + fX? + X2 

12 + 512 69 - ,2 72- 5 5-35(2)--Ty-(2) +(2)' 55 

The results for all four nitrogen rates are: 

Treatment Orthogonal Polynomial Coefficient 

Nitrogen Rate, 
kg/ha 

Code 
(X) Linear Quadratic Cubic 

0 
60 
90 

0 
2 
3 

-9 
-1 

3 

5 
-8 
-4 

-1 
6 

-8 
120 4 7 7 3 

Note that the common denominator for all coefficients of the same degree
polynomial is removed. For example, the four coefficients of the linear 
contrast, namely, - *, - , :, and 1, are simply shown as -9, -1, 3, 
and 7. 

5.2.4 Factorial Comparison 

For a factorial experiment, the partitioning of, the treatment SS into compo­
nents associated with the main effects of the factors tested, and their interac­
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tion effects, is a standard part of the analysis of variance (see Chapter 3, 
Section 3.3). Each effect, however, may be further partitioned into several 
subcomponents. In fact, the procedures described in Sections 5.2.1, 5.2.2, and 
5.2.3 can be applied directly to partition the main-effect SS. For example, 
consider the 3 x 5 factorial experiment whose analysis of variance is shown in 
Table 3.6 of Chapter 3. If the researcher wishes to make a trend comparison 
between the five nitrogen rates (i.e., partition the nitrogen SS into linear 
component, quadratic component, etc.) the procedure described in Section 
5.2.3 is directly applicable. Or if the researcher wishes to make a between-group 
comparison to compare the mean of the three varieties (VI, V2 , and V) he can 
apply one of the methods described in Section 5.2.1. Thus only the procedure 
for partitioning the interaction efrect SS is so far unspecified. 

We illustrate the computational procedures for partitioning a two-factor 
interaction SS with data from a 6 X 3 factorial experiment involving six rice 
varieties and three nitrogen rates, as shown in Table 3.11 of Chapter 3. Note 
that the analysis of variance (Table 3.15) showed a highly significant interac­
tion effect between variety and nitrogen, indicating that varietal differences are 
not the same at different rates of nitrogen and, similarly, that nitrogen 
responses differ among varieties tested. Thus, further partitioning of the 
interaction SS could be useful in understanding the nature of the interaction 
between variety and fertilizer rate. The step-by-step procedures for partitioning 
a two-factor interaction SS are: 

10 	 STEP 1. Construct a set of mutually orthogonal contrasts (see Section 5.2.1) 
for one of the factors, say factor A (to be referred to as the primary factor), 
corresponding to the objective of the trial. This set of contrasts could be 
composed of either single d.f. or multiple d.f. contrasts or a mixture of the 
two. To minimize misinterpretation of results, the contrasts should be 
selected so they are mutually orthogonal. 

For our example, nitrogen factor may be considered as the primary 
factor. In such a case, the trend comparison would be an appropriate set of 
contrasts to examine. With three rates of nitrogen (0, 60, and 120 kg/ha), 
two orthogonal single d.f. contrasts A, and A2 representing the linear and 
quadratic polynomials can be constructed. Because the three nitrogen rates 
are of equal intervals (see Section 5.2.3.1) the two sets of orthogonal 
polynomial coefficients are obtained directly from Appendix G as: 

Nitrogen Orthogonal Polynomial Coefficient 

Rate, Linear Quadratic 
kg/ha (A,) (A2) 

0 -1 +1 
60 0 -2 

120 +1 +1 



Group Comparison 235 

0 	STEP 2. Compute the SS for each of the contrasts constructed in step 1,
based on the A totals over all levels of factor B, following the appropriate 
procedure described in Sections 5.2.1. 5.2.2, or 5.2.3. 

For our example, the SS for each of the two single d.f. contrasts is 
computed following the procedure of Section 5.2.3.1: 

a 1SS = NLSS = [(-1)(NJ)+ (0)(N 2) + (1)(N 3)]2 

(r)(a)[(-1)2 +(0)2 +(1)21 

A 2 SS = NQSS = [(1)(N 1) +(-2)(N'2 ) +(l)(r 3)] 2 

(r)(a )[(1) 2 + (- 2) 2 + (1)2] 

where N1, N2, and N3 are nitrogen totals for the first, second, and third level 
of nitrogen, respectively; r is the number of replications; and a is the 
number of varieties. Note that the quantity (r)(a) is used in the divisor 
instead of r because the treatment totals (NI, N2, and N3) used in the 
computation of the SS are summed over (r)(a) observations. Note further 
that because there are only two orthogonal single d.f. contrasts, only one of 
the two SS needs to be computed directly; the other one can be obtained by
subtraction. That is, if N, SS is computed directly, then NQ SS can be 
derived simply as: 

NQ SS = Nitrogen SS - N1, SS 

Substituting the nitrogen totals from Table 3.13, the values of the two SS of 
the first contrast is computed as: 

A1 SS = N SS - [(-1)(72,371) +(1)(114,678)] 

(3)(6)(2) 

= 	49,718,951 

* The SS of the second contrast is either computed directly as: 

A2SS,= NQS= [(1)(72,371) +(-2)(98,608) +(1)(114,678)]2(18)(6) 

= 957,110 

or computed through subtraction as: 

A2 SS=N SS = Nitrogen SS - NL SS 

= 	50,676,061 - 49,718,951 = 957,110 
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[ 	 smp 3. Following the procedure of step 2, compute the SS for each of the 
contrasts constructed in step I but based on the A totals at each level of 
factor B (instead of the A totals over all levels of factor B used in step 2). 
Note that for each contrast, the number of SS to be computed is equal to b, 
the levels of factor B. 

For our example, there are six SS for the linear component of nitrogen 
SS (NL SS) and six SS for the quadratic component NQ SS; with each SS 
corresponding to each of the six varieties. The computation of these SS is 

shown in Table 5.16. For example, the NI, SS and NQ SS for V are 
computed as: 

2 
NL SS = 	 [(-1)(10,715) +(1)(22,644)] 

(3)(2) 

= 23,716,840 

[(1)(10,715) +(-2)(15,396) +(1)(22,644)12 
(3)(6) 

= 	366,083 

o 	smp 4. Compute the components of the A X B SS, corresponding to the 
set of mutually orthogonal contrasts constructed for factor A in step 1 as: 

b 

AX BSS= E (AjSS)J-ASS 
J-i
 

Table 5.16 Computational Procedure for the Partitioning of Nitrogen x Variety 
Interaction SS In Table 3.15 Into Two Components, Based on the Linear and 
Quadratic Components of Nitrogen SS 

Treatment Total Sum of Squaresa 

Variety N, N3 Linear QuadraticN2 


V, 	 10,715 15,396 22,644 23,716,840 366,083 
14,803 20,141 21,634 7,777,093 821,335V2 
12,749 18,367 23,605 19,642,123 8,022V3 

V4 12,177 16,661 21,283 13,819,873 1,058 
V5 12,305 16,900 18,036 5,474,060 664,704 

9,622 11,143 7,476 767,553 1,495,297V6 
Total 	 71,197,542 3,356,499 

"The finearSS - (-N, + N3)2/6 and the quadratic SS - (NI - 2N 2 + N3)2/[(3)(6)]. 
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where A, x B SS is the ith component of the A X B SS, A1 SS is the ith 
component of the main-effect SS as computed in step 2, (Ai SS)j is the SS 
for the A, contrast corresponding to thejth level of factor B as computed in 
step 3, and b is the number of levels of factor B. 

For our example, the two components of the N x V SS are computed as: 

6 

NL X VSS = E(NL SS)j - NLSS 
J-1
 

6 
NQ X VSS==, (NQSS)j- NQSS 

J-I
 

where (NL SS)J and (NQ SS)j are the SS, computed in step 3, associated 
with thejth variety for the linear and quadratic components of nitrogen SS, 
respectively. NL SS and NQ SS are similarly defined SS computed in step 2. 

Substituting the values obtained in steps 2 and 3 in the two preceding 
equations, the following values are obtained: 

NL x VSS = (23,716,840 + ... + 767,553) - 49,718,951 

= 71,197,543 - 49,718,951 = 21,478,591 

Ng x VSS = (366,083 + ... + 1,495,297) - 957,110 

= 3,356,499 - 957,110 = 2,399,389 

Note that the N. X V SS can also be computed by subtraction: 

NQX VSS=Nx VSS-NLX VSS 

where N X V SS is the interaction SS computed in the standard analysis of 
variance as shown in Table 3.15. Thus, 

NQ X VSS = 23,877,980 - 21,478,591 = 2,399,389 

0 	STEP 5. Enter all values of the SS computed in steps 2 to 4 in the original 
analysis of variance. For our example, the values of the NL SS, NQ SS, 
NL X V SS, and NQ X V SS are entered in the analysis of variance of Table 
3.15, as shown in Table 5.17. The result indicates that the existence of the 
variety x nitrogen interaction is mainly due to the difference in the linear 
part of the yield responses to nitrogen rates of the different varieties. 

Note that, at this point, the partitioning of the nitrogen X variety interac­
tion SS, based on the prescribed trend comparison of nitrogen means, is 
completed. The researcher should decide at this point if the information 
obtained so far is adequate to answer the experimental objectives. If the 
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objectives are answered, the procedure can be terminated. Otherwise, addi­

tional analyses may be needed. In general, further analysis may be required 

when one or both of the following cases occur: 

" When the primary factor or the specific set of contrasts originally selected 

for the primary factor is shown to be not appropriate. In our example, it 

may be suspected that the use of variety instead of nitrogen as the 

primary factor for partitioning the interaction SS could provide better 

answers to the experimental objectives. Or, instead of choosing the set of 

orthogonal polynomials as the basis for partitioning the nitrogen SS, it is 

suspected that some between-group comparisons may be more useful. 

" The findings have generated additional questions. For example, in the 
so far leads to the question:illustration we used here, the result obtained 

what are the varieties that contribute to the differences in the rates of 

nitrogen response? To answer this question, further partitioning of the 

linear component of the interaction SS (i.e., Nt. X V SS) is needed. The 

following additional steps are required: 

0 STEP 6. Make visual observations of the data for probable answers to the 

new question raised. For our example, the nitrogen responses of the differ­
a freehand graphical represen­ent varieties can be easily examined through 


tation of the responses, as shown in Figure 5.1. It can be seen that:
 

" V6 is the only variety with a negative response.
 

" Among the remaining five varieties, V2 and V, seem to have a declining 
rates tested while the others (V,response within the range of nitrogen 

Table 5.17 Analysis of Variance with Partitioning of Main Effect SS and 
In TableCorresponding Interaction SS (Original Analysis of Variance 

3.15) 

Source 
of 

Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed
Fa 

Replication 
Variety (V) 
Error(a) 
Nitrogen (N) 

Linear (N) 

2 
5 
10 
2 

(1) 

9,220,962 
57,100,201 
14,922,620 
50,676,061 
49,718,951 

4,610,481 
11,420,040 

1,492,262
25,338,031 
49,718,951 

7.65** 

h 
b 

Quadratic (NQ) 
Error(b) 
N x V 

(1) 
4 
10 

957,110 
2,974,909 

23,877,980 

957,110 
743,727 

2,387,798 

h 

5.80** 

N,. X V 
NQ X V 

(5) 
(5) 

21,478,591 
2,399,389 

4,295,718 
479,878 

10.44"* 
1.17 n' 

Error(c) 
Total 

20 
53 

8,232,916 
167,005,649 

411,646 

n, - not significant.
- significant at 1%level, * = significant at 5% level, 

6Error(b) d.f. is not adequate for valid test of significance. 
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V3, and V4) do not.
 
There seems to be no appreciable difference in the responses either
 
between V2 and V5 or among VI, V3, and V4.
 

Thus, the six varieties can be classified into three groups according to their 
nitrogen responses: group 1 composed of V6 with a negative response, group 
2 composed of V2 and V5 with declining responses, and group 3 composed of 
VI, V3, and V4 with linear positive responses. 

0 	 sTEP 7. Confirm the visual observation made in step 6 through partitioning 
of the interaction SS into appropriate components. For our example, the 
NL X V SS can be further partitioned into the following four components: 

Degree
Component 	 of Question to be 

Number Definition Freedom Answered 

I NL X (V6 vs. others) 1 	 Does the linear response of 
V6 differ from that of the 
other varieties? 

2 NL X [(V2, V) vs. 1 Does the mean linear re­
(VI V31 V4 )J sponse of V2 and V5 differ 

from that of Vt, V3 and /4?, 

3 Nx× (V2 vs. V) 1 Does the linear response of 
V2 differ from that of V? 

4 N, x (V vs. V3 vs. V4) 2 	 Is there any difference in 
the linear responses of V, 
V3, and /4? 

Gain yield /ho)
8 

V3 
7- V2 

V4 
6-

V5V 

4 
I 

36 

0 60 120 Figure 5.1 Mean yield of 6 rice varieties with 3 
Nitrogen (kg/ha) nitrogen rates (data in Table 3.11). 
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o3 STEP 8. Compute the SS for each of the components of the N, x V SS 
constructed in step 7. For our example, the computation of the SS for each 
of the four components of the NL X V SS follows the first formula in 
Section 5.2.4, step 4. The final results are shown in Table 5.18. 

Re ,ults of the partitioning of N,. x V SS confirmed the visual observa­
tion made in step 6, as follows: 
" 	 Component I is significant, indicating that there is a significant difference 

between the linear response of V6 and the mean linear response of the 
other five varieties. 

" 	 Component 2 is significant, indicating that among the five varieties, there 
is a significant difference between the mean linear response of V2 and V 
and that of V,, V3, and V4 . 

" 	 Components 3 and 4 are both nonsignificant, indicating that there is no 
significant difference in the linear responses between V2 and V or 
between V1, V3, and V4. 

Table 5.18 Additional Partitioning of the NL x VSS In Table 5.17, to Support the 
Visual Observation InFigure S.1 

Source Degree Sum 
of of of Mean Computed rabular F 
Variation Freedom Squares Square Fa 5% 1% 

N, x V 5 21,478,591 4,295,718 10.44"* 2.71 4.10 
NtL X (V6 vs. others) (1) 16,917,575 16,917,575 41.10-* 4.35 8.10 
N,.x [(V2, V) vs. (V1, IV3, V4 )! 
N,. X (V2 vs. Vs) 
N,. X (V1 vs. V3 vs. V4 ) 

(1) 
(1) 
(2) 

3,783,340 
100,834 
676,842 

3,783,340 
100,834 
338,421 

9.19** 
< 1 
< I 

4.35 
-
-

8.O 
-­

Error(c) 20 8,232,916 411,646 

a** - significant at 1%level. 



CHAPTER 6 

Analysis of 
Multiobservation Data 

When a single character from the same experimental unit is measured more 
than once, the data is called multiobservation data. There are two types: 

" Data from plot sampling in which s sampling units are measured from each 
plot, as in the measurement of plant height in transplanted rice where 10 
hills may be measured in each plot. 

" Data from measurements made over time in which the same character is 
measured at different growth stages of the crop, as in plant height, tiller 
number, and dry matter production, which may be m.-asured every 20 days. 

Standard analysis of variance (Chapters 2 to 4), which requires that there is 
a single observation per character per experimental unit, is not directly 
Epplicable to multiobservation data. It can be applied only to the average of all 
samples from a plot, or to the average of all measurements made over time, for 
each plot. We focus on the appropriate procedures for directly analyzing 
multiobservation data. 

6.1 DATA FROM PLOT SAMPLING 

For data from plot sampling, an additional source of 'variation can be 
measured: that due to sampling variation, which is commonly referred to as 
sampling error. The formats for the analysis of variance for data from plot 
sampling of a completely randomized design (CRD) and a randomized com­
plete block (RCB) design, with t treatments and r replications; and of a 
split-plot design with a main-plot treatments, b subplot treatments, and r 
replications, are shown in Tables 6.1, 6.2, and 6.3. 

Because the only distinct feature of the analysis of variance for data from 
plot sampling is the part involving sampling error, we illustrate the computa­
tional procedure with one example from an experiment with a RCB design, 
and another example from an experiment with a split-plot design. 
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Table 6.1 Format for the Analysis of Variance of Data from Plot
 
Sampling In a CRD with t Treatments, r Replications, and s Sampling
 
Units per Plot 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Squares F 5% 1% 

Treatment t- 1 
Experimental error t(r ­ 1) 
Sampling error rt(s ­ 1) 

Total ris ­ 1 

Table 6.2 Format for the Analysis of Variance of Data from Plot 
Sampling In a RCB Design with t Treatments, r Replications, and a 
Sampling Units per Plot 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F 5% 1% 

Replication r - 1 
Treatment t - 1 
Experimental error (r - 1)(t - 1) 
Sampling error ri(s - 1) 

Total ris - 1 

Table 6.3 Format for the Analysis of Variance of Data from Plot Sampling In a 
Split-Plot Design with a Main-plot Treatments, b Subplot Treatments, r 
Replications, and a Sampling Units per Plot 

Source Degree Sum
 
of of of Mean Computed Tabular F
 
Variation Freedom Squares Square F 5% 1%
 

Replication r - 1
 
Main-plot treatment (A) a - 1
 
Error(a) (r - 1)(a - 1)
 
Subplot treatment (B) b - 1
 
A XB (a-1)(b-1)
 
Error(b) a(r- 1)(b- 1)
 
Sampling error abr(s - 1)
 

Total rabs - 1 
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6.1.1 RCB Design 

The computations we show here use data from a R"'B experiment to evaluate 
forms of urea and their mode of application in wetland rice. In an experiment 
with nine treatments in four replications, data on tiller count, collected from 
four randomly selected 2 X 2-hill sampling units per plot, is shown in Table 
6.4. 

Let t denote the number of treatments, r the number of replications, and s 
the number of sampling units selected per plot. The steps to compute analysis 
of variance are: 

o STEP 1. Construct an appropriate outline of the analysis of variance of data 
from plot sampling based on the experimental design used. For this exam­
ple, the form of the analysis of variance is shown in Table 6.2. 

I 	Smp 2. Construct the replication x treatment table of totals (RT) and 
compute the replication totals (R), the treatment totals (T), and the grand 
total (G). For our example, such a table is shown in Table 6.5. 

o sTEP 3. Compute the correction factor and the sums of squares as: 

G2 

C.F.=- G 
Irs 

(7,723)2 ,
(9)(4)(4) = 414,199.51 

Table 6.4 Tiller Count (no./4 hills) of Rice Variety IR729-67-3, Tested under 
Nine Fertilizer Treatments In a RCB Experiment with Four Replications and 
Four Sampling Units (S1, S2, S3, and S4 ) 

Treatment Rep. I Rep. II Rep. III Rep. IV 

Number S, S2 S3 S4 S, S2 S3 S4 S, S2 S3 S4 S1 S2 S3 S4 

1 30 23 27 22 22 26 25 32 34 26 30 24 40 42 37 26 
2 48 46 33 42 57 60 38 50 67 64 63 58 40 57 36 60 
3 52 47 61 46 49 41 43 70 52 48 54 56 50 61 58 74 
4 45 51 73 55 65 62 79 54 75 56 75 75 58 41 47 58 
5 52 62 56 52 50 72 51 51 56 39 49 59 53 53 40 72 
6 62 63 56 43 52 48 54 56 74 58 48 51 63 59 46 52 
7 58 46 63 55 47 50 70 53 75 48 73 52 66 76 72 74 
8 63 56 59 49 47 53 60 68 47 58 65 78 63 70 80 68 
9 70 72 72 49 55 44 42 52 69 55 56 59 53 52 44 49 

http:414,199.51
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Table 6.5 The Replication x Treatment Table of Totals Computed from 
Data In Table 6.4 

Treatment 
Treatment Tiller Count Total (RT) Total 
Number Rep. I Rep. II Rep. III Rep. IV (T) 

1 102 105 114 145 466 
2 169 205 252 193 819 
3 206 203 210 243 862 
4 224 260 281 204 969 
5 222 224 203 218 867 
6 224 210 231 220 885 
7 222 220 248 288 978 
8' 227 228 248 281 984 
9 263 193 239 198 893 

Rep. total (R) 1,859 1,848 2,026 1,990 
Grand total (G) 7,723 

Total SS =F X 2 - C.F. 

[(30)2 +(23)2 + "'"+(49) 2] -414,199.51 

= 25,323.49 

Replication SS =- ts - C.F. 

(1,859)2 +(1,848)2 +(2,026)2 +(1,990)2 414,199.51 
(9)(4)
 

= 682.74 

Treatment SS = - C.F. 
rs 

(466 2 + (819)2 + ... + (893)2 
414,199.51(4)(4) 


= 12,489.55 

http:12,489.55
http:414,199.51
http:414,199.51
http:25,323.49
http:414,199.51
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Experimental error SS (T)
S 

-	 C. F. - Replication SS - Treatment SS 

(102) 2 + (105)2 +(114)2 + ... +(198)2 

4 

- 414,199.51 -682.74 - 12,489.55 

= 3,882.95
 

Sampling error SS = Total SS - (sum of all other SS)
 

- 25,323.49 -(682.74 + 12,489.55 + 3,882.95) 

-8,268.25 

10 	 sTEp 4. For each source of variation, compute the mean square by dividing 
the SS by its corresponding d.f.: 

Replication MS =Replication SS 
r- 1 

682.74 
- = 227.58 

Treatment MS =Treatment SS 
I-1 

12,489.55 
- 8 1,561.19 

Experimental error MS Experimental error SS 
(r - 1)(t - 1) 

3,882.95= -- - 161.79 
(3)(8) 

=Sampling error SSSampling error MS 
tr(s - 1) 

8,268.25 = 
(9)(4)(3) 

http:8,268.25
http:3,882.95
http:1,561.19
http:12,489.55
http:8,268.25
http:3,882.95
http:12,489.55
http:25,323.49
http:3,882.95
http:12,489.55
http:414,199.51
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0 	STEP 5. To test the significance of the treatment effect, compute the F value 
as: 

Treatment MS 
Experimental error MS 

1,561.19 
.	 9.65161.79 

and compare it with the tabular F value (Appendix E) with fA = (t - 1) = 8 
and f2 = (r - 1)(t - 1) = 24 degrees of freedom, at the prescribed level of 
significance. 

For our example, the computed F value of 9.65 is greater than the tabular 
F value with f, = 8 and f2 = 24 degrees of freedom at the 1%level of 
significance of 3.36. Hence, the treatment difference is significant at the 1% 
level of significance. 

o 	Smp 6. Enter all values obtained in steps 2 to 5 in the analysis of variance 
outline of step 1. The final result is shown in Table 6.6. 

o sTP 7. For mean comparison, compute the standard error of the di­
fference between the ith and jth treatments as: 

S,7= j2(MS 2 ) 
= rs 

where MS2 is the experimental error MS in the analysis of variance. For our 
example, the standard error of the difference between any pair of treatments 
is: 

= 2(161.79) -4.50 
(4)(4) 

Table 6.6 Analysis of Variance (RCB with Data from PlotSampling) of Data
 
In Table 6.4a
 

Source Degree Sum
 
of of of Mean Computed Tabular F
 
Variation Freedom Squares Square Fb 5% 1%
 

Replication 3 682.74 227.58
 
Treatment 8 12,489.55 1,561.19 9.65** 2.36 3.36
 
Experimental error 24 3,882.95 161.79
 
Sampling error 108 8,268.25 76.56
 

Total 143 25,323.49 

"cv - 23.6%.
 
b**. significant at 1%level.
 

http:25,323.49
http:8,268.25
http:3,882.95
http:1,561.19
http:12,489.55
http:2(161.79
http:1,561.19
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o 	sTe 8. Compute the estimates of the sampling error variance and of the 
experimental error variance as: 

sS= MS, 

2= MS2 - MS 

where MS1 is the sampling error MS in the analysis of variance. For our 
example, the two variance estimates and their corresponding cv values are: 

s= 76.56 

$2 161.79 - 76.56 = 21.314 

cv(S) = 5-'"-X100 =16.2%o 

/21.31 
cv(E)= F251 X100 = 8.5% 

For examples on the use of variance estimates in the development of 
sampling techniques, see Chapter 15, Section 15.2. 

6.1.2 Split-Plot Design 

The computational procedure we show below uses data from a split-plot 
experiment involving eight management levels as main-plot treatments and 
four times of nitrogen application as subplot treatments. There are three 
replications. The data on plant height, measured on two single-hill sampling 
units per plot, is shown in Table b.7. 

We denote the main-plot factor by A, the subplot factor by B, the levels of 
factor A by a, the levels of factor B by b, the number of replications by r, and 
the number of sampling units per plot by s. The computational procedures are: 

o 	STEP 1. Construct the outline of an appropriate analysis of variance of data 
from plot sampling based on the experimental design used. For our exam­
ple, the form of the analysis of variance is shown in Table 6.3. 

" 	sTp 2. Construct three tables of totals: 
• 	 The replication X factor A two-way table of totals (RA), including the 

replication totals (R), factor A totals (A), and the grand total (G). For 
our example, this is shown in Table 6.8. 



Table 6.7 Height of Rice Plants Measured on Two Sampling Units 
($1 and S.) per Plot, from a Split-Plot Experiment Involving Eight 
Management Levels (M1, M2 ,....Me) and Four Times of Nitrogen 
Application (T, T2, T3, and T4) with Three Replications 

Treatment Combination 	 Plant Height, cm 

Time of Management Rep. I Rep. II Rep. III 

Application Level S, S2 S1 S1 S1 S2 

T, 	 M, 104.5 106.5 112.3 109.0 109.2 106.7 
M 2 92.3 92.0 113.3 109.6 108.0 106.3 
M3 96.8 95.5 108.3 110.2 102.4 103.2 

94.7 94.4 108.1 107.0 102.5 104.4 
M5 105.7 103.0 104.9 102.4 100.8 101.3 
M6 100.5 102.0 106.3 104.5 106.0 108.4 
M7 86.0 89.0 105.0 102.0 104.0 103.7 
M8 105.9 104.6 108.9 105.8 95.8 99.2 

T2 M, 109.7 112.2 110.3 108.0 113.6 113.5 
M2 100.5 100.0 113.5 112.5 103.6 102.0 
M3 91.4 92.0 109.2 106.2 113.0 111.9 
M4 100.8 103.2 115.0 112.0 109.6 108.2 
M5 97.0 96.1 105.1 102.3 116.3 114.3 
M6 102.3 100.0 105.2 108.2 115.5 118.8 
M7 100.3 100.8 97.5 96.3 100.0 102.3 
M8 102.7 102.5 104.3 107.5 106.8 107.6 

T3 	 M, 97.5 95.2 107.6 106.2 113.2 115.0 
M2 95.0 96.2 102.5 105.8 106.7 104.6 
M3 86.6 85.5 104.1 102.3 105.0 105.3 
M4 91.2 90.0 108.1 105.6 103.8 104.3 
US 100.0 100.0 99.2 101.3 100.1 98.6 
M6 94.4 93.5 96.2 96.0 106.1 104.4 
M7 92.3 93.4 98.1 96.2 102.0 100.6 
Ma .101.9 103.0 104.3 106.4 94.2 92.0 

M 4 

8 
T4 	 M, 103.8 105.0 110.1 109.5 115.0 112.5 

M2 93.2 92.5 111.0 111.3 96.0 97.2 
M3 95.0 95.2 108.1 106.0 107.2 107.4 
M4 103.9 103.6 112.0 109.3 117.6 119.5 
M5 96.0 93.5 102.5 103.8 108.0 107.2 
M6 102.3 102.8 111.7 110.5 107.5 107.3 
M7 91.2 93.0 99.5 97.8 104.3 103.3 
M8 106.0 106.4 100.0 103.0 104.9 106.4 

248 
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Table 6.8 The Replication x Management Level Table of Totals 
Computed from Data In Table 6.7 

Management 
Management Plant Height Total (RA) Total 

Level Rep. I Rep. II Rep. III (A) 

IV 834.4 873.0 898.7 2,606.1 
M2 761.7 879.5 824.4 2,465.6 
M3 738.0 854.4 855.4 2,447.8 
M 4 781.8 877.1 869.9 2,528.8 
M 5 791.3 821.5 846.6 2,459.4 
M6 797.8 838.6 874.0 2,510.4 
M7 746.0 792.4 820.2 2,358.6 
Mg 833.0 840.2 806.9 2,480.1 

Rep. total (R) 6,284.0 6,776.7 6,796.1 
Grand total (G) 19,856.8 

" The factor A x factor B two-way table of totals (AB) including factor B 
totals (B). For our example, this is shown in Table 6.9. 

" The replication X factor A x factor B three-way table of totals (RAB). 
For our example, this is shown in Table 6.10. 

0 sTEp 3. Compute the correction factor and the sums of squares: 
2CF GGC.F.-

rabs 

(19,856.8)2
- = 2,053,606.803

(3)(8)(4)(2) 

Table 6.9 The Management Level x Time of Nitrogen Application Table 
of Totals Computed from Data In Table 6.7 

Management Plant Height Total (AB) 
Level T, T2 T3 T 

M, 648.2 667.3 634.7 655.9 
M 2 621.5 632.1 610.8 601.2 
M3 616.4 623.7 588.8 618.9 
M4 611.1 648.8 603.0 665.9 
M5 618.1 631.1 599.2 611.0 
M6 627.7 650.0 590.6 642.1 
M7 589.7 597.2 582.6 589.1 
Ma 620.2 631.4 601.8 626.7 

Time total (B) 4,952.9 5,081.6 4,811.5 5,010.8 
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Total SS 

Replication SS 

A (management level) SS 

Error(a) SS 

B (time of application) SS 

= , X 2 - C.F. 

= [(104.5)2 +(106.5)2 + ... +(106.4)2] 

-2,053,606.803 

= 8,555.477 

= abs C.F. 

(6,284.0)2 + (6,776.7)2 + (6,796.1)2
 
(8)(4)(2)
 

- 2,053,606.803 

= 2,632.167 

2
 

= 
,A
g7- C.F. 

(2,606.1) 2 + (2,465.6)2 + + (2,480.1) 2 

(3)(4)(2)
 

-2,053,606.803
 

= 1,482.419 

= bs - C.F.- Replication SS - ASS 

... + (806.9)2(834.4)2 + (873.0)2 + 

(4)(2)
 

-2,053,606.803 - 2,632.167 - 1,482.419 

= 1,324.296 

B2- C.F. 

ras 

(4,952.9)2 +(5,081.6)2 + (4,811 .5)2 +(5,010.8)2 

(3)(8)(2) 

-2,053,606.803
 

= 820.819 
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Table 6.10 The Replication x Management Level x Time of Nitrogen 
Application Table of Totals Computed from Data In Table 6.7 

Management 
Level 

U, 

M2 

M3 

M4 

MS 

M6 

M7 

Ms ,T 

A xBSS= 

Time of Plant Height Total (RAB) 

Application Rep. I Rep. II Rep. III 

T 211.0 221.3 215.9 
T2 
T3 

221.9 
192.7 

218.3 
213.8 

227.1 
228.2 

T4 208.8 219.6 227.5 
T1 
T2 

184.3 
200.5 

222.9 
226.0 

214.3 
205.6 

T3 191.2 208.3 211.3 
4 185.7 222.3 193.2 

T 192.3 218.5 205.6 
T2 183.4 215.4 224.9 
T3 172.1 206.4 210.3 
T4 190.2 214.1 214.6 
T 189.1 215.1 206.9 
T2 
T3 

204.0 
181.2 

227.0 
213.7 

217.8 
208.1 

4 207.5 221.3 237.1 
T 208.7 207.3 202.1 
Ti 193.1 207.4 230.6 
T3 200.0 200.5 198.7 
'4 189.5 206.3 215.2 
T1 202.5 210.8 214.4 
T2 202.3 213.4 234.3 

3 187.9 192.2 210.5 
T4 205.1 222.2 214.8 
T 175.0 207.0 207.7 
T2 201.1 193.8 202.3 
T3 185.7 194.3 202.6 
r 184.2 197.3 207.6 

210.5 214.7 195.0 
T. 205.2 211.8 214.4 

3 204.9 210.7 186.2 
T4 212.4 203.0 211.3 

E (A B) 
C.F.-BSS-ASS 

rs 

(648.2)2 +(667.3)2 + ... + (626.7)2 

(3)(2) 

-2,053,606.803 - 820.819 - 1,482.419
 

- 475.305 
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ERAB)\ 

Error(b)SS = S C.F.- Replication SS - A SS 

-Error(a) SS -	 B SS - A X B SS 

(211.0) 	 + (221.3)' + + (211.3)' 

2 

-2,053,606.803 - 2,632.167 - 1,482,419 

-1,324.296 - 820.819 - 475.305 

= 1,653.081 

Sampling error SS = Total SS - (sum of all other SS) 

= 8,555.477 - (2,632.167 + 1,482.419 + 1,324.296 

+ 820.819 + 475.305 + 1,653.081) 

= 167.390 

03 	 STEP 4. For each source of variation, compute the mean square by dividing 
the SS by its corresponding d.f.: 

Replication MS Replication SS 

=2,632.167= 62 = 	1,316.084 

A 	MS =Aa-i
SS

=1,482.419 211.774 
7 

Error(a) SSError(a) MS= (r- 1)(a- 1) 

1,324.296 94.593 
(2)(7) 

= BSSB MS b-i 

820.819 = 820.8 = 	273.6063 
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A 	XBMS= AXBSS 
(a- 1)(b- 1) 

475.305 
-- = 22.634 

(7)(3) 

Error(b) SS.Error(b) MS 
a(r - 1)(b - 1) 

1,653.081 
(8)(2)(3) 

Sampling error SS 
Sampling error MS = abr(s - 1) 

167.390 
(8)(4)(3)(1) 

0l 	 STEP 5. To test the significance of each of the three effects, namely, A, B, 
and A x B, follow the procedures outlined in Chapter 3, Section 3.4.2, steps 
6 to 9. 

o 	STEP 6. Enter all values obtained in steps 2 to 5 in the analysis of variance 
outline of step 1. The final results are shown in Table 6.11. The results 
indicate that only the main effect of the time of nitrogen application is 
significant. 

o 	srEP 7. For pair comparison, compute the standard error of the mean 
difference following the appropriate formula given in Chapter 5, Table 5.5, 
but with one modification-multiply each divisor by s, the sample size in 
each plot. For example, to compare two subplot treatments at the same 
main-plot treatment, the standard error of the mean difference is: 

s 22Eb 
V 	 rs 

where E, is the error(b) MS from the analysis of variance. And, to compare 
two subplot treatments (averaged over all main-plot treatments) the stan­
dard error of the mean difference is: 

Sj= 2 Eb 

F 	 ra n 

For our example, the standard error of the mean difference between any two 
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Table 6.11 Analysis of Variance (Split-Plot Design with Data from Plot Sampling) of Data In Table 6.7a 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
F" 

TabularF 
5% 1% 

Replication 
Management level (A) 

2 
7 

2,632.167 
1,482.419 

1,316.084 
211.774 2.24 ns 2.77 4.28 

Error(a) 14 1,324.296 94.593 
Time of application (B) 3 820.819 273.606 7.94** 2.80 4.22 
A x B 21 475.305 22.634 <1 - -
Error(b) 48 1,653.081 34.439 
Sampling error 96 167.390 1.744 

Total 191 8,555.477 

°c(a) = 9.4%, cu(b) - 5.7%.b** = significant at 1%level, = not signiicant. 
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times of nitrogen application at the same management level is computed as: 

2(34.439) 
Sd (3)(2) 

= 3.388 

And the standard error of the mean difference between any two times of 
nitrogen application averaged over all management levels is computed as: 

_ 2(34.439) 

S =V(3) (8) (2) 

= 1.198 

0 SMP 8. Compute the estimates of two variance components: the experi­
mental error associated with the smallest experimental unit [i.e.,; error(b) in 
this case] and the sampling error as: 

S2 MS-MS2 
E S 

s2 =MS 

where MS is the sampling error MS, M, is the experimental error MS, and 
s is the number of sampling units per plot. For our example, the two 
variance estimates are computed as: 

2= 34.439 - 1.744 
SE-- 16.348 

2Ss = 1.744 

with the corresponding cv values of 

cv(E) = A16.348 x 100 = 3.9%
103.4 

cv(S) 103.-4 x 100 = 1.3% 

The results indicate a relatively small sampling error compared to the 
experimental error. 

For further details in the use of the variance estimates for developing 
sampling techniques, see Chapter 15, Section 15.2. 
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6.2 MEASUREMENT OVER TIME 

When a character in an experiment is measured over time, the researcher is 
usually interested in examining the rate of change from one time period to 
another. For example, when a researcher measures weight of dry matter of rice 
plants at different growth stages, interest is usually on the effects of treatment 
on the growth pattern (or the rate of change over time) based on weight of dry 
matter (Figure 6.1) rather than on the effects of treatment on weight of dry 
matter at the individual growth stage. In other words, it is important to 
determine the interaction effect between treatment and stage of observation, 
but that cannot be done if the analysis of variance is obtained separately for 
each stage of observation. Hence, the common approach is to combine data 
from all stages of observation and obtain a single analysis of variance. 

Dry matter (g/m2) 

1,400 

I1213 
11.980-.0898X 

1,200 (R2 : 1.00) 
o Y2z 1+31.1055x903 

I+311;0 

1,000- (R2 1.00" ) / 
Fertilized 

600 Nonfertilzed 

400 

200 

0 

10 20 30 45 75 105 

Days after transplanting 

Figure 6.1 Growth response (dry matter) of rice variety IR48 under fertilized and nonfertilized 
conditions. 
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Table 6.12 Format of the Pooled Analysis o Variance for Measurements over 
Time, from a RCB Design 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedoma Squares Square F 5% 1% 

Replication r - 1 
Treatment (T) I ­ 1 
Error(a) (r ­ 1)(t - 1) 
Time of observation (P) 
Tx, 
Error(b) 

p - 1 
(t - )(p ­1) 
t(r - 1)(p ­ 1) 

Total rip- 1 

"r = number of replications, t - number of treatments, and p number of times of 
observation. 

Such an analysis of variance is accomplished by considering time of observa­
tion as an additional factor in the experiment and treating it as if it were a 
subplot or the smallest experimental unit. Thus, the format of the pooled 
analysis of variance for measurements over time based on a RCB design,
shown in Table 6.12, is similar to that for the standard split-plot design with 
treatments as main-plot and times of observation as subplot treatments. Thc 
format of the pooled analysis of variance for measu'ements over time based on 
a split-plot design, shown in Table 6.13, is similar to that for the standard 
split-split-plot design, and so on. 

Table 6.13 Format of the Pooled Analysis of Variance for Measurements over 
Time, from a Split-Plot Design 

Source Degree Sum
of of of Mean Computed Tabular F 
Variation Freedom" Squares Square F 5% 1%
 
Replication r - I
 
Main-plot treatment (A) a - 1
 
Error(a) (r - IXa - 1)

Subplot treatment (B) b- 1
 
A XB (a-1)(b- 1'
 
Error(b) a(r - 1)(b - 1)

Time of observation (C) p - 1
 
A xC (a-1)(p-1)
B x C (b - 1)(p - 1) 
A xBXC (a-lXb -1)(p-1) 
Error(c) ab(r - 1Xp - 1) 

Total rabp - I 

ar - number of replications, a - number of main-plot treatments, b- number of 
subplot treatments, and p - number of times of observation. 
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6.2.1 RCB Design 

Our computations here use data from a RCB experiment to test nitrogen 
fertilizer efficiency in medium-deepwater rice plots. Eight fertilizer treatments 
were tested in four replications. Data on nitrogen content of the soil, collected 
at three growth stages of the rice crop, are shown in Table 6.14. 

Let t denote the number of treatments, r the number of replications, and p 
the number of times data were collected from each plot. The step-by-step 
procedures for data analysis are: 

o Smpi 1. Compute an analysis of variance for each of the p stages of 
observation, following the procedure for standard analysis of variance based 
on the experimental design used. For our example, the design is RCB. 
Following the procedure described in Chapter 2, Section 2.2.3, the p = 3 
analyses of variance are computed and the results are shown in Table 6.15. 

" 	sTEP 2. Test the homogeneity of the p error variances, following the 
procedure of Chapter 11, Section 11.2. For our example, the chi-square test 
for homogeneity of variance is applied to the three error mean squares: 
" Compute the X2 value as: 

(2.3026)(f)( plogs - log s1) 
+ (p + )

3pf
 

(2.3026)(21) [3 log 0.03507 - (-4.38948)] 
(3 + 1)

3(3)(21) 

= 1.15 

" Compare the computed X2 value to the tabular X2 value, with (p - 1) = 2 
degrees of freedom. Because the computed X2 value is smaller than the 
corresponding tabular X2 value at the 5%level of 5.99, heterogeneity of 
variance is not indicated. 

o3 	 sEp 3. Based on the result of the test for homogeneity of variance of step 
2, apply the appropriate analysis of variance: 

* 	 If heterogeneity of variance is indicated, choose an appropriate data 

transformation (see Chapter 7, Section 7.2.2.1) that can stabilize the error 

variances and compute the pooled analysis of variance based on the 
transformed data. For our example, because heterogeneity of error vari­
ance is not indicated, no data transformation is needed. (For an example 
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Table 6.14 Data on Nitrogen Content of the Soil, Subjected !o E!ght Fertilizer 
Treatments In a RCB Design with Four Replications, Collected at Three Growth 
Stagesa of the Rice Crop 

Soil Nitrogen Content, % 

Treatment Rep. I Rep. II Rep. III Rep. IV
 
Number P P2 P3 P P2 P3 P, P
P2 P3 P2 P3 

1 3.26 1.88 1.40 2.98 1.74 1.24 2.78 1.76 1.44 2.77 2.00 1.25 
2 3.84 2.36 1.33 3.74 2.14 1.21 3.09 1.75 1.28 3.36 1.57 1.17 
3 3.50 2.20 1.33 3.49 2.2P 1.54 3.03 2.48 1.46 3.36 2.47 1.41
4 3.43 2.32 1.61 3.45 2.33 1.33 2.81 2.16 1.40 3.32 1.99 1.12 
5 3.43 1.98 1.11 3.24 1.70 1.25 3.45 1.78 1.39 3.09 1.74 1.20 
6 3.68 2.01 1.26 3.24 2.33 1.44 2.84 2.22 1.12 2.91 2.00 1.24 
7 2.97 2.66 1.87 2.90 2.74 1.81 2.92 2.67 1.31 2.42 2.98 1.56 
8 3.11 2.53 1.76 3.04 2.22 3.20 2.61 1.23 2.22 1.291.28 2.81 

aAt 15 days after transplanting (PI), at 40 days after transplanting (P2 ), and at panicle 
initiation stage (P3). 

on pooled analysis of variance based on transformed data, see Section 
6.2.2). 
If heterogeneity of error variance is not indicated, compute a pooled 
analysis of variance based on original data from all p stages of observa­
tion. For our example, because heterogeneity of error variance is not 
indicated, the pooled analysis of variance is computed. 

The general format of the pooled analysis of variance for measurements 
over time from a RCB design is outlined in Table 6.12. The required
computational procedure follows that for a standard analysis of variance of 
a split-plot design described in Chapter 3, Section 3.4.2, with the I treat­
ments treated as the a main-plot treatments and the p times of observation 
as the b subplot treatments. 

Table 6.15 Three Individual Analyses of Variance (RCB Design), One for Each 
Stage of Observation, of Data In Table 6.14 

Source Degree Mean Square
of of MeanSquare_
Variation Freedom P, P2 P3 

Replication 3 0.302412 0.0. 9654 0.061458 
Treatment 7 0.211634** 0.415005"* 0.063686"' 
Error 21 0.039843 0.039356 0.026011 

Total 31 

000 - F test significant at 1%level,-" - F test not significant. 
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The result of the pooled analysis of variance, for our example, is shown in 

Table 6.16. The results show a highly significant interaction between treat­

ment and growth stage, indicating that the treatment effects varied signifi­

cantly among the different growth stages. 

3 STEP 4. For pair comparison, follow the standard procedure for a split-plot
 

design (see Chapter 5, Se:ction 5.1.1.4) based on the result of the pooled
 

analysis of variance obtained in Step 3.
 
For our example, because the interaction between treatment and growth
 

stage is highly significant (Table 6.16), pair comparison should be made only 

between treatments at the same growth stage. The standard error of the 

difference between two treatments at the same growth stage is computed as: 

/2[(p - I)Eb + La] 
sj rrp 

+ 0.0366421-/2[(2)(0.036349) 

(4)(3) 

- 0.13 

where Ea is the error(a) MS and Eb is the error(b) MS in the pooled 

analysis of variance. 
The result of the Duncan's multiple range test (see Chapter 5, Section 

5.1.2) for comparing treatment means at each growth stage is shown in 

Table 6.17. 

Table 6.16 Pooled Analysis of Variance for Measurements over Time 
(RCB Design), from Data InTable 6.14 a 

Source Degree Sum 
of of of Mean Computed Tabular F 

1%Variation Freedom Squares Square Fb 5% 

Replication 3 0.845742 0.281914 
Treatment (T) 7 1.265833 0.180833 4.94** 2.49 3.65 
Error(a) 21 0.769492 0.036642 
Growth stage (P) 2 52.042858 26.021429 .715.88"* 3.19 5.08 
T x P 14 3.566442 0.254746 7.01** 1.90 2.48 
Error(b) 48 1.744767 0.036349 

Total 95 60.235134 

acv(a) - 8.5%, cv(b) - 8.5%. 
h** - significant at 1%level. 
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Table 6.17 Duncan's Multiple Range Test (DMRT)
for Comparing Eight Fertilizer Treatment Means at 
Each Growth Stage, Computed from Data In Tables 
6.14 and 6.16 

Treatment Mean Nitrogen Content, %a 

Number P, P2 P3 

1 2.95 de 1.85 de 1.33 b 
2 3.51 a 1.96 cde 1.30 b 
3 3.35 ab 2.36 b 1.44 ab 
4 3.25 abcd 2.20 bc 1.37 ab 
5 3.30 abc 1.80 e 1.24 b 
6 3.17 bcd 2.14 bcd 1.27 b 
7 2.80 e 2.76 a 1.64 a 
8 3.04 cde 2.40 b 1.39 ab 

aAverage of four replications. In a column, means fol­
lowed by a common letter are not significantly different 
at the 5%level. 

O sTEP 5. If the interaction between treatment and time of observation is 
significant, apply an appropriate mean-comparison method to examine the 
nature of the interaction. The choice of the methods to be used depends on 
whether the time of observation is a quantitative factor. 

If the time of observation is quantitative in nature (such as the chrono­
logical age of the crop expressed in terms of the number of days after 
planting, the age of the confined insects, etc.) and there are at least three 
stages involved, either one, or both, of the following procedures can be 
applied: 
A. 	 Partition the interaction SS, based on an appropriate choice of trend 

comparison on the time of observation (see Chapter 5, Section 5.2.3).
B. 	 Apply an appropriate regression technique of Chapter 9 to estimate a 

functional relationship between the response (Y) and the time of 
observation (X) separately for each treatment (see, for example, Figure
6.1) and compare these regressions across treatments. 

If the time of observation is not quantitative, or if there are less than three 
stages of observation involved, partition the interaction SS, based on an 
appropriate set of between-group comparisons either on the treatments or 
on the growth stages, or both (see Chapter 5, Section 5.2.1).

For our example, because the interaction between treatment and time of 
observation is significant, the interaction SS should be properly examined. 
Because the time of observation is represented by a discrete set of crop
growth stages (i.e., with one stage of observation representing chronological 
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Table 6.18 Partitioning of the Treatment x Growth Stage Interaction SS In the 
Analysis of Variance Shown In Table 6.16 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square F" 5% 1% 

TX P 14 3.566442 0.254746 7.0100 1.90 2.48 
(T7 vs. T, to T6 and T) X P 
(Ts vs. T, to T6) X P 
(T2, T vs. T1, T3, T4, T6) X P 
(T2 vs. T) XP 
(T, T3, T4, T) X P 

(2) 
(2) 
(2) 
(2) 
(6) 

(2.136675) 
(0.536011) 
(0.642872) 
(0.021700) 
(0.229184) 

(1.068338) 
(0.268006) 
(0.321436) 
(0.010850) 
(0.038197) 

29.39--
7.37"* 
8.84* 
< 1 

1.05' 

3.19 
3.19 
3.19 
-

2.30 

5.08 
5.08 
5.08 
-

3.20 
Error(b) 48 1.744767 0.036349 

a**- significant at 1%level, - not significant. 

age and another representing physiological age of the crop), the between­
group comparisons on treatments or on growth stages should be made. We 
choose to partition the interaction SS based on between-group comparisons 
on treatments. The results are shown in Table 6.18. Results indicate that the 
eight fertilizer treatments can be classified, based on similarity of the 
chan,,es in nitrogen content over time, into four groups: the first group 
consists of T., the second consists of T, the third consists of T2 and T5, and 
the fourth consists of TI, T3, T4, and T6. 

6.2.2 Split-Plot Design 

We show the computations with data from a split-plot experiment, which 
sought the optimum time of herbicide application (main-plot treatment) in 
relation to the applicat-on of a protectant (subplot treatment) in wet-seeded 
rice. Data on plant heirpit, measured at three growth stages of the rice crop, are 
shown in Table 6.19. 

Let A denote the main-plot factor, B the subplot factor, a the levels of factor 
A, b the levels of factor B, r the number of replications, and p the number of 
times that data were collected from each plot. The step-by-step procedures for 
data analysis are: 

o3 	 sEP 1. Compute a standard analysis of variance for each of the p stages of 
observation, based on the experimental design used. For our example, 
following the procedure for standard analysis of variance of a split-plot 
design described in Chapter 3, Section 3.4.2, the p = 3 analyses of variance, 
one for each stage of observation, are shown in Table 6.20. 

o 	sup 2. Test the homogeneity of the p error(b) MS, following the proce­
dure of Chapter 11, Section 11.2. For our example, the chi-square test for 



Table 6.19 Height of Rice Plants, Subjected to Different Herbicide and Protectant Treatments in a 

Split-Plot Design, Measured at Three Growth Stages" 

Treatment Plant Height, cm 

Time of 

Number 

Herbicide 

Application" 
Protectant 

Application P 

Rep. I 

P2 P3 P, 

Rep. II 

P2 P3 P1 

Rep. III 

P2 P3 

Rep. IV 

P1 P2 P3 

1 
2 
3 
4 

6 DBS (AI) 

3 DBS (A2) 

Yes (Bt) 
No (B 2) 

Yes 
No 

15.8 
15.3 
14.9 
14.8 

29.3 
30.0 
32.3 
31.8 

52.1 
52.5 
65.2 
56.0 

16.0 
16.5 
14.8 
14.2 

29.2 
28.9 
30.3 
31.9 

527 
50.9 
54.7 
57.1 

15.3 
16.3 
14.8 
14.4 

29.7 
30.8 
28.5 
27.2 

58.0 
55.0 
53.8 
48.9 

15.0 
15.9 
14.7 
13.6 

30.1 
32.0 
29.3 
29.1 

63.2 
62.1 
58.5 
57.3 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

0 DAS (A 3) 

3 DAS (A 4 ) 

6 DAS (A 5 ) 

10 DAS (A 6) 

No application (A.7) 

Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 
Yes 
No 

13.0 
12.8 
14.8 
13.1 
12.0 
12.0 
15.0 
14.7 
15.1 
15.3 

29.8 
30.3 
29.1 
31.2 
28.2 
30.1 
29.9 
28.9 
29.8 
30.2 

60.1 
56.4 
53.4 
58.1 
57.1 
58.8 
54.9 
53.9 
59.5 
57.2 

13.2 
16.5 
14.7 
14.3 
14.8 
11.2 
13.2 
13.0 
13.9 
13.7 

29.5 
32.5 
29.6 
29.9 
30.3 
28.1 
30.0 
28.4 
30.6 
33.9 

57.6 
49.8 
54.4 
52.2 
58.8 
57.8 
61.0 
58.3 
60.5 
58.8 

13.3 
13.8 
15.2 
12.1 
13.9 
12.6 
13.8 
13.6 
15.5 
15.2 

29.9 
29.0 
30.5 
30.2 
27.2 
29.6 
30.7 
32.6 
28.9 
29.3 

56.8 
57.5 
64.0 
65.2 
51.3 
56.2 
59.9 
60.7 
60.7 
59.9 

15.2 
15.1 
14.2 
13.6 
13.2 
13.2 
14.5 
13.6 
13.3 
14.2 

28.4 
28.9 
29.1 
30.3 
31.2 
28.8 
29.7 
28.8 
29.7 
29.6 

54.9 
55.2 
61.7 
59.0 
61.5 
60.9 
59.9 
60.3 
58.7 
60.9 

'P1, P2, and P3 refer to 14, 25, and 50 days after transplanting, respectively.bDBS - days before seeding; DAS - days after seeding. 
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Table 6.20 Three Individual Analyses of Variance (Split-Plot Design), One for 
Each Stage of Observation, for Data In Table 6.19 

Source Degree Mean Square" 
of of Mean__quare" 

Variation Freedom P P2 P3 

Replication 3 0.027798 1.388750 32.538333 
Herbicide (A) 6 6.0678574* 0.906429' 16.715357 n' 
Error(a) 18 1.030714 2.807222 23.831944 
Protectant (B) 1 1.290179 n' 2.361607"' 14.000000"' 
A x B 6 1.478095" 0.666190"' 4.873333 n' 
Error(b) 21 0.584583 1.255536 4.875238 

Total 55 

'PI, P2 , and P3 refer to 14, 25, and 50 days after transplanting, respectively; * - F 
test significant at 1%level, "' - F test not significant. 

homogeneity of variance is applied to the three error(b) MS, as: 

2= (2.3026)(21)[3(log2.238452) - 0.5536711 
+[ (3+1)]
 

(3)(3)(21)
 

= 	23.49 

The result of the X2 test indicates a highly significant difference between 
error variances across the three growth stages. For data such as plant height, 
where the values are expected to differ greatly from one growth stage to 
another (as is the case with this example), the presence of heterogeneity of 
error variances is not unexpected. 

0 	 STEP 3. Based on the result of the test for homogeneity of variance of step 
2, apply the appropriate analysis of variance as follows: 
" If heterogeneity of variance is not indicated, compute a pooled analysis 

of variance using the original data from all p stages of observation. 
" 	 If the heterogeneity of variance iF indicated, choose an appropriate data 

transformation (see Chapter 7, Sxction 7.2.2.1) that can stabilize the error 
variances and compute a pcoled analysis of variance based on the 
transformed data. For our -xample, the logarithmic transformation is 
applied. The form of the pooled analysis of variance for measurements 
over time from a split-plot design is shown in Table 6.13. The required 
computational procedure follows that for a standard analysis of variance 
of a split-split-plot design described in Chapter 4, Section 4.3.2, with the 
p times of observation treated as the c sub-subplot treatments. The final 
result of the pooled analysis of variance based on transformed data is 
shown in Table 6.21. The results show a highly significant interaction 
between herbicide treatment and growth stage, indicating that the effects 
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Table 6.21 Pooled Analysis of Variance for Measurements over 
Time (Split-Plot Design) Based on Transformed Data (Logarithmic 
Transformation) for Data In Table 6.19 

Source 
of 

Degree
of 

Sum 
of MeLn Computed Tabular F 

Variation Freedom Squares Square Fa 5% 1% 

Replication 3 0.001082 0.000361 
Herbicide (A) 6 0.013471 0.002245 2.44"' 2.66 4.01 
Error(a) 18 0.016576 0.000921 
Protectant (B) 1 0.000700 0.000700 1.72"' 4.32 8.02 
A x B 6 0.002675 0.000446 1.09" 2.57 3.81 
Error(b) 21 0.008576 0.000408 
Growth stage (P) 
A x P 

2 
12 

10.325742 
0.028467 

5.162871 
0.002372 

7,637.38** 
3.51* 

3.11 
1.87 

4.87 
2.40 

B X P 2 0.002042 0.001021 1.51 n 3.11 4.87 
A X B X P 12 0.008564 0.000714 1.06ns  1.87 2.40 
Error(c) 84 0.056799 0.000676 

Total 167 10.464694 

a** _ significant at 1%level, " - not significant. 

of herbicide treatment differed significantly between the three growth 
stages. 

0 	sTEP 4. Make pair comparison between treatment means by applying the 
standard procedure for a split-split-plot design (see Chapter 5, Section 
5.1.1.6 or Chapter 7, Section 7.2.2.1) based on the result of the pooled 
analysis of variance obtained in step 3. For our example, because the pooled 
analysis of variance was based on transformed data, the procedure of 
Chapter 7, Section 7.2.2.1 should be followed. Because the only significant 
interaction effect is that between herbicide treatment and growth stage and 
the effect of the protectant is not significant, the appropriate pair compari­
son is one between herbicide means at each growth stage. For a pair 
comparison between two main-plot treatment means (averaged allover 
subplot treatments) at the same sub-subplot treatment, the standard error of 
the mean difference is computed, based on the formula in Table 5.10 of 
Chapter 5 as: 

,_/ 	2[(p - 1)E, + Eo] 

rbp 

,/2[(2)(0.000676) + 0.000921] 

V (4)(2)(3) 

=0.01376 
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Table 6.22 Duncan's Multiple Range Test 
(DMRT) on Mean Plant Height of Seven 
Herbicide Treatments, at Each Growth Stage, 
Computed from Data inTables 6.19 and 6.21 

Herbicide Mean Plant Height, cm" 

Treatment P, P2 P3 

A, 15.8 a 30.0 a 55.8 a 
A 2 

A 3 

14.5 b 
14.1 b 

30.1 a 
29.8 a 

56.4 a 
56.0 a 

A4 14.0 b 30.0 a 58.5 a 
A5 
A6 

12.9 c 
13.9 b 

29.2 a 
29.9 a 

57.8 a 
58.6 a 

A7 14.5 b 30.2 a 59.5 a 
Av. 14.2 29.9 57.5 

"Average of two protectant treatments and four 

replications; P1, P2, and P3 refer to 14, 24, and 50 
days after transplanting, respectively. In each col­
umn, means followed by a common letter are not 
significantly different at the 5%level. 

The result of the DMRT for comparing herbicide treatment means 
(averaged over the two protectnt treatments), separately at each growth 
stage, is shown in Table 6.22. 

0 sup 5. Follow the procedure outlined in step 5 of Section 6.2.1. For our 
example, only the interaction between herbicide and growth stage is signifi­
cant. Hence, only the SS of this interaction needs to be partitioned. Based 
on the results of the pair comparison between treatment means at each 
growth stage obtained in step 4 (Table 6.22), there was no significant 
difference between herbicide treatments at any of the two later growth 
stages. At the first growth stage, only the fifth herbicide treatment (i.e., 
application of herbicide at 6 DAS or A,) and the first (i.e., application of 
herbicide at 6 DBS or A,) gave results distinctly different from the rest of 
the herbicide treatments, with the tallest plants exhibited by A, and the 
shortest by A5. Thus, an appropriate partitioning of the herbicide X growth 
stage interaction SS is that shown in Table 6.23. The result of the SS 
partitioning confirms the observation made. 

6.3 MEASUREMENT OVER TIME WITH PLOT SAMPLING 

When a character is measured at several stages of observation and plot 
sampling is done at each stage, the resulting set of data is referred to as 



Table 6.23 Partioning of the Herbicide x Growth Stage Interaction SS In the Analysis of Variance 
of Table 6.21 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
F ° 

Tabular F 
5% 1% 

A X P 12 0.028467 0.002372 3.51"* 1.87 2.40 
(Asvs. AI toA 4 , A 6, A 7)x (PI vs. P-, P3) 
(A1 vs. A,, A3 , A., A6 , A7) X (PI vs-P2 , P3 ) 
(A, , A 3 1 A 4 , A6 , A7)X (PI vs. P, P 3)
(A 5 vs. A ,to A 4, A 6, A 7 ) X (P, vs. P3) 

(1) 
(1) 
(4) 
(1) 

(0.010174) 
(0.012590) 
(0.002430) 
(0.000727) 

(0.010174) 
(0.012590) 
(0.000608) 
(0.000727) 

15.05-* 
18.62** 

< 1 
1.08' 

3.96 
3.96 
-

3.96 

6.95 
6.95 
-

6.95 
(A1 vs. A., A 3, A 4 , A6 , A 7 ) X (P2 vs. P3 ) 
(A,, A 3 , A 4 , A 6 ,A 7) X (P 2 VS. P3 ) 

Error(c) 

(1) 
(4) 
84 

((000874) 
(0.001672) 
0.056799 

(0.000874) 
(0.000418) 
0.000676 

1.29 " s 

< 1 
3.96 
-

6.95 
-

* significant at 1% level, " - not significant. 
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measurement over time with plot sampling. An illustration of this type of data is 
shown in Table 6.24. Data on tiller count, obtained from a RCB experiment, 
with nine fertilizer treatments and four replications, were measured at two 
growth stages of the rice crop. At each stage, measurement was from four 
2 x 2-hill sampling units per plot. 

We use the data in Table 6.24 to illustrate the procedure for analyzing data 
based on measurement over time with plot sampling. Let t denote the number 
of treatments, r the number of replications, s the sample size per plot, and p 
the number of times that data were collected from each plot. 

o 	STEP 1. At each stage of observation, compute an analysis of variance of 
data from plot sampling, according to the basic design involved (see Section 
6.1). For our example, because the basic design is RCB, each of the p = 2 
analyses of variance is computed following the procedure of Section 6.1.1. 
The results are shown in Table 6.25. 

o 	STEP 2. Test the homogeneity of the p experimental error variances from 
the p analyses of variance of step 1. For our example, because p = 2, the F 
test for homogeneity of variance is applied (instead of the chi-square test) 
as: 

297.84
F = 29.8 = 1.73 

172.21 

Because the computed F value is smaller than the corresponding tabular F 
value of 1.98, with f, = f = 24 degrees of freedom and at the 5%level of 
significance, the F test is not significant and the heterogeneity of the 
experimental error variances over the two growth stages is not indicated. 

o 	STEP 3. Compute a pooled analysis of variance using the plot data (i.e., 
mean over all s sampling units per plot). The pooled analysis of variance 
should be made based on transformed data (see Sections 6.2.1 and 6.2.2, 
step 3) if the test for homogeneity of experimental error variances of step 2 
is significant; and on the original data, otherwise. For our example, because 
the heterogeneity of the experimental error variances is not indicated, the 
pooled analysis of variance is made, using the plot data shown in Table 6.26 
and following the procedure of Section 6.2.1. The result of the pooled 
analysis of variance is shown in Table 6.27. The results show a highly 
significant interaction between treatment and stage of observation, indicat­
ing that the treatment effect is not the same at both stages of observation. 

Appropriate procedures for mean comparisons are described in Section 
6.2.1. 

o 	STEP 4. Test the homogeneity of p sampling error variances, from individ­
ual analyses of variance of step 1. If heterogeneity is not indicated by the 
test, compute the pooled sampling error variances as the arithmetic mean of 



Table 6.24 Data on Tiller Count, Tested In a RCB Trial with Nine Fertilizer Treatments, Measured from Four 
2 x 2-hill Sampling Units per Plot (S 1, S2 , S3, and S4 ) and at Two Growth States (P, and P2 )a of the Rice Crop 

Tillers, no./4 hills 

Rep. I Rep. II Rep. III Rep. IV 

Treatment Pl PP t2 P,P2 P2Number SS,1 S.S, SSS4 S 1SS3 4S SSS 1S, S1 $2S3S4 S1 S 1S S., S4SSS, SSS 3 S 4 

1 26252528 30232722 2029 26 26 
22 26 32 25 20 294031 34263024 23342534 40423726
 
2 63717073 48463342 6473103 
52 57603850 68 618167 67646358 63416989 40373660 
3 44443971 52"7 6146 4350 50 59 49414370 59 575262 52485456 67586768 50615874 
4 61 7,.9899 1J)51 73 55 6656 71 107 65627954 9510871 82 75567575 6671 5370 58414758 
5 63r56591 52625652 6681 78 78, 50725151 72 547452 56394959 61596785 53534072
6 69978599 62635643 5859 57 87 52485456 67 6771 83 74584851 38606749 63 59 46 52
 
7 44 66 49 62 58466355 7081 73 60 47507053 61 697468 75487352 
60606974 66767274
 
8 57685159 63565949 
6467 85 83 47536068 58 838378 47586578 87688061 63708068
 
9 79438490 
70 72',49 7747 54 61 55444252 40 415066 69555659 38486671 53524449
 

"P, - 30 days after transplanting, P_ - crop maturity. 



Table 6.25 Two Individual Analyses of Variance (RCB) of Data 
from Plot Sampling, One for Each Stage of Observation, for 
Data In Table 6.24 

Source 
of 
Variation 

Replication 
Treatment 
Experimental error 
Sampling error 

Total 

Degree Mean Squarea 
of Mean____are _ 

Freedom P P2 

3 106.60 208.41 
8 3,451.50** 1,576.19* 

24 297.84 172.21 
108 149.43 76.09 
143 

1P,- 30 days after transplanting and P2 - crop maturity; - F test 

significant at 1%level. 

Table 6.26 Plot Means (Average of Four Sampling Units per Plot) 

Computed from Data inTable 6.24 

Tillers, no./4 hills 

Treatment Rep. I Rep. II Rep. IVRep. III 

Number P1 P2 P1 P2 P P2 P P2 

1 26.0 25.5 25.2 26.2 30.0 28.5 29.0 36.2 
2 69.2 42.2 73.0 51.2 69.2 63.0 65.5 43.2 

3 49.5 51.5 50.5 50.8 57.5 52.5 65.0 60.8 
4 82.0 56.0 75.0 65.0 89.0 70.2 65.0 51.0 
5 71.0 55.5 75.8 56.0 63.0 50.8 68.0 54.5 

6 87.5 56.0 65.2 52.5 72.0 57.8 53.5 55.0 
7 55.2 55.5 71.0 55.0 68.0 62.0 65.8 72.0 
8 58.8 56.8 74.8 57.0 75.5 62.0 74.0 70.2 
9 74.0 65.8 59.8 48.2 49.2 59.8 55.8 49.5 

Table 6.27 Pooled Analysis of Variance of Data from Plot Sampling (RCB Design) 
In Ta le 6.24 

Source 
of 

Degree
of 

Variation Freedom" 

Replication r -
Treatment (T) t­
Error(a) (r - 1Xt -
Growth stage (P) p -
TX P (t-1)(p ­
Error(b) t(r - 1)(p -

Total rtp ­

- number of treatments, r ­at 

observation. 
b** . significant at 1%level. 
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1 - 3 
1 - 8 

1) - 24 
1 - 1 
1)- 8 
1) - 27 
1 - 71 

number 

Sum 
of Mean Computed Tabular F 

Fb
Squares Square 5% 1% 

86.36 28.79 
9,151.68 1,143.96 13.20* 2.36 3.36 
2,079.61 86.65 
1,538.28 1,538.28 46.47** 4.21 7.68 

913.01 114.13 3.45*0 2.30 3.26 
893.81 33.10 

14,662.75 

of replications, and p - number of stages of 

http:14,662.75
http:1,538.28
http:1,538.28
http:2,079.61
http:1,143.96
http:9,151.68
http:1,576.19
http:3,451.50
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the sampling error MS. For our example, the F test for homogeneity of 
variance is applied to the two sampling error MS: 

149.43 
F -... 1.96

76.09 

The computed F value is larger than the corresponding tabular F value of 
1.56, with f, = f2 = 108 degrees of freedom and at the 1% level of signifi­
cance. Hence, the F test is highly significant indicating that the sampling 
error variances at the two growth stages differ significantly. The sampling 
error variance is significantly higher at P than at P2. Thus, no pooled 
sampling error variance is computed. 

Note that information on the pooled sampling error variance, or oi, the 
individual sampling error variances, is useful in the development of sam­
pling technique (see Chapter 15, Section 15.2). 



CHAPTER 7 

Problem Data 

Analysis of variance, which we discuss in Chapters 2 through 6, is valid for use 
only if the basic research data satisfy certain conditions. Some of those 
conditions are implied, others are specified. In field experiments, for example, 
it is implied that all plots are grown successfully and all necessary data are 
taken and recorded. In addition, it is specified that the data satisfy all the 
mathematical assumptions underlying the analysis of variance. 

We use the term problem data for any set of data that does not satisfy the 
implied or the stated conditions for a valid analysis of variance. In this 
chapter, we examine two groups of problem data that are commonly encoun­
tered in agricultural research: 

" Missing data.
 
" Data that violate some assumptions of the analysis of variance.
 

For each group, we discuss the common causes of the problem data's 
occurrence and the corresponding remedial measures. 

7.1 MISSING DATA 

A missing data situation occurs whenever a valid observation is not available 
for any one of the experimental units. Occurrence of missing data results in 
two major difficulties-loss of information and nonapplicability of the stan­
dard analysis of variance. We examine some of thr more common causes of 
data loss in agricultural research, the corresponding guidelines for declaring 
such data as missing, and the procedure for analyzing data with one or more 
missing observations. 

7.1.1 Common Causes of Missing Dida 

Even though date gathering in field experiments is usually done with extreme 
care, numerous factors beyond the researcher's control can contribute to 
missing data. 

272 
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7.11.1 Improper Treatment. Improper treatment is declared when an 
experiment has one or iore experimental plots that do not receive the 
intended treatment. Nonapplication, application of an incorrect dose, and 
wrong timing of application are common cases of improper treatment. Any 
observation made on a plot where treatment has not been properly applied 
should be considered invalid. There is, however, an exception when improper 
treatment occurs in all replications of a treatment. If the researcher wishes to 
retain the modified treatment, all measurements can be considered valid if the 
treatment and the experimental objectives are properly revised. 

7.1.1.2 Destruction of ExperimentalPlants. Most field experiments aim 
for a perfect stand in all experimental plots but that is not always achieved. 
Poor germination, physical damage durin, crop culture, and pest damage are 
common causes of the destruction of experimental plants. When the percentage 
of destroyed plants in a plot is small, as is usually the case, proper thinning 
(Chapter 14, Section 14.3) or correction for missing plants (Chapter 13, Section 
13.3.3) will usually result in a valid observation and avoidance of a case of 
missing data. However, in rare instances, the percentage of destroyed plants in 
a plot may be so high that no valid observation can be made for the particular 
plot. When that happens, missing data must be declared. 

It is extremely important, however, to carefully examine a stand-deficient 
plot before declaring missing data. The destruction of the experimental plants 
must not be the result of the treatment effect. If a plot has no surviving plants 
because it has been grazed by stray cattle or vandalized by thieves, each of 
which is clearly not treatment related, missing data should be appropriately 
declared. But, for example, if a control plot (i.e., nontreated plot) in an 
insecticide trial is totally damaged by the insects being controlled, the destruc­
tion is a logical consequence of treatment. Thus, the corresponding plot data 
should be entered (i.e., zero yield if all plants in the plot are destroyed, or the 
actual ;ow yield value if some plants survive) insteao of treating it as missing 
data. 

Ar, incorrect declaration of missing data can easily lead to an incorrect 
conclusion. The usual result of an incorrect declaration of missing data on crop 
yield is the inflation of the associated treatment mean. For example, for a 
treatment with all plants in one plot destroyed by stray cattle and, therefore, 
declared missing, the computation of its mean is based on the average over the 
remaining (r - 1) replications, where r is the total number of replications. If, 
on the other hand, the cause of the plot destruction is treatment related and 
plot yield is, therefore, recorded as zero, then the treatment mean is comr ited 
as the mean of r instead of (r - 1) replications. 

In most instances, the distinction between a treatment-related cause a;,d a 
nontreatment-related cause of plot destruction is not clear cut. We give two 
examples to illustrate the difficulties commonly encountered and provide 
guidelines for arriving at a correct decision. 
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Example 1. If the plants in a plot of a rice variety trial are destroyed by 
brown planthoppers, should the researcher consider its yield value to be zero or 
should he treat it as missing data? What if the destruction were caused by rats 
or by drought? 

To answer any of the foregoing questions, the researcher must examine the 
relationship between the objective of the experiment and the cause of plot 
destruction. Obviously, the objective of the trial is to evaluate the relative 
performance of the test varieties. In such a trial the superiority of one variety 
over another is usually defined in terms of a prescribed set of criteria, which 
depends on the specific test conditions. Thus, if one of the criteria for 
superiority is resistance to brown planthoppers, the destruction of the rice 
plants by brown planthoppers is definitely treatment related. 

On the other hand, if the trial's objective is to estimate yield potential under 
complete pest protection and the brown planthopper infestation in the particu­
lar plot was solely due to the researcher's failure to implement proper control, 
the plot destruction should be considered as nontreatment related and missing 
data declared. 

In the same manner, plots destroyed by rats or drought are usually classified 
as missing data, unless the trial is designed to evaluate varietal resistance to 
rats or to drought. 

Example 2. When all plants in a plot are destroyed, what values should be 
given to yield components and other plant characters measured at harvest? 
Should their values be automatically classified as missing or should they be 
taken as zero? For example, when all rice plants in a plot are destroyed, what 
value should be entered for 100-grain weight? What about plant height, panicle 
number, p.-icle length, or percent unfilled grains? 

To ans--.er these questions, a researcher must first determine whether the 
value of yield in the affected plot is considered as zero or as missing data. If 
yield cf the affected plot is treated as missing data, all plant characters 
measured at harvest and all yield components of that plot should also be 
considered as missing data. If, however, yield is considered to be zero (i.e., if 
the destruction is considered to be treatment related) the following guidelines 
apply: 

" For characters whose measurement depends on the existence of some yield, 
such as 100-grain weight and panicle length, they should be treated as 
missing data. 

" For characters that can be measured even if no yield is available, such as 
plant height, panicle number, and percent unfilled grains, the decision 
should be based on how the data are to be used. If the data are used to 
assist in explaining the yield differences among treatments, its actual values 
should be taken. For example, information on short stunted plants or on the 
100% unfilled grains would be useful in explaining the cause of the zero 
yield obtained. 

http:ans--.er


Missing Data 275 

7.1.1.3 Loss of Harvested Samples. Many plant characters cannot be 
conveniently recorded, either in the field or immediately after harvest. 

" Harvested samples may require additional processing before the required 
data can be measured. For example, grain yield of rice can be measured 
only after drying, threshing, and cleaning are completed. 

" Some characters may involve iong sampling and measurement processes or 
may require specialized and elaborate measuring devices. Leaf area, 100­
grain weight, and protein content are generally measured in a laboratory 
instead of in the field. 

For such data, field samples (leaves in the case of leaf area; matured grains 
in the case of yield, 100-grain weight, or protein content) are usually removed 
from each plot and processed in a laboratory before the required data are 
recorded. It is not uncommon for some portion of the samples to be lost 
between the time of harvesting and the actual Jata recording. Because no 
measurement of such characters is possible, missing data should be declared. 

7.1.1.4 Illogical Data. In contrast to the cases of missing data where the 
problem is recognized before data are recorded, illogical data are usually 
recognized after the data have been recorded and transcribed. 

Data may be considered illogical if their values are too extreme to be 
considered within the logical range of the normal behavior of the experimental 
materials. However, only illogical data resulting from some kind of error can 
be considered as missing. Common errors resulting in illogical data are misread 
observation, incorrect transcription, and improper application of the sampling 
technique or the measuring instrument. 

If illogical data are detected early enough, their causes, or the specific types 
of error committed, can usually be traced and the data corrected, or adjusted, 
accordingly. For example, a misread or incorrectly recorded observation in the 
measurement of plant height, if detected immediately, can be corrected by 
remeasuring the sample plants. For characters in which the simples used for 
determination are not destroyed immediately after measurement, such as seed 
weight and protein content, a remeasurement is generally possible. Thus, it is a 
good practice for the researcher to examine all data sets immediately after data 
collection so that subsequent correction of suspicious or illogical data is 
possible. 

We emphasize at this point that data that a researcher suspects to be 
illogical should not be treated as missing simply because they do not conform 
to the researcher's preconceived ideas or hypotheses. An observation consid­
ered to be illogical by virtue of the fact that it falls outside the researcher's 
expected range of values can be judged missing only if it can be shown to be 
caused by an error, as previously discussed. An observation must not be 
rejected and treated as missing data without proper justification. 
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7.1.2 Missing Data Formula Technique 

When an experiment has one or more observations missing, the standard 
computational procedures of the analysis of variance for the various designs 
(as described in Chapters 2 through 4), except CRD, no longer apply. In such 
cases, either the missing data formula technique or the analysis of covariance 
technique should be applied. We describe the missing data formula technique 
here. The analysis of covariance technique is explained in Chapter 10. 

In the missing data formula technique, an estimate of a single missing 
observation is provided through an appropriate formula according to the 
experimental design used. This estimate is used to replace the missing data and 
the augmented data set is then subjected, with some slight modifications, to the 
standard analysis of variance. 

We emphasize here that an estimate of the missing data obtained through 
the missing data formula technique does not supply any additional information 
to the incomplete set of data-once the data is lost, no amount of statistical 
manipulation can retrieve it. What the procedure attempts to do is to allow the 
researcher to compute the analysis of variance in the usual manner (i.e., as if 
the data were complete) without resorting to the more complex procedures 
needed for incLmplete data sets. 

The missing data formula tchnique is described for five experimental 
designs: randomized complete block, latin square, split-plot, strip-plot, and 
split-split-plot. For each design, the formula for estimating the missing data 
and the modifications needed in the analysis of variance and in pair compari­
sons* of treatment means are given. The iterative procedure for cases with 
more than one missing observation is also discussed. 

7.2.1 Randomized Complete Block Design. The missing data in a ran­
domized complete block design is estimated as: 

rB0 + tT°-
G o 

X 
(r- 1)(t- 1) 

where 

X = estimate of the missing data 
t =number of treatments 
r = number of replications 

Bo = total of observed values of the replication that con­
tains the missing data 

T==total of observed values of the treatment that con­
tains the missing data 

G. = grand total of all observed values 

*Procedures for all other types of mean compar;%on discussed inChapter 5can be directly applied 
to the augmented data set without modification. 
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The missing data is replaced by the computed value of X and the usual 
computational procedures for the analysis of variance (Chapter 2, Section 
2.2.3) are applied to the augmented data set with some modifications. 

The procedures are illustrated with data of Table 2.5 of Chapter 2, with the 
value of the fourth treatment (100 kg seed/ha) in replication II (i.e., yield of 
4,831 kg/ha) assumed to be missing, as shown in Table 7.1. The procedures for 
the computation of the analysis of variance and pair comparisons of treatment 
means are: 

o 	sTEP 1. Estimate the missing d,:ta, using the preceding formula and the 
values of totals in Table 7.1 as: 

X = 4(26,453) + 6(14,560) - 114,199 
(4- 1)(6- 1) 

= 5,265 kg/ha 

o 	STEp 2. Replace the missing data of Table 7.1 by its estimated value 
computed in step 1, as shown in Table 7.2; and do analysis of variance of 
the augmented data set based on the standard procedure of Chapter 2, 
Section 2.2.3. 

o 	Smp 3. Make the following modifications to the analysis of variance 
obtained in step 2: 
* 	 Subtract one from both the total and error d.f. For our example, the 

total d.f.of 23 becomes 22 and the error d.f.of 15 becomes 14. 

Table 7.1 Data from a RCB Design, with One Missing Observation 

Treatment, 
kg seed/ha Rep. I 

Grain Yield, kg/ha 
Rep. II Rep. III Rep. IV 

Treatment 
Total 

25 
50 

5,113 
5,346 

5,398 
5,952 

5,307 
4,719 

4,678 
4,264 

20,496 
20,281 

75 
100 
125 

5,272 
5,164 
4,804 

5,713 
ma 

4,848 

5,483 
4,986 
4,432 

4,749 
4,410 
4,748 

21,217 
(14,560 
18,832 

- T) 

150 5,254 4,542 4,919 4,098 18,813 
Rep. total 30,953 (26,453 - Ba) 29,846 26,947 
Grand total (114,199 - Ga) 

m - missing data. 



278 Problem Data
 
Table 7.2 Data In Table 7.' 
 with the Missing Data Replaced by the Value 
Estimated from the Missing Data Formula Technique 

Treatment, Grain Yield, kg/ha Treatmentkg seed/ha Rep. I Rep. II Rep. III Rep. IV Total 
25 5,113 5,398 5,307 4,678 20,49650 5,346 5,952 4,719 4,264 20,28175 5,272 5,713 5,483 4,749 21,217100 5,164 5,265a 4,986 4,410 19,825125 4,804 4,848 4,432 4,748 18,832150 5,254 4,542 4,919 4,098 18,813Rep. total 30,953 31,718 29,846 26,947Grand total 

119,464 
'Estimate of the missing data from the missing data formula technique. 

Compute the correction factor for bias B as: 

B =[B--(I -1)X]2 

t~- 1) 

[26,453 -(6 - 1)(5,265)12 
6(6- 1) 

546 

And subtract the computed B value of 546 from the treatment sum ofsquares and the total sum of squares. For our example, the total SS andthe treatment SS, computed in step 2 from the augmented data of Table7.2, are 4,869,966 and 1,140,501, respectively. Subtracting the B value of546 from these SS values, we obtain the adjusted treatment SS and the
adjusted total SS as: 

Adjusted treatment SS = 1,140,501 - 546 

- 1,139,955 

Adjusted total SS = 4,869,966 - 546 

= 4,869,420 

The resulting analysis of variance is shown in Table 7.3. 
0 s'P 4. For pair comparisons of treatment means where one of thetreatments has missing data, compute the standard error of the mean 
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Table 7.3 Analysis of Variance (RCB Design) of Data In Table 7.2 with One 
Missing Value Estimated by the Missing Data Formula Technique 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fa 5% 1% 

Replication 3 2,188,739 729,580 
Treatment 5 1,139,955 227,991 2.07 ns  2.96 4.69 
Error 14 1,540,726 110,052 

Total 22 4,869,420 

ans _ not significant. 

difference s, as: 

s17 r(r - 1)(t - 1) 

where s2 is the error mear square from the analysis of variance of step 3, r is 
the number of replications, and t is the number of treatments. 

For example, to compare the mean of the fourth treatment (the treatment 
with missing data) with any one of the other treatments, sj is computed as: 

= 257 kg/ha 

This computed s, is appropriate for use either in the computation of the 
LSD values (Chapter 5, Section 5.1.1) or the DMRT values (Chapter 5, 
Section 5.1.2). For illustration, the computation of the LSD values is shown 
even though the F test in the anal, is of variance is not significant. Using ta 
as the tabular t value at the a level of significance, obtained from Appendix 
C with 14 d.f., the LSD values for comparing the fourth treatment and any 
other treatment is computed as: 

LSDa = (t)(sj) 

LSD.05 = (2.145)(257) = 551 kg/ha 

LSD 01 = (2.977)(257) = 765 kg/ha 

7.1.22 Latin Square Design. The missing data in a Latin square design is 
estimated as: 

+ C + T )X t (R. . - 2G. 
(t- 1)(t- 2) 
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where 

t= number of treatments 
R. 	 = total of observed values of the row that contains 

the missing data 
C. = total of observed values of the column that contains 

the missing data 
T = total of observed values of the treatment that con­

tains the missing data
 
G,= grand total of all observed values
 

For illustration, we use data from a Latin square design shown in Table 2.7 
of Chapter 2. We assume that the yield value in the fourth row and the third 
column (i.e., 1.655) is missing. The procedures involved are: 

[ 	 smp 1. Compute the estimate of the missing data, using the foregoing 
formula: 

X [4(3.515 + 4.490 + 4.200) - 2(19.710)]
(3)(2) 

- 1.567 t/ha 

0 	 Smp 2. Enter the estimated value obtained in step 1 in the table with all 

other observed values, and perform the usual analysis of variance on the 
augmented data set, with the following modifications: 
" Subtract one from both the total and error d.f. For our example, the 

total d.f. of 15 becomes 14 and the error d.f. of 6 becomes 5.
 
" Compute the correction factor for bias B as:
 

-	 1.o(2][G=C- R.-
[(t - 1)( t - 2)I 

-	 1)(4.200)12[19.710 	- 3.515 - 4.490 -(4 

[(4 - 1)(4 - 2)]
2 

= 	0.022251 

And subtract this computed B value from the treatment SS and the total 
ss. 
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The final analysis of variance is shown in Table 7.4. 

0 	 STEP 3. For pair comparisons of treatment means where one of the 
treatments has missing data, compute the standard error of the mean 
difference as: 

sj=~ -/2[.1 - 2)]( l 

where s2 is the error mean square from the analysis of variance. For our 
example, to compare the mean of treatment A (the treatment with missing
data) with any one of the other treatments, s, is computed as: 

S7 - 0.025332- + (4-1)4-2) 

= 0.12995 

7.1.23 Split-Plot Design. The missing data in a split-plot design is esti­
mated as: 

X =rM + bT - P. 
(b- 1)(r- 1) 

Table 7.4 Analysis of Variance (Latin Square Design) of Data In Table
2.7 (Chapter 2), with One Value Assumed Missing and Estimated by the 
Missing Data Formula Technique 

Source 
of 
Variation 

Degree 
of 

Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fb 

Tabular F 
5% 1% 

Row 3 0.039142 0.013047 < 1 - -
Column 
Treatment 

3 
3 

0.793429 
0.383438 

0.264476 
0.127813 

10.44" 
5.05"' 

5.41 
5.41 

12.06 
11.06 

Error' 5 0.126658 0.025332 
Total 14 1.342667 

'Yield value of 1.655 t/ha in the fourth row and the third column is assumed missing.b- , significant at 5%level, ' - not significant.

'Although error d.f. is inadequate for valid test of significance (see Chapter 2, S&ction
 
2.1.2.1, step 6), for illustration purposes, such deficiency is ignored.
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where 

b = level of subplot factor
 
r = number of replications
 

M. 	= total of observed values of the specific main plot 
that contains the missing data 

T 	= total of observed values of the treatment combina­
tion that contains the missing data 

P. 	= total of observed values of the main-plot treatment 
that contains the missing data 

Note that the foregoing missing data formula for a split-plot design is the 

same as that for the randomized complete block design (Section 7.1.2.1) with 
main plot replacing replication. For illustration, we assume that the yield of 
treatment N2V in replication II of Table 3.7 of Chapter 3 (i.e., 6,420) is 
missing. The procedures of the missing data formula technique follow: 

0 	 SrEP 1. Compute the estimate of the missing data, using the foregoing 
formula. For our example, the values of the parameters needed for estimat­
ing the missing data are: 

b = 	4, the level of the subplot factor (i.e., variety) 

r = 	3, the number of replications 

M. = 17,595, the observed total of the N2 main plot
 
in replication II (6,127 + 5,724 + 5,744)
 

T -	 12,780, the observed total of N2V, (6,076 + 6,704) 

P0 -	 63,975, the observed total of N2 (6.076 + 6,704 + 6,008 + 6,127 

+ ...+ 4,146)
 

Thus, the estimate of the missing data is computed as: 

X 3(17,595) + 4(12,780) - 63,975 

3(2) 

= 	6,655 kg/ha 

0 	 si'P 2. Enter the estimate of the missing data, computed in step 1, in the 
table with the other observed values and construct the analysis of variance 

on the augmented data set in the usual manner, with one subtracted from 
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both the total d.f. and the error(b) d.f.For our example, the total d.f.and 
the error(b) d.f. become 70 and 35, and the final analysis of variance is 
shown in Table 7.5. 

0 	sTP 3. For pair comparisons of treatment means where one of the 
treatments has missing data, compute the standard error of the mean 
difference sj following the appropriate formula given in Table 7.6. For our 
example, to compare the mean of N2 and the mean of any other nitrogen 
level, urder V1, the sjis computed as: 

b(b 	- 1) +2 	 E. + E 
b 2(r - 1)(b - 1)j

sj 	 rb 

2 141,148 + 358,7794(4 - 1) + 16 

(3)(4) 

= 	531.64 kg/ha 

To compare the mean of V, and the mean of any other variety under the 

Table 7.5 Anuilysis of Variance (Split-Plot Design) of Data In Table 3.7 
(Chapter 3) with One Value" Assumed Missing and Estimated by the 
Missing Data Formula Technique 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square F h 5% 1% 

Replication 2 1,164,605 582,302 
Nitrogen (N) 5 30,615,088 6,123,018 43.38"0 3.33 5.64 
Error(a) 10 1,411,480 141,148 
Variety(V) 3 90,395,489 30,131,830 83.98** 2.87 4.40 
N x V 15 69,100,768 4,606,718 12.8440 1.96 2.60 
Error(b) 35 12,557,261 358,779 

Total 70 205,244,690 

"Yield value of 6,420 kg/ha of treatment N2V1 in replication II is assumed 
missing.
bse- significant at 1%level. 
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Ta'J. 7.6 Standard Error of the Mean Difference (ej) In a Split-Plot Design 
with Missing Data 

Type of Pair Comparison 
sjaBetweenNumber 

1 	 Two main-plot means (aver­
aged over all subplot treat- 2( La + JE,) 
ments) rb 

2 Two subplot means (averaged ( f\ 
over all main-plot treatments) 2E, 1 + a 

r,a 

3 	 Two subplot means at the same ( fb 
main-plot treatment 	 2 . + 

r 

4 	 Two main-plot means .'t the 
+ 

_[(b_- 1) +_fb_]_same or different subplot v.eat- E-_ 
mentsF rb 

aFor one missing observation, f - 1/1[2(r - 1)(b - 1)] and, for more than one missing 

=observation, f - k/[2(r - d)(b - k + c - 1)] (see Section 7.1.2.6). /,, Error(a) MS, 
Eb - Error(b) MS, r = number of replications, a = number of main-plot treatments, 
and b - number of subplot treatments. 

same nitrogen level, on the other hand, the s is computed as: 

/2E[1 + 2a(r - 1)(b - 1) 

Sj r 

=258,779)11 	 + 2(6)(2)3)I 
3 

= 502.47 kg/ha 

7.1.2.4 Strip-Plot Design. The missing data in a strip-plot design is 

estimated as: 

X = a(bT - P.) + r(aH. + bV, - B.) - bS, + G0
(a - 1)(b - 1)(r - 1) 
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where 

a =level of horizontal factor
 
b =level of vertical factor
 
r = number of replications
 

T = total of observed values of the treatment that 
contains the missing data 

P = total of observed values of the specific level of 
the horizontal factor that contains the missing data 

Ho = total of observed values of the horizontal 
strip that contains the missing data 

V,, - total of observed values of the vertical strip 
that contains the missing data 

B0 = total of observed values of the replication that 
contains the missing data 

S = total of observed values of the specific level of 
the vertical factor that contains the missing data 

G. =total of all observed values 

For illustration, assume that the yield of treatment V6N2 in replication II1 of 
Table 3.11 of Chapter 3 (i.e., 4,425) is missing. The procedures are: 

0 	STEP 1. Compute the estimate of the missing data, using the foregoing 
formula. For our example, the values of the parameters needed for estimat­
ing the missing data are: 

a - 6, the level of horizontal factor (i.e., variety) 
b = 3, the level of vertical factor (i.e., nitrogen) 
r = 3, the number of replications 

T = 6,718, the observed total of treatment V6N2 
(3,896 + 2,822) 

P. 	= 23,816, the observed total of V (2,572 + 3,724 
+ 3,326 + ... + 3,214) 

H = 6,540, the observed total of V in replication III 
(3,326 + 3,214) 

V = 29,912, the observed total of N2 in replication Ill 
(4,889 + 7,177 + 7,019 + 4,816 + 6,011) 

B0 = 96,094, the observed total of replication III 
(4,384 + 4,889 + 8,582 + ... + 3,326 + 3,214) 

= 94,183, the observed total of N2 (4,076 + 6,431
+ 4,889 + 5,630 + ... + 2.322)
 

G, = 281,232, the observed total of all values
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The estimate of the missing data is then computed as: 

X = (6[3(6,718) - 23,816] + 3[6(6,540) + 3(29,912) - 96,094] 

-3(94,183) + 281,232)/(5)(2)(2) 

= 	3,768 kg/ha 

0 	 STEP 2. Eiter the estimate of the missing data, obtained in step 1, in the 

table with the other observed values and compute the analysis of variance 

based on the augmented 4ata set in the usual manner, but with one 

subtracted from both the total d.f. and the error(c) d.f. The final analysis 

of variance is shown in Table 7.8. 

7.1.2.5 Split-Split-Plot Design. The missing data in a split-split-plot de­

sign is estimated as: 
X rM .+ cT - P. 

(c- 1)(r- 1) 

where 
c = levei of the sub-subplot factor 
r = nunber of replications 

M, = toia. of observed values of the specific subplot 

that contains the missing data 
T 	= t tal of observed values of the treatment that 

contains the missing data 
= total of observed values of all subplots containingP0 

the same set of treatments as that of the missing data 

Table 7.7 Analysis of Variance (Strip-Plot Design) of Data In Table 
3.11 (Chapter 3) with One ValueP Assumed Missing and Estimated by 
the Misting Data Formula Technique 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fb 5% 1% 

Replication 
Variety(V) 
Error(a) 
Nitrogen (N) 
Error(b) 
V X N 

2 
5 

10 
2 
4 

10 

8,850,049 
59,967,970 
14,709,970 
50,444,651 
3,072.363 

23,447,863 

4,425,024 
11,993,594 

1,470,997 
25,222,326 

768,091 
2,344,786 

8.15'* 

C 

5.52** 

3.33 

-

2.38 

5.64 

-

3.43 
Error(c) 19 8,072,97 . 424,893 

Total 52 168,565,841 

"Yield value of 4,425 kg/ha of treatment V6N2 in replication III is assumed 

miss;ng.
 
b** - significant at 1%level.
 

'Error(b) d.f. is not adequate for valid test of significance.
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For illustration, v - assume that the yield of treatment N4M2V in replica­
tion III of Table 4.4 of Chapter 4 (i.e., 5.345) is missing. The procedures are: 

" 	 STEP 1. Compute the values of the parameters needed for estimating the 
missing data, using the foregoing formula: 

c = 3, the level of the sub-subplot factor (i.e., variety) 
r = 3, the number of replications 

M0 =13.942, the observed total of subplot N4M2 in 
replication III (6.164 + 7.778) 

T, = 10.997, the observed total of treatment 
N4 M2V1 (5.255 + 5.742) 

P. = 57.883, the observed total of all subplots 
containing N4 M2 (5.255 + 5.742 + 6.992 + ... 

+7.778) 

Then compute the estimate of the missing data as: 

3(13.942) + 3(10.997) - 57.883X = (2)(2) =4.224t/ha 

" 	sTEP 2. Enter the estimate of the missing data, obtained in step 1, in the 
table with the other observed values and compute the analysis of variance 
based on the augmented data set in the usual manner, but with one 
subtracted from both the total d.f. and the error(c) d.f. The final analysis 
of variance is shown in Table 7.8. 

7.1.2.6 More Than One Missing Observation. The missing data formula 
technique, which is discussed for the various designs in Sections 7.1.2.1 
through 7.1.2.5, is not directly applicable to the case of more than one missing 
observation in any design, except for a split-plot or a split-split-plot design 
where the two or more missing data satisfy the following conditions: 

1. For a split-p!ot design, no two missing data share the same treatment 
combination or tl-e same main-plot treatment. For example, the two missing 
data could be anbi of replication I and alb1 of replication Ill. 

2. For a splii-split-plot design, no two missing data share the same 
treatment combination or the same subplot x main-plot treatment combina­
tion. For example, the two missing data could be aob1c of replication I and 
alb2c3 of replication Ill. 

Wher, the missing data formula technique is not applicable, the iterative 
procedure should be applied. Because the basic principle of the iterative 
procedure is similar for all designs, we illustrate it only once. RCB data in 
Table 2.5 of Chapter 2 is used, by assuming that the values of the fourth 
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Table 7.8 Analysis of Variance (Split-Split-Plot Design) of Data In 
Table 4.4 (Chapter 4) with One Value" Assumed Missing and Estimated 
by the Missing Data Formula Technique 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fh 5% 1 % 

Replication 2 0.925 0.4627 
Nitrogen (N) 4 60.826 15.2065 23.78** 3.84 7.01 
Error(a) 8 5.116 0.6395 
Management (M) 2 43.106 21.5530 72.11** 3.49 5.85 
NXM 8 0.829 0.1036 < 1 - -
Error(b) 20 5.978 0.2989 
Variety (V) 2 209.204 104.6020 211.49* 3.15 4.99 
N X V 8 14.362 1.7952 3.63** 2.10 2.83 
M X V 4 3.897 0.9742 1.97"' 2.52 3.66 
N X M x V 16 4.026 0.2516 < I - -
Error(c) 59 29.183 0.4946 

Total 133 377.453 

"Yield value of 5.345 t/ha of treatment N4M 2V in replication III is assumed 
missing.
 
b** _ significant at 1%levc,, " 
 - not significant. 

treatment in replication II (i.e., 4,831) and of the first treatment in replication I 
(i.e., 5,113) are both missir ,The step-by-step procedure for estimating the two 
missing values and for obt.,aning the analysis of variance is: 

E3 SMP 1. Assign initial values to all missing data except one. Although any 
value can be used as the initial value, unusually large or unusually small 
values can result in a lengthy computation. The most commonly used initial 
value for each missing observation is the average of ir-marginal means: 

i + j
XJ= 2
 

where X is the initial value of the ith treatment and thejth replication, itis 
the mean of all observed values of the ith treatment, and , is the mean of 
all observed values of thejth replication. 

For our example, because there are two missing observations, only one 
initial value needs to be assigned. Assuming that we wish to assign the initial 
value to the first treatment in replication I using the average of marginal 
means, the computation would be: 
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A. Compute t l and E, using values from Table 2.5 as: 

- 5,398 + 5,307 + 4,678 
3 

5,128 kg/ha 

-	 5,346 + 5,272 + 5,164 + 4,804 + 5,254
5 

= 	 5,168 kg/ha 

B. Compute the marginal mean 5, as: 

2 

5,128 + 5,168 _'= 2 ,=5,148 kg/ha 

The initial value assigned to the first treatment in replication I is 
therefore X 1 = 5,148 kg/ha. Note that the two subscripts of X are the 
treatment number (i) and the replication number (j). 

0 	STEP 2. Enter all initial values assigned in step 1, in the table of observed 
values and estimate the one remaining missing observation by using the 
appropriate missing data formula technique of Sections 7.1.2.1, 7.1.2.2, 
7.1.2.3, 7.1.2.4, or 7.1.2.5, according to the design used. 

For our example, the only initial value assigned in step 1 for the first 
treatment in replication I is entered in the table of observed values, as 
shown in Table 7.9; and the value of the fourth treatment of replication II is 
estimated, using the missing data formula technique for the randomized 
complete block design of Section 7.1.2.1, as follows: 

-	 114,234= 4(26,453) + 6(14,560) 
(3)(5) 

X 42 

= 	5,263 kg/ha 

o 	STEP 3. Enter the estimate of the missing data obtained in step 2, in the 
table consisting of all observed values and the initial value (or values) 
assigned in step 1. Then, 

Remove one initial value. The order in which the initial values are 
removed is not important at this stage but the order used here must be 
followed in the succeeding steps. 
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Treat the removed value as the missing data, and estimate it following the 
same missing data formula technique used in step 2. 

Repeat the foregoing procedure for the third missing observation, then for 
the fourth missing observation, and so on, until all missing data have been 
estimated once through the missing data formula technique. This then 
completes the first cycle of iteration. 

For our example, enter the estimated value of X 42 = 5,263 kg/ha, 
obtained in step 2, in Table 7.9. Remove the initial value given to the first 
treatment of replication I and apply the missing data formula technique to 
reestimate the value of X,, as: 

-	 114,349 
_ 4(25,840) + 6(15,383)(3)(5) 

= 5,421 kg/ha 

Then, with the value of X,, replacing X1 , reestimate X42, using the same 
missing data formula as: 

-	 114,507X'4(26,453)2 =15+ 6(14,560) 

= 	5,244 kg/ha 

0 	 STEP 4. Repeat step 3 for the second cycle of iteration, following the same 
order of missing data previously used. Compare the new set of estimates to 
that obtained in the first cy-.e. If the differences are satisfactorily small, the 

Table 7.9 Data from a RCB Design, with Two Missing Values, One of Which 
Is Assigned an Initial Value, as the First Step In Estimating Missing Data 
Through the Iterative Procedure 

Treatment, Yield, kg/ha Treatment 
kg seed/ha Rep. I Rep. II Rep. III Rep. IV Total 

25 (5,148)- 5,398 5,307 4,678 (20,531) 
50 5,346 5,952 4,719 4,264 20,281 
75 5,272 5,713 5,483 4,749 21,217 

100 5,164 m' 4,986 4,410 (14,560) 
125 4,804 4,848 4,432 4,748 18,832 
A50 5,254 4,542 4,919 4,098 18,813 

Rep. total (30,988) (26,453) 29,846 26,947 
Grand total (114,234) 

"The initial value assigned to one of the two missing data. 
b'm - missing data. 
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new s-t of estimates can be accepted and the iteration process terminated. 
Otherwise, the third cycle of iteration should be initiated and the process 
should be continued until the difference between the last two sets of 
estimate (i.e., from the last two cycles of iteration) is satisfactorily small. 
Note that this difference becomes smaller as more cycles are applied. Thus, 
the decision as to when to stop the iteration process is usually a balance 
between the degree of precision desired and the computational resources 
available. 

For our example, repeat step 3 and start the second cycle of iteration, 
following the same order of missing data previously used. For that, the two 
missing values are reestimated as: 

-	 114,330 
_ 4(25,840) + 6(15,383)15
 

= 	5,422 kg/ha 

4(26,453) + 6(14,560) - 114,508
X4 2' =15 

= 5,244 kg/ha 

Because the new estimates from the second cycle are close to those from 
the first cycle, the process can be terminated. 

The estimates of the two missing values, namely the fourth treatment of 
replication II and the first treatment of replication 1, are, therefore, 5,244 
kg/ha and 5,422 kg/ha. 

Note that it is usually not necessary to carry out the process unt;1 the 
values of the two successive cycles are almost exactly Ole same, as in this 
example. The process could be terminated as soon as the difference between 
the estimates in successive cycles is, in the researcher's judgment, sufficiently 
small. 

1	STEP 5. Use the set of estimates fom the last cycle of iteration together 
with all other observed data to compute the analysis of variance in the usual 
manner, but with rn subtracted from both the total d.f. and the error d.f., 
where in is the total number of missing values. 

For our example, the estimates of the two missing values are entered in 
the table with the other observed values and the analysis of variance is 
constructed on the augmented data set in the usual manner, with two 
(number of missing data) subtracted from both the total d.f. and the error 
d.f. The completed analysis of variance is shown in Table 7.10. 

o 	STEP 6. For pair comparisons of treatment mean, where only one of the 
treatments has missing data, the procedures for the case of one missing 
observation, descriLed for the various designs in Sections 7.1.2.1 through 
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Table 7.10 Analysis of Variance of Data InTable 7.9 with Two Missing Data 
Estimated through the Iterative Procedure 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fa 5% 1% 

Replication 3 2,300,267 766,756 
Treatment 5 1,252,358 250,472 2.20 n" 3.02 4.86 
Error 13 1,481,374 113,952 

Total 21 5,033,999 

a rn - not significant. 

7.1.2.3, can be applied. For pair comparisons where both treatments have 
missing data, or where one of the two treatments involves more than one 
missing observation, the sj should be computed as: 

For RCB design, 

sj= s2(±+ ) 

where rA' and r. are the effective numbers of replications assigned to 
treatments A and B. For a treatment to be compared, say treatment A, a 
replication is counted as 1 if it has data for both treatments, as I if it has 
data for treatment A but not for treatment B, and as 0 if it does not have 
data for treatment A. 

For our example (see Table 7.9), if the first treatment is to be 
compared with the fourth treatment (i.e., both treatments having one 
missing observation each), the computation would be: 

(i) Assign an effective number of replications to each of the two 
treatments. For example, for the first treatment, replication I is counted 
as zero because the first treatment is missing in replication I, replication 
II is counted as I because the first treatment has data but the fourth 
treatment does not, and replications III and IV are counted as I each 
because both treatments are present in bo'h replications. Thus, the 
effective number of replications for the first treatment is computed as 
0 + I + 1 + 1 = 2.5. In the same manner, the effective number of 
replications for the fourth treatment is computed as 2.5. 

(ii) Compute the sj as: 

V = s2 

= /(13,952)(O.8) = 301.930 
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For split-plot design, the formulas given in Table 7.6 can be used with the 
parameter f computed as: 

k 
S2(r-d)(b- k + c- 1) 

where b = level of the subplot factor; and k, c, and d, which refer only to 
missing observations for the two treatments being compared, are defined 
as: 

k = number of missing data 
c = number of replications that contain at least one missing observation 
d = number of missing observations in the treatment combination that 

has the largest number of missing data 

For illustration, we use the same set of data used in Section 7.1.2.3. 
Assume that, in addition to the missing data of N2 V in replication II, the 
yield of treatment N2V4 of replication I is also missing. Following the 
procedure described in steps 1 to 5, the estimates of the two missing data 
are 6,621 kg/-a for N2 V, in replication II and 4,749 kg/ha for N2V4 in 
replication I. 

The sj value for comparing any two subplot treatment means under 
each main-plot treatment, when either one or both means involve a 
missing observation, is computed as: 

/2E4' [ +2a(r-d)(bkk+c-1) 

The sy value for comparing any two main-plot treatment means at 
same or different subplot treatments, when either one or both means 
involve a missing observation, is computed as: 

~/2{Ea + Eb - (b bc- + 1)sg= ­
rb 
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For our example, if we wish to compare the mean of N2V and the 
mean of N2V4 , the s, value is: 

2(368742)1 + ( 2 + 2- 1)] 
sj= 


3
 

= 522.6 kg/ha 

To compare N2V mean with any other treatment of the same nitrogen 
level, except for N2V4, the sj value is: 

2(36,74) 1+ 2(6)(3 - 1)(44(1)- 1 + 1 - 1) 

sj= 

3 

= 509.4 kg/ha 

And, to compare N2V mean with any other treatment involving different 
nitrogen level, say NIV2 mean, the sjvalue is: 

- 1) + 16() - )
2{139,612 + 368,742 (4 

3(4)sj = 

= 538.1 kg/ha 

7.2 DATA THAT VIOLATE SOME ASSUMPTIONS OF THE 
ANALYSIS OF VARIANCE 

The usual interpretation of the analysis of variance is valid only when certain 
mathematical a.sumptions concerning the data are met. These assumptions 
are: 

Additive Effects. Treatment effects and environmental effects are additive. 

Independence of Errors. Experimental errors are independent. 

Homogeneity of Variance. Experimental errors have common variance. 

Normal Distribution. Experimental errors are normally distributed. 

Failure to meet one or more of these assumptions affects both the level of 
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significance and the sensitivity of the F test in the analysis of variance. Thus, 
any drastic departure from one or more of the assumptions must be corrected 
before the analysis of variance is applied. 

7.2.1 Common Violations in Agricultural Experiments 

The assumptions underlying the analysis of variance are reasonably satisfied 
for most experimental data in agricultural research, but there are certain types 
of experiment that are notorious for frequent violations of these assumptions. 
We describe some of the assumptions that are usually violated and give 
examples of experiments wherein these violations can be expected. 

7.2.1.1 Nonadditive Effects. The effects of two factors, say treatment and 
replication, are said to be additive if the effect of oae factor remains constant 
over all levels of the other factor. In other words, if the treatment effect 
remains constant for all replications and the replication effect remains constant 
for all treatments, then the effects of treatment and replication are additive. A 
hypothetical set of data from a RCB design, having two treatments and two 
replications, with additive effects, is illustrated in Table 7.11. Here, the 
treatment effect is equal to 20 for both replications and the replication effect is 
equal to 60 for both treatments. 

A common departure from the assumption of additivity in agricultural 
experiments is one where the e',->ts are multiplicative instead of additive. Two 
factors are said to ha',e multipijcative effects if their effects are additive only 
when expressed in terms of percentages. 

Table 7.12 illustrates a hypothetical set of data with multiplicative effects. In 
this case, the effect of treatment is 30 in replication I and 20 in replication II 
while the effect of replication is 60 for treatment A and 50 for treatment B. 
That is, the treatment effect is not constant over replications and the replica­
tion effect is not constant over treatments. However, when both treatment 
effect and block effect are expressed in terms of percentages, an entirely 
different pattern emerges. The replication effect is 50% for both treatments and 
the treatment effect is 20% in both replications. 

Table 7.11 A Hypothetical Set of Data with Additive Effects of 

Treatment and Replication 

Treatment 

Replication 

I 
Replication Effect 

(I - II) 

A 
B 
Trc iiment effect (A - B) 

180 
160 
20 

120 
100 
20 

60 
60 



296 Problem Data 

Table 7.12 A Hypothetical Set of Data with Multiplicative Effects
 
of Treatment and Replication
 

Replication Replication Effect 

Treatment I II I - II 100(1 - II)/II 

A 180 120 60 50
 
B 150 100 50 50
 
Treatment effect A - B 30 20
 
100(A - B)/B 20 20
 

The multiplicative effect is commonly encountered in experiments designed 
to evaluate the incidence of insects or diseasocs. This happens because the 
changes in insect and disease incidence usually follow a pattern thal is in 
multiples of the initial incidence. 

7.2.1.2 Nonindependence of Errors. The assumption of -ndependence of 
experimental errors requires that the error of an observation ,s not related to, 
or dependent upon, that of another. This assumption is usually assured with 
the use of proper randomization (i.e., treatments are assigned at random to 
experimental units). However, in a systematic design, where the experimental 
units are arranged systematically instead of at random, the assumption of 
independence of errors is usually violated. This is so because the design 
requires that certain pairs of treatments be placed in adjacent plots whereas 
others are always placed some distance apart. Figure 7.1 illustrates a layout of 
a systematic design where certain pairs of treatments, say, A and B, are 
adjacent to each other in all replications, and other pairs of treatments, say, B 
and E, are always separated by two intervening plots. Because experimental 
errors of adjacent plots tend to be more alike than those ferther apart, the 
error for plots of treatments A and B can be expected to be more related 
compared to that between plots of treatments B and E. 

Replicaton I A B C D E F 

Repicotion "n F A B C D E 

Relcation M E F A B C D 

R ,pk ton X D E F A B C 

Figure 7.1 Layout of a systematic design involving six treatments (A, B, C, D, E, and F) and 
four replications: a source of nonindcpcndence of errors. 
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Because proper randomization usually ensures the independence of experi­
mental errors, the simplest way to detect nonindependence of errors is to check 
the experimental layout. If there is a systematic pattern in the arrangement of 
treatments from one replication to another, nonindependence of errors may be 
expected. 

7.2.L3 Variance Heterogeneity and Nonnormality. Heterogeneity of vari­
ance can be classified into two types: 

• 	 Where the variance is functionally related to the mean 
" 	 Where there is no functional relationship between the variance and the 

mean 

The first type of variance heterogeneity is usually associated with data 
whose distribution is not normal. For example, count data, such as the number 
of infested plants per plot or the number of lesions per leaf, usually follow the 
poisson distribution wherein the variance is equal to the mean; that is, S2 = X. 
Another example is the binomial distribution, which is expected in data such as 
percent survival of insects or percent plants infected with a disease. Such data 
describe the proportion of occurrences in which each occurrence can only be 
one of the two possible outcomes (e.g., alive or dead and infested or not 
infested). For this latter type of data, the variance and the mean are related as 
s 2 -( - W). 

The second type of variance heterogeneity (where variance and mean are 
not related) usuall:, occurs in experiments where, due to the nature of the 
treatments tested, some treatments have errors that are substantially higher (or 
lower) than others. Examples of this type of variance heterogeneity are: 

" 	 In variety trials where various types of breeding material are being com­
pared, the size of the variance between plots of a particular variety will 
depend on the degree of genetic homogeneity of the material being t ted. 
The variance of the F generation, for example, can be expected to be higher 
than that of the F, generation because genetic variability in F2 is much 
higher than that in F,. The variances of varieties that are highly tolerant of, 
or highly susceptible to, the stiess being tested are expected to be smaller 
than those of varieties with moderate degrees of tolerance. 

" 	 In testing yield response to chemical treatment, such as fertilizer, insecticide, 
or herbicide, the nonuniform application of chemial treatments may result 
to a higher variability in the treated plots than that in the nontreated plots. 

7.2.2 Remedial Measures for Handling Variance Heterogeneity 

The most common symptom of experimental data that violate one or more of 
the assumptions of the analysis of variance is variance heterogeneity. In this 
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section we focus on the two remedial measures for handling variance hetero­
geneity. These are: 

" The method of data transformation for variances that are functionally 
related to the mean 

" The method of error partitioning ffk variances that are not functionally 
related to the mean 

For data with heterogeneous variances, a correct diagnosis of the specific 
type of variance heterogeneity present in the dta must be made before an 
appropriate remedial measure can be selected. We present the following 
simplified procedure for detecting the presence of variance heterogeneity and 
for diagnosing the type of variance heterogeneity: 

o 	sTEP 1. For each treatment, compute the variance and the mean across 
replications (the range can be used in place of the variance if ease of 
computation is required). 

o 	srEp 2. Plot a scatter diagram betwcen the mean value and the variance (or 
the range). The number of points in the scatter diagram equals the number 
of treatments. 

o 	Smp 3. Visually examine the scatter diagram to identify the pattern of 
relationship, if any, between the mean and the variance. Figure 7.2 il­
lustrates three possible outcomes of such an examination: 
" Homogeneous variance (Figure 7.2a) 
" 	 Heterogeneous variance when the variance is functionally related to the 

mean (Figure 7.2b) 
" Heterogeneous variance when there is no functional relationship between 

the variance and the mean (Figure 7.2c) 

7.2.2.1 Data Transformation. Data transformation is the most ap­
propriate remedial measure for variance heterogeneity where the variance and 
the mean, are functionally related. With this technique, the original data are 

Variance Variance Variance 

(W) (b) 0 (c) 0 

Ose 0. 

40 9 0 

0 * 0 

Mean Mean Mean 

Figure 7.2 Illustratinn of different types of variance heterogeneity: (a) homogeneous variance, 
(b) hcterogeneous vanance where variance is proportional to the mean, and (c) heterogeneous 
variance without any functional relationship between variance and mean. 
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Table 7.13 Application of the Logarithmic Transformation to 
Data InTable 7.12, to Convert the Multiplicative Effect 
between Replication and Treatment 
to an Additive Effect 

Replication Replication 
Treatment I II Effect 

A 2.255 2.079 0.176 
B 2.176 2.000 0.176 
Treatment effect 0.079 0.079 

converted into a new scale resulting in a new data set that is expected to satisfy 
the condition of homogeneity of variance. Because a common transformation 
scale is applied to all observations, the comparative values between treatments 
are not altered and comparisons between them remain valid. 

The appropriate data transformation to be used depends on the specific type 
of relationship between the variance and the mean. We explain three of the 
most commonly used transformations for data in agricultural research. 

7.2.2.1.1 Logarithmic Tranjformation. The logarithmic transformation is 
most appropriate for data where the standard deviation is proportional to the 
mean or where the effects are multiplicative. These conditions are generally 
found in data that are whole numbers and cover a wide range of values. Data 
on the number of insects per plot or the number of egg masses per plant (or 
per unit area) are typical examples. 

To transform a data set into the logarithmic scale, simply take the logarithm 
of each and every component of the data set. For example, to convert Table 
7.12 to a logarithmic scale, each of the numbers in the four data cells are 
converted into its logarithm. The results are shown in Table 7.13. Note that 
although the effects of treatment and replication are multiplicative in the 
original data of Table 7.12, the effects become additive with the transformed 
data of Table 7.13. In Table 7.13 the treatment effect is 0.079 in both 
replications and the replication effect is 0.176 for both treatments. This 
illustrates the effectiveness of logarithmic transformation in converting multi­
plicative effect to additive effect. 

If the data set involves small values (e.g., less than 10), log(X + 1) should 
be used insteac, of log X, where X is the original data. To illustrate the 
procedure for applying the logarithmic transformation, we use data on the 
number of living larvae on rice plants treated with various rates of an 
insecticide from a RCB experiment with four replications (Table 7.14). The 
step-by-step procedures are: 

0 	 si'EP 1. Verify the functional relationship between the mean and the 
variance using the scatter-diagram procedure described earlier. For our 
example, we use range instead of variance. The result (Figure 7.3a) shows a 



Table 7.14 Number of Living Larvae Recovered Following Different Insecticide Treatments 

Treatment Larvae, no. Treatment Treatment 

Number Description" Rep. I Rep. H Rep. III Rep. IV Total Mean 

I Diazinon (4) 9 12 0 1 22 5.50 

2 Diazinon (3) 4 8 5 1 18 4.50 
3 Diazinon (2) 6 15 6 2 29 7.25 
4 Diazinon (1) 9 6 4 5 24 6.00 
5 Diazinon (2) + MLVC (2 27 17 10 10 64 16.00 
6 Diazinon (2) + MLVC + SLVC (2) 35 28 2 15 80 20.00 
7 Diazinon (1) at 15% DH infestation 1 0 0 0 1 0.25 
8 Diazinon (1) at 20% DH infestation 10 0 2 1 13 3.25 
9 Control 4 10 15 5 34 8.50 

Total 105 96 44 40 285 

"Number in parentheses refers to number of times the chemicals were applied. 
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Renge of numberof larvae recovered Range of number of larvae recovered (log score)
35 	 1.4 

30 1.2 

25 10 • 

20 08 
0 . 

15 0.6­

10 * 0.4 ­

5 0 02 

000 5 10 15 20 25 
Mean number of larvoe recovered 

I I I I I 
0002 04 06 08 ID 1.2 

Mean number of larvae recovered (log scale) 

(o) (b) 
Figure 7.3 Relationships between the rann.e and the treatment mean of data given in Table 7.14: 
(a) before logarithmic transformation and (b) after logarithmic transformation. 

linear relationship between the range and the mean (i.e., the range increases 
proportiohilly with the mean), suggesting the use of logarithmic transforma­
tion. 

o 	STEP 2. Because some of the values in Table 7.14 are less than 10, 
log(X + 1) is applied instead of log X. Compute log(X + 1), where X is the 
original data in Table 7.14, for all values. The transformed data are shown 
in Table 7.15. 

o 	STEP 3. Verify the success of the logarithmic transformation in achieving 
the desired homogeneity of variance, by applying step I to the transformed 

Table 7.15 Data In Table 7.14 Transformed to Logarithmic Scale, Iog(X + 1) 

Treatment Larvae Number in Log Scale Mean Antilog
Number Rep. I Rep. II Rep. III Rep. IV Total (,M) of X 

1 1.0000 1.1139 0.0000 0.3010 2.4149 0.6037 4.02 
2 0.6990 0.9542 0.7782 0.3010 2.7324 0.6831 4.82 
3 0.8451 1.2041 0.8451 0.4771 3.3714 0.8428 6.96 
4 1.0000 0.8451 0.6990 0.7782 3.3223 0.8306 6.77 
5 1.4472 1.2553 1.0414 1.0414 4.7853 1.1963 15.71 
6 1.5563 1.4624 0.4771 1.2041 4.6999 1.1750 14.96 
7 0.3010 0.0000 0.0000 0.0000 0.3010 0.0752 1.19 
8 1.0414 0.0000 0.4771 0.3010 1.8195 0.4549 2.85 
9 0.6990 1.0414 1.2041 0.7782 3.7227 0.9307 8.53 

Total 8.5890 7.8764 5.5220 5.1820 27.1694 
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Tablo 7.16 Analysis of Variance of Data In Table 7.15 

Source 
of 

Degree 
of 

Sum 
of Mean Computed 

Variation Freedom Squares Soaare Fa 

Replication 
Treatment 

3 
8 

0.95666 
3.98235 

0.31889 
0.49779 5.70** 

Error 24 2.09615 0.08734 
Total 35 7.03516 

a**- significant at 1%level. 

data in Table 7.15. The result (Figure 7.2b) based on transformed data 

shows no apparent relationship between the range and the mean, indicating 

the success of the logarithmic transformation. 

3 STEp 4. Construct the analysis of variance, in ti-e usual manner (see 

Chapter 2, Section 2.2.3), on the transformed data in Table 7.15. Results are 

shown in Table 7.16. 

o STEP 5. Perform the desired mean comparisons by applying the standard 

procedures described in Chapter 5 directly to the transformed data. The test 

for pair comparison, either LSD test or DMRT, must be made based on the 

transformed means even though the final presentation of the treatment 

means is in the original scale. For example, only apply the LSD values in the 

transformed scale and only to the transformed means. 

For our example, the computation involved in the application of the LSD 

test and the DMRT to the pair comparisons of treatment means is: 

Least Significant difference (LSD) Test. If the researcher w shes to 

determine the effectivity of each insecticide treatment, a valid comparison 

between each treatment and the control treatment can b- made using the 

LSD test. The LSD values are computed using results of the analysis of 

variance in Table 7.16 and the formula in Chapter 5, Section 5.1.1.1.1, as: 

LSD.05 = 2.064 2(0.0734) = 0.4313 

LSD.01 = 2.797 2(0.08734) - 0.58454 

As indicated before, these LSD values are in the transformed scale and 

must be applied to the transformed means in Table 7.15. For example, to 

compare the control treatment (treatment 9) with each of the other 

treatments, the transformed mean of the control should be subtracted 

from the transformed mean of each of the other treatments, and each of 

these differences is then compared to the LSD values just computed. For 
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example, the mean difference between treatment I and the control is 
computed as 0.9307 - 0.6037 = 0.3270, which is smaller than the com­
puted LSD.05 value of 0.4313. Hence, treatment 1 is not significantly 
different from the control treatment. 

Duncan's Multiple Range Test (DMRT). For comparisons of all possible 
pairs of means, first apply the standard DMRT procedure (see Chapter 5, 
Section 5.1.2) to the transformed means. For our example, the results are 
shown under Peliminary Step in Table 7.17. 

Next, compute the treatment means based on the original scale, either 
by computing the treatment means from original data in Table 7.14 or 
converting the transformed means in Table 7.15 to the original scale (i.e., 
by computing the antilog of each transformed mean and reducing by 1). 
Theoretically, the latter procedure of converting the transformed means is 
more appropriate but, in practice, computing treatment means from 
original data is more frequently used because of its simplicity. 

Even though the procedure of computing treatment means from 
original data is adequate in most cases, care should be taken to ensure 
that the order of ranking of the means in the original scale and in the 
transformed scale are not so different as to affect the order of mean 
comparison. In some rare cases, this condition is not satisfied, as il­
lustrated by Table 7.18, in which the original mean of treatment 5 is 
higher than both treatments 4 and 6 but is the lowest on the basis of the 
transformed means. In such cases, the procedure of converting the 
transformed means is preferred. 

Table 7.17 Application of Duncan's Multiple Range Test (DMRT) for
 
Comparing the Treatment Means In Table 7.14, through DMRT
 
Comparisons of the Transformed Means in Trible 7.15
 

Preliminary Step Final Presentation 

Treatment Transformed Original 
Mean DMRTaNumber Mean DMRT" 

1 0.6037 b 5.50 b
 
2 0.6831 b 4.50 b
 
3 0.8428 be 7.25 be
 
4 0.8306 be 6.00 be
 
5 1.1963 c 16.00 c
 
6 1.1750 e 20.00 

7 0.0752 a 0.25 a
 
8 0.4549 ab 3.25 ab
 
9 0.9307 be 8.50 be
 

'Means followed by a common letter are not significantly different at the 5% 
level. 

c 
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Table 7.18 Illustration of the Difference In the Ranking Order of Treatment 
Means Based on Origina; icale and Transformed Scale" 

Green leafhopper, Transformed Scale, Antilog of 

Treatment no./cage logarithmic Transformed 
Number Mean Rank Mean Rank Mean 

1 73.0 4 1.75872 4 57.4 
2 22.8 10 1.34197 7 22.0 
3 112.3 1 2.01669 1 103.9 
4 25.5 9 1.26622 9 18.5 
5 36.0 5 1.01940 10 10.5 
6 35.0 6 1.47483 5 29.8 
7 101.0 2 1.92451 2 84.0 
8 94.3 3 1.91985 3 83.1 
9 27.8 7 1.37783 6 23.9 

10 26.0 8 1.30138 8 20.0 

'Average of four replications (original replication data arc not shown). 

For our example, the first procedure of computing treatment means 
from the original data in Table 7.14 is used and the results are presented 
in Table 7.17 under the first column of final presentation. The DMRT 
results applied earlier to the transformed means are then directly trans­
ferred to the original means (see last column of Table 7.17). 

7.2.2.1.2 Square-Root Transformation. Square-root transformation is ap­
propriate for data consisting of small whole numbers, for example, data 
obtained in counting rare events, such as the number of infested plants in a 
plot, the number of insects caught in traps, or the number of weeds per plot. 
For these data, the variance tends to be proportioral to the mean. 

The square-root transformation is also appropriate for percentage data 
where the range is between 0 and 30% or between 70 and 100%. For other 
ranges of percentage data, see discussion or,the use of the arc sine transforma­
tion in the next section. 

If most of the values in the data set are small (e.g., less than 10), especially 
with zeroes present, (X + 0.5)1/2 should be used instead of X11 2, where X is 
the original data. 

For illustration, we use data on percentage of white heads from a rice 
variety trial of the 14 entries in a randomized complete block design with three 
replications (Table 7.19). The range of data is from 0 to 26.39%. Because many 
of the values are less than 10, data are transformed into (X + 0.5)1/2, as shown 
in Table 7.20. Analysis of variance is then constructed on the transformed data 
in Table 7.20. The result is in Table 7.21. 



Table 7.19 Percentage of White Heads of 14 Rice Varieties Tested In a 
RCB Design with Three Replications 

White Heads, % 
Variety Rep. I Rep. II Rep. III Total Mean 

IRS 1.39 0.92 2.63 4.94 1.65 
IR20-1 
C4-63G 
C168-134 

8.43 
7.58 
8.95 

4.38 
3.79 

12.81 

6.94 
1.91 
3.22 

19.75 
13.28 
24.98 

6.58 
4.43 
8.33 

BPI-76 
MRC 407-1 

4.16 
4.68 

17.39 
1.32 

8.06 
2.09 

29.61 
8.09 

9.87 
2.70 

PARC 2-2 
TN1 

2.37 
0.95 

5.32 
0.70 

4.86 
0.98 

12.55 
2.63 

4.18 
0.88 

Rexoro 26.09 25.36 15.69 67.14 22.38 
Luma-1 26.39 22.29 1.98 50.66 16.89 
IR127-80-1 21.99 12.88 5.15 40.02 13.34 
IR1108-3-5 3.58 2.62 2.91 9.11 3.04 
IR1561-228-3-3 0.19 0.00 0.61 0.80 0.27 
IR2061-464-2 0.00 3.64 4.44 8.08 2.69 

Rep. total 116.75 113.42 61.47 
Grand total 291.64 

Table 7.20 Transformation of Data In Table 7.19 Using Square-Root 

Transformation, (X + 0.5)1/2 

Transformed Data 
Variety Rep. I Rep. II Rep. III Total Mean 

IRS 1.37 1.19 1.77 4.33 1.44 
IR20-1 2.99 2.21 2.73 7.93 2.64 
C4-C3G 2.84 2.07 1.55 6.46 2.15 
C168-134 3.07 3.65 1.93 8.65 2.88 
BPI-76 2.16 4.23 2.93 9.32 3.11 
MRC 407-1 2.28 1.35 1.61 5.24 1.75 
PARC 2-2 1.69 2.41 2.32 6.42 2.14 
TNI 1.20 1.10 1.22 3.52 1.17 
Rexoro 5.16 5.09 4.02 14.27 4.76 
Luma-1 5.19 4.77 1.57 11.53 3.84 
IR127-80-1 4.74 3.66 2.38 10.78 3.59 
IR1108-3-5 2.02 1.77 1.85 5.64 1.88 
IR1561-228-3-3 0.83 0.71 1.05 2.59 0.86 
IR2061-464-2 0.71 2.03 2.22 4.96 1.65 

Rep. total 36.25 36.24 29.15 
Grand total 101.64 

305 
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Table 7.21 Analysis of Variance of Data InTable 7.20 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fa 

Replication 2 2.3971 1.1986 
Variety 13 48.0366 3.6951 5.88** 
Error 26 16.3275 0.6280 

Total 41 66.7612 

a** - significant at 1%level. 

For comparisons of rill possible pairs of means, the DMRT (see Chapter 5, 
Section 5.1.2) is first applied to the transformed means and then transferred to 
the original means, following similar procedure described earlier for the 
logarithmic transformation in Section 7.2.2.1.1. The result is shown in Table 
7.22. 

7.2.2.1.3 Arc Sine Transformation. An arc sine or angular transformation 
is appropriate for data on proportions, data obtained from a count, and data 
expressed as decimal fractions or percentages. Note that percentage data that 

Table 7.22 Application of Duncan's Multiple Range Test 
qDMRT) for Comparing the Treatment Means In Table 7.19, 
bWrough DMRT Comparisons of the Transformed Means In 
Table 7.20 

Variety Transformed Mean" Original Mean" 

IR5 1.44 abc 1.65 abc 
IR20-1 2.64 b-f 6.58 b-f 
C4-63G 2.15 a-e 4.43 a-e 
C168-134 2.88 c-f 8.33 c-f 
BPI-76 3.11 def 9.87 def 
MRC 407-1 1.75 a-d 2.70 a-d 
PARC 2-2 2.14 a-c 4.18 a-e 
TN1 1.17 ab 0.88 ab 
Rexoro 4.76 g 22.38 g 
Lunia-1 3.84 fg 16.89 fg 
IR127-80-1 3.59 efg 13.34 efg 
IR1108-3-5 1.88 a-d 3.04 a-d 
IR1561-228-3-3 0.86 a 0.27 a 
IR2061-464-2 1.65 a-d 2.69 a-d 

"Means followed by a common letter are not significantly differ­
ent at tie 5%level. 
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are derived from count data, such as percentage barren tillers (which is derived 
from the ratio of the number of nonbearing tillers to the total number of 
tillers), should be clearly distinguished from other types of percentage data, 
such as percentage protein or percentage carbohydrates, which are not derived 
from count data. 

The mechanics of data transformation are greatly facilitated by using a 
table of the arc sine transformation (Appendix J). The value of 0% should be 
substituted by (1/4n) and the value of 100% by (100 - 1/4n), where n is the 
number of units upon which the percentage data was based (i.e., the denomina­
tor used in computing the percentage). 

Not all percentage data need to be transformed and, even if they do, arc 
sine transformation is not the only transformation possible. As we indicated 
before, the square-root transformation is occasionally used for percentage data. 
The following rules may be useful in choosing the proper transformation scale 
for percentage data derived from count data. 

RULE 1. For percentage data lying within the range of 30 to 70%, no 
transformation is needed. 

RULE 2. For perczntage data lying within the range of either 0 to 30% or 
70 to 100%, but not both, the square-root transformation should be used. 

F;'LE 3. For percentage data that do not follow the ranges specified in 
either iule I or rule 2, the arc sine transformation should be used. 

We illustrate the application of arc sine transformation with data on 
percentage of insect survival in a rice variety trial with 12 varieties in a 
completely randomized design with three replications (Table 7.23). For each 
plant, 75 insects were caged and the number of surviving insects determined. 

Table 7.23 Percentage Survival of Zigzag Leafhoppers on 12 Rice Varieties 

Tested Ina CRD Experiment with Three Replications 

Survival, % 
Variety Rep. I Rep. II Rep. III Total Mean 

ASD 7 44.00 25.33 48.00 117.33 39.11 
Mudgo 21.33 49.33 80.00 150.66 50.22 
Ptb 21 0.00 0.00 0.00 0.00 0.00 
D 204-1 25.33 26.66 49.33 101.32 33.77 
Su-Yai 20 24.00 26.66 54.66 105.32 35.11 
Balamawee 0.00 0.00 20.00 20.00 6.67 
DNJ 24 32.00 29.33 28.00 8(' - 29.78 
Ptb 27 0.00 0.00 0.00 0.00 0.00 
Rathu Heenati 17.33 33.33 10.66 61.32 20.44 
Taichung (N)I 93.33 100.00 100.00 293.33 97.78 
DS 1 13.33 36.00 33.33 82.66 27.55 
BJ 1 46.66 46.66 16.00 109.32 36.44 
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Table 7.24 Transformation of Data InTable 7.23 Using Arc Sine Transformation 

Survival (arc sine scale) 
Variety Rep. I Rep. 11 Rep. III Total Mean 

ASD 7 41.55 30.22 43.85 115.62 38.54 
Mudgo 27.51 44.62 63.43 135.56 45.19 
Ptb 21 0.33 0.33 0.33 0.99 0.33 
D 204-1 30.22 31.09 44.62 105.93 35.31 
Su-Yai 20 29.33 31.09 47.67 108.09 36.03 
Balamawee 0.33 0.33 26.57 27.23 9.08 
DNJ 24 34.45 32.79 31.95 99.19 33.06 
Ptb 27 0.33 0.33 0.33 0.99 0.33 
Rathu Heenati 24.60 35.26 19.06 78.92 26.31 
Taichung (N)1 75.03 89.67 89.67 254.37 84.79 
DS 1 21.41 36.87 35.26 93.54 31.18 
BJ 1 43.08 43.08 23.58 109.74 36.58 

Based on rule 3, the arc sine transformation should be used because the 
percentage data ranged from 0 to 100%. Before transformation, all zero values 
are replaced by [1/4(75)] ani all 100 values by (100 - [1/4(75)]}. The 
transformed data are shown in Table 7.24 and its analysis of variance (follow­
ing procedure of Chapter 2, Section 2.1.2) is in Table 7.25. The DMRT (see 
Chapter 5, Section 5.1.2) was first applied to the transformed means and then 
transferred to the original means, following a procedure similar to that earlier 
described for the logarithmic transformation. The result is shown in Table 
7.26. 

7.2.2.2 Error Partitioning. Heterogeneity of variance, in which no func­
tional relationship between the variance and the mean exists, is almost always 
due to the presence of one or more treatments whose associated errors are 
different from that of the others. These unusually large or unusually small 
errors are generally due to two major causes: 

They involve treatments which, by their own nature, exhibit either large or 
small variances (see Section 7.2.1.3 for examples). 

Table 7.25 Analysis of Variance of Data InTable 7.24 

Source Degree Sum 
of of of Mean Computed 
Variation Freedom Squares Square F" 

Variety 11 16,838.6368 1,530.7852 16.50* 
Error 24 2,225.9723 92.7488 

Total 35 19,064.6091 

- significant at 1%level. 



Data that Violate Some Assumptions of the Analysis of Variance 309 

Tablo 7.26 Application of Duncan's Multiple Range Test 
(DMRT) for Comparing the Treatment Means In Table 
7.23, through DMRT Comparisons of the Transformed 
Means In Table 7.24 

Variety Transformed Meana Original Meana 

ASD 7 38.54 bc 39.11 be 
Mudgo 45.19 c 50.22 c 
Ptb 21 0.33 a 0.00 a 
D 204-1 35.31 bc 33.77 be 
Su-Yai 20 36.03 bc 35.11 bc 
Balamawee 9.08 a 6.67 a 
DNJ 24 33.06 bc 29.78 bc 
Ptb 27 0.33 a 0.00 a 
Rathu Hecnati 26.31 b 20.44 b 
Taichung (N)I 84.79 d 97.78 d 
DS 1 31.18 bc 27.55 bc 
BJ 1 36.58 be 36.44 bc 

'Means followed by a common letter are not significantly 

different at the 5%level. 

They involve gross errors; that is, some unusually large or unusually small 
values may have been mistakenly recorded in some plots resulting in 
unusually large error variances for the treatments involved. 

Error partitioning is a commonly used procedure to handle data that have 
heterogeneous variances that are not functionally related to the mean. Error 
partitioning shoud not be used, however, when variance heterogeneity is due 
to gross errors. In other words, error partitioning should be applied only after 
the presence of gross errors has been thoroughly examined and eliminated. 

We describe the step-by-step procedures for detecting gross errors and for 
applying the error partitioning method. We use yield data from a variety trial 
with 35 entries, consisting of 15 hybrids, 17 parents, and 3 checks, tested in a 
RCB design with three replications (Table 7.27). 

0 	 STEP 1. Detect gross errors, as follows: 
" 	 Identify treatments that have extremely large differences between ob­

servations of different replications. For each of these treatments, identify 
the specific plot whose value is greatly different from the rest (i.e., plots 
with unusually large or unusually small values). 

• For each plot in question, check the records or the daily logbook to see if 
any special observations or remarks were noted by the researcher to 
explain the extreme value. 

" 	 On the field layout, mark all plots having extreme values by putting a 
plus sign on the plot with unusually high value and a minus sign on the 



Table 7.27 Yholds of 35 Entries Tested in a RCB Design with Three Replications 

Yield, t/ha 

Entry Ntu h'era Rep. I Rep. II Rep. III Range 

1 8.171 7.951 8.074 0.220 
2 7.049 7.792 7.626 0.743 
3 8.067 8.597 6.772 1.825 
4 7.855 7.601 7.273 0.582 
5 8.815 8.259 7.621 1.194 
6 7.211 8.115 8.488 1.277 
7 6.557 8.388 6.895 1.831 
8 7.999 8.701 8.253 0.702 
9 9.310 8.310 9.194 1.000 

10 7.372 8.198 8.246 0.874 
11 7.142 6.980 8.653 1.673 
12' 8.265 9.097 8.514 0.832 
13 7.413 8.807 10.128 2.715 
14 7.130 7.990 8.088 0.958 
15 7.089 8.543 7.893 1.454 
16 5.832 5.671 6.042 0.371 
17 7.619 5.580 8.488 2.908 
18 8.427 8.327 7.065 1.362 
19 7.311 6.984 7.240 0.327 
20 6.010 7.124 6.536 1.114 
21 6.514 7.366 7.240 0.852 
22 7.832 7.251 7.116 0.716 
23 7.914 7.994 7.519 0.475 
24 7.448 7.808 7.327 0.481 
25 7.014 8.799 7.301 1.785 
26 6.375 7.716 6.590 1.341 
27 7.042 6.531 6.699 0.511 
28 5.998 6.888 6.926 0.928 
29 7.175 7.756 7.528 0.581 
30 7.425 7.531 7.091 0.440 
31 7.453 7.568 7.607 0.154 
32 7.073 8.244 6.839 1.405 
33 7.235 7.362 7.445 0.210 
34 6.984 7.723 7.735 0.751 
35 7.185 6.958 7.417 0.459 

aEntries 1 to 15 are hybrids, 16 to 32 are parents, and 33 to 35 are checks. 
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plot with unusually low value. Examine the proximity of the plots with 
pluses and minuses to pinpoint possible causes that are related to plot 
location in the experimental area. 
For plots whose causes of extreme values were identified as gross errors, 
retrieve the correct values if possible. If retrieval is not possible, the 
suspected data should be rejected and missing data is declared (see
Section 7.1.1). For plots whose causes of extreme values cannot be 
determined, the suspected data should be retaintd. 

For our example, based on the rage values shown in Table 7.27, two entries 
(13 and 17) are identifiLd to !,ave extremely large range values. The range 
value of entry 13 is 2.715 t/ha (10.128 - 7.413) and that of entry 17 is 2.908 
t/ha (8.488 - 5.580). 

By a thorough check (following the procedures just described), it was 
found that the extremely low value of 5.58C t/ha for entry 17 was the result 
of a transcription error and that the correct value should have been 7.580 
t/ha. On the other hand, the cause for the extremely high value of 10.128 
t/ha for entri 13 could not be determined; hence, the value of 10.128 t/ha 
is retained. 

" 	STEP 2. Construct the standard analysis of variance on the revised data, 
following the standard procedures of Chapters 2 to 4. For our exampie, the 
revised data set is the same as that shown in Table 7.27 except that the value 
of entry 17 in replication II of 5.580 t/ha is replaced by 7.580 t/ha. The 
standard analysis of variance for a RCB design with t = 35 treatments and 
r = 3 replications is computed from the revised set of data, following the 
procedure of Chapter 2, Section 2.2.3. The result is shown in Table 7.28. 

o 	STEP 3. Classify the treatments into s groups, each group containing 
treatments with homogeneous variance. For our example, a logical way of 
grouping is to classify the entries into three grovps, namely, hybrids, 
parents, and checks. Thus, there are s = 3 groups with '15 entries in the first 
group, 17 in the second group, and 3 in the third group. 

Table 7.28 The Analysis of Variance (RCB Design) for the Reviseda Data 
InTable 7.27 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square F 5% 1% 

Replication 2 3.306077 1.653038 
Entry 34 40.019870 1.177055 4.00** 1.59 1.94 
Error 68 20.014056 0.294324 

Total 104 63.340003 

aThe value of 5.580 of entry number 17 in replication II is replaced by 7.580. 
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[ 	 sTEP 4. Partition the treatment sum of squares and the error sum of 
squares in the analysis of variance, following procedures of Chapter 5, 
Section 5.2, into the following components: 
" 	 Components of treatment SS: 

Co: Between groups 

C,: Between treatments within group 1 

4: Between treatments within group 2 

C: Between treatments within group s 

Components of error SS: 

C0 X replication 

C1 x replication 

4 	 X replication 

C 	X replication 

For our example, the treatment SS and the error SS are partitioned into 
four components, as shown in Table 7.29. 

o] sTp 5. Exclude the first component of error (i.e., Co X replication) and 
any component having less than 6 d.f. Apply a test for homogeneity of 
variance of Chapter 11, Section 11.2, to the rest of the components of error 
Those not found to be significantly different are then pooled. If any pooling 
or removal of error components is performed, the corresponding pooling 
and removal of the tteatment components should also be done. 

The pooled sum of squares over k components, each with f, d.f., has 
f = Ej.'J, degrees of freedom and is computed as: 

A 

ssp = E 
w- s 

where SS, is the ith component of the error sum of squares. Thus, the 



Table 7.29 Partitioning of Treatment and Error Sums of Squares, of the Analysis of Variance In Table 
7.28, Based on Homogeneous Groupings of Treatments 

Source Degree 
3f of 
Variation Freedom 

Sum 
of 

Squares 
Mean 
Square 

Computed 
Fa 

Tabular 

5% 

F 

1% 

Replication 2 
Entry 34 

Between groups (2) 
Entries within group 1 (hybrid) (14) 
Entries within group 2 (parent) (16) 
Entries within group 3 (check) (2) 

Enor 68 

3.306077 
40.019870 
15.109932 
9.911929 

14.867981 
0.130028 

20.014056 

1 63038 
1 177055 
7.554966 
0.707995 
0.929249 
0.065014 
0.294324 

4.00** 
b 

1.635 
4.38** 

C 

1.59 1.94 
-

2.06 2.80 
1.97 2.62 

- -

Replication 
Replication 
Replication 
Replication 

x Between groups (4) 
x Hybrid (28) 
x Parent (32) 
x Check (4) 

0.830352 
12.127555 
6.795953 
0.260196 

0.207588 
0.433127 
0.212374 
0.065049 

a** = significant at 1%level, - not significant. 
bReplication x between groups d.f. is not adequate for valid test of significance. 
CReplication X check d.f. is not adequate for valid test of significance. 
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pooled mean square is computed as: 

ss
 
MS=-


For our example, because the fourth error component has only 4 d.f., it 

is excluded. The F value for testing the homogeneity of variance betwcen the 

second and third components of the error SS is computed as: 

0.433127
F = 0 = 2.040.212374 

The computed F value is significant at the 5% level. Thus, the two error 

components, one concerning hybrids and the other concerning parents, are 

not homogeneous. Hence, the two error variances are not pooled. 

01 	 STEP 6. Test each of the components (pooled or nonpooled) of the treat­

ment SS against its corresponding error component. For our example, the 

hybrid MS is tested against the replication x hybrid MS and the parent MS 

is tested against the replication x parent MS: 

0.707995 
F(hybrid) = 0.433127 = 1.63ns 

0.929249 
F (parent) = 0.212374 = 4.38** 

Note that if the first and fourth error components had had sufficient d.f., 

the between groups component and the between checks component would 

have been also tested. 

SSTrEP 7. For mean comparison involving treatments from the same group 

(pooled or nonpjooled), the standard test procedures described in Chapter 5 

can be applied directly, using the appropriate error terms. For pair compari­

sons of treatments coming from different groups, the standard error of the 

mean difference, where one treatment comes from the ith group and the 

other treatment comes from thejth group, is computed as: 

sj=, ,r 

2
where r is the number of replications; and s, and s are the components of 

the error mean squares corresponding to the ith group and thejth grc-ip, 

respectively. For the computation of the LSD values (see Chapter 5, Section 

5.1.1), the tabular t values are obtained as follows: 

• 	 If the error degrees of freedom are the same for the two groups, the 

tabular t value ' obtained directly from Appendix C with n equals the 

common error df. 
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• 	 If the error degrees of freedom in the two groups differ, with ni d.f. for 
the ith group and n1 d.f. for the jth group, the tabular t value is 
computed as: 

11, + 21t 
S?:+2 
1 + Sj 

where t, and tj are the tabular t values obtained from Appendix C with n, 
and n, degrees of freedom, respectively. 

For our example, the standard errors for the three types of pair compari­
son are computed as: 
" Between two hybrid means: 

sj= f/1(0.433127) 

= 0.54 

" Between two parent means: 

sj= 3(0.212374) 

= 0.38 

" Between one hybrid mean and one parent mean: 

s;= V-1(0.433127 + 0.212374) 

= 0.46 



CHAPTER 8 

Analysis of Data From 
a Series of Experiments 

Crop performance depends on the genotype, the environment in which the 
crops are grown, and the interaction between the genotype and the environ­
ment. Genotype and some factors of the environment, such as fertilizer rate, 
plant population, and pest control, can be controlled by the researcher. But 
other factors of the environment, such as sunshine, rainfall, and some soil 
properties, are generally fixed and difficult to modify for a given site and 
planting season. Thus, a researcher with a one-time experiment at a single site 
can vary and evaluate only the ccntrollable factors but not the environmental 
factors that are beyond his control. 

The effect of the uncontrollable environmental factors on crop performance 
is as important as, if not more important than, that of the controllable factors; 
and the evaluation and quantification of their effects are just as essential. 
Because the uncontrollable factors are expected to change with season and site, 
and because these changes are measurable, their effects on treatment perfor­
mance can be evaluated. In crop research, the most commony used way to 
evaluate the effects of the uncontrollable environmental factors on crop 
response is to repeat the experiment at several sites, or over several crop 
seasons, or both. 

Experiments that are conducted at several sites and repeated over several 
seasons can be classified into foul groups according to their objectives. These 
are: 

" 	 Preliminar,' evaluation experiments, which are designed to identify-from a 
large number of new technologies-a few technologies that give a con­
sistently superior performance in the area where they are developed. 

* 	Technology adaptation experiments, which are designed to determine the 
range of geographical adaptability of the few superior technologies iden­
tified in one or more preliminary evaluation experiments. 

• 	 Long-term experiments, which are designed to characterize a new technol­
ogy with respect to its long-term effect on productivity. 

316 
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Response prediction experiments, which are designed to identify a func­
tional relationship between crop response and some environmental factors 
and predict productivity over a wide range of environments. 

The primary focus of this chapter is to describe these four types of 
experiment and the corresponding data analyses that are critical in answering 
the prescribed objectives. Our descriptions assume that appropriate analyses 
for each individual trial (see Chapters 2 to 7) have been completed and we 
discuss only the combined analysis over several trials. We emphasize the use of 
specific statistical techniques that are suited to the specific objectives of the 
experiment. 

8.1 PRELIMINARY EVALUATION EXPERIMENT 

The development of an improved crop production technology usually involves 
a series of elimination processes starting with a large number of new technol­
ogies and ending with a few superior ones that are identified and to be 
recommended for commercial use. Much of the elimination processes is done 
at a single site where the new technologies are developed and assembled. 

The preliminary evaluation experiment is a part of the elimination process 
at a single si'e where trials are replicated and repeated over several planting 
seasons. Its primary objective is to identify a technology (or technologies) that 
is consistently superior in at least one site where consistent superiority is 
defined as top ranking performance for at least two planting times-either 
over seasons in the same year or over years of the same season, or both. 

8.1.1 Analysis Over Seasons 

For a given crop at a specific site, planting is usually not staggered uniformly 
over a 12-month period but is distinctly bunched in some well-defined periods 
that are consistently repeated over years. A good example is maize grown in 
temperate climates where only one crop is generally planted at the start of 
summer. Even in the humid tropics, where two to three crops of maize can be 
grown within a 12-month period, the planting seasons usually remain distinct 
with respect to planting date and expected environmental features. Conse­
quently, the planting season within a year is considered a fixed variable: a 
superior technology can be separately identified to fit a specific season. In fact, 
the primary objective of a combined analysis over seasons is to examine the 
interaction between season and treatment and to determine tile necessity of a 
separate technology recommendation for each planting season. 

We give the procedures for analyzing data of experiments over crop seasons 
using a fertilizer trial with five nitrogen rates tested on rice for two seasons, 
using a RCB design with three replications. Grain yield data are shown in 
Table 8.1 and the individual analyses of variance are shown in Table 8.2. The 



Grain Yield of Rice Tested with Five Rates of Nitrogen InTable 8.1 
Two Crop Seasons 

Nitrogen 
Rate, _ 

kg/ha Rep. I 

0 (NO) 4.891 
60 (NI) 6.009 
90 (N) 6.712 

120 (N3) 6.458 
150 (N4 ) 5.683 

Total 

0 4.999 
60 6.351 
90 6.071 

120 4.818 
150 3.436 

Total 

Grain Yield, t/ba 
rainYield,_t/ha 

Rep. II Rep. III Total Mean 

Dry Season 
2.577 
6.625 
6.693 
6.675 
6.868 

Wet Season 
3.503 
6.316 
5.969 
4.024 
4.047 

4.541 12.009 4.003 
5.672 18.306 6.102 
6.799 20.204 6.735 
6.636 19.769 6.590 
5.692 18.243 6.081 

88.531 

5.356 13.858 4.619 
6.582 19.249 6.416 
5.893 17.933 5.978 
5.813 14.655 4.885 
3.740 11.223 3.741 

76.918 

Table 8.2 Individual Analyses of Variance (RCB Design) for a Rice
 
Fertilizer Trial with Five Treatments and Three Replications, by Crop
 
Season 

Source 
of 
Variation 

Replication 
Nitrogen 
Error 

Replication 
Nitrogen 
Error 

Degree Sum 
of of 

Freedom Squares 

Dry Season 

2 0.018627 
4 14.533384 
8 4.522162 

Wet Season 
2 1.242944 
4 13.869888 
8 2.541472 

Mean 
Squares 

Computed 
Fa 

0.009314 
3.633346 
0.565270 

6.43* 

0.621472 
3.467472 
0.317684 

10.91* 

* significant at 1%level, - significant at 5% level. 
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step-by-step procedures for the analysis of data combined over seasons are: 

" 	STEP 1. Ccnstruct the outline of the combined analysis of variance over 
crop seasons, based on the basic experimental design used. For our example, 
the outline of the combined analysis of variance over seasons based on RCB 
design is shown inTable 8.3. 

o 	STEP 2. Compute the various SS in the combined analysis of variance of 
step 	1: 

Compute the replications within season SS as the sum over s replication 
SS, and the pooled error SS as the sum over s error SS, from the 
individual analyses of variance. That is, 

Reps. within season SS = (Rep. SS)I 
t-1 

S 

Pooled error SS = (Error SS)1 
t-I 

where (Rep. SS) 1 and (Error SS), are the replication SS and error SS 
from the analysis of variance of the ith season. 

For our example, using the SS values in Table 8.2, the foregoing two 
SS are computed as: 

Reps. within season SS = (Rep. SS)D + (Rep. SS)w 

= 	0.018627 + 1.242944 

= 	1.261571 

Table 8.3 Outline of the Combined Analysis of Variance Over a Crop 
Seasons, a Based on RCB Design with t Treatments and r Replications 

Source Degree 
of 
Variation 

of 
Freedom 

Mean 
Square 

Computed 
F 

Season (S) s - I SMS 
S MS 
RMS
R MS 

Reps. within season 

Treatment (T) 

s(r ­ 1) 

t ­ 1 

R MS 
TMS 

T MS EMS
E MS 

S x T (s-1)(t- 1) S x TMS 
S x TMSEMS

E MS 
Pooled error s(r - 1)(I - 1) E MS 

Total srt ­ 1 

"Crop season is considered as a fixed variable. 
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Pooled error SS = (Error SS) D + (Error SS) w 

= 4.522162 + 2.541472 

= 7.063634 

where subscripts D and W indicate dry season and wet season. 

Compute the other SS values, either from total or mean values: 

(i) 	 Based on Totals. The computations of the various SS follow the 
standard procedure as: 

G, 2 

srt
 

S.F.= .F 

TSS - -- C.F. 
sr 

S X 	TSS C.F.- S SS - TSS 

where G1 is the grand total of the ith season, (ST),j is the total of 
the jth treatment in the ith season, and T is the total of the jth 
treatment over all s seasons. 

(i) 	 Based on Means. The computation of the various SS is: 

2 
= srt(G)C.F. 

sss = rt(F,g2) - C.F. 

TSS = !2sr( C.F. 

S X 	TSS = r $)F - C.F.- SSS - TSS 

where G is the grand mean, (S'), is the mean of the jth treatment 
in the ith season, S1 is the mean of the ith season, and T is the mean 
of thejth treatment. 
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Note that the mean values used in the computation of SS should 
have the same number of significant digits as is used in the totals. 
This warning is necessary because mean values used for presentation 
purposes are usually rounded off to minimum significant digits. 

For our example, computation is made using the total values in Table 8.1, 
as follows: 

+ 76.918)2C.F. = (88.531 30 

= 912.44572 

SSS - (88.531)23(5)+ (76.918)2 _ 912.44572 

= 4.495392 

TSS = {[(25.867)2 +(37.555)2 +(38.137)2 

+(34.424)2 + (29.466)2] /6} - 912.44572 

= 	18.748849 

S X TSS = (12.009)2 +(18.306)23 
+ ""+(11.223)2 

-912.44572 - 4.495392 - 18.748849 

= 	9.654423 

o 	STEp 3. For each source of variation, compute the mean square by dividing 
each SS by its d.f. For our example, the results of the computation are 
shown in Table 8.4. 

Table 8.4 Combined Analysis of Variance over Two Crop Seasons, Computed 
from Data InTables 8.1 and 8.2 

Source Degree Sum 
of of of Mean Computed 
Variation Freedom Squares Square Fa 

Season (S) 1 4.495392 4.495392 b 

Reps. within season 4 1.261571 0.315393 
Nitrogen (N) 4 18.748849 4.687212 10.62** 
S x N 4 9.654423 2.413606 5.47** 
Pooled error 16 7.063634 0.441477 

Total 29 

a**- significant at 1%level.
 
hReps. within season d.f. is not adequate for valid test of significance.
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0 	STEP 4. Test the homogeneity of the s error MS from the individual 
analyses of variance, through the application of the F test or the chi-square 
test (Chapter 11, Section 11.2). For most purposes, if the highest error MS is 
not three-fold larger than the smallest error MS, the error variances can be 
considered homogeneous. 

For our example, because there are only two error MS, the F test is 
applied as: 

F Larger error MS 
Smaller error MS 

0.565270 
-	 0.317684 =1.78 

The computed F value is smaller than 3.44, the corresponding tabular F 
value with f, = f2 = 8 degrees of freedom at the 5% level of significance. 
Thus, the hypothesis of homogeneous error variances over seasons cannot be 
rejected. 

o 	sTEp 5. If homogeneity of error variances cannot be established in step 4, 
proceed to step 7. Otherwise, compute the F values for testing the various 
effects, as indicated in Table 8.3, as: 

S MS
F(S) = Reps. within season MS 

F(T) = TMS
Pooled error MS 

S x TMS
F(S x T) = Pooled error MS 

For our example, the homogeneity test of step 4 is not significant. Hence, 
the F values are computed, using the foregoing formulas, as: 

4.687212 =F(N) = 0.441477 10.62 

F(S x N) = 2.413606
0.441477 = 5.47 

Note that the F value for the season effect is not computed due to the 
inadequate d.f. for the replications within season MS. 

The corresponding tabular F values for each of the two computed F 
values, with f, = 4 and f2 = 16 d.f., are 3.01 at the 5% level of significance 
and 4.77 at the 1% level. Thus, both the treatment main effect and its 
interaction with crop season are highly significant; there is a significant yield 
response to treatment (nitrogen application) but the response differed be­
tween the two crop seasons. 
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o1 	 STEP 6. If the season X treatment interaction (S x T) is significant, parti­
tion the interaction SS into a set of orthogonal contrasts (see Chapter 5, 
Section 5.2.4) that is most likely to provide information on the nature of the 
interaction; why the relative performance of the treatments differed over 
seasons.
 

For our example, with nitrogen rates as treatments, the S × T interaction 
corresponds to S X N which is highly significant (Table 8.4). The most 
natural set of contrasts that can explain the nature of such an interaction is 
one involving the orthogonal polynomials on nitrogen. That is, the S x N 
SS should be partitioned into S X Nhncar, S X Nquadratc, and so on. Because 
the nitrogen rates tested in this experiment have unequal intervals, the 
orthogonal polynomial coefficients are derived following the procedures 
given in Chapter 5, Section 5.2.3.2. The derived coefficients for the linear 
and quadratic polynomials are shown below, and the results of the parti­
tioned SS are shown in Table 8.5. 

Nitrogen 
Rate, Orthogonal Polynomial Coefficient 
kg/ha Linear Quadratic 

0 -14 22 
60 -4 -21 
90 1 - 21 
120 6 -5 
150 11 25 

Table 8.5 Combined Analysis of Variance In Table 8.4, with Partitioning of SS 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fa 

Season (S) 1 4.495392 4.495392 b 

Reps. within season 4 1.261571 0.315393 
Nitrogen (N) 4 18.748849 4.687212 10.62** 

N1. (1) 1.435356 1.435356 3.25 n 
NQ (1) 17.185048 17.185048 38.93** 
NR.. (2) 0.128445 0.064222 < 1 

S x N 4 9.654423 2.413606 5.47** 
S x N,. (1) 8.807778 8.807778 19.95** 
S X NQ (1) 0.547297 0.547297 1.24n' 
S X NR, (2) 0.299348 0.149674 < 1 

Pooled error 16 7.063634 0.441477 

"**­ significant at 1%level, n - not significant. 

"Reps. within season d.f. is not adequate for valid test of significance. 
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The analysis indicates that only the linear part of the response function 
varied significantly with season. Because only the quadratic component of 
the N SS is significant, the quadratic function is fitted to the treatment mean 
values, separately for each season, following the regression technique of 
Chapter 9, Section 9.2.2. The results are: 

Dry season: ', = 3.983 + 0.0523N - 0.000255N 2 (R 2 = 1.00**) 

Wet season: k2 = 4.675 + 0.0477N - 0.000366N 2 (R2 = .97*) 

The two regression equations are represented graphically in Figure 8.1. 
Visual examination of Figure 8.1, together with the large and significant R 2 

value of each regression, indicates that the quadratic response fitted the data 
reasonably well. The rate of yield increase with increase in the rate of 
nitrogen application (i.e., the linear component of the function) is higher in 
the dry season than in the wet season. 

With the estimated nitrogen response functions, the two types of opti­
mum nitrogen rate can be computed as: 

The nitrogen rate that maximizes yield: 

-bNY 

Yield (1/ha) 
7 

6 

* Dry mw:so 71,3983+00523N -0 000255N2 

(R
2 

--i oo*) 
20 Weisman ;2' 4675+0047? N-000366 N

0 30 60 90 120 150 

Nitrogen rate ( kg/ho) 

Figure 8.1 Nitrogen response curves estimated from data in Table 8.1, separately for dry and wet 
season, 
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* The nitrogen rate that maximizes profit: 

= ' -b 

where b and c are th, estimates of the regression coefficients in k ='a+ bN 
+ cN 2, and P and P are the prices of nitrogen and rice, respectively. 

For our example, the NY values for both regressions are estimated as: 

-0.0523
Dry season: NY (2)(-0.000255) = 102.5 kg N/ha 

- 0.0477 

Wet season: NY = (2)(- 0.000366) = 65.2 kg N/ha 

To compute the N values, we assume that the ratio of the price of 
nitrogen (kg/ha) over the price of rice (t/ha) is = 0.005. With this price 
ratio, the NP values are estimated as: 

0.005 - 0.0523
Dry season: NP = 2(-0.0002557 = 92.7 kg N/ha 

0.005 - 0.0477Wet season: Np = 2(-0.000366) = 58.3 kg N/ha 

The experimental results seem to indicate the need to have different 
nitrogen recommendations ;.jr dry and wet seasons. 

I STEP 7. If the test for homogeneity of variances in step 4 is significant, 
follow the partitioning prccedure of the S x T interaction SS outlined in 
step 6, but instead of using the pooled ,rror MS as the error terra for the F 
test, the pooled error SS must first be partitioned into components corre­
sponding to those of the S x T SS. The F value is then computed for each 
component of the S x T interaction using the corresponding component 
the pooled error as its error term. 

For our example, this analysis is not needed because the homogeneity test 
of step 4 is not significant. However, for illustration pirposes, the analysis 
will be performed by using the same partitioning of the S x N SS given in 
step 6. The corresponding components of the pooled error SS are computed 
using the formula: 

(Reps. within S) X NL= [ (NLSS)kI -(NLSS)i] 

(Reps. within S) X NQ = [ (NQSS)kI - (NQSS)]N 
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where (NL SS)kj is the linear component of the N SS computed from the 
data of the kth replication in the ith season, (NL SS), is the corresponding 
component computed from the totals over all replications, and (NQ SS)k, 
and (NQ SS), are similarly defined but for the quadratic component. 

The computations of these sums of squares, done separately for each crop 
season, are shown in Table 8.6. For example, the linear component of the N 
SS for replication I of the dry season is computed as: 

[- 14(4.891) - 4(6.009) + (6.712) 6(6.458) + 11(5.683)12(NL.SS),, = (-_14)' + (-_4) 2 + (1)2 ++ (6)2 + (11 )2 

(15.463)2 = 0.64622F 
370 

And, the linear component of the N SS for the dry season is computed as: 

-= - 4(18.306) + (20.204) + 6(19.769) + 11(18.243)]214(12.009)3[(-14)2 +(-4)2 + (1)' + (6)2 + (11 )2] 

= (98.141)2 8.677167 

(3)(370) 

Table 8.6 Computation of the Linear and Quadratic Components of the 
Pooled Error SS InTable 8.5, Data are from Table 8.1 

Replication Treatment Total -______________ 
Sum of Squaresa 

Number No N, N, N3 N4 Linear Quadratic 

Dry Season 

I 4.891 6.009 6.712 6.458 5.683 0.646228 1.227907 

II 2.577 6.625 6.693 6.675 6.868 9.636871 3.555132 
III 4.541 5.672 6.799 6.636 5.692 1.425382 1.386474 

Sum 12.009 18.306 20.204 19.769 18.243 8.677167 5.799363 

Wet Season 

I 4.999 6.351 6.071 4.818 3.436 1.382265 3.935604 
II 3.503 6.316 5.969 4.024 4.047 0.000284 4.946835 
Ill 5.356 6.582 5.893 5.813 3.740 1.017294 3.151471 

Sum 13.858 19.249 17.933 14.655 11.223 1.565967 11.932982 

'The orthogonal polynomial coefficients are (-14, -4, 1,6, 11) for linear and 

(22, - 21, - 21, - 5, 25) for quadratic components. 
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Finally, the components of the pooled error SS are computed as: 

(Reps. within S) x NL = [(0.646228 + 9.636871 + 1.425382) - 8.677167] 

+[(1.382265 + 0.000284 + 1.017294) - 1.56596,j 

= 3.031314 + 0.833876 = 3.865190 

(Reps. within S) XNQ = [(1.227907 + 3.555132 + 1.386474) - 5.799363] 

+[(3.935604 +4.946835 + 3.151471) -11.932982] 

= 0.370150 + 0.100928 = 0.471078 
(Reps. within S) X NRa.= Pooled error SS - (Reps. within S) X NL SS 

- (Reps. within S) x NQ SS 

= 7.063634 - 3.865190 - 0.471078 = 2.727366 

These results are summarized as: 

Source Degree Sum 
of of of Mean 

Variation Freedom Squares Square 

Pooled error (16) (7.063634) (0.441477) 
(Reps. within S)X NL 4 3.865190 0.966298 
(Reps. within S) X NQ 4 0.471078 0.117770 
(Reps. within S)X NR,5 8 2.727366 0.340921 

The three components of the pooled error are then used to test the 
significance of the corresponding components of the S x N interaction in 
Table 8.5 as: 

S X NL MSF(S X NL 
(Reps. within S) x NL MS 

8.807778 _ 

0.966298 
F(S S x NQMS 

NQ (Reps. within S) x NQ MS 

0.547297 
- 4.65*0.117770 

S x N,,.MSF(S X NR..) = 

(Reps. within S)X NR..MS 

0.149674- <1"
 
0.340921 

'Although degrees of freedom of the (Reps. within S) X NL MS and (Reps. within S) x NQ MS 
are not adequate for valid test of significance (see Chapter 2, Section 2.1.2.1, step 6), for 
illustration purposes, such deficiency has been ignored. 
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8.1.2 Analysis Over Years 

In contrast to the planting seasons within a year, which are characterized by 
some distinct and predictable environmental features (see Section 8.1.1), the 
variability of the environment over years is usually unpredictable. For exam­
ple, it is not reasonable to expect that odd-numbered years are drier than 
even-numbered years or that sunshine is increasing over years. Because of the 
absence of any predictable pattern, years are generally considered as a random 
variable: a superior technology must show consistent superiority over several 
years for at least one planting season. Thus, the primary objective of a 
combined analysis of data over years is to identify technologies whose average 
effect over years is stable and high. The interaction between treatment and year 
has no agronomic meaning and, therefore, is much less important than the 
interaction between treatment and season. 

We illustrate the procedure for combining data over years with a trial, with 
seven rice varieties tested in two years using a RCB design with three 
replications. Grain yield data are shown in Table 8.7 and individual analyses 
of variance in Table 8.8. Variety means are presented fox each year in Table 
8.9. 

The step-by-step procedures for the analysis of data combined over years 
are: 

o 	STmP 1. Construct an outline of the combined analysis of variance over 
years, based on the basic design used. For our example, the outline of the 
combined analysis of variance over years based on RCB design is shown in 
Table 8.10. Note that the primary difference between this combined analysis 
of variance over years and that over seasons (Section 8.1.1, Table 8.3) is in 

Table 8.7 Grain Yield (t/ha) of Seven Rice Varieties Tested InRCB Design ,vlth 
Three Replications, In the Same Season for Two Consecutive Years 

Variety Year I Year 2" 

Number Rep. I Rep. II Rep. III Total Rep. I Rep. II Rep. III Total 

1 3.036 4.177 3.884 11.097 1.981 3.198 3.726 8.905 
2 1.369 1.554 1.899 4.822 3.751 2.391 3.714 9.856 
3 5.311 5.091 4.839 15.241 3.868 3.134 3.487 10.489 
4 2.559 3.980 3.853 10.392 2.729 2.786 2.598 8.113 
5 1.291 1.705 2.130 5.126 3.222 3.554 2.452 9.228 
6 3.452 3.548 4.640 11.640 4.250 4.134 3.339 11.723 
7 1.812 2.914 0.958 5.684 3.336 4.073 2.885 10.294 

Total 64.002 68.608 

'Plot layout was rerandomized in the second year. 
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Table 8.8 Individual Analyses of Variance, by Year, of a Variety Trial In RCB 
Design with Sven Varieties and Three Replications, Computed from Data In 
Table 8.7 

Source Degree Sum 
of of of Mean Computed Tabular F 
Variation Freedom Squares Square Fa 5% 1% 

Year ) 
Replication 2 1.38549 0.69274 
Variety 6 31.85691 5.30948 16.11** 3.00 4.82 
Error 12 3.95588 0.32966 

Year 2 
Replication 2 0.09698 0.04849 
Variety 6 2.79800 0.46633 1.16n 3.00 4.82 
Error 12 4.84346 0.40362 

a** - significant at 1%level, -	 not significant. 

the F test for testing the significance of the treatment effect. When data are 
combined over seasons (i.e., fixed variable) the error term is the pooled error 
MS; when combined over years (i.e., random variable) the error term is the 
year x treatment interaction MS. 

0 	 STEP 2. Compute the various SS and MS needed for the combined analysis 
of variance outlined in step 1, following the procedures described in steps 2 
to 3 of Section 8.1.1, by replacing season by year. For our example, the 

Table 8.9 Mean Yields of Seven Rice Varieties Tested In Two 
Consecutive Years, Computed from Data InTable 8.7 

Variety Mean Yield, t/ha 
Number Year 1 Year 2 Av. Difference 

1 3.699 2.968 3.334 -0.731 
2 1.607 3.285 2.446 1.678 
3 5.080 3.496 4.288 - 1.584 
4 3.464 2.704 3.084 - 0.760 
5 1.709 3.076 2.392 1.367 
6 3.880 3.908 3.894 0.028 
7 1.895 3.431 2.663 1.536 
Av. 3.048 3.267 3.158 0.219 
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Table 8.10 An Outline of the Combined Analysis of Variance over s
 
Years," Based on RCB Design with t Treatments and r Replications
 

Sotrce Degree 
of of Mean Computed 
Variation Freedom Square F 

Y MS 

Year(Y) sI- YMS RMS 
R MS 

Reps. within year 

Treatment (T) 

s(r ­ 1) 

t- 1 

R MS 
T MS 

T MSTMS 
YX TMS 

YX T (s- 1)(t- 1) YX TMS EMS 
E MS 

Pooled error s(r ­ 1)(t - 1) E MS 
Total srt - I 

"Year is considered as a randam variable. 

computations are: 

Reps. within Y SS = 1.38549 + 0.09698 = 1.48247 

Pooled error SS = 3.95588 + 4.84346 = 8.79934 

C.F.= (64.002 + 68.608)2 = 418.70029
42 

YSS = (64.002)2 + (68.608)2 - 418.700293(7) 

= 0.50512 

TSS = (3)(2)(3)(2)+ ... +(15.978) 2] 
-418.70029[(20,002)2 +(14,678)2 

= 19.15891 

Yx TSS= [(11.097)2 +(4.822)2 + "'. +(10.294)2] 

3 

-418.70029 - 0.50512 - 19.15891 

= 15.49600 

The MS value, for each SS just computed, is computed in the usual 

manner. The results are shown in Table 8.11. 

O3STEP 3. Test the homogeneity of the s error MS, from the individual 

analyses of variance, through the application of the F test or the chi-square 
test (Chapter 11, Section 11.2). 
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Table 8.11 Combined Analysis of Variance of RCB Experiments over Two Years, 
Computed from Data In Tables 8.7 and 8.8 

Source 
of 

Degree
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Fa 5% 1% 

Year (Y) 1 0.50512 0.50512 b - -

Reps. within year 4 1.48247 0.37062 
Variety (V) 6 19.15891 3.19315 1.24" 4.28 8.47 
Y x V 6 15.49600 2.58267 7.04** 2.51 3.67 
Pooled error 24 8.79934 0.36664 

Total 41 45.44184 

- significant at i% level, m - not significant. 
'Reps. within year d.f. is not adequate for valid test of significance. 

For our example, the F test is applied as: 

F= Larger error MS
Smaller error MS 

-0.40362 = 1.22 
0.32966 

The computed F value is smaller than the corresponding tabular F value of 
2.69, with f = f2 = 12 degree of freedom at the 5% level of significance. 
Thus, the hypothesis of homogeneous error variances is not rejected. 

0 STEP 4. If homogeneity of error variances cannot be established in step 3, 
proceed to step 5. Otherwise, ccrnpute the Fvalues for testing significance of 
the various effects, as indicated in Table 8.10. 

For our example, because the F test for homogeneity of error variances in 
step 4 gave a nonsignificant result, the computation of the F values follows 
the formulas in Table 8.10. Because the degree of freedom for the replica­
tions within year SS is only 4, no Fvalue is computed to test the main effect 
of year (Chapter 2, Section 2.1.2). The other two F values are computed as: 

y VMSVMS(V) 	= 
Yx VMS 

3.19315 
= 1.242.58267 

F(Y X 	 V) = YxPooled error VMSMS 

2.58267 
= 0.36664 = 7.04 
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Comparison of these computed F values to the corresponding tabular F 
values, in the usual manner, shows F(V) to be nonsignificant and F(Y x V) 
to be significant at the 1%level. Thus, the interaction effect between variety 
and year is highly significant but the average varietal effect is not. 

oJ 	 STEP 5. If the test for homogeneity of variance in step 4 is significant, 
partition the pooled error SS based on the set of desired contrasts on Y x T 
SS, following the procedure outlined and illustrated in step 6 of Section 
8.1.1. 

For our example, because the homogeneity of error variances is estab­
lished, no partitioning of the pooled error SS is necessary. That is, the 
Y x V effect, as well as any of its components, can be tested using the 
pooled error MS as the error term. 

o STEP 6. If the treatment x year interaction is significant, examine its size 
relative to the average effect of the treatments. If the interaction effect is 
small relative to the average effect, the ranking of :he treatments over years 
is expected to be stable (e.g., treatment A performs better than treatment B 
in all years although in some years the difference is slightly larger than in the 
others) and the interaction can be ignored. 

On the other hand, if the interaction effect is relatively large and the 
ranking of treatments changes over years (e.g., when treatment A performs 
better than treatment B in some years and no better or even poorer in 
others) then an examination of the nature of interaction would be useful. 

For our example, the interaction is so large that the average effect of 
variety is not significant. Upon examination of the mean difference between 
years for each of the seven varieties (Table 8.9, last column) three groups of 
varieties can be identified. The first group consists of varieties 2, 5, and 7, 
which had higher yields in year 2 than in year 1; the second consists of 
varieties 1, 3, and 4, which performed better ia year I than in year 2; and 
the third consists of variety 6, which gave similar yields in both years. 

Even though it is clear that a consistently superior variety cannot be 
identified in this trial, emphasis in future trials should probably be given to 
variety 6, which exhibited a high degree of consistency and to variety 3 
which, although giving the highest mean yield (4.288 t/ha) over years, 
performed extremely well only in the first year (5.08 t/ha). 

8.2 TECHNOLOGY ADAPTATION EXPERIMENT: 
ANALYSIS OVER SITES 

Technology adaptation experiments are designed to estimate the range of 
adaptability of new production technologies, where adaptability of a technol­
ogy at a given site is defined in terms of its superiority over other technologies 
tested simultaneously at that site. The primary objective of such a trial is to 
recommend one or more new practices that are an improvement upon, or can 
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be substituted for, the currently used farmers' practices. Thus, technologya 

adaptation experiment has three primary features:
 

1. The primary objective is the identification of the range of adaptability
of a technology. A particular technology is said to be adapted to a particular
site if it is among the top performers at that site. Furthermore, its range of 
adaptability includes areas represented by the test sites in which the technology 
has shown superior performance. 

2. The primary basis for selecting test sites is representation of a geo­
graphical area. The specific sites for the technology adaptation experiments are 
purposely selected to represent the geographical area, or a range of environ­
ments, in which the range of adaptability of technology is to be identified. Such 
areas are not selected at random. In most cases, these test sites are research 
stations in different geographical area. However, when such research stations 
are not available, farmers' fields are sometimes used as test sites (see Chapter
16 for discussion on technology-generation experiments in farmers' fields). 

3. The treatments consist mainly of promising technologies. Only those 
technologies that have shown excellent promise in at least one environment 
(e.g., selection from a preliminary evaluation experiment) are tested. In addi­
tion, at least one of the treatments tested is usually a control, which represents
either a no-technology treatment (cuch as no fertilizer application or no insect 
control) or a currently used technology (such as local variety). 

Two common examples of technology adaptation experiments are crop
variety trials or a series of fertilizer trials at diff.rent research stations in a 
region or country. For the variety trials, a few promising newly developed
varieties of a given crop are tested, at several test sites and for several crop 
seasons, together with the most widely grown variety in a particular area. The 
results of such trials are used as the primary basis for identifying the best 
varieties as well as the range of adaptability of each of these varieties. For 
fertilizer trials, on the other hand, several fertilizer rates may be tested at 
different test sites and for several crop seasons-in order to identify groups of 
sites having similar fertilizer responses. 

Because technology adaptation experiments are generally at a large number 
of sites, the size of each trial is usually small and its design simple. If factorial 
experiments are used, the number of factors generally does not exceed two. 
Thus, the two most commonly used designs are a randomized complete block 
and a split-plot design. 

Technology adaptation experiments at a series of sites generally have the 
same set of treatments and use the same experimental design, a situation that 
greatly simplifies the required analysis. Data from a series of experiments at 
several sites are generally analyzed together at the end of each crop season to 
examine the treatment X site interaction effect and the average effects of the 
treatments over homogeneous sites. These effects are the primary basis for 
identifying the best performers, and their range of adaptability, among the 
different technologies tested. 



Table 8.12 Individual Analysis of Variance (RCS), One forEach of the Nine Sites (L1 to L.), of Data from a Variety Trial 

with Seven Rice Varieties 

Source Degree Sum of Squares' 
of of 

Variation Freedom L, L 2 L3 L, L5 L, L7 Ls L9 

Replication 
Variety 
Error 

cv (%) 

2 
6 

12 

0.01581 
6.75774* 
3.25070 

10.9 

1.36015 
5.91469ns 
4.25357 

16.2 

0.26245 
7.44175ns 

20.58217 
17.0 

0.13993 
8.60013** 
1.33921 

6.5 

0.03304 
8.34556** 
0.51767 

14.7 

0.0%98 
2.79800 n 
4.84346 

19.4 

4.33975 
7.76741u 
5.33916 

9.0 

0.70832 
3.07978a 
4.15965 

14.5 

0.08317 
3.49240** 
0.52724 

4.4 

a** = F test significant at 1%level, =- F test significant at 5% level, ns = F test not significant. 
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8.2.1 Variety Trial in Randomized Complete Block Design 

The procedures for combining data from a variety adaptation trial at m sites 
are shown below for a trial involving seven rice varieties tested in a RCB 
design at nine sites. The results of the individual analysis of variance at each 
site, based on grain yield data, are shown in Table 8.12. The variety mean 
yields at each site are shown in Table 8.13. The step-by-step procedures are: 

Li STEP 1. Apply the chi-square test for homogeneity of variances (Chapter 
11, Section 11.2) to the in error variances from the individual analyses of 
variaince. If the test is significant (which is generally expected), all sites 
whose coefficients of variation are extremely large (i.e., cv > 20%) can be 
exclided from the combined analysis. 

For our example, the chi-square test applied to the Pine error mean 
squares in Table 8.12 results in a X2 value of 59.65, which is significant at 
the 1%level of significance. However, because no site has a cv value that is 
larger than 20%, all nine sites are included in the combined analysis. 

0 STEP 2. Construct an outline of the combined analysis of variance over n 
sites and compute the various SS and MS, following the procedure outlined 
for combining data over years in Section 8.1.2 with year (Y) replaced by site 
(L). 

The computations of SS in Section 8.1.2 are based on the total values. 
For this example, we illustrate the computations using the mean values in 
Table 8.13 and the sum of squares in Table 8.12 as: 

Reps. within site SS = 0.01581 + 1.36015 + .-. + 0.08317 

= 7.03960 

Pooled error SS = 3.25070 + 4.25357 + ... + 0.52724 

= 44.81283 

Table 8.13 Mean Yields of Seven Rice Varieties (V to V7) Tested at Nine Sites 
(L1 to L,)a 

Mean Yield, t/ha 
Variety L, L2 L3 L4 L, L6 L7 L, L9 Av. 

V, 4.835 4.288 7.882 5.219 2.052 2968 8.066 4.568 5.122 5.000 
2 4.412 3.694 8 110 5036 1.042 3.285 6584 3.889 4.445 4.500 

V3 4.888 3.963 7495 5054 1342 3.496 *8.387 4.136 4.945 4.856 
V4 3.717 2.675 6.568 3.725 2643 2704 7.182 4 136 5200 4.283 
VS 5.635 3.351 7.475 5.858 0.772 3076 7.679 3.765 4.159 4.641 
V6 4.808 4 288 7672 5403 1.042 3.908 6.796 4.506 5.012 4.826 
V7 5.271 3.495 8.652 5.645 1.000 3.431 7.261 3395 4.224 4.708 

Av. 4.795 3.679 7.693 5.134 1.413 3.267 7.422 4.056 4.730 4.688 

"Individual analysis of variance is in Table 8.12. 
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C.F. = (3)(7)(9)(4.688)2 = 4,153.71802 

L SS - (3)(7)[(4.795)2 + " +(4.729) 2] - 4,153.71802 

= 647.87421 

VSS = (3)(9)[(5.000)2 + ""+(4.708) 21 - 4,153.71802 

= 	8.85162 

V X L SS = (3)[(4.835)2 +(4.288)2 + +(4.224) 2] 

-4,153.71802 - 647.87421 - 8.85162 

= 45.63398 

The MS values are then computed in the usual manner. The results are 
shown in Table 8.14. 

[ 	 smp 3. Identify the range of adaptability of the treatments through 
suitable partitionings of the treatment X site interaction SS. This can be 
done by one or a combination of the follom ing approaches: 
" Homogeneous Site Approach. Classify sites into homogeneous groups so 

that the interaction between treatmern! and site within each group is not 
significant. A separate set of varieties can then be identified as adapted 
varieties for recommendation to each set of homogeneous sites. 

" 	 Homogeneous Treatment Approach. Identify one or more treatments 
whose contribution to the interaction between treatment and site is high. 
Treatments whose performance fluctuates widely over sites are the major 
contributors to the treatment X site interaction and are expected to have 
a narrow range of adaptability. 

To decide which approach to take, examine the data by (1) plotting mean 
values of each variety in the Y axis against the site code (i.e., L,, L2, L3,...) 

Table 8.14 Preliminary Combined Analysis of Variance Over 
Sites, Computed from Data InTables 8.12 and 8.13 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Site (L) 8 647.87421 80.98428 
Reps. within site 18 7.03960 0.39109 
Variety (V) 6 8.85162 1.47527 
V X L 48 45.63398 0.95071 
Pooled Error 108 44.81283 0.41493 

Total 	 188 754.21224 
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in the X axis, (2) plotting mean values of each site in the Y axis against the 
variety code in the X axis, or (3) plotting both. If graph (1) reveals one or 
more varieties that are clearly different from the others, the homogeneous 
treatment approach is suggested. If, however, visual observation of graph (2) 
indicates a clear-cut grouping of sites with similar varietal responses, the 
homogeneous site approach is suggested. 

For our example, graph (1) is shown in Figure 8.2. It shows V4 to give a 
trend that is distinctly different from the rest. Thus, the homogeneous 
treatment approach is suggested, and V SS and V x L SS should be 

Groin yield (tha)
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0 I I I I I I I 

Lj L2 L3 L.; L6 L-eL5 L7 L9 
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Figure 8.2 Examination of the variety X site interaction by plotting mean yield of each of the 
seven varieties against sites, from data in Table 8.13. 
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Table 8.15 Partitioning of SS In the Preliminary Combined Analysis of Variance 
In Table 8.14, to Cope with Heterogeneity of Error Variances over Sites 

Soarce 
of 
Variation 

Degree Sum 
of of 

Freedom Squares 
Mean 
Square 

Computed 
Fa 

Tabular F 
5% 1% 

Site (L) 
Reps. within site 
Variety (V) 

E1 : V4 vs. others 
E2: Between others 

V X L 

8 647.87421 
18 7.03960 
6 8.85162 

(1) 5.15950 
(5) 3.69212 
48 45.63398 

80.98428 
0.39109 
1.47527 
5.15950 
0.73842 
0.95071 

207.01* 

3.56** 
12.43'* 

1.78"' 
2.29** 

2.51 3.71 

2.18 2.96 
3.93 6.88 
2.30 3.19 
1.48 1.76 

El x L 
E2 X L 

Pooled error 

(8) 21.22237 
(40) 24.41161 
108 44.81283 

2.65280 
0.61029 
0.41493 

6.39** 
1.47"n 

2.02 
1.50 

2.68 
1.78 

(Reps. within site) X El 
(Reps. within site) X E2 

(18) 5.05481 
(90) 39.75802 

0.28082 
0.44176 

a** - significant at 1%level, - not significant. 

partitioned into the following components: 

E1 : V4 vs. other varieties 

E2 : Between other varieties 

The results of this pat itioning are shown in Table 8.15. 

0 	STEP 4. The specific procedures fe; computing F values to test the signifi­
cance of V SS, V X L SS, and their components depend on the significance 
of the test for homogeneity of error variances over sites computed in step 1. 
Procedures discussed in steps 5 to 7 of Sectior, 8.1.1 should be followed. 

For our example, the test for homogeneity of error variances in step I 
was significant. Hence, the partitioning of the pooled error SS corre­
sponding to the desired set of contrasts on varieties derived in step 3, is 
performed. The results are shown in Table 8.15. 

The F test for the homogeneity of the two components of the pooled 
error SS gives the computed F value of 1.57, which is not significant. Thus, 
the pooled error MS can be used as the denominator of the F values for 
testing the significance of either the Veffect, the V x L interaction effect, or 
their components. For example, 

VMS
F( V) = Pooled error MS 

1.47527 
0.41493 
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which is significant at the 1% level. Results for all tests, shown in Table 8.15, 
indicate that, except for V4, there was no significant difference between the 
test varietie,, and this was consistently so at all sites. This means that, except 
for V4, all varieties are equally adapted to the nine sites. The performance of 
V4 (Table 8.13), however, fluctuated substantially over sites, indicating its 
narrower range of adaptability. Furthermore, because its average yield is 
also significantly lower than the others, its potential for recommendation, 
even for a few selected sites where its yields are relatively high, is doubtful. 

8.2.2 Fertilizer Trial in Split-Plot Design 

We illustrate the step-by-step prcce,!:!res, for combining data from a series of 
split-plot experiments at m sites, with a fatorial experiment involving two rice 
varieties and six rates of nitrogen tested at three sites. Each site had three 
replications. Nitrogen rate was the main plot and variety was the subplot 
factor. Grain yield data are shown in Tabl, 8.16 and the individual analyses of 
variance, one for each site, are shown in Table 8.17. 

Table 8.16 Grain Yield of Two Rice Varletle3 (V1 and V2) 'rested with Six
 
Rates of Nitrogen (N1 to N.) at Three Sites (L1 to L3) In a Split-Plot Design
 
with Three Replications
 

Grain Yield, kg/ha 
Rep. 1 Rep. II Rep. III Total 

Site Nitrogen V, V2 V V2 V V2 V, V2 

L, N, 1,979 5,301 1,511 1,883 3,664 3,571 7,154 10,755 
N2 4,572 5,655 4,340 5,100 4,132 5,385 13,044 16,140 
N3 5,630 6,339 6,780 6,622 4,933 6,332 17,343 19,293 
N4 7,153 8,108 6,504 8,583 6,326 7,637 19,983 24,328 
Ns 7,223 7,530 7,107 7,097 6,051 6,667 20,381 21,294 
N6 7,239 7,853 6,829 7,105 5,874 7,443 19,942 22,401 

Total (97,847) (114,211) 
L 2 N 3,617 3,447 3,580 3,56n 3,939 3,516 11,136 10,523 

N2 6,065 5,905 5,463 5,969 5,435 6,026 16,963 17,900 
N3 6,092 5,322 6,571 5,883 6,084 6,489 18,747 17,694 
N4 5,916 6,513 6,982 6,556 7,145 7,853 20,043 20,922 
N3 7,191 8,153 6,109 7,208 7,967 6,685 21,267 22,046 
N6 5,805 7,290 6,890 6,564 7,113 7,401 19,808 21,255 

Total (107,964) (110,340) 
L3 N 4,320 4,891 4,068 2,577 3,856 4,541 12,244 12,009 

N2 5,862 6,009 4,626 6,625 4,913 5,672 15,401 18,306 
X, 5,136 6,712 5,836 6,693 4,898 6,799 15,870 20,204 
N4 6,336 6,458 5,456 6,675 5,663 6,636 17,455 19,769 
N5 5,571 5,683 5,854 6,868 5,533 5,692 16,958 18,243 
N6 6,765 6,335 5,263 6,064 3,910 5,949 15,938 18,348 

Total (93,866) (106,879) 



Table 8.17 Individual Analyses of Variance for Data in Table 8.16 (Split-Plotdesign), One for Each of the Three Sites (LI to L) 

SoureDge ,L L3
of of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 

FaVariation Freedom SS MS SS MS Fa SS MS Fa 

Replication 2 1,984,474 992,237 1,040,419 520110 1,520,023 760,012 
Nitrogen rate (N) 5 85,511,456 17,102,291 25.21** 51,671,994 10,334,399 37.35"* 18,257,311 3,651,462 8.50"* 
Error(a) 10 6,782,715 678,272 2,766,813 276,681 4,294,864 429,486 
Variety (V) 1 7,438,348 7,438,348 17.93"* 156,816 156,816 < 1 4,703,837 4,703,837 11.79"* 
N x V 5 1,247,351 249,470 < 1 815,823 163,165 < 1 1,978,118 395,624 < 1 
Error(b) 12 4,979,194 414,933 3,667,250 305,604 4,788,886 399,074 

cv(a)% 14.0 8.7 11.8
 
cv(b)% 10.9 9.1 11.3
 

a** = significant at 1% level. 
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o 	STEP 1. Apply the procedure described in step 1 of Section 8.2.1 to both 
error(a) MS and error(b) MS. For our example, the X2 value for testing the 
homogeneity of the three error(a) MS of Table ' 17 is 1.90; that for the 
corresponding error(b) MS is 0.31; both are nonsignificant. 

01 	 STEP 2. Construct an outline of the combined analysis of variance over m 
sites, based on a split-plot design with a main-plot treatments, b subplot 
treatments, and r replications, as shown in Table 8.18. 

o 	STEP 3. Compute the replications within site SS, the pooled error(a) SS, 
and the pooled error(b) SS as: 

m 

Reps. within site SS = I (Rep. SS), 
i-1 

m 

Pooled error(a) SS = E [Error(a) SS], 
i-I 

m 

Pooled error(b) SS = [Error(b)SS], 
Ii
 

where subscript i refers to the ith site. 

Table 8.18 OuUline of the Combined Analysis of Variance Over Sites, Based on 
Split-Plot Dealgn 

Source Degree 
of 
Variation 

of 
Freedom" 

Mean 
Square 

Computed 
F 

Sites (L) m - 1 L MS L MS/R MS 
Reps. within site m(r - 1) R MS 
Main-plot factor (A) 
L x A 

a ­ 1 
(m- 1)(a - 1) 

A MS 
L X A MS 

A MS/E. MS 
L X A MS/E, MS 

Pooled error(a) m(r - 1)(a - 1) E, MS 
Subplot factor (B) 
Lx B 

b - 1 
(m-1)(b-1) 

B MS 
L X B MS 

B MS/Eb MS 
L x B MS/EbMS 

A x B (a -1)(b- 1) A x BMS A X BMS/EbMS 
LXA XB (m-1)(a-1)(b-1) LXAXBMS LXAXIBMS/EbMS 
Pooled crror(b) ina(r - 1)(b - 1) Eb MS 

Total mrab - 1 

'a - number of main-plot treatments, b - number of subplot treatments, r = number of 
replications, and m - number of sites. 
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For our example, the three SS values are computed, using data in Table 
8.17, as: 

Reps. Within site SS = 1,984,474 + 1,040,419 + 1,520,023 

= 4,544,916 

Pooled error(a) SS = 6,782,715 + 2,766,813 + 4,294,864 

= 13,844,392 

Pooled error(b) SS = 4,979,194 + 3,667,250 + 4,788,886 

13,435,330 

0 	smp 4. Compute the remaining SS needed in Table 8.18, either from mean 
values or from total values, as: 

A. 	 Based on totals. The computation of the various SS follows the stan­
dard procedure: 

=C
C.F.
 mabr 

L SS =mi - C. F. 
abr 

aEAj 
ASS = -

mbr 
C.F. 

M a ( )j, 
S2(L4)2 

LXASS = i- J-b 
br 

-C.F.-LSS -ASS 

b EBk 
ESS = k-i -C.F. 

mar 

m 	 b 

E (LB) i 

LXBSS= i-1k-i -C.F-LSS-BSS 
ar 



Technology Adaptation Experiment: Analysis Over Sites 343 
a bE E (AB)'k 

A X BSS= J-1 k-I -C.F.- A SS - BSS 
mr 

ma a b 

E E E (LAB)2jk 
L XA x BSS= i- J-1 k- - C.F.- L SS -A SS 

r 

- BSS- L x ASS - L X BSS- A x BSS 

where G,is the grand total of the ith site, A, is the total of thejth level 
of factor A, (LA), is the total of thejth level of factor A at the ith site, 
Bk is the total of the kth level of factor B, (LB),, is the total of the kth 
level of factor B at the ith site, (AB)k is the total of the treatment 
involving thejth level of factor A and the kth level of factor B, and 
(LAB),Jk is the total of the treatment involving thejth level of factor A 
and the kth level of factor B at the ith site. 

B. Based on means. The computation of the various SS is: 

C.F. = mabr(G)2 

LSS = abr 2 _ C.F. 

A SS = mbr ) - C.F. 

L XASS =br (- - C.F.- LSS -A SS 
Ii-I 1 

ESS = mar - C.F. 

L X B SS = arY , )(T)]- C.F.- LSS - BSS 
ti-I k-I i 

X ABSS =mr F, Eb '- j - C.F.- ASS-B SS 
k-I 

L X A X B SS = rXE (-!W-B k] - C.F.- L SS-A SSV 
- j-1 k-I 

- BSS-L XASS- LXBSS-A ×BSS. 
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Table 8.19 The Site x Nitrogen (L x N) Totals, Computed from Data 
In Table 8.16 

Yield Total Nitrogen 

Nitrogen L, L 2 L3 Total 

N, 17,909 21,659 24,253 63,821 
N2 29,184 34,863 33,707 97,754 
N3 36,636 36,441 36,074 109,151 
N4 44,311 40,965 37,224 122,500 
N5 41,675 43,313 35,201 120,189 
N6 42,343 41,063 34,286 117,692 

Total 212,058 218,304 200,745 631,107 

where Gis the grand mean, E,is the mean of the ith site, A is the mean 

of thejth level of A, (L4 ),, is the mean of thejth level of A at the ith 
site, BWk is the mean of the kth level of factor B, (LB)Ik is the mean of 
the kth level of factor B at the ith site, (A-B)k is the mean of the 
treatment involving the jth level of A and the kth level of B, and 
(LAB)ik is the mean of the treatment involving thejth level of A at the 
kth level of B at the ith site. 

For our example, the computation is made based on the total values 
in Table 8.16. First, the L x N and the N x V tables of totals are 
computed, as shown in Tables 8.19 and 8.20. Then, the various SS are 
computed in the standard manner as: 

+ 218,304 + 200,745)2
C.F. =(212,058 

(3)(6)(2)(3)
 

(631,107)2 
= 3,687,926,346108 


Table 8.20 Thq Nitrogen x Variety (N x V)Totals, 

Computed from Data InTable 8.16 

Yield Total 

Nitrogen V, V2 

N, 	 30,534 33,287 
45,408 52,346N2 

N; 	 51,960 57,191 
57,481 65,019N4 

58,606 61,583Ns 

55,688 62,004N6 

Variety total 299,677 331,430 
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L SS (212,058)2 + (218,304)2 + (200,745)2 
(6)(2)(3)
 

- 3,687,926,346
 

= 4,401,065
 

SS (63,821)2 + (97,754)2 + "" + (117,692)2
NSS=(3)(2)(3) 

L X NSS 

V SS 

L X VS$ 

N X VSS 

L x×N × 

- 3,687,926,346 

= 136,849,095
 
= (17,909)2 + (21,659)2 + + (34,286)2
 

(2)(3) 

-3,687,926,346 - 4,401,065 - 136,849,095 

= 18,591,664 

(299,677)2 + (331,430)2 
= (3)(6)(3) 3,687,926,346 

= 9,335,676 
= (97,847)2 + (114,211)2 + "'"+ (106,879)2 

(6)(3) 

-3,687,926,346 - 4,401,065 - 9,335,676 

= 2,963,325 

= (30,534)2 + (33,287)2 + ... + (62,004)2 
(3)(3) 

- 3,687,926,346 - 136,849,095 - 9,335,676 

= 1,145,104 

- (7,154)2 +(10,755)2 + "" +(18,348)2 

3 

-3,687,926,346 - 4,401,065 - 136,849,095 

-9,335,676 - 18,591,664 - 2,963,325 

-1,145,104
 

= 2,896,188 
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o3 	 STEP 5. For each source of variation, compute the mean square by dividing 
the SS by its d.f. For our example, the results are shown in Table 8.21. 

o3 	 STEP 6. Compute the F value to test the significance of the location effect 
as: 

L MS
F(L) = Reps. within site MS 

_ 2,200,532 2.91 
757,486 

Because the computed F value is less than the corresponding tabular F 
value of 5.14, with f, = 2 and f = 6 degrees of freedom at the 5%level of 
significance, the site effect is not significant. 

o 	STEP 7. If homogeneity of error(a) MS over sites is established (step 1), 
compute the F values to test the significance of the A effect and the L x A 
effect as: 

A 	MS
F(A) =Pooled error(a) MS 

L 	x A MS=F(L x A) 
Pooled error(a) MS 

Table 8.21 Combined Analysis of Variance over Sites (Split-Plot Design) 
for Data in Tables 8.16 and 8.17 

Source Degree 
of of 
Variation Freedom 

Sum 
of Mean 

Squares Square 
Computed Tabular F 

Fa 5% 1% 

Site (L) 2 
Reps. within site 6 
Nitrogen rate (N) 5 
L x N 10 
Pooled error(a) 30 
Variety (V) 1 
L x V 2 
N x V 5 
L x N x V 10 
Pooled error(b) 36 

Total 107 

4,401,065 2,200,532 
4,544,916 757,486 

136,849,095 27,369,819 
18,591,664 1,859,166 
13,844,392 461,480 
9,335,676 9,335,676 
2,963,325 1,481,662 
1,145,104 229,021 
2,896,188 289,619 

13,435,330 373,204 

2.91n' 5.14 10.92 

59.31"* 2.53 3.70 
4.03* 2.16 2.98 

25.01** 4.11 7.39 
3.97* 3.26 5.25 
< 1 - -
< 1 - -

a** - significant at 1%level, - significant at 5%level, = not significant. 
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Otherwise, partition the A SS, L X A SS, and the pooled error(a) SS, 
following the procedures outlined in Section 8.1.1. 

For our example, because the homogeneity of the three error(a) MS was 
established, the two F values are computed based on these formulas as: 

F(N) = 27,369,819 59.31
461,480 

F(L X N) = 1,859,166
461,480 =4.03 

The corresponding tabular F values for F(N) are 2.53 at the 5% level of 
significance and 3.70 at the 1%level; those for F(L X N) are 2.16 and 2.98, 
respectively. Hence, both the nitrogen effect and its interaction with site are 
highly significant. The experimental evidence clearly indicates that, although 
the average nitrogen response is significant, the response varied between test 
sites. 

0 	STEP 8. If homogeneity of error(b) MS over sites is established (step 1), 
compute the F values for all effects involving the subplot factor B as: 

F(B) = B MS 
Pooled error(b) MS 

F(L x B) = L x B MS 
Pooled error(b) MS 

F(A X B) = A x B MS
Pooled error(b) MS 

LxAxBMSF(LxAx B)= 
Pooled error(b) MS 

Otherwise, partition all effects involving factor B and the pooled error 
SS, following the procedures outlined in Section 8.1.1. 

For our example, because homogeneity of error(b) MS over the three 
sites was established, the F values are computed based on these formulas as: 

F(V) = 9,335,676 = 25.01 
373,204 

373,204 =39F(L x V) = 1,481,662 3.97 

F(N X V) = 229,021<1
373,204 

x N x v) 289619373,204 
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T:, - 3.22 Partitioning of the Site x Nitrogen (L x N) Interaction SS 
of the Combined Analysis of Variance In Table 8.11 

Source of 	 Degree of Sum of Mean Computed
Fa
 Variation 	 Freedom Squares Square 

L X 	N 10 18,591,664 1,859,166 4.03** 
[L, vs. (LI, L 2) X NL (1) 13,233,863 13,233,863 28.68** 
[L3 vs. (L 1 , L 2 )J X NQ (1) 273,658 273,658 < 1 
[L 3 vs. (LI, L 2 ) X NR.. (3) 470,259 156,753 < 1 
(L 1 vs. L 2 ) X N L (1) 1,945,357 1,945,357 4.22* 
(L 1 vs. L 2 ) X No (1) 365,600 365,600 < 1 
(L 1 vs. L 2 ) X NR.. (3) 2,302,927 767,642 1.66-

Pooled error(a) 	 30 13,844,392 461,480 

a**- significant at 1%level, - significant at 5%level, , = not significant. 

0 	snrp 9. Enter all computations obtained from steps 3 to 8 in the outline of 
the combined analysis of variance obtained in step 2. For our example, the 
final results are shown in Table 8.21. These can be summarized as: 
" The experimental evidence failed to indicate any significant interaction 

between nitrogen and variety, and this result was consistent at all sites 
tested (i.e., L x N x V is not significant). 

* 	 The main effects of both factors (nitrogen and variety) are highly 
S:gnificant but both the nitrogen response and the varietal difference 
varied between the sites tested (i.e., both L X N and L X V are signifi­
cant). 

* 	 There was no significant difference between the site means. 

o3 sTEP 10. Make appropriate examination of all interaction effects involving 
sites that are significant. For our example, there are two such interactions, 
namely, the L X N and the L x V interaction effects: 
" For the L x N interaction, partition the L x N SS and fit the regression 

equation describing yield response to nitrogen at each site, following the 
procedure of step 7 in Section 8.1.1. The results of the partitioning of the 
L x N SS, shown in Table 8.22, indicate that only the linear portion of 

the nitrogen response curves varied between sites. The estimated quadratic 
regressions, one for each site, are graphically represented in Figure 8.3. 

" For the L x V interaction, because variety is a discrete factor and 
because there are only two varieties, the table of varietal mean difference 
by site is constructed as shown in Table 8.23. Results indicate that V2 

gave higher yields than V, at all sites but significantly so only at sites L, 
and L3 . 

0 	 s'rp 11. Evaluate the results so far obtained to summarize the findings and 
draw up conclusions and, if possible, recommendations. For our example, 
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Figure 8.3 Estimates of rice yield response to nitrogen at three locations (LI, L2, and L3) 
computed from data in Table 8.19. 

the findings can be summarized as follows: 

" 	 In terms of variety, because V2 was either better than or equal to V, in all 
test sites, V2 is a potential variety for recommendation in areas repre­
sented by the three test sites. 

" 	 In terms of nitrogen response, the linear portion of the response curves 
difftred between sites. The estimated quadratic response equations for 

Table 8.23 Varietal Difference at Each est Site, 

Computed from Data InTable 8.16 

Mean Yield, kg/ha 

Site V, DiffercnceaV2 

L, 	 5,436 6,345 909** 
5,998 6,130 132nsL 2 

L3 5,215 5,938 723** 
Av. 5.550 6,138 

* 	significant at 1%level, , not significant. 
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the three sites are given in Figure 8.3. The nitrogen rates that maximize 
yield are estimated as 118 kg N/ha at LI, 116 kg N/ha at L2 , and 94 kg 
N/ha at L3. 

8.3 LONG-TERM EXPERIMENTS 

The use of new crop production practices, such as fertilization, insect and 
disease control, and cropping pattern, will generally change the important 
physical and biological factors of the environment. This process of change can 
take many years. Consequently, the productivity of some types of technology 
must be evaluated by a series of trials repeated over time. Such trials are 
generally referred to as long-term experiments. Their distinguishing features 
are: 

• 	 Change over time is the primary performance index. Even though the 
average performance over time remains as an important measure of produc­
tivity, the change over time, in either crop or environmental traits, or both, 
is the more critical parameter. Obviously, an increasing rather than a 
decreasing productivity trend is an important feature of a desirable tech­
nology. In addition, although the initial productivity may be high, the 
buildup of pests or the depletion of soil nutrients resulting from continuous 
use of the technology can be serious enough to cause the technology to be 
abandoned.
 

" 	 The experimental field, the treatments, and the plot layout remain constant 

over time. Randomization of treatments to plots is done only once during 
the first crop season and the layout in all subsequent cropping seasons 
exactly follows the initial layout. 

Some examples of long-term experiments are: 

" 	 Long-term fertility trials, which are designed to evaluate changes in soil 

properties and nutrients as a consequence of the application of some soil 
amendments over time. 

• 	 Maximum yield trials, which are designed to measure crop yields and 

change over time, in both physical and biological environments under 
intensive cropping and best management. 

" 	 Weed control trials, which are designed to measure the change in weed 

population over time following different types of weed control measures. 

The first step in the analysis of a long-term experiment is to identify one or 

more characters to be used as an index of crop productivity. Because random 
fluctuation can mask changes over long time periods, a good index is one that 

is least sensitive to, or is least affected by, the random changes over time with 
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respect to environmental factors such as climate and pest incidences. Crop 
yield and soil properties are commonly used indices. Although crop yield is an 
excellent index of productivity, it is greatly influenced by the changes in both 
the climate and biological environments over time. Soil properties, on the other 
hand, are less affected by environments but may not be as closely related to 
productivity as yield. Thus, more than one index is generally analyzed in a 
long-term experiment. We illustrate the analysis of long-term experiments with 
a rice fertilizer trial conducted consecutively for 13 years with two crop seasons 

Table 8.24 Grain Yield of Rice Terted with Five Fertilizer Treatmentsa 
In a Series of Long-Term Ferllity Trials, for 13 Years with 
Two Crop Seasons per Year 

Mean Yield, t/hah 
Year Season F, F2 F3 F5F4 

1 Dry 3.98 6.67 7.05 6.00 6.99 
Wet 2.84 4.84 5.15 5.11 5.59 

2 Dry 3.10 5.69 5.80 5.58 5.83 
Wet 3.48 4.40 4.55 4.36 5.08 

3 Dry 2.69 5.09 5.75 5.03 6.27 
Wet 3.17 5.04 5.29 5.26 5.47 

4 Dry 3.70 5.13 6.50 5.55 7.15 
Wet 3.30 4.33 4.57 4.78 5.27 

5 Dry 3.46 5.48 6.13 5.44 7.01 
Wet 2.63 3.42 3.96 3.48 4.63 

6 Dry 2.66 4.14 5.29 4.35 5.83 
Wet 2.60 3.12 3.65 3.15 4.28 

7 Dry 2.99 4.55 4.99 4.97 5.71 
Wet 2.26 2.83 2.92 2.78 3.56 

8 Dry 2.91 3.85 4.08 4.37 5.41 
Wet 2.34 3.11 3.47 2.99 3.63 

9 Dry 3.71 4.46 5.31 4.75 6.75 
Wet 3.19 3.44 4.15 4.00 4.38 

10 Dry 2.11 3.24 3.34 3.49 5.16 
Wet 3.41 3.67 4.46 3.92 5.00 

11 Dry 2.56 2.87 4.12 3.18 3.77 
Wet 1.99 2.08 2.33 2.09 2.80 

12 Dry 3.20 4.70 5.71 5.48 7.44 
Wet 3.24 4.06 5.02 4.15 5.68 

13 Dry 2.22 3.40 0.10 3.49 6.61 
Wet 2.50 3.28 4.10 3.42 4.31 

Av. 2.93 4.11 4.76 4.28 5.39 

£Combinations of N- P- K are: F 0- 0- 0, F2 = N - 0- 0, F3 -

N - P- 0, F4 - N - 0- K, and F5 - N - P - K. 
hAverage of three replications. 
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Table 8.25 Outline of a Combined Analysis of Variance over Time of
 
Data from a Series of Long-Term FertilityTrials; RCB with t
 
Treatments, r Replications, and c Crops
 

Source Degree
 
of of Mean Computed
 
Variation Freedom Square F
 

Replication r - 1 R MS R MS/Ea MS 
Treatment (T) t - 1 TMS T MS/E. MS 
Error(a) (r- 1)(t - 1) Ea MS 
Crop (C) c - 1 CMS C MS/Eb MS 
C X T (c - 1)(t - 1) C X TMS C X TMS/Eb MS 
Error(b) t(r - 1)(c - 1) Eb MS 

Total crt - 1 

per year. A RCB design with three replications was used to test five N-P-K 
fertilizer treatments: 0-0-0, N-0-0, N-P-0, N-0-K, and N-P-K, where 0 repre­
sents no fertilizer application. The mean yield data for each treatment in each 
of the 26 crops are shown in Table 8.24. The step-by-step procedures in the 
analysis of crop yield data over 26 crops are: 

o 	STEP 1. Outline the combined analysis of variance over c crops, based on 

the basic design used. For our example, the outline, based on RCB design 
with t treatments and r replications, is shown in Table 8.25. 

o 	STEP 2. Compute the SS and MS for each source of variation in the 
combined analysis of variance outlined in step 1. For our exarple, the 

computations follow the procedures for the standard split-plot design 
(Chapter 3, Section 3.4) with fertilizer as main-plot and crop as subplot 
factors. The results are shown in Table 8.26. Note that there was a highly 

Table 8.26 Combined Analysis of Variance over Time of Data from a 
Series of Long-Term Fertility Trials, Involving Five Fertilizer Treatments 
and Three Replications, over 26 Crops 

Source Degree Sum 
of of of Mean Computed

Fa " 
Squares SquareVariation Freedom 

Replication 2 3.43030 1.71515
 
Treatment (T) 4 257.65765 64.41441 172.42**
 
Error(a) 8 2.98876 0.37360
 
Crop (C) 25 321.16860 12.84674 108.87**
 
C X T 100 69.38389 0.69384 5.88**
 
Error(b) 250 29.49909 0.11800
 

Total 389 684.12829 

-	 significant at 1% level. 
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significant interaction between treatment and crop, indicating that treatment 
responses varied among crops. 

0 sup 3. Examine the nature of the treatment X crop interaction (if found 
significant in step 2) through proper partitioning of sums of squares, based 
either on appropriate contrasts of treatment SS, or crop SS, or both. 
" On Treatment SS: In our example, the four treatments, besides control, 

represent the 2 x 2 factorial treatments of the two factors P and K. Thus, 
the most appropriate set of contrasts would be the following four single 
d.f. contrasts: 

Description Contrast 

Control vs. treated (T) 4 F1 - F 2 - F3 - F4 - F5 

P -F 2 + F3 -F 4 + F5 

K -F 2 -F 3 +F 4 +F 5 

PxK F2 -F 3 -F 4 + F5 

The results of the partitioned treatment SS and partitioned treatment 
x crop SS, based on the foregoing set of single d.f. contrasts, are given 
in Table 8.27. All components of both treatment SS and interaction SS, 
except for the C x P x K interaction, were highly significant. 
On Crop SS: In our example, the 26 crops represent 13 years and two 
crop seasons per year. Hence, a standard factorial partitioning of crop SS 
into year, season, and year x F 'ason would be most appropriate. The 

Table 8.27' Partitioning of the Treatment SS and the Crop x Treatment SS 
In the Combined Analysis of Variance In Table 8.26 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fa 

Treatment (T) 4 
TO (1) 180.63827 180.63827 483.51** 
P (1) 60.52265 60.52265 162.00** 
K (1) 12.26956 12.26956 32.84** 
P X K (1) 4.22717 4.22717 11.31** 

Error(a) 8 2.98876 0.37360 
CX T 100 

C X To (25) 33.11770 1.32471 11.23* 
C X P (25) 23.56402 0.94256 7.99** 
C X K (25) 9.24122 0.36965 3.13* 
C x P x K (25) 3.46095 0.13844 1.17 ns 

Error(b) 250 29.49909 0.11800 

a** - significant at 1%level, n , not significant. 
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Table 8.28 Partitioning of the Crop SS and the Crop x Treatment SS, 
In the Combined Analyslo of Variance In Tables 8.26 and 8.27 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fa 

Year(Y) 12 193.27160 16.10597 136.49"* 
Season (S) 1 89.97732 89.97732 762.52"* 
Y X S 12 37.91968 3.15997 26.78** 
CX T 25 

Y X T (12) 16.30327 1.35861 11.5100 
S X To (1) 14.81539 14.81539 125.55"* 
Y x S x T (12) 1.99904 0.16659 1.41 " 

Cx P 25 
Y X P (12) 12.79748 1.06646 9.040* 
S x P (1) 4.48712 4.48712 38.03** 
Y X S X P (12) 6.27942 u.52328 4.43* 

CXK 25 
Yx K (12) 4.99842 0.41654 3.53** 
S x K (1) 0.39645 0.39645 3.36n ' 

Y x S x K (12) 3.84635 0.32053 2.72** 
Error(b) 250 29.49909 0.11800 

a* - significant at 1%level, - not significant. 

results of the partitioned crop SS and partitioned crop x treatment SS, 
based on the factorial components of crop and the results in Table 8.27, 
are shown in Table 8.28. All individual components of treatment interact 
significantly with both year and season. 

0 	 sTEP 4. Evaluate the trend over time with respect to the specific treatment 
response. For our example, because the treatment X season X year interac­
tion is significant, time should be represented by year, and the study of 
trend should be done separately for each season. For the treatment re­
sponse. because there was no significant interaction between crop and 
P x X, the trends of P effect and of K effect over years are examined, 
separately for each season. 

In a long-term experiment, time is a quantitative factor. Hence, a 
common practice is to partilion time into components associated with 
orthogonal polynomials. In most cases, a simple linear trend-either posi­
tive or negative-should be sufficieat to describe a long term trend. How­
ever, in cases where the performance index fluctuates substantially over 
time, as is the case with our crop yield data, the trend may not be easily 
described. This is clearly demonstrated by the example we used where 
variation in yield response, to either P or K, is greatly dominated by the 
random fluctuations (Figure 8.4). Thus, no partitioning of the sums of 
squares based on year is made. 
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Figure 8A Changes in the yield response to phosphorus (P) and potassium (K) with successive 
croppings, 1968-1980, dry and wet season. 

8.4 RESPONSE PREDICTION EXPERIMENT 

Response prediction experiments are designed to characterize the behavior of 
treatment effects over a wide range of environments. The primary objective is 
to identify a functional relationship between crop performance and some 
important environmental factors that can adequately predict crop productivity
within a fairly wide range of environments. The important features of a 
response prediction experiment are: 

1. Functional relationship between crop performance and environment is 
the primary focus. Management practices, which can be controlled by the 
researcher, and the soil and climate, which are difficult to modify, constitute 
the environmental factors. Their effects on crop yield are to be quantified and 
put together in a functional relationship that can predict crop performance 
over a wide range of environments. Consequently, the choice of season and test 
site, as well as the treatments to be tested, should be made to facilitate the 
development of the functional relationship. 
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2. Variability among selected environmental factors is the primary basis 
for selecting test sites. In contrast to technology adaptation experiments, where 
the test sites are selected to represent the environment of a specified geographi­
cal area, those for response prediction experiments are selected to represent a 
wide range of variability for some preselected environmental factors. For 

example, if water availability and soil texture are identified as the two most 
important determinants of crop performance, the test sites to be used should 
have adequate variability with regards to these two variables. Test sites used 

should include those that represent all existing combinations of the two 
factors, e.g., low, medium, and high water availability on one hand; and fine, 
medium, and coarse soil textures on the other hand. 

3. Variability between selected management practices is the primary basis 
for selecting the treatments. The controllable factors that are suspected to have 
the largest impact on crop performance are used as the primary variables in 
specifying the treatments to be tested. For example, if nitrogen fertilization 
and planting density are considered important in influencing crop yields, then 
the treatments to be tested should reflect variability in these two controllable 
factors, that is, several rates of nitrogen fertilizer and several distances of 
planting included as treatments. 

We stress t-at there is a clear distinction between a response prediction 
experiment and the other types of experiavient described in earlier sections. For 
the others, identification of superior technology is the primary objective; for a 
response prediction experiment, the primary focus is on the identification of a 

functional relationship between crop performance and environment. Thus, 
procedures for data analysis described earlier are not applicable to the re­
sponse prediction experiment. The analytical proccdures for the development 
of a functional relationship involving many environmental factors are much 
more complex than those for the identification of a superior technology. 

The common tools for the development of a functional relationship are 
complex regression analysis and mathematical modeling, which are beyond the 
coverage of this book. Analysis of a series of experiments for the development 
of a functional relationship between crop performance and the environment 
should be attempted only with the aid of a competent statistician. 



CHAPTER 9 

Regression And
 
Correlation Analysis
 

Three groups of variables are normally recorded in crop experiments. These 
are: 

1. 	 Treatments, such as fertilizer rates, varieties, and weed control methods,
which are generated from one or more management practices and are 
the primary focus of the experiment. 

2. 	 Environmental factors, such as rainfall and solar radiation, which 
represent the portion of the environment that is not within the re­
searcher's control. 

3. 	 Responses, which represent the biological and physical features of the 
experimental units that are expected to be affected by the treatments 
being tested. 

Response to treatments can be exhibited either by the crop, in terms of 
changes in such biological features as grain yield and plant height (to be called 
crop response), or by the surrounding environment in terms of changes in such 
features as insect incidence in an entomological trial and soil nutrient in a 
fertility trial (to be called noncropresponse).

Because agricultural research focuses primarily on the behavior of biological
organisms in a specified environment, the associations among treatments,
environmental factors, and responses that are usually evaluated in crop re­
search are: 

1. 	 Association between Response Variables. Crop performance is a prod­
uct of several crop and noncrop characters. Each, in turvi, is affected by the 
treatments. All these characters are usually measured simultaneously, and their 
ass,ciation with each other can provide useful information about how the 
treatments influenced crop response. For example, in a trial to determine the
effect of plant density on rice yield, the association between yield and its 
components, such as number of tillers or panicle weight, is a good indicator of 
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the indirect effect of treatments; grain yield is increased as a result of increased 
tiller numbers, or larger panicle size, or a combination of the two. 

Another example is in a varietal improvement program designed to produce 
rice varieties with both high yield and high protein content. A positive 
asseciation between the two characters would indicate that varieties with both 
high yield and high protein content are easy to find, whereas a negative 
association would indicate the low frequency of desirable varieties. 

2. Association between Response and Treatment. When the treatments are 
quantitative, such as kilograms of nitrogen applied per hectare and numbers of 

plants per m2, it is possible to describe the association between treatment and 
response. By characterizing such an association, the relationship between 
treatment and response is specified not only for the treatment levels actually 
tested but for all other intermediate points within the range of the treatments 
tested. For example, in a fertilizer trial designed to evaluate crop yield at 0, 30, 
60, and 90 kg N/ha, the relationship between yield and nitrogen rate specifies 
the yields that can be obtained not only for the four nitrogen rates actually 
tested but also for all other rates of application between zero and 90 kg N/ha. 

3. Association between Response and Environment. For a new crop 
management practice to be acceptable, its superiority must hold over diverse 
environments. Thus, agricultural experiments are usually repeated in different 
areas or in different crop seasons and years. In such experiments, association 
between the environmental factors (sunshine, rainfall, temperature, soil nutri­
ents) and the crop response is important. 

In characterizing the association between characters, there is a need for 
statistical procedures that can simultaneously handle several variables. If two 
plant characters are measured to represent crop response, the analysis of 
variance and mean comparison procedures (Chapters 2 to 5) can evaluate only 
one character at a time, even though response in one character may affect the 
other, or treatment effects may simultaneously influence both characters. 
Regression and correlation analysis allows a researcher to examine any one or 
a combination of the three types of association described earlier provided that 
the variables concerned are expressed quantitatively. 

Regression analysis describes the effect of one or more variables (designated 
as independent variables) on a single variable (designated as the dependent 
variable) by expressing the latter as a function of the former. For this analysis, 
it is important to clearly distinguish between the dependent and independent 
variable, a distinction that is not -Jways obvious. For instance, in experiments 
on yield response to nitrogen, yield is obviously the dependent variable and 
nitrogen rate is the independent variable. On the other hand, in the example on 
grain yield and protein content, identification of variables is not obvious. 
Generally, however, the character of major importance, say grain yield, be­
comes the dependent variable and the factors or characters that influence grain 
yield become the independent variables. 

Nangnguyen
Highlight
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Correlation analysis, on the other hand, provides a measure of the degree of 
association between the variables or the goodness of fit of a prescribed 
relationship to the data at hand. 

Regression and correlation procedures can be classified according to the 
number of variables involved and the form of the functional relationship 
between the dependent variable and the independent variables. The procedure 
is termed simple if only two variables (one dependent and one independent 
variable) are involved and multiple, otherwise. The procedure is termed linear if 
the form of the underlying relationship is linear and nonlinear, otherwise. Thus, 
regression and correlation analysis can be classified into four types: 

1. simple linear regression and correlation 
2. multiple linear regression and correlation 
3. simple nonlinear regression and correlation 
4. multiple nonlinear regression and correlation 

We describe: 

" The statistical procedure for applying each of the four types of regression 
and correlation analysis, with emphasis on simple linear regression and 
correlation because of its simplicity and wide usage in agricultural research. 

" The statistical procedures for selecting the best functional form to describe 
the relationship between the dependent variable and the independent vari­
ables of interest. 

" The common misuses of regression and correlation analysis in agricultural 
research and the guidelines for avoiding them. 

9.1 LINEAR RELATIONSHIP 

The relationship between any two variables is linear if the change is constant 
throughout the whole range under consideration. The graphical representation 
of a linear relationship is a straight line, as illustrated in Figure 9.1a. Here, Y 
constantly increases two units for each unit change in X throughout the whole 
range of X values from 0 to 5: Y increases from 1 to 3 as X changes from 0 to 
1, and Yincreases from 3 to 5 as X changes from 1 to 2, and so on. 

The functional form of the linear relationship between a dependent variable 
Y and an independent variable X is represented by the equation: 

Y = a + fiX 

where a is the intercept of the line on the Y axis and P, the linear regression 
coefficient, is the slope of the line or the amount of change in Y for each unit 
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Figure 9.1 Illustration of a linear (a), and a nonlinear (b), relationship between the dependent 
variable Yand the independent variable X. 

change in X. For example, for the linear relationship of Figure 9.1a, with the 
intercept a of I and the linear regression coefficient P3 of 2, the relationship is 
expressed as: 

Y=I+2X for0 <X<5 

With the two parameters of the linear relationship (i.e., a and P3) specified, 

the value of the dependent variable Y, corresponding to a given value of the 

independent variable X within the range of X values considered, can be 

immediately determined by replacing X in the equation with the desired value 

and computing for Y. For example, for X = 1.5, Y is computed as I + 2(1.5) 

= 4, and for X = 3, Y is computed as 1 + 2(3) = 7. 
When there is more than one independent variable, say k independent
 

variables (XI, X 2 ,... ,Xk). the simple linear functional form of the equation
 

Y = a + fiX can be extended to the multiple linear functional form of
 

Y = a + JIXI + 02X 2 + "" + kXk 

where a is the intercept (i.e., the value of Y when all X's are zeroes) and /3, 

(i = 1,... k), the partialregressioncoefficient associated with the independent 
variable X, represents the amount of change in Y for each unit change in X,. 

Thus, in the multiple linear functional form with k independent variables, 
there are (k + 1) parameters (i.e., a, it, 2 that need to be estimated. ..... IOk) 

The presence of /3, (i.e., when the value of 3iiis not zero) indicates the 

dependence of Y on X,. In other words, if /A = 0, then Y does not depend on 
X (i.e., there is no association between Y and X, in the manner prescribed). 

Thus, the test of significance of each ,to determine whether or not /3,= 0 is 

an essential part of the regression analysis. 
In some siuations, the researcher may also wish to test the significance of 

the intercept a (i.e., to check whether a = ao,where ao is the value specified by 
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the res,.archer). For example, if the researcher wishes to determine whether 
Y = 0 when the value of X in the equation Y= a + /iX is zero, which is 
equivalent to checking whether the line passes through the origin, then he must 
test whether or not a = 0. 

9.1.1 Simple Linear Regression and Correlation 

For the simple linear regression analysis to be applicable, the following 
conditions must hold: 

" There is only one independent variable X affecting the dependent vari­
able Y. 

" The relationship betwen I and X is known, or can be assumed, to be linear. 

Although these two conditions may seem too restrictive, they are often 
satisfied for data from controlled experiments. 

Most controlled experiments are designed to keep the many factors that can 
simultaneously influence the dependent variable constant, and to vary only the 
factor (treatment) being investigated. In a nitrogen fertilizer trial, for example,
all other factors that can affect yield, such as phosphorus application, potas­
sium application, plant population, variety, and weed control, are carefully
controlled throughout the experiment. Only nitrogen rate is varied. Conse­
quently, the assumption that the rate of nitrogen application is the major 
determinant of the variation in the yield data is satisfied. 

In contrast, if data on grain yield and the corresponding rate of nitrogen 
application were collected from an experiment where other production factors 
were allowed to vary, the assumption of one independent variable would not 
be satisfied and, consequently, the use of a simple regression analysis would be 
inappropriate. 

Although the assumption of a linear relationship between any two char­
acters in biological materials seldom holds, it is usually adequate within a 
relatively small range in the values of the independent variable. An example is 
the commonly observed behavior of plant growth over time, as illustrated in 
Figure 9.lb. Typically, growth rate is rapid when the plant is young and 
declines considerably as the plant becomes older. Thus, the relationship 
between plant growth (as measured by weight or height) and plant age is not 
linear over the whole life cycle. However, within some limited region-for 
example, within the range of X values from 0 to 1 or from 1 to 2-the 
relationship could be adequately described by a straight line. Because the range
of a crop response is generally limited by the range of the treatments under 
test, and because this range is fairly narrow in most controlled experiments, the 
assumption of linearity is generally satisfied. 

9.1.11 Simple Linear Regression Analysis. The simple linear regression 
analysis deals with the estimation and tests of significance concerning the two 
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parameters a and P3 in the equation Y = a + f#X. It should be noted that 

because the simple linear regression analysis is performed under the assump­

tion that there is a linear relationship between X and Y, it does not provide any 

test as to whether the best functional relationship between X and Y is indeed 

linear. 
The data required for the application of the simple linear regression analysis 

are the n pairs (with n > 2) of Y and X values. For example, in the study of 

nitrogen response using data from a fertilizer trial involving t nitrogen rates, 

the n pairs of Y and X values would be the t pairs of mean yield (Y) and 

nitrogen rate (X). 
We illustrate the procedure for the simple linear regression analysis with the 

rice yield data from a trial with four levels of nitrogen, as shown in Table 9.1. 

The primary objective of the analysis is to estimate a linear response in rice 

yield to the rate of nitrogen applied, and to test whether this linear response is 

significant. The step-by-step procedures are: 

X and Y, the corrected sums of squares Ex 2 

o STEP 1. Compute the means 

and Ey 2, and the corrected sum of cross products Exy, of variables X and Y 

as: 

n 

_7EY
 
n 

n 

x= E(,-
I-1 

W)2X2 1( 
n 

n 

I-1 

where (X, Y) represents the ith pair of the X and Y values. 

For our example, n = 4 pairs of values of rice yield (Y) and nitrogen rate 

(X). Their means, corrected sums of squares, and corrected sum of cross 

products are computed as shown in Table 9.1. 
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Table 9.1 Computation of aSimple Linear Regression Equation
between Grain Yield and Nitrogen Rate Using Data from a 
Fertilizer Experiment In Rice 

Nitrogen Grain Deviation from Square of Product of 
Rate, Yield, Means Deviate Deviates 
kg/ha kg/ha
(X) (Y) x y x 2 (x)(y) 

0 4,230 -75 - 1,640.75 5,625 2,692,061 123,056
50 5,442 -25 -428.75 625 183,827 10,719

100 6,661 25 790.25 625 624,495 19,756
150 7,150 75 1,279.25 5,625 1,636,481 95,944 

Sum
300 23,483 0 0.00 12,500 5,136,864 249,475 

Mean 
75 5,870.75 

o sTEP 2. Compute the estimates of the regression parameters a and ,8as: 

a= F-bf 

bFxy 

Ex2 

where a is the estimate of a; and b, the estimate of j.
For our example, the estimates of the two regression parameters are: 

249,475

12,500 

a = 5,870.75 -(19.96)(75) = 4,374 

Thus, the estimated linear regression is 

=a + bX 

-4,374 + 19.96X for 0 < X , 150 

o STEP 3. Plot the observed points and draw a graphical representation of the 
estimated regression equation of step 2: 
" Plot the n observed points. For our example, the four observed points

(i.e., the X and Yvalues in Table 9.1) are plotted in Figure 9.2. 
" Using the estimated linear regression of step 2, compute the k values, one 

corresponding to the smallest X value (i.e., Xm,n) and the other corre­

http:5,870.75
http:5,870.75
http:1,279.25
http:1,640.75


364 Regression and Correlation Analysis 

Groin yield (kg/ho) 

A 
7000-

Y 4,374 +19.96X 
(r.9* 

5,000­

min=4,374 
4,0I I 

0 50 1030 150 

Nitrogen (kg/ho) 

Figure 9.2 The estimated linear regression between grain yield (Y) and nitrogen rate (X), 
computed from data in Table 9.1. 

sponding to the largest X value (i.e., X..): 

= + 040 

= a + b(X.) 

For our example, with X . , = 0 kg N/ha and X. = 150 kg N/ha, 

the corresponding kmi. and k.a values are computed as: 

Yrmn = 4,374 + 19.96(0) = 4,374 kg/ha 

k. = 4,374 + 19.96(150) = 7,368 kg/ha 

Plot the two points (Xmin, Y'.i) and (X,,,, k,,.) on the (X, Y) plane 

and draw the line between the two points, as shown in Figure 9.3. The 

following features of a graphical representation of a linear regression, 

such as that of Figure 9.3, should be noted: 

(i) The line must be drawn within the range of values of Xmin and 

Xmu. It is not valid to extrapolate the line outside this range. 

(ii) The line must pass through the point (X, Y), where Xand Yare the 

means of variables X and Y, respectively. 
(iii) The slope of the line is b. 
(iv) The line, if extended, must intersect the Y axis at the Y value of a. 

For our example, the two points (0,4374) and (150,7368) are plotted 

and the line drawn between them, as shown in Figure 9.2. 
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Figure 9.3 Graphical representation of an estimated regression line: Y - a + bX. 

a sEP 4. Test the significance of Pl: 
" Compute the residual mean square as: 

n-2 

where the values of Ey 2, Zxy, and Ex2 are those computed in step 1, as 
recorded in Table 9.1. 

" Compute the tb value as: 

b 

~X2 

" 	Compare the computed t bvalue to the tabular t values of Appendix C, 
with (n - 2) degrees of freedom. P? is judged to be significantly different 
from zero if the absolute value of the computed t bvalue is greater than 
the tabular tvalue at the prescribed level of significance. 
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For our example, the residual mean square and the t b value are 
computed as: 

(249,475)25,136,84 
s 24 212,500 - 78,921=4-.


19.96 
tb 7,921 = 7.94 

12,500 

The tabular t values at the 5% and 1% levels of significance, with 
(n - 2) - 2 degrees of freedom, are 4.303 and 9.925, respectively. Be­
cause the computed t bvalue is greater than the tabular tvalue at the 5% 
level of significance but smaller than the tabular i value at the 1% level, 
the linear response of rice yield to changes in the rate of nitrogen 
application, within the range of 0 to 150 kg N/ha, is significant at the 5% 
level of significance. 

3 Smp 5. Construct the (100 - a)% confidence interval for P), as: 

C.l.= b ± t, x2 

where t.is the tabular t value, from Appendix C, with (n - 2) degrees of 
freedom and at a level of significance. For our example, the 95% confidence 
interval for P3 is computed as: 

C.I.(95%) = b ± 1.05 y~x­

78,921 
19.96 ± 4.303_ 12,50= 

- 19.96 "10.81 

= (9.15, 30.77) 

Thus, the increase in grain yield for every I kg/ha increase in the rate of 
nitrogen applied, within the range of 0 to 150 kg N/ha, is expected to fall 
between 9.15 kg/ha and 30.77 kg/ha, 95% of the time. 
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o STEP 6. Test the hypothesis that a = ao: 

" Compute the t value as: 

a - ao 

Compare the computed ta value to the tabular t value, from Appendix C, 
with (n - 2) degrees of freedom and at a prescribed level of significance.
Reject the hypothesis that a = a0 if the absolute value of the computed t. 
value is greater than the corresponding tabular t value. 

For our example, although there is probably no need to make the test 
of significance on a, we illustrate the test procedure by testing whether a 
(i.e., yield at 0 kg N/ha) is significantly different from 4,000 kg/ha. The 
t. value is computed as: 

4,374 - 4,000 
to - = 1.59 

+ (75078,921[ 

Because the ta value is smaller than the tabular t value with (n - 2) = 2 
degrees of freedom at the 5% level of significance of 4.303, the a value is 
not significantly different from 4,000 kg/ha. 

9.1.1.2 Simple Linear Correlation Analysis. The simple linear correlation 
analysis deals with the estimation and test of significance of ti.e simple line.r 
correlation coefficient r, which is a measure of the degree of linear association 
between two variables X and Y. Computation of tie simple linear correlation 
coefficient is based on the amount of variability it, one variable that can be 
explained by a linear function of the other variable. The result is the same 
whether Y is expressed as a linear function of X, or X is expressed as a linear 
function of Y. Thus, in the computation of the .'nple linear correlation 
coefficient, there is no need to specify which variable is the cause and which is 
the consequence, or to distinctly differentiate between the dependent and the 
independent variable, as is required in the regression analysis. 

The value of r lies within the range of - 1 and + 1, with the extreme value 
indicating perfect linear association and the midvalue of zero indicating no 
linear association between the two variables. An intermediate value of r 
indicates the portion of variation in one variable that can be accounted for by 
the linear function of the other variable. For example, with an rvalue of .8, the 
implication is that 64% [(100)(r 2 ) = (100X.8) 2 = 641 of the variation in the 
variable Ycan be explained by the linear function of the variable X. The minus 
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Figuire 9,A Graphical representations of various values of simple correlation coefficient r. 

or plus sign attached to the r value indicates the direction of change in one 
variable relative to the change in the other. That is, the value of r is negative 
when a positive change in one variable is associated with a negative change in 
another, and positive when the two variables change in the same direction. 
Figure 9.4 illustrates graphically the various degrees of association between 
two variables as reflected in the r values. 

Even though the zero r value indicates the absence of a linear relationship 
between two variables, it does not indicate the absence of any relationship 
between them. It is possible for the two variables to have a nonlinear 
relationship, such as the quadratic form of Figure 9.5, with an r value of zero. 
This is why we prefer to use the word linear, as in simple linear correlation 
coeficie,a=t, instead of the more conventional names of simple correlation 
coefficient or merely correlation coefficient. The word linear emphasizes the 
underlying assumption of linearity in the computation of r. 

The procedures for the estimation and test of significance of a simple linear 
correlation cofficient between two variables X and Y are: 

-).sTEP1. Compute the means Y and Z the corrected sumns of squares Ex 2 

and Ey', and the corrected sum of cross products E.xy, of the two variables, 
following the procedure in step I of Section 9.1.1.1. 

0STEP 2. Compute the simple linear correlation coefficient as: 

Exy
 
r 'y2) 
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Y 
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0 1 1 Figure 9.5 Illustration of a quadratic relation­
0 I 2 3 4 5 6 ship, between two variables Y and X, that results 

x in a simple linear correlation coefficient r being 0. 

o srP 3. Test the sipnificance of the simple linear correlation coefficient by
comparing the computed rvalue of step 2 to the tabular r value of Appendix
H with (n - 2) degrees of freedom. The simple linear correlation coefficient 
is declared significant at the a level of significance if the absolute value of 
the computed r value is greater than the corresponding tabular r value at the 
a level of significance. 

In agricultural research, there are two common applications of the simple 
linear correlation analysis: 

" It is used to measure the degree of association between two variables with a 
well-defined cause and effect relationship that can be defined by the linear 
regression equation Y = a + PX. 

" It is used to measure the degree of linear association between two variables 
in which there is no clear-cut cause and effect relationship. 

We illustrate the linear correlation procedure, with two examples. Each 
example represents one of the two types of application. 

Example 1. We illustrate the association between response and treatment 
with the data used to illustrate the simple linear regression analysis in Section 
9.1.1.1. Because the data was obtained from an experiment in which all other 
environmental factors except the treatments were kept constant, it is logical to 
assume that the treatments are the primary cause of variation in the crop 
response. Thus, we apply the simple linear correlation analysis to determine 
the strength of the linear relationship between crop response (represented by
grain yield) as the dependent variable and treatment as the independent 
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variable. The step-by-step procedures are: 

3 sTEP 1. Compute the means, corrected sums of squares, and corrected sum 
of cross products of the two variables (nitrogen rate and yield), as shown in 
Table 9.1. 

o smp 2. Compute the simple linea correlation coefficient r, as: 

r=- Exy 

249,475 .985 

V(12,500)(5,136,864) 

o3 smiP 3. Compare the absolute value of the computed r value to the tabular 
r values with (n - 2) = 2 degrees of freedom, which are .950 at the 5%level 
of significance and .990 at the 1%level. Because the computed r value is 
greater than the tabular r value at the 5%level but smaller than the tabular r 
value at the 1%level, the simple linear correlation coefficient is declared 
significant at the 5% level of significance. The computed r value of .985 
indicates that (100)(.985)2 = 97% of the variation in the mean yield is 
accounted for by the linear function of the rate of nitrogen applied. The 
relatively high r value obtained is also indicative of the closeness between the 
estimated regression line and the observed points, as shown in Figure 9.2. 
Within the range of 0 to 150 kg N/ha, the linear relationship between mean 
yield and rate of nitrogen applied seems to fit the data adequately. 

We add a note of caution here concerning the magnitude of the com­
puted r value and its corresponding degree of freedom. It is clear that the 
tabular r values in Appendix H decrease sharply with the increase in the 
degree of freedom, which is a function of n (i.e., the number Qf pairs of 
observations used in the computation of the r value). Thus, the smaller n is, 
the larger the computed r value must be to be declared significant. In our 
example with n = 4, the seemingly high value of the computed r of .985 is 
still not significan., n ihe 1% level. On the otner hand, with n = 9, a 
computed r value of .8 would have been declared significant at the 1%level. 
Thus, the practical importance of the significance and the size of the r value 
must be judged in relation to the sample size n. It is, therefore, a good 
practice to always specify n in te presentation of the regression and 
correlation result (for more discussion, see Section 9.4). 

Example 2. To illustrate the association between two responsec we use data 
on soluble protein nitrogen (variable XI) and total chlorophyll (variable X2) in 
the leaves obtained from seven samples of the rice variety IR8 (Table 9.2). In 
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Table 9.2 Computation of a Simple Linear Correlation Coefficient between 
Soluble Protein Nitrogen (Y1 ) and Total Chlorophyll (X2) In the Leaves of R!ce 
Variety IR8 

Soluble Total 

Samiple 
Protein N, 
nag/leaf 

Chlorophyll, 
rag/leaf Deviate 

Square 
of Deviate 

Product of 
Deviates 

Number (XI) (X2) xx (x)(x2) 

1 0.60 0.44 -0.37 -0.38 0.1369 0.1444 0.1406 
2 1.12 0.96 0.15 0.14 0.0225 0.0196 0.0210 
3 2.10 1.90 1.13 1.08 1.2769 1.1664 1.2204 
4 1.16 1.51 0.19 0.69 0.0361 0.4761 0.1311 
5 0.70 0.46 -0.27 -0.36 0.0729 0.1296 0.0972 
6 0.80 0.44 -0.1 -0.38 0.0289 0.1444 0.0646 
7 0.32 0.04 -0.65 -0.78 0.4225 0.6084 3.5070 

Total 6.80 5.75 0.01a 0.01a 1.9967 2.6889 2.1819 
Mean 0.97 0.82 

'The nonzero values are only due to rounding. 

this case, it is not clear whether there is a cause and effect relationship between 
the two variables and, even if there were one, it would be difficult to specify
which is the cause and which is the effect. Hence, the simple linear correlation 
analysis is applied to measure the degree of linear association between the two 
variables without specifying the causal relationship. The step-by-step proce­
dures are: 

O sTEp 1. Compute the means, corrected sums of squares, and corrected sum 
of cross products, following the procedure in step I of Section 9.1.1.1. 
Results are shown in Table 9.2. 

[o sTE 2. Compute the simple linear correlation coefficient r: 

2.1819 
r= = .942 

V(1.9967)(2.6889) 

o sTp 3. Compare the absolute value of the computed r value to the tabular 
r values from Appendix H, with (n - 2) = 5 degrees of freedom, whic!, are 
.754 at the 5% level of significance and .874 at the 1%level. Becau tthe 
computed r value exceeds both tabular r values, we conclude that the si' ;,ple
linear correlation coefficient is significantly different from zero at the 1% 
probability level. This significant, high r value indicates that there is strong 
evidence that the soluble protein nitrogen and the total chlorophyll in the 
leaves of 1R8 are highly associated with one another in a linear way: leaves 
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with high soluble protein nitrogen also have a high total chlorophyll, and 
vice versa. 

.. LL3 Homogeneity of Regression Coefficients. In a single-factor experi­
ment where only one factor is allowed to vary, the association between 
response and treatment is clearly defined. On the other hand, in a factorial 
experiment, where more than one factor varies, the linear relationship between 
response and a given factor may have to be examined over different levels of 
the other factors. For example, with data from a two-factor experiment 
involving four rice varieties and five levels of nitrogen fertilization, the linear 
regression of yield on nitrogen level may have to be examined separately for 
each variety. Or, with data from a three-factor experiment involving three 
varieties, four plant densities, and five levels of nitrogen fertilization; twelve 
separate regressions between yield and nitrogen levels may need to be esti­
mated for each of the 3 X 4 = 12 treatment combinations of variety and plant 
density. Similarly, if the researcher is interested in examining the relationship 
between yield and plant density, he can estimate a regression equation for each 
of the 3 x 5 = 15 treatment combinations of variety and nitrogen. 

In the same manner, for experiments in a series of environments (i.e., at 
different sites or seasons or years), the regression analysis may need to be 
applied separately for each experiment. 

When several linear regressions are estimated, it is usually important to 
determine whether the various regression coefficients or the slopes of the 
various regression lines differ from each other. For example, in a two-factor 
experiment involving variety and rate of nitrogen, it would be important to 
know whether me rate of change in yield for every incremental change in 
nitrogen fertiliza....n varies from one variety to another. Such a question is 
answered by comparing the regression coefficients of the different varieties. 
This is referred to as testing the homogeneity of regression coefficients. 

The concept of homogeneity of regression coefficients is closely related to 
the concept of interaction between factors, which is discussei in Chapter 3, 
Section 3.1, and Chapter 4, Section 4.1. Regression lines with equal slopes are 
parallel to one another, which also means that there is no interaction between 
the factors involved. In other words, the response to the levels of factor A 
remains the same over the levels of factor B. 

Note also that homogeneity of regression coefficients does not imply equiva­
lence of the regression lines. For two or more regression lines to coincide (one 
on top of another) the regression coefficients 83and the intercepts a must be 
homogeneous. In agricultural research where regression analysis is usually 
applied to data from controlled experiments, researchers are generally more 
interested in comparing the rates of change (P3) than the intercepts (a). 
However, if a researcher wishes to determine whether a single regression line 
can be used to represent several regression lines with homogeneous regression 
coefficients, the appropriate comparison of treatment means (at the X level of 
zero) can be made following the procedures outlined in Chapter 5. If the 
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difference between these means is not significant, then a single regression line 
can be used. 

We present procedures for testing the homogeneity of regression coefficients 
for two cases, one where only two regression coefficients are involved and 
another where there are three or more regression coefficients. In doing this, we 
concentrate on simplicity of the procedure for two regrcssion coefficients, 
which is most commonly used in agricultural research. 

9.1.1.3.1 Two Regression Coefficients. The procedure for testing the hy­
pothesis that fix # 2 in two regression lines, represented by 1 = a, + fi1 X= 
and Y2 = a 2 + fl 2 X, is illustrated using data of grain yield (Y) and tiller 
number (X) shown in Table 9.3. The objective is to determine whether the 
regression coefficients in the linear relationships between grain yield and tiller 
number are the same for the two varieties. The step-by-step procedures are: 

0 STEP 1. Apply the simple linear regression plocedure of Section 9.1.1.1 to 
each of the two sets of data, one for each variety, to obtain the estimates of 

Table 9.3 Computation of Two Simple Linear Regression 
Coefficients between Grain Yield (Y) and Tiller Number (X), 
One for Each of the Two Rice Varieties Milfor 6(2) and 
Taichung Native 1 

Milfor 6(2) Taichung Native1
 

Grain Yield, Tillers, Grain Yield, Tillers, 
kg/ha no./m 2 kg/ha no./m 2 

4,862 160 5,380 293 
5,244 175 5,510 325 
5,128 192 6,000 332 
5,052 195 5,840 342 
5,298 238 6,416 342 
5,410 240 6,666 378 
5,234 252 7,016 380 
5,608 282 6,994 410 

X1 -217 X2 - 350 
- 5,230 2 - 6,228 

Ex2 - 12,542 'x2 - 9,610 

EYI" 357,630 Fy22 - 2,872,044 

,xly, - -X2Y2153,85457,131 ­

,5- 4 - 4.56 b2 - 153,854 _ 16.0112,542 9,610 
a, - 5,230 - (4.56)(217) a2 - 6,228 - (16.01)(350) 

- 4,240 - 624 
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the two linear regressions:, 

Y- a, + bIX 

k = a2 + b2X 

For our example, the computations are shown in Table 9.3 and the two 
estimated regression lines are: 

= 4,240 + 4.56X for variety Milfor 6(2) 

2-624 + 16.01X for variety Taichung Native 1 

These two estimated linear regressions are represented graphically in 
Figure 9.6. 

3 sTrP 2. Compute the residual mean square (Section 9.1.1.1, step 4) for each 
set of data. For our example, the two values of the residual mean square are: 

(57,131)2357,630 
2. (1) _ - 12,542

8-2 

= 16,231.39 

- (153,854)2
2,872,044 

8-2 9,610-s2.,(2) = 

= 68,145.85 

Grain yield (kg/ha) 

*Mi ar6I2) I,4, 240+456X 
7,000 (F. 85)., o 

Toichung (NrI, 92 624+160)X 

6,000 0 

0 

5,500 -0 Ni 

5,000 -'001 

4,500 I I 
140 160 220 260 300 340 380 420 

Tillers (no/m 2 
) 

Figure 9.6 Estimated finear relationships between gra.a yield (Y) and filler number (X) of two 
rice varieties: Milfor 6(2) and Taichung (N)I. 

http:68,145.85
http:16,231.39
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0 s'P 3. Compute the'pooled residual mean square as: 

2 '(n, - 2)s 	.. (1) +(n 2 - 2)s2..(2) 
n, + n2 - 4 

where s2.x(1) and s2.,(2) are the values of the residual mean square 
computed in step 2, and n, and n2 are the numbers of paired observations 
for the first and second set of data. If n, = n2 , the s 2 is simply the standard 
arithmetic mean of the two residual mean squares. For our example, because 
n, = n 2 = 8, the pooled residual mean square is computed as: 

2 16,231.39 + 68,145.85 
2 

= 42,188.62 

o sTE 4. Compute the t value as: 

I t b,-b2 
t=
 

where b, and b2 are the estimated regression coefficients, and Ex2 and Ex2 
are the values of the corrected sum of squares, for the first and second set of 
data. 

For our example, the t value is computed as: 

4.56 - 16.01 
V42,188.62 + 1 

f2542+9,610 

- -4.11 

o sTP 5. Compare the computed I value with the tabular t values, from 
Appendix C, with (n, + n2 - 4) degrees of freedom. Reject the hypothesis 
that the t%,) regression coefficients are the same (01 = #12)if the absolute 
value of the computed t value is greater than the corresponding tabular t 
value at the prescribed level of significance. 

For our example, the tabular t values obtained from Appendix C with 
(n, + n2 - 4) = 12 degrees of freedom are 2.179 for the 5% level of 
significance and 3.055 for the 1%level. Because the absolute value of the 
computed I value is larger than the tabular t value at the 1%level of 

http:V42,188.62
http:42,188.62
http:68,145.85
http:16,231.39
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significance, the hypothesis that the rzegression coefficients are the same for 
the two varieties is rejected. We therefore conclude that the two regression 
coefficients are not homogeneous. The rate of increase in grain yield due to 
an incremental change in tiller number is significantly faster for variety 
Taichung Native I than for variety Milfor 6(2). 

9.1.1.3.2 Three or More Regression Coefficients. For the k linear regres­
sion lines, =- a, + flX(i = 1,...,k), the procedure for testing the hypothe­
sis that fl = , -... = 1k is illustrated using data of grain yield (Y) and 
tiller number (X) of three rice varieties shown in Table 9.4. The step-by-step 
procedures are: 

o Smp 1. Apply the simple linear regression procedure of Section 9.1.1.1 to 
each of the k sets of data, with seven pairs of observations per set, to obtain 
k estimated linear regressions: 

k, =a,+bX fori = 1,...,k 

For our example, the estimated linear regressions between grain yield (Y) 
and tiller number (X) for k = 3 varieties are computed as: 

= 1,436 + 536.70X for 1R1514A-E666 

'2= -3,414 + 860.70X for IR8 

3 = 8,771 - 942.38X for Peta 

These three estimated linear regressions are represented graphically in 
Figure 9.7. 

o 	STEP 2. Compute the value of the residual sum of square, for each of the k 
sets of data as: 

A, = Ey2- (EXY)2 for i= 1,...,k 

For our example, the three values of the residual sum of squares for 
IR1514A-E666, IR8, and Peta are: 

A, = 4,068,187 -(4,519)2 

8.42 

= 	1,642,847 



Table 9.4 Computation for Testing Homogeneity of Three Regression
Coefficients, In the Linear Relationships between Grain Yield (Y)and 
Tiller Number (X), of Rice Varieties IR1514A-E666, IR8, and Peta 

IR1514A-E666 


Grain Yield, Tillers, 
kg/ha no./hill 

5,932 7.98 
4,050 5.72 
4,1U. 4.95 
4,862 7.82 
5,596 6.67 
5,570 6.55 
4,002 5.28 
Y' - 6.42 

, -4,882 
- 8.42 

Ey 2 - 4,068,187 

Exly,- 4,519 

Grain yield (kg/ha) 

1R8 Peta 
Grain Yield, Tillers, Grain Yield, Tillers, 

kg/ha no./hill kg/ha no./hill 

4,876 9.98 1,528 7.90 
3,267 7.67 2,858 6.39 
2,051 6.67 3,857 5.78 
4,322 8.33 3,796 5.55 
4,557 9.16 1,507 6.50 
4,82 9.67 2,078 7.67 
2,322 6.75 1,638 7.03 

Y'2 - 8.32 W'3 - 6.69 
Y2 - 3,747 3- 2,466 

EX2 10.89 Ex 2 - 4.79 
2,y - 8,576,031 Ey 2 - 6,493,098 

EX2Y2 - 9,373 F2X 3y 3 - -4,514 

8000 *IRI514A-E666 Y)=1,436+53670X(r=.77t) 
= *
SiR 8 : Y2 -3,414 + 860.70 X (r -.97 *) 

0 PETA' Y3 8,771 - 942 38X (r-.81*)
 
6,000 
 0 

49000­

0 0 IC4,000­

2,000 

S0 1-10 

C III
 

4 5 6 7 8 
 9 10 
Tillers (no./hill) 

Figure 9.7 Estimated linear rtladonships between grain yield (Y) and tiller number (X') of three 
rice varieties: IR1514A-E666, 1R8, and Peta. 
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A2 -.8,576,031 - (9373)
10.89 

= 508,710 

A3 = 6,493,098 - 4,514) 

4.79 

= 2,239,195 

3 smp 3. Compute the sum of the k values of the residual sum' of squares 
computed in step 2 as: 

k 

B- EAI 
I-I 

For our example, the sum of the k = 3 values of the residual sum of 
squares is: 

B = 1,642,847 + 508,710 + 2,239,195 = 4,390,752 

" 	srEr 4. Compute the sum of the k corrected sums of squares for each of 
the two variables, and the sum of the k corrected sums of cross products 
between the two variables as:

C=EX +EX2 + ... + F'X2
 

D9= FEy2 + Ey22 + ... + Eyk2
 

E = Fxjyj + Ex 2 y 2 + + XAYk 

For our example, the values of C, D, and E are:
 

C = 8.42 + 10.89 + 4.79 = 24.10
 

D = 4,068,187 + 8,576,031 + 6,493,098
 

= 19,137,316 

E = 4,519 + 9,373 +(-4,514) = 9,378 

0 	sTrP 5. Compute the F value as: 

B]/(k- 1)
F -[D-(E2C)-

k - 2k 
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where nI (i = 1,... ,k) is the number of paired observations in the ith set of 
data. For our example, the F value is: 

F {19,137,316 - [(9,378)2/(24.10)1 - 4,390,7521/(3- 1) 

4,390,752/[(7 + 7 + 7) - 2(3)] 

= 18.96 

0 	sTEP 6. Compare the computed F value to the tabular F values (Appendix 
E) with f1 = (k - 1) and f 2 = ( n - 2k) degrees of freedom. Reject the 
hypothesis of homogeneity of k regression coefficients (fi = P2 =... = ik) 
if the computed F value is greater than the corresponding tabular F value at 
the prescribed level of significance. 

For our example, the tabular F values with 1 = 2 and f2 = 15 degrees of 
freedom are 3.68 at the 5%level of significance and 6.36 at the 1%level. 
Because the computed F value is greater than the tabular F value at the 1% 
level of significance, the hypothesis of homogeneity between the three 
regression coefficients is rejected. 

9.1.1.4 Homogeneity of Correlation Coefficients. To determine whether 
the degree of the linear association between two variables remains the same at 
different levels of a third or fourth variable, homogeneity of the simple linear 
correlation coefficients can be tested. For example, the simple linear correlation 
coefficients between grain yield and ear weight in maize grown witE, different 
rates of nitrogen fertilizer maybe tested for homogeneity to determine whether 
the linear association between grain yield and ear weight is affected by the 
nitrogen level. 

We illustrate the procedure for testing the homogeneity of k simple linear 
correlation coefficients with data of soluble protein nitrogen (X1) and total 
chlorophyll (X2) in the leaves of rice varieties IR8 and IR22. Data for IR8 is in 
Table 9.2; data for IR22 is in Table 9.5. The objective is to determine whether 
the degrees of the linear association between soluble protein nitrogen and total 
chlorophyll in the leaves are the same for the two rice varieties. The step-by-step 
procedures are: 

o 	STEP 1. Compute the simple linear correlation coefficient, following the 
procedure of Section 9.1.1.2, for each of the k sets of data. Denote these 
coefficients as rl , r2, ... ,rk. For our example, the k = 2 simple linear correla­
tion coefficients are computed as r, = .942 for IR8 (Table 9.2) and r2 = .944 
for IR22 (Table 9.5). 

0 	sTEP 2. For each computed r value, compute the corresponding z value as: 

1+r -z 	= 0.5 In 
1-r 
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Table 9.5 Computation of a Simple Linear Correlation Coefhicient between 
Soluble Protein Nitrogen (XI) and Total Chlorophyll (X2) In the Leaves of Rice 
Variety IR22 

Soluble Total Product 

Sample 
Ntunber 

Protein N, 
oig/leaf 

(XI) 

Chl)rophyll, 
mg/leaf 

(X2) 
Deviate 

xx x2 

Square 
of Deviate 

xi x2 

of 
Deviates 

(xl)(x 2) 

1 0.84 0.55 -0.52 -0.70 0.2704 0.4900 0.3640 
2 1.24 1.24 -0.12 -0.01 0.0144 O.0&ul 0.0012 
3 2.10 1.56 0.74 0.31 0.5476 0.0961 0.2294 
4 2.64 2.52 1.28 1.27 1.6384 1.6129 1.6256 
5 1.31 1.64 -0.05 0.39 0.0025 0.1521 -0.0195 
6 1.22 1.17 -0.14 -0.08 0.0196 0.0064 0.0112 
7 0.19 0.04 -1.17 -1.21 1.3689 1.4641 1.4157 

Total 9.54 8.72 0.02a -0.03a 3.8618 3.8217 3.6276 
Mean 1.36 1.25 

aThe nonzero values are only due to rounding. 

where In refers to the natural logarithm (i.e., log base e). For our example, 
the two z values are computed as: 

z, = 0.5 In (1 + 0.942) 

(1 - 0.942) 

= 1.756 

+ 0.944)2=0.5In 
(1 - 0.944) 

= 1.774 

3 sTEP 3. Compute the weighted mean of the z values as: 

k 

, (n, - 3)z, 

n= - 3) 

where n, (i = 1,..., k) is the number of paired observations in the ith set of 
data used in the computation of the r value in step 1. For our example, the 
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f,, value is computed as: 

Z = (7 - 3)(1.756) +(7 - 3)(1.774) = 1.765
(7- 3)+(7- 3) 

Note that if n, is the same for all sets of data (as is the case with this 
example), the Z,, value is simply the standard arithmetic mean of the z, 
values. 

3 sTEi' 4. Compute the X2 value (chi-square value) as: 

k 

x= E (n, - 3)(z,­
i-1 

For our example, the X2 value is computed as: 

f2	 fX = (7- 3)(1.756- 1.765)2 +(7- 3)(1.774- 1.765)2 = 0.00, 

" 	STEP 5. Compare the computed X2 value to the tabular X2 values, from 
Appendix D, with (k - 1) degrees of freedom. Reject the hypothesis of 
homogeneity of the k simple linear correlation coefficients if the computed 

X2 value is greater than the corresponding tabular X2 value at the prescribed 
level of significance. 

For our example, the tabular X2 values from Appendix D, with (k - 1) 
I1 degree of freedom, are 3.84 at the 5%level of significance and 6.63 at 

the 1%level. Because the computed X2 value is smaller than the tabular X2 

value at the 5%level of significance, the test is not significant and the 
hypothesis of homogeneity cannot be rejected. 

o 	STEP 6. If the X2 test is not significant, obtain the value of the pooled 
simple linear con elation coefficient from Appendix I, based on the f,, value 
computed in step 3. If the Z,,, value is not available in Appendix I, the 
pooled simple linear correlation coefficient can be computed as: 

2e	 w - 121p= e 1 -+ 1 

For our example, the pooled simple linear correlation coefficient is 
computed as: 

e 2 1 .7 6 5) - 1 
2 1 7 6 5 rp = e . ) + 1 943 

Thus, the simple linear correlations between soluble protein nitrogen and 
total chlorophyll in the leaves of IR8 and IR22 can be measured with a 
single coefficient of .943. 
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9.1.2 Multiple Linear Regression and Correlation 

The simple linear regression and correlation analysis, as described in Secton 
9.1.1, has one major limitation. That is, that it is applicable only to cases with 
one independent variable. However, with the increasingly accepted perception 
of the interdependence between factors of production and with the increasing 
availability of experimental procedures that can simultaneously evaluate several 
factors, researchers are increasing the use of factorial experiments. Thus, there 
is a corresponding increase in need for use of regression procedures that can 
simultaneoufly handle several independent variables. 

Regression analysis involving more than one independent variable is called 
multiple regression analysis. When all independent variables are assumed to 
affect the dependent variable in a linear fashion and independently of one 
another, the procedure is called multiple lit ear regression analysis. A multiple 
linear regression is said to be operating if the relationship of the dependent 
variable Y to the k independent variables A', X2,..., X, can be expressed as 

Y = a+ flX, + P2 X 2 + --- +&kXk 

The data required for the application of the multiple linear regression 
analysis involving k independent variables are the (n)(k + 1) observations 
described here: 

Observation Value 

Observation 
Number Y X X 2 X 3 .. Xk 

1 xI ... Xkl 

2 Y2 X12 X22 X32 ... Xk2 

X13 X23 X33 ... Xk3
3 3 


n X2. X3. ... Xk,, 

The (k + 1) variables Y, X1, X2, .. ,Xk must be measured simuhaneously 
for each of the n units of observation (i.e., experimental unit or sampling unit). 
In addition, there must be enough observations to make n greater than (k + 1). 

The multiple linear regression procedure involves the estimation and test of 
significance of the (k + 1) parameters of the multiple linear regression equa­
tion. We illustrate the procedure for a case where k = 2, using the data on 
grain yield (1), plant height (X,), and tiller number (X2) in Table 9.6. With 
k = 2, the multiple linear regression equation is expressed as: 

Y = a + fl1X 1 + /32 X 2 
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The step-by-step procedures are: 

o 	sTEP 1. Compute the mean and the corrected sum of squares for each of 
the (k + 1) variables Y, X1, X2, .. ,Xk, and the corrected sums of cross 
products for all possible pair-combinations of the (k + 1) variables, follow­
ing the procedure described in step 1 of Section 9.1.1.1. A summary of the 
parameters to be computed, together with the variables involved, is shown 
here. 

Corrected Sum of Squares and Cross Products 

Variable Mean X, X2 ... Xk Y 

x, Xx Exx Exx 2 ... EXlXk Exy 
X2 2 Ex2 ... FX 2X, EX 2Y 

XXk 	 k EXkY 

y y 	 Ey2 

For our example, the results of the computation are shown in Table 9.6. 

Table 9.6 Computation of a Multiple Linear Regression Equation 
Relating Plant Height (XI) and Tiller Number (X2) to Yield (Y), 
over Eight Rice Varieties 

Variety 
Number 

1 
2 
3 
4 
5 
6 
7 
8 

Mear 

EX 2 - 1,753.72 

2x2y - 7,210 

Grain Yield, 
kg/ha 
(Y) 

5,755 
5,939 
6,010 
6,545 
6,730 
6,750 
'6,899 
7,862 
6,561 

EX2 -
EX1 X2 -

Plant
 
Height, 


cm 
(Xi) 

110.5 
105.4 
118.1 
104.5 
93.6 
84.1 
77.8 
75.6 
96.2 

23.22 

-156.65 

Tiller, 
no./hill 

(X2) 

14.5 
16.0 
14.6 
18.2 
15.4 
17.6 
17.9 
19.4 
16.7 

Exly- -65,194 

-y2-3,211,504 

http:1,753.72
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[ 	 snp 2. Solve for bl , b2, .... , bk from the following k simultaneous equa­

tions, which are generally referred to as the normal equations: 

bl, x+ b2E 2 + ... + bkEXI = Ex 1y 

b1Ex 1x 2 + b2 Ex + '". + bkEx2x = Exky 

bIExlxk + b2Yx 2xk +"" + b;x k EXAy 

where b,, b2 ,.... bk ai'e the estimates of I, #2 .... ,ik of the multiple linear 
regression equa-.ic.1, and the vaiues of the sum of squares and sum of cross 

products of the (k + 1) variables are those computed in step 1. 

There are mai]y standardized procedures for solving the k simultaneous 

equations for the k unknowns, either manually or with the aid of computers 

(Simmons, 1948; Anderson and Bancroft, 1952; Nie eL al., 1975; and Barr 

et al., 1979).* 
For our example, with k = 2, the normal equations are: 

bi Exj2 + b2ExIx 2 = Ex 1y 

b,ExIx2 + b2Ex2 = Ex 2y 

and the solutions for b, and b2 are: 

(23.22)( -65,194) - (- 156.65)(7,210) 

(1,753.72)(23.22) - (- 156.65)2 

= 	-23.75 

OH. A. Simmons. College Algebra. New York: Macmillan, 1948. pp. 123-147. 
R.L. Andcrson and T. A. Bancroft. Statistical Theory in Research. USA: McGraw-Hill, 1952. pp. 
192-200. 
N. H. Nic ct al. Statistical Packagefor the Social Sciences, 2nd cd. USA: McGraw-Hill, 1975. pp. 
320-360. 
A.J. Baff ct al. Statistical Analysis System User's Guide. USA: SAS Institute, 1979. pp. 237-263. 

http:1,753.72)(23.22
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b2 - (EX)(EX2Y) -(EXIX2)(EXIY) 

(1,753.72)(7,210) - (- 156.65)( -65,194) 
(1,753.72)(23.22) -(- 156.65)2 

150.27 

" s'rep 3. Compute the estimate of the intercept a as: 

a= Y-b 1 X, - b2 2 -- bklfk 

where Y, Xt, X2 ... ,Xk are the means of the (k + 1)variables computed in 
step 1. 

Thus, the estimated multiple linear regression is: 

k = a+bXI + b2 X2 + "..+bkXk 

For our example, the estimate of the intercept a is computed as: 

a = F- blY - 2Y 

= 6,561 -(-23.75)(96.2) -(150.27)(16.7) 

= 6,336 

And the estimated multiple linear regression equation relating plant height 
(X,) and tiller number (X2) to yield (Y) is: 

k = 6,336 - 23.75X + 150.27X 2 

O sEp 4. Compute: 
• The sum of squares due to regression, as: 

k 0 
SSR = E (b,)(Ex,y) 

I-1
 

" The residual sum of squares, as: 

SSE = Fy'- SSR 

* The coefficient of determination, as: 

2
 
Ey
 

The coefficient of determination R 2 measures the contribution of the 

http:1,753.72)(23.22
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linear function of k independent variables to the variation in Y. It isusually 
expressed in percentage. Its square root (i.e., R) is referred to as the multiple 
correlation coefficient. 
For our example, the values of SSR, R2, and SSE are computed as: 

SSR = bjExy + b2Ex 2Y 

=-(-23.75)(-65,194) +(150.27)(7,210) 

2,631,804 

SE = 2 - SSR = 3,211,504 - 2,631,804 

= 579,700 

R2 .SSR 2,631,804 = .82 
Ey2 3,211,504 

Thus, 82% of the total variation in the yields of eight rice varieties can be 
accounted for by Plinear 'unction, involving plant height and tiller number, 
as expressed in step 3. 

03 	 STEP 5. Test the significance of R2: 
. Compute the Fvalue as: 

F = SSR/k 

SSE/(n - k - 1) 

For our example, the F value is: 

2,631,804/2F:= 
579,700/(8 - 2 - 1) 

= 	11.35 

Compare the computed F value to the tabular F values (Appendix E) 
with f, = k and f2 = (n - k - 1) degrees of freedom. The coefficient of 
determination R2 is said to be significant (significantly different from 
zero) if the computed Fvalue is greater than the corresponding tabular F 
value at the prescribed level of significance. 

For our example, the tabular F values (Appendix E) with f, = 2 and 
f 2 = 5 degrees of freedom are 5.79 at the 5%level of significance and 
13.27 at the 1%level. Because the computed F value is laiger than the 
corresponding tabular Fvalue at the 5%level of significance, but smaller 
than the tabular F value at the 1%level, the estimated multipic linear 
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regression 1, = 6,336 - 23.75X, + 150.27X2 is significant at the 5% level 
of significance. Thus, the combined linear effects of plant height and tiller 
number contribute significantly to the variation in yield. 

We make a point here concerning the significance of the F test (which
indicates the significance of R2 ) and the size of the R 2 value. Although the 
significance of the linear regression implies that some portion of the variability 
in Y is indeed explained by the linear function of the independent variables, 

R 2the size of the value provides information on the size of that portion. 
R 2Obviously, the larger the value is, the more important the regression 

equation is in characterizing Y. On the other hand, if the value of R 2 is low, 
even if the F test is significant, the estimated regression equation may not be 
meaningful. For example, an R 2 value of .26, even if significant, indicates that 
only 26% of the total variation in the dependent variable Y is explained by the 
linear function of the independent variables considered. In other words, 74% of 
the variation in Y cannot be accounted for by the regression. With such low 
level of influence, the estimated regression equation would not be useful in 
estimating, much less predicting, the values of Y. 

The following are important pointers for applying the multiple linear 
regression procedure just described: 

" 	 The procedure is applicable only if two c-nditions are satisfied. First, the 
effect of each and all k independent variables X1, X 2 ,... ,Xk on the depen­
dent variable Y must be linear. That is, the amount of change in Y per unit 
change in each X, is constant throughout the range of X, values under study. 
Second, the effect of each X, on Y is independent of the other X. That is, the 
amount of change in Y per unit change in each X, is the same regardless of 
the values of the other X. Whenever any one or both of the foregoing 
conditions need to be relaxed, use of the procedures of Section 9.2 should be 
considered. 

" 	 The procedure for estimating and testing the significance of the (k + 1) 
parameters in a multiple linear regression involving k independent variables 
is lengthy and time consuming, and becomes increasingly so as k becomes 
larger. This is where the use of a computer should be seriously considered. 
Numerous computer programs and statistical computer packages that can 
perform the multiple linear regression analysis are available at most com­
puter centers and for most computers. Some of the more commonly used 
packages are the Barr et al., 1972; Nie et al., 1975; and Dixon, 1975.* 

*A.J.Barr c al., SAS, pp. 237-263. 
N. H.Nicet al., SPSS. pp. 320-360. 
W.J.Dixon, Ed. BMDP Biomedical Computer Programs. Berkeley: University of California Press, 
1975. 
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9.2 NONLINEAR RELATIONSHIP 

The functional relationship between two variables is nonlinear if the rate of 
change in Y associated with a unit change in X is not constant over a specified 
range of X values. A nonlinear relationship among variables is common in 
biological organisms, especially if the range of values is wide. Two typical 
examples are: 

* 	 The response of rice yield to nitrogen fertilization, which is usually rapid at 

low levels, slower at the intermediate levels, and could become negative at 
high levels of nitrogen (Figure 9.8). 

* 	 The pattern of plant growth over time, which usually starts slowly, increases 
to a fast rate at intermediate growth stages, and slows toward the end of the 
life cycle (Figure 9.1b). 

Wl:'n the relationship among the variables under consideration is not 
linear, the regression procedures outlined in Section 9.1 are inadequate and a 
researcher must turn to nonlinear regression analysis procedures. 

9.2.1 Simple Nonlinear Regression 

There are numerous functional forms that can describe a nonlinear relation­
ship between two variables, and choice of the appropriate regression and 
correlation technique depends on the functional form involved. We focus 
primarily on one technique: that involving th,: linearization of the nonlinear 
form, either through transformation of variables or through creation of new 

variables. We focus on a single ichnique, for two important reasons: 

1. 	 The technique is simple because, after linearization, the regression 

procedures of Section 9.1 are directly applicable. 

Grain yield (kg/ha)
7 00 0 A, 

Y=49570 + 36N-0.2 N2 

41000 

39000­

0 50 I(00 150 200 

Nitrogen applied (kg/ho) 

Figure 9.8 An estimated nitrogen rcsponse of rice showing a nonlinear relationship. 
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2. 	 The techn;;,ue has wide applicability because most of the nonlinear 

relatioaships found in agricultural research can be linearized through
variable transformation or variable creation. 

9.2.1.1 Transformation of Variable. A nonlinear relationship between two 
variables can be linearized by transforming one or both of the variables. Below 
are examples of some nonlinear forms, commonly encountered in agriculturai
research, that can be linearized through variable transformation. 

Example I. The nonlinear form 

lY = aef x 

can be linearized by transforming the dependent variable Yto In Y, where In 
denotes the natural logarithm (log base e). Thus, *helinearized form is: 

Y' = a' + fiX 

where Y' = In Y and a' = Ina. 

Example 2. The nonlinear form 

Y= a/fl 

can be linearized by transforming the dependent variable Y to log Y,where log
denotes the logarithm base 10. Thus, the linearized form is: 

Y' = a' + /3'X 
where Y' = log Y, a' = log a, and /' = log/3. 

Example 3. The nonlinear form 

1 
-f=a + PX 

can be linearized by transforming the dependent variable Y to 1/Y. Thus, the 
linearized form is: 

I" a + IIX 

where Y' = 1/Y. 

Example 4. The nonlinear form 

Y a +-/ 
X 

can 	be linearized by transforming the independent variable X to 11X. Thus, 
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the linearized form is: 

Y a + X' 

where X' - 1/X. 

Example 5. The nonlinear form 

can be linearized by transforming the dependent variable Y to 1/Y and the 

independent variable X to 1/X. Thus, the linearized form is: 

Y'= a + fiX' 

where Y'= 1/ Y and X' = 1/X. 

After linearization through variable transformation, the simple linear regres­
in Section 9.1.1 can be directlysion and correlation procedures described 

applied. We illustrate the procedure for applying the transformation technique 

to a simple nonlinear regression form wiLh data on light transmission ratio (Y) 

to be fitted to the nonlinearand leaf-area index (X), in Table 9.7, which are 

Table 9.7 Computation of a Nonlinear Regression Equation between Light 
Transmission Ratio (Y) and Leaf-Area Index (X) of Rice Variety IR8, by the 
Variable-Transformation Method 

Light Transmission Lcaf-Area 
Observation Ratio Index 

Number (Y) (X) Y'- In Y 

1 75.0 0.50 4.31749 
72.0 0.60 4.276672 

3 42.0 1.80 3.73767 
4 29.0 2.50 3.36730 

27.0 2.80 3.295845 
6 10.0 5.45 2.30259 
7 9.0 5.60 2.19722 

5.0 7.20 1.609448 
9 2.0 8.75 0.69315 

10 2.0 9.60 0.69315 
1.0 10.40 0.0000011 

12 0.9 12.00 -0.10536 
Mean 22.9 5.60 2.19876
 

"y, 2 - 28.77936 E - 175.40500 E xy' - - 70.76124
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form of example 1; that is, 

Y tefy 

The step-by-step procedures are: 

" 	 sTEP 1. Linearize the prescribed nonlinear functional form through a 
proper transformation of one or both variables. For our example, the 
linearized form of the foregoing function is: 

" = a' + O3X 

where Y' = In Y and a' = In a. 

o 	STEP 2. Compute the transformed values for all n units of observation of 
each variable that is transformed in step 1. For our example, values of 
Y' = In Y are computed for the n = 12 pairs of (X, Y) values, as shown in 
Table 9.7. 

o1 	 STEP 3. Apply the simple linear regression technique of Section 9.1.1.1 to 
the data derived in step 2, based on the linearized form derived in step 1. 
For our example, the estimates of the Iwo parameters a' and fP are computed 
as: 
* 	 Compute the means Y' and X, sums of squares Ey,2 and Ex2 , and sum of 

cross products E2xy" of the two variables Y' and X, as shown in Table 
9.7. 

* 	 Compute the estimates of a' an' fP, following the formulas in Section 
9.1.1.1, step 2, as: 

b ,x2 

-70.76124 -	 -0.40342 
175.40500 

a' = P ­

= 2.19876 -(-0.40342)(5.60) 

= 	4.45791 

o 	STEP 4. Using estimates of the regression parameters of the linearized form 
obtained in step 3, derive an appropriate estimate of the original regression 
based on the specific transformation used in step 1. 

For our example, conversion of the estimated regression parameters is 
needed. That is, in order to derive the estimate of the original nonlinear 

http:0.40342)(5.60
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regression, its regression parameter a needs to be computed as the antilog of 

a = antilog of a' = antilog of 4.45791 

= 86.31 

And, using the estimate of Pl computed in step 3, the required estimate of 
the regression equation is obtained as: 

" 86.31e-°40342X 

The graphical representation of the estimated nonlinear regression is 
shown in Figure 9.9. 

9.2.1.2 Creation of New Variable. Some nonlinear relationship between 
two variables -an be linearized through the creation of one or more variables 
such that they can account for the nonlinear component of the original 

Light transmission ratio () 

80 

60
 

40 

2 : 99*%~20 0R 

20 

0 2 4 6 8 10 12 

Leaf-orea index 

Figure 9.9 An cstm'ated nonlinear relationship between light transmission ratio (Y) and leaf-arca 
index (X) of rice variety IR8. 



Nonlinear Relationship 393 
function. In agricultural research, this technique is most commonly applied to 
the kth degree polynomial: 

" 
2 X 2Y-= a +fi1X+ .. + kXk 

Such an equation can be linearized by creating k new variables: Z1 , Z2 ,. ..Zk, 
to form a multiple linear equation of the form: 

Y = a "+r"/IZl+[ f2Z2 +[ .. , + #kZk 

where Z, = X, Z2 = X
2 ,..., and Zk = Xk. 

With the linearized form resulting from the creation of new variables, the 
procedure for multiple linear regression and correlation analysis of Section 
9.1.2 can be directly applied. 

We illustrate this technique using the data of Table 9.8 where the relation­
ship between yield (Y) and nitrogen rate (X) is assumed to be quadratic 
(second-degree polynomial): 

Y = a +" 1X + / 2 X 2 

The step-by-step procedures for fitting the second-degree polynomial using 
the creation-of-new-variable technique are: 

0 	 STEP 1. Linearize the prescribed nonlinear functional form through the 
creation of an appropriate set of new variables. 

Table 9.8 Computation of an Estimated Quadratic Regression Equation 
Y- a + b1X + b2X2, or Its Llnearized form: Y= a + bZ1 + bkZ 2 ,toDescribe the Yield Response of Rice Variety IR661-1-170 to Nitrogen 
Fertilizer
 

Nitrogen 
Grain Yield, Rate, 

Pair kg/ha kg/ha 
Nmnber (Y) (Z - X) - x2Z2 

1 4,878 0 	 0 
2 5,506 30 900 
3 6,083 60 3,600
4 6,291 90 8,100
5 6,361 120 14,400 

Mean 5,824 60 5,400
"y2 , 1,569,579 9,000 	 Z2 140,940,000 

Ezly - 112,530 Ez 2Y - 12,167,100 .zIz2 - 1,080,000 
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For our example, the linearized form of the second-degree polynomial is: 

Y = a + P1Z1 + P2Z2 

where the two newly created variables Z, and Z2 are defined as Z, = X and 
Z 2 - XI. 

" 	 sTEp 2. Compute the values of each newly created variable for all n units of 
observation. For our example, only the values of the variable Z2 need to be 
computed because the values of the variable Z, are the same as those of the 
original variable X. The Z2 values are computed by squaring the correspond­
ing values of the original variable X. as shown in Table 9.8. 

o STEP 3. Apply the appropriate multiple linear rrgression technique of 
Section 9.1.2 to the linearized form derived in step 1, using the data derived 
in step 2. For our example, because the linearized form consists of two 
independent variables Z, and Z2, the multiple linear regression procedure 
for two independent variables, as described in Section 9.1.2.2, is applied as: 
" Compute the means, sums of squares, and sum of cross prod ",tsfor the 

three variables Y, Z,, and Z2, as shown in Table 9.8. 
" Compute the estimates of the three parameters: a, flJ, and P2, following 

the formulas in step 2 of Section 9.1.2, as: 

(b 	 Z2 =Zly) - (E zIz2)(EZ2 Y) 

(140,940,000)(112,530) - (1,080,000)(12,167,100) 
- (1,080,000)2(9,000)(140,940,000) 

= 26.65 

b2 2)F 2 

(9,000)(12,167,100) -(1,080,000)(112,530) 
- (1,080,000)2(9,000)(140,940,000) 

= 	 -0.118 

a = Y-b 1 Z - b2 Z 2 

= 	5,824 -(26.65)(60) -(-0.118)(5,400) 

-4,862 
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Thus, the second-degree polynomial regression equation describing the 
yield response of rice selection IR661-1-170 to the nitrogen rates applied, 
within the range of 0 to 120 kg N/ha, is estimated as: 

Y=4,862 + 26.65X- 0.118X 2 for0 < X< 120 

Compute the coefficient of determination, as: 

R = b, zl.y + b2 z 2y 

(26.65)(112,530) + (- 0.118)(12,167,100) 
1,569,.79 

1,563,207 
9961,569,579 

Compute the F value, as: 

(n - k - 1)(biziy + b2Ez2y) 

k(Ey2 - bl1 zly - b2 Ez 2y) 

(5 - 2 - 1)(1,563,20/) 

(2)(1,569,579 - 1,563,207) 

= 245.32 

Because the computed F value exceeds the tabulat F value with fl = f2 = 2 
degrees of freedom at the 1% level of significance of 99.0, the estimated 
quadratic regression equation is significant at the 1% level. Results indicate 
that the yield response of the rice variety IR661-1-170 to nitrogen fertilization 
can be adequately described by the quadratic equation. The computed R 2 

value of .996 indicates that 99.6% of the total variation in the mean yields was 
explained by the quadratic regression equation estimated. 

9.2.2 Multiple Nonlinear Regression 

When the relationship between the dependent variable Y and the k indepen­
dent variables X1, X2 _ ., X., where k > 1, does not follow the multiple linear 
relationship, a multiple nonlinear relationship exists. The occurrence of a 
multiple nonlinear relationship may be the result of any of the following: 

At least one of the independent variables exhibits a nordinear relationship 
with the dependent variable Y. For example, with two independent vari­

http:1,569,.79
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ables X1 and X2, a multiple nonlinear relationship exists if either or both of 
the two variables exhibit a nonlinear relationship with the dependent 

variable. If both X1 and X 2 are related to Y in a quadratic manner, for 
instance, the corresponding multiple nonlinear regression equation repre­

senting their relationship to Y would be: 

Y = a + #IX, + 1#2X? + #3X2 + /4X2 

At least two independent variables interact with each other. For example, 
with two independent variables X1 and X2,each of which separately affects 

Y in a linear fashion, the multiple regression equation may be nonlinear if 

the effect of factor XAon Y varies with the level of factor X2,and vice versa. 

In such a case, the multiple nonlinear regression equation may be rep­
resented by:
 

Y = a + 1 XI + I2X2 + P3 XX2 

where the last quantity in the equation represents the interaction term. 

Both of the foregoing cases occur simultaneously. That is, at least one of the 

independent variables has a nonlinear relationship with the dependent 

variable and at least two independent variables interact with each other. 
Putting the two equations together, we may have: 

Y = a + p I ++ f2A?X +"1P34X22 + P 4AX2 + AXA1 X 2 

or, more generally: 

4 X 2Y = a+1 i AX + 1 2 ?" 03 X 2 + / + 5 X1 X 2 

+/ 6XAx2 + P3A'xA + I38AxX21

The analytical technique we discuss in this section is essentially an extension 
of the linearization technique for the simple nonlinear regression discussed in 
Section 9.2.1. The multiple nonlinear form is first linearized so that the 
multiple linear regression analysis discussed in Section 9.1.2 can be directly 

applied. Three examples of the multiple nonlinear form and their correspond­
ing linearized forms are: 

Example 1. Linearization of equation: 

+/3#xA 2 + # 4X2Y=a +, + P2x? + /3X

through the creation of two new variables: Z1 = X 2 and Z2 = X. Thus, the 
linearized form is: 

Y = a + /3lXl +P 2Zl + fi3X 2 + #4Z 2 
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Example 2. Linearization of the Cobb-Douglas equation: 

r= ,, X'P2X"03X "i..
 

through the transformation of the dependent variable Y to log Y (see Section 
9.2.1.1, example 2). Thus, the linearized form is: 

r,=a' +PIxA + P2, +.. + fik 

where Y'= log Y', a'- log a, and fl,' = log P,(i = 1,...,k). 

Example 3. Linearization of a nonlinear form, caused by the presence of one 
or more interaction terms, through the creation of one new variable for every
interaction term. For example, with the following equation having one interac­
tion term: 

Y = a + PIX1 + /12 X2 + P.IxIX2 

only one new variable Z, = X X2 needs to be created. The linearized form is 
then: 

Y a + PIX 1 + P2X 2 + 0 3Z, 

Once the linearized form is derived, the procedure for the multiple linear 
regression analysis of Section 9.1.2 can be directly applied. 

9.3 SEARCHING FOR THE BEST REGRESSION 

There are essentially two ways in which the relationship between the depen­
dent variable Y and the k independent variables X1,X2 ,... ,Xk may be 
specified. 

First, based on accepted biological concepts, secondary data, or past experi­
ences, the researcher postulates, even before the data is gathered, one or more 
functional forms (shapes of curves) that should adequately describe the rela­
tionship among the variables of interest. For example, biological concepts and 
past experiences in rice strongly suggest that the response of grain yield to 
nitrogea application follows the quadratic function (i.e., the second-degree
polynomial) as shown in Figure 9.8; or the relationship between light transmis­
sion ratio and leaf-area index follows an exponential function of the type
shown in Figure 9.9. The specification of the functional form based on 
previous experience and accepted biological concepts is preferred because the 
regression parameters can usually be easily associated to some known bio­
logical phenomena and its biological implication is easily identified. 
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Second, based on data gathered in the experiment itself, the researcher 

identifies one or more functional forms that are most likely to bes. fit the 

current data. This approach is frequently used in practice because the relation­

ship among variables is rarely known before the experiment is started. In fact, 

a common objective of many biological experiments is to identify the form of 

the relationship itself. 
In practice, both procedures are generally used jointly. The task of specify­

ing the functional relationship between a dependent variable and more than 

one independent variable is a two-stage process. The first stage involves the 

specification of an appropriate functional form between the d.-pendent variable 

and each of the independent variables; the second stage involves the specifica­

tion of the terms representing interaction effects between the indep,.ndent 

variables. 
Consider, for example, the case where the researcher wishes to speo 'fy the 

relationship between two independent variables, nitrogen and phosphorus, and 

the dependent variable, crop yield. The first stage in the process consists of 

specifying the relationships between yield and nitrogen and yield and phos­

phorous separately; and the second stage consists of identifying the type of 

interaction, if any, between nitrogen and phosphorous. 
We discuss four procedures that are commonly used for the specification of 

an appropriate functional form between a dependent variable and one or more 

independent variables: 

The scatter diagram technique is used primarily for the case of one indepen­

dent variable (i.e., simple regression). 
" The analys's of variance technique is u',ed primarily for the specification of 

interaction terms in a multiple regression. 
" The test of significance technique is used primarily for the elimination of 

unnecessary regression terms in a specified multiple regression. 
" The step-wise regression technique is used primarily for identifying the 

sequence of importance in which each regression term should be included in 

the multiple regression equation based on their relative contributions. 

9.3.1 The Scatter Diagram Technique 

The scatter diagram is the simplest and most commonly used procedure for 

examining the relationship between two variables. The steps involved are: 

o 	STEP 1. For any pair of variables, say X and Y, that are suspected to be 
an X Yassociated with each other, plot all pairs of values as points in ­

plane, such as those shown in Figure 9.10. 

o STEP 2. Examine the scatter diagram, constructed in step 1, for the 

presence of outliers (i.e., points that are apart from the bulk of the other 

data points). Outliers usually exert a considerable influence on the kind of 

functional form that may be perceived from the data and should, therefore, 
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be examined carefully to ensure that their presence is not due to measure­
ment or transcription errors. 

The procedures outlined in Chapter 7, Section 7.2.2.2, for the verification 
of the validity of suspiciously large (or small) data should be used. It is 
usually tempting to discard outright an outlier, especially if by so doing a 
good fit to 	the hypothesized relationship can be ensured. As discussed in 
Chapter 7, Section 7.2.2.2, however, the decision to exclude an outlier 
should be made with extreme caution. If the discarded outlier represents a 
legitimate biological event rather than an error, its elimination will obvi­
ously result in incorrect interpretation of data. More importantly, the 
researcher would have missed an opportunity to explore probable causes of 
unusual events, a rare opportunity that could lead to an important dis­
covery. 

o 	sTEP 3. Examine the scatter diagram to identify the functional relationship, 
if any, between the two variables. For example, a set of points arranged in a 
narrow band stretching from two opposite corn-rs of the X - Y plane, as 
shown in Figure 9.10a, indicates a strong linear .-dationship, whereas an 
evenly scattered set of points whose boundaries approach that of a square, 
rectangle, or circle, as shown in Figure 9.10b, suggests the lack of any 
relationship. 

o 	STEP 4. If no clear relationship is indicated in step 3, confirm the absence 
of any linear relationship by computing a simple linear correlation coeffi­
cient r and testing its significance following the procedure outlined in 
Section 9.1.1.2. The lack of any obvious relationship through visual observa­
tici of step 3 plus a nonsignificant r is usually a good indication of the 
absence of any relationship between the two variables. When such is the 
case, the procedure can be terminated at this point. 
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If the presence of a relationship is indicated in step 3, identify the specific 

functional form that can best fit the observed relationship. A useful practice 

here is to first check whether the linear approximation may be adequate. If 

not, other possible nonlinear functional forms can be examined and the 

specific form that can best describe the relationship between the two 

variables chosen. Because there are innumerable forms of nonlinear relation­

ship, this task is not easy for a nonstatistician. Fortunately, most of the 
can be adequatelyrelationships between characters in biological materials 
ones are the high­described by few nonlinear forms. The most common 

degree polynomials, the sigmoid, the logarithmic, and the exponential 

curves. These are illustrated in Figure 9.11. 

Y Y 

a) Third-degree polynomial b) Sgmoid 

Y =a+-bX IcX2 dX3 

(db>o) ( 
(I +bpX) 

X X 
Y Y 

d) xpnentio/c)Ogtwdn/mc 

Yza+b ogX Y=aebX 

X X 

Examples of four functional forms found useful in describing relationships betweenFigure 9.11 
two variables Y and X. 
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9.3.2 The Analysis of Variance Technique 

The analysis of variance technique is most suited for data from a factorial 
experiment in which the independent variables of the regression equation are 
the factors being tested. An example is the regression equation 

Y = a + fl X, + P2 X2 + P3 X2 + 94 X2 

which could have been derived from a two-factor experiment involving, say, 
the rate of nitrogen application as one factor (X) and the rate of phosphorus 
application as the other factor (X 2). 

The analysis of variance procedure involves an appropriate partitioning of 
the sums of squares, in the analysis of variance, that are associated with the 
main effects and the interaction effects, into single d.f. contrasts. The parti­
tioning is done so that the functional form that best describes the relationship 
between the variable of interest (Y) and the factors being tested (XI, X2 ,... ,X k ) 
can be indicated. We illustrate the procedure with data on nitrogen uptake of 
the rice plants (Y) from a two-factor experiment involving duration of water 
stress (X) and level of nitrogen application (X 2 ) in Table 9.9. 

The experiment was a greenhouse trial in a split-plot design with four 
water-stress days as main-plot treatments and four nitrogen rates as subplot 

Table 9.9 Nitrogen Uptake of the Rice Plants, Grown with Four Degrees of Water 
Stress and Four Rates of Nitrogen Application 

Water 
Treatment Stress, Nitrogen Rate, Nitrogen Uptake, g/pot 
Number days kg/ha Rep. I Rep. II Rep. III Rep. IV Mean 

1 0(W) 0(NI) 0.250 0.321 0.373 0.327 0.318 
2 90 (N 2) 0.503 0.493 0.534 0.537 0.517 
3 180 (N3) 0.595 0.836 0.739 0.974 0.786 
4 270 (N4) 1.089 1.297 1.007 0.677 1.018 
5 10 (W2 ) 0 0.254 0.373 0.349 0.367 0.336 
6 90 0.506 0.613 0.588 0.625 0.583 
7 180 0.692 0.754 0.548 0.713 0.677 
8 270 1.033 0.757 1.034 0.831 0.914 
9 20 (W3) 0 0.248 0.234 0.267 0.305 0.264 

10 90 0.428 0.397 0.493 0.587 0.476 
11 180 0.484 0.453 0 457 0.372 0.442 
12 270 0.507 0.498 0.477 0.619 0.525 
13 40 (W4 ) 0 0.099 0.103 0.093 0.084 0.095 
14 90 0.154 0.142 0.133 0.129 0.140 
15 180 0.111 0.102 0.098 0.152 0.116 
16 270 0.089 0.142 0.138 0.141 0.128 
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treatments, in four replications. The step-by-step procedures for the use of the 
analysis of variance technique to arrive at an appropriate form of the multiple 
regression equation between the response (i.e., nitrogen uptake) and the two 
factors tested (i.e., water stress and nitrogen rate) arc: 

o 	STEP 1. Compute a standard analysis of variance based on the experimen­
tal design used. Follow the procedures in Chapters 2 to 4. Then, make 
suitable trend comparisons for all quantitative factors, both for the main 
effects and the respective interaction effects, based on the procedure in 
Chapter 5, Section 5.2.3. 

Table 9.10 Analysis of Variance of a Two-Factor Experiment (Split-Plot 
Design), with Polynomial Partitioninga of All Main-Effect and Interaction 
SS of Data InTable 9.9 

Source 
of 

Degree 
of 

Sum 
of Mean Computed Tabular F 

Variation Freedom Squares Square Flo 5% 1% 

Replication 3 0.0080792 0.0026931 
,Waterstress (W) 3 2.9587214 0.9862405 208.09"* 3.86 6.99 

WL (1) 2.6530149 2.6530149 559.77** 5.12 10.56 
WQ (1) 0.3026375 0.3026375 63.8500 5.12 10.56 
WC (1) 0.0030690 0.0030690 < 1 - -

Error(a) 9 0.0426555 0.0047950 
Nitrogen rate (N) 3 1.2872277 0.4290759 40.23** 2.86 4.38 

N1, 
NQ 

(1) 
(1) 

1.2606476 
0.0048825 

1.2606476 
0.0048825 

118.21" 
< 1 

4.11 
-

7.39 
-

Nc (1) 0.0216976 0.0216976 2.03"' 4.11 7.39 
WX N 9 0.6844155 0.0760462 7.130 2.15 2.94 
Wt.X N1. (1) 0.6334966 0.6334966 59.40'* 4.11 7.39 
Wt.x No 
Wt.X Nc 

(1) 
(1) 

0.0049691 
0.0049738 

0.0049691 
0.0049738 

< 1 
< 1 

-
-

-
-

WQ X NJ. (1) 0.0009146 0.0009146 < 1 - -
WQ X NQ (1) 0.0048129 0.0048129 < 1 - -
WQ X Nc (1) 0.0222278 0.0222278 2.08n' 4.11 7.39 
Wc X N1. (1) 0.0087938 0.0087938 < 1 - -
Wc x No (1) 0.0042268 0.0042268 < 1 4.11 7.39 
Wc X Nc (1) 0.0000001 0.0000001 < 1 - -

Error(b) 36 0.3839131 0.0106643 
Total 63 5.3650124 

aSubscripts L, Q, and C for each factor refer to linear, quadratic, and cubic, 

respectively.
 
,**_ significant at 1%level, = not significant.
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For our example, the experimental design is a split-plot. The standard 
analysis of variance is, thus, based on the procedure of Chapter 3, Section 
3.4.2. Because both factors-water stress and nitrogen rate-are quantita­
tive, trend comparisons are applied for both main effects as well as their 
interaction. The orthogonal polynomial procedure of Chapter 5, Section 
5.2.4, is used. The result of the analysis of variance with polynomial 
partitioning of the sums of squares (SS) associated with main effects and 
their interaction is shown in Table 9.10. 

Note that because there are four levels for each factor, the largest degree 
polynomial that can be evaluated is the third degree (cubic). Thus, there are 
three single d.f. components for each of the two main effects and nine for 
the interaction between the two factors. 

0 	STEP 2. Using crop response as the dependent variable Yand the quantita­
tive factors being tested as the independent variables X1,..., X , determine 
the number of multiple regression equations to be fitted following these 
guidelines: 

A. 	 When all test factors are quantitative, only one equation needs to be 
fitted. The data to be used are the treatment means, averaged over all 
replications. 

B. 	 When one or more test factors are discrete (i.e., not quantitative), the 
following alternatives should be considered: 
" Estimate a single regression equation by including the discrete 

factors in the multiple regression equation as dummy variables. 
Appropriate discrete codes (such as - 1 and + 1 or 0, 1, 2, etc.) are 
assigned to each dummy variable. Because of the practical difficulty 
in (1) assigning suitable codes, (2)specifying appropriate interaction 
terms involviag both discrete and quantitative factors, and (3) inter­
preting the results; user's experience and availability of proper 
advise are needed in adopting this approach. This procedure is not 
discussed in this book. Interested researchers should see Draper and 
Smith, 1966; Johnston, 1963; Teh-wei Hu, 1973; A. Koutsoyiannis, 
1977; and S. R. Searle, 1971.* 

" 	 Estimate in regression equations, where m is the product of the levels 
of all discrete factors. However, if one of the discrete factors, say 
factor A, gave neither significant main effect nor interaction with any 
of the quantitative factors, the level of factor A, that is, a, is not 

*N.R. Draper and H. Swith. Applied Regresswn Anal,i. New York: Wiley, 1966. pp. 134-141. 
J. Johnston. Econometric Methods. New York: McGraw-Hill, 1963. pp. 176-186. 
Tch-wei flu. Econometrics, An Introductory Analyst.s. Baltimore: University Park Press, 1973. pp. 
65-70. 
A. Koutsoytannis. Theory of Econometrics. London: MacMillan, 1977. pp. 281-284. 
S. R. Searle. Linear Models. USA: Wiley, 1971. pp. 135-163. 
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included in the computation of m. That is, there will be m' = m/a 
regression equations instead. 

For our example, there are two factors and both are quantitative. Hence, 
only one equation needs to be fitted. The equation has the nitrogen uptake 
as the dependent variable Y, water stress as the first independent variable 
X,, and nitrogen rate as the second independent variable X2. 

Note that if our example were a three-factor experiment with variety as 

the third factor (i.e., discrete factor), there would be one multiple regression 

equation corresponding to each variety being tested. However, if the main 

effect of variety and its interaction with either water stress or nitrogen rate, 

or both, is not significant, then only one regression needs to be fitted, using 

the means of all treatment combinations between water stress and nitrogen 

rate averaged over the three varieties and four replications. 

o STEP 3. Specify the form of each multiple regression equation based on the 
results of the partitioning of SS performed in step 1. All significant 
components associated with each and all quantitative factors, whether main 
effects or interactions, should be included as regression terms in the equa­
tions. 

For our example, the results of SS partitioning in step 1 indicate that 
four single d.f. components are significant. They are; 
" The linear component of water stress (W.) 
* The quadratic component of water stress (WQ)
 
" The linear component of nitrogen rate (NL)
 
" The linea' component of the interaction (WL X Nt)
 

Hence, the regression terms to be included in the single multiple regression 
equation are X., X2, X2 , and XX 2. That is, the form of the multiple 
regression equation between nitrogen uptake (Y) and the two f, ctors-water 
stress (X,) and nitrogen rate (X2)-can be represented by: 

Y aa + fPX + 02 XA' + #3 X 2 + P 4X 1 X 2 

o STEP 4. Apply an appropriate multiple regression technique (Section 9.1.2 
or Section 9.2.2) to estimate the regression parameters of each of the 
equations specified in step 3. 

For our example, the form of the single regression equation specified in 

step 3 is a multiple nonlinear regression. Following the linearization proce­
dure of Section 9.2.1.2, the linearized form is: 

Y = a + P1X3+ /32ZI + P3A 2 + fl4Z2 

where Z, = X 2 , and Z2 = X 1X2. 
The data to be used are the 16 treatment means in the last column of 

Table 9.9. The standard multiple linear regression technique of Section 9.1.2 
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is then applied to obtain the following estimate of the regression equation: 

Y = 0.33300 + 0.00123X - 0.00016Z 1 + 0.00254X2 

-	 0.00007Z2 

That is, the regression equation expressed in terms of the original variables 
is: 

= 	0.33300 + 0.00123X - 0.09016X 2 + 0.00254X 2 

- 0.0000 7xtx 2 

The coefficient of determination R2 is .97 which is significant at the 1% 
level. That is 97% of the variation between the 16 treatment means can be 
explained by the specific function of the two factors as specified above. 

9.3.3 The Test of Significance Technique 

In this approach, a multiple regression equation, involving as many terms as 
possible that have some possibilities of contributing to the variation in the 
depende! variable, is first constructed and the corresponding regression 
coefficieni. estimated. Appropriate tests of significance are then applied, either 
separately to each individual regression term or jointly to a group of regression 
terms. Based on these tests, regression terms that give significant contribution 
to the variation in the dependent variable are retained and the terms that give 
nonsignificant contributions are dropped. In contrast to the analysis of vari­
ance technique, which is applicable only to data from controlled experiments, 
this approach can also be applied to data that cannot be subjected to the 
analysis of variance technique. 

9.3.3.1 Testing of Individual Regression Terms. This technique involves 
the fitting of data to a multiple regression equation that has as many regression 
terms as seem logical. The estimated regression coefficient of each term is then 
tested for its significance, separately and independently, and only those regres­
sion terms with significant coefficients are retained. A revised regression 
equation, with fewer terms, is then re-fitted and used as the chosen regression. 
We illustrate the procedure for the testing of individual regression terms with 
the same set of data used in Section 9.3.2. There are two independent variables 
with data on nitrogen uptake (Y), water stress (XI), and nitrogen rate (X2), as 
shown in Table 9.9. The step-by-step procedures are: 

o3 	 STEP 1. Determine the number of regression equations to be fitted follow­
ing the procedure outlined in step 2 of Section 9.3.2. For our example, there 
is only one multiple regression equation. The data to be used are the means 
(averaged over all replications) of the 16 treatment combinations. 
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03 STEP 2. For each regression equation determined in step 1, specify a 
regression equation that would include as many terms as are suspected to 
influence the dependent variable. The choice of the number of terms to be 
included, say k, is crucial; a k that is too large reduces the chance of 
detecting significance in the individual regression terms, and a k that is too 
small increases the chance that some important terms are mi.sed. The k 
value is primarily limited by the number of observations involved (n). 
Definitely, k must not be larger than (n - 2). 

For our example, assuming that prior informatio:., indicates that the 
dependent variable Y may be influenced by the quadratic form of variable 
X1, the linear form of variable X 2, the interaction between the linear 
component of X and the linear component of X2, and the interaction 
between the quadratic component of X and the linear component of X2; the 
following multiple regression equation may be initially prescribed: 

Y = a + Px, + #2)X2 + P3 X2 + P4 ,x X2 + P5X2X 2 

Here, there are five regression terms involving the two independent 
variables X and X2. Thus k = 5. 

o 	STEP 3. Apply an appropriate multiple regression technique (Section 9.1.2 
or Section 9.2.2) to fit the prescribed regression equation or equations 
specified in step 1. 

For our example, the equation in step 2 should first be linearized into: 

y = a + P/IZ + / 2Z2 + 3z 3 + f/4Z4 + #5Z5 

where 

Z== X1, Z2 = X12 , Z3 = X2 , Z4 = XA'X2 , and Z5 = X2X 2 . 

Then the standard multiple linear regression technique of Section 9.1.2 can 
be applied to obtain an estimate of the linearized equation as: 

Y = 0.30809 + 0.00639Z1 - 0.00029Z 2 + 0.00273Z 3 

-0.0010z 4 + 0.000001z 5 

That is, 

= 	0.30809 + 0.00639X - 0.00029X?2 + 0.00273X 2 

-0.00010Xx x 2 + o.000001 AX2 

R2The coefficient of determination of the estimated regression is .97, 
which is significant at the 1%level. 
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0 STEP 4. Apply the test of significance to each regression coefficient ob­
tained in step 3, by computing the corresponding t value as: 

Compute the standard error of each of the k estimated regression 
coefficients as: 

= ( 1 ) SE 
s(b1 ) V n k 1 

where b, is the estimate of the ith regression coefficient, SSE is the 
residual sum of squares defined in Section 9.1.2, step 4, and c,, is the ith 
diagonal element of the C-matrix which is the inverse of the following 
matrix*: 

xix EXIx2 ... EXXk 

EX 1X2 X2IX2X 

where EX2 and Ex~x/ are the sum of squares and sum of cross products 
defined in Section 9.1.2. 

For our example, the C-matrix is 

0.0103568182 -0.0002306818 0.0002863636 -0.0000493182 0.00000109851 
0.0000055682 - 0.0000053030 0.0000010985 -0.0000000265 

C - 0.0000226712 -0.0000021212 0.0000000393 
0.0000003653 - 0.0000000081 

0.0000000002 

and the value of SSE is computed as: 
k 

ssE =Ey2 - E (b,)(Ex,y) 
i-I 

= 0.034276 

'The definition of a matrix, its notation, and the derivation of its inverse arc beyond the scope of
 
this book. Interested readers should refer to:
 
S Brandt. Statistical and Computational Methods in Data Analysis. Amsterdam: North Holland,
 
1970. pp. 248-263.
 
I) Ostlc and R. W. Mensing. Statistics in Research, 3rd ed., USA: Iowa State University Press,
 
1975. pp 193-202
 
R K. Singh an,. B. D. Chaudhary. Biometrical Methods in Quantitative Genetic Analysis. Indiana: 
Kalyani, 1977. pp. 19-38. 
R. G. D. Steel and J. H. Torrie. Principles and Procedures of Statistics. USA: McGraw-Hill, 1960. 
pp. 290-297. 
M. S Younger. Handbook for Linear Regression. Massachusetts: Duxbury Press, 1979. pp. 
298-307.
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The standard error of each estimated regression coefficient is then 
computed as: 

V(0.010 3568182) 
(0.034276)

s(bl) = 10 .0595811 

I/ (0.034276) 

V (0. 00 00 0556 8 2 )s(b 2) 10 = 0.00013815 

I(0.034276)0000 226712 )s(b3 ) -- 0 . 10 00027876~ .

s(b 4 ) = V(0.0000003653) 10 = 0.00003539 

-I/ (0.034276) 
(0. 0000 00000 2)s(bs) = 10 = 0.00000083 

Compute the I value, for each estimated regression coefficient b,, as: 
bi
 

s(b,) 

where b, is the regression coefficient computed in step 3 and s(b) is the 
corresponding standard error computed above. 

For our example, the five t values are: 

0.00639 
0.00595811
 

=2 - 0.00029 = 
0.00013815 2.10 

0.00273t3 0.0027 = 9.79 
=3 0.00027876 

- 0.00010 
14 0.00003539 - 2.83 

0.000001 
= 0.00000083 

1O STEP 5. Compare each computed t value to the tabular t value, from 
Appendix C, with (n - k - 1) degrees of freedom. Reject the hypothesis 
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that P, = 0, at a level of significance, if the absolute value of the computed t 
value is greater than the corresponding tabular I value at a level of 
significance. 

For our example, the tabular t values with (n - k - 1) = 10 degrees of 
freedom are 2.228 at the 5%level of significance and 3.169 at the 1%level. 
Results show that only the absolute value of the computed 13 value is greater 
than the tabular t value at the 1%level, and the absolute value of the 
computed 14 value is greater than the tabular t value at the 5% level. This 
indicates that, of ,he five regression terms originally ,uspected to influence 
the dependent variable, only two, namely, X2 and X)X 2, are significant. 

0 	STEP 6. Drop all regression terms whose regression coefficients are shown 
to be not significant and refit the data to the regression equation with 
(k - m) regression terms, where m is the total number of the regression 
terms dropped. For our example, because only two regression coefficients 
(/33 and ,P4) are significant, all three other regression terms are dropped from 
the original regression equation and the revised equation is: 

Y = a + 71X2 + Y2 X1 X 2 

which is to be reltted, following steps 3 to 5, and using the same set of data. 
The estimate of the revised regression equation is obtained as: 

Y = 0.27015 + 0.00299X 2 - 0.00009XI X 2 

with the coefficient of determination R 2 of .93, which is significant at the 1% 
level. 

9.3.3.2 Joint Testing of Regression Terms. Instead of testing each regres­
sion term separately, as is the case with the procedure of Section 9.3.3.1, the 
joint testing technique applies the test of significance jointly to a group 
consisting of q regression terms, where q > 2. Depending on the result of the 
test of significance, the whole group of q regression terms is either retained, or 
dropped, as a unit. 

We illustrate the procedure for joint testing with the same set of data used 
in Sections 9.3.2 and 9.3.3.1 (Table 9.9). Assume that we wish to test the 
significance of the joint contribution of the terms involving X2 and X,2X 2 of 
the equation: 

y =a + fi1X1 + #32X12 +~03X2 + /34XX 2 + p5X12X 2 

The step-by-step procedures are: 

0 	srEP 1. Follow steps 1 and 2 of Section 9.3.3.1. For our example, the single 
multiple regression equation to be fitted has k = 5 regression terms (exclud­
ing intercept). 
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" 	sTEP 2. Specify the q (where q < k) regression terms whose joint contribu­
tion to the regression equation prescribed in step 1 is to be tested. The set of 
q regression terms is u3ually chosen so that the terms within the set are 
closely related to each other. 

For our example, the set of q = 2 regression terms, one involving X? and 
another involving X2X 2, is chosen. Note that both terms are closely related 
because both have the quadratic component of X,. 

o STEp 3. Apply the appiopriate regression analysis to the prescribed regres­
sion equation based on k regression terms. Designate the sum of squares d!e 
to this regression as SSR(k) and the residual sum of squares as SSE(k). 

For our example, the multiple regression analysis is already applied to the 
equation in Section 9.3.3.1, and SSR(k) and SSE(k) are computed as: 

SSR(k) = SSR(5) = 1.197854 

SSE(k) = SSE(5) = 0.034276 

o3 	 sTrP 4. Apply the appropriate regression analysis to the regression equa­
tion based on (k - q) regression terms. Designate the sum of squares due to 
this regression as SSR(k - q). For our example, the regression equation 
involving (k - q) = 5 - 2 = 3 regression terms is: 

Y = a + PIX1 + /12X2 + /X 1X2 

Following the procedure of the multiple regression analysis applied to the 
regression of this form discussed in Section 9.1.2, the value of the sum of 
squares due to this regression (with k - q = 3 regression terms) is: 

SSR(k - q) = SSR(3) = 1.180536 

o3 	 srp 5. Compute the difference between the two sums of squares due to 

regression, computed in steps 3 and 4, as: 

SSRq= SSR(k) - SSR(k- q) 

where SSR q represents the joint contribution of the q regression terms to the 
variation in the dependent variable. 

For our example, the value of SSRq is computed as: 

SSR2 = SSR(5) - SSR(3) 

= 1.197854 - 1.180536 = 0.017318 

O3 	 srEP 6. Compute the F value as: 

SSRq/q 

SSE(k)/(n - k -) 

(0.017318)/2 =2.53 
(0.034276)/10 
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o 	STEP 7. Compare the computed F value with the tabular F value (Appen­
dix E) at a specified level of significance with f = q and f2 = (n - k - 1) 
degrees of freedom. If the computed F value is larger than the correspond­
ing tabular Fvalue, the joint contribution of the group of q regression terms 
to the variation in the dependent variable is significant. In such a case, the 
use of the regression equation having (k - q) regression terms is not 
appropriate and the regression equation having k regression terms should be 
us&. 

For our example, the tabular F value with f1 = 2 and f2 = 10 degrees of 
freedom is 4.10 at the 5% level of significance and 7.56 at the 1%level. 
Because the computed Fvalue is less than the tabular F value at the 5%level 
of significance, the joint contribution of the two regression terms, associated 
with X? and XX 2, is not significant. Thus, the multiple regression equation 
with 5 - 2 = 3 regression t(', as specified in step 4, is appropriate. The 
estimate of this regression equation is: 

k = 0.36514 - 0.00543X, + 0.00254X2 - 0.00007XX 2 

with the coefficient of determination R2 of .96, which is significant at the 1% 
level. 

9.3.4 Stepwise Regression Technique 

The stepwise regression technique is similar to that of the test of significance 
technique (Section 9.3.3) in that it aims to include in the regression equation 
only those terms that contribute significantly to the variation in the dependent 
variable. However, this objective is achieved in the stepwise regression tech­
nique by systematically adding terms, one at a time, to the regression equation, 
instead of removing terms, singly or jointly, from an initially large equation. 
We illustrate the procedure with the same set of data used in Sections 9.3.2 and 
9.3.3 (Table 9.9). The procedures are: 

o 	STEP 1. Specify a set of f regression terms, which are associated with the 
independent variables of interest and have possibilities of being included in 
the regression equation. A large f provides a wider range for screening than 
a small f and thus increases the chance of including as many regression 
terms that should be included in the regression equation as possible. The 
computational procedure is, however, more complicated with a large f but 
the computational work can be greatly minimized by use of a computer. In 
general, f is usually larger than k of Section 9.3.3.1 and Section 9.3.3.2. 

For our example, we consider a second-degree polynomial relation­
ship for each of the two factors, and all four possible interaction terms be­
tween the two factors based on the second-degree polynomial. That is, we 
consider f = 8 regression terms associated with water stress (XI) and 
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nitrogen rate (X2): 

z, =x z5= xx 2 

Z4 = X2 X2x 

3 sTEP 2. Treat each of the f regression terms specified in step 1 (i.e., 
Z1, Z2,.... Zf) as a newly created variable and compute a simple correlation 
coefficient r between the dependent variable Y and each of the Z variables, 
following the procedures of Section 9.1.1.2. The first Z variable to enter the 
regression equation is that with the highest r value, which is significant at 
the a level of significance. The commonly used a value is between 10 and 
20%. The larger the a value, the greater the number of variables that have 
the chance of entering into the regression equation. 

For our example, the values of the eight Z variables are first computed 
from the values of the two original faclors X1 and X,, as shown in Tabie 
9.11. Then, following procedure of Section 9.1.1.2 and using data of Table 
9.11, compute the simple correlation coefficient between the Y variable and 
each of the Z variables and indicate the significance of each coefficient. The 
results, with significance based on a = 20% level of significance, are: 

First 

r*Z Variable 

Z, -. 761 + 

Z2 .506 + 

Z3 - .759+ 

Z4 .476 + 

Z5 : -. 378+ 
Z6 -. 294 

- .495+ 

Z11 -. 415 + 
Z 7 

The largest r value is r = -. 761 (absolute value is considered) exhibited 
by Z1, which is significant at the 20% level of significance. Thus, the first Z 
variable to enter the regression equation is ZI. 

[3 	 sTEP 3. Fit the following (f - 1) multiple linear regression equations, 
following the procedure of Section 9.1.2 and using data of Table 9.11: 

+ +YI = a, flkIZk fljZj i = 1,...,fand i 0 k 

*+- significant at the .20% level. 



Table 9.11 Computation of Parameters Needed in the Stepwise Regression Technique to Determine an Appropriate Regression
Equation between Nitrogen Uptake (Y), Water Stress (X1), and Nitrogen Rate (X2); from Data in Table 9.9 

Treatmcni Nitrogen Uptake Water Stress Nitrogen Rate 
Number (y) (X, - Z,) (X 2 = ZZ) ZX= Z- =X1 XZ Z- XZX3 ZI - XX 2 Z, - X1'X26 

1 0.318 0 0 0 0 0 0 0 0 
2 0.517 0 90 0 8,100 0 0 0 0 
3 0.786 0 180 0 32400 0 0 0 0 
4 1.018 0 270 0 72,900 0 0 0 0 
5 0.336 10 0 100 
 0 0 0 0 0
 
6 ' 583 10 90 100 8,100 900 81,000 9,000 810,000 
7 0.677 10 180 100 32,400 1,800 324,000 18,000 3,240,000 
8 0.914 10 270 100 72,900 2,700 729,000 27.000 7,290,000 
9 0.264 20 0 400 0 0 0 0 0
 

10 0.476 20 90 400 8,100 1,800 162,000 36,000 3,240,000 
11 0.442 20 180 400 32,400 3.600 648,000 72,000 12,960,000 
12 0.525 20 270 400 72,900 5.400 1,458,000 108,000 29,160,000 
13 0.095 40 0 1,600 0 0 0 0 0 ­
14 0.140 40 90 1,600 8,100 3.600 324.000 144,000 12,969.000 
15 0.116 40 180 1,600 32,400 7,200 1,296,000 288,000 51,840,000 
16 0.128 40 270 1,600 72,900 10.800 2,916,000 432,000 116,640,000 

Fy 
2 

- 1.2321 .Z2 - 148,837,500 Ez,- -49.962 2zsy - -5,113.238 
-:2- 3,500 E2 - 9,564,297,750,000 Ez 2 y - 225.945 z 6y - -1,008,277.875 

F.2 - 162,000 EZ72 - 229,209,750.000 E -3Y- -2,150.675 Ez~y - -263,233.125 
F.32 - 6,510,000 E z

2 - 14,008,883,175,000,000 Ez-Y - 59,879.250 Ezzy - -54,506'216.250 
EZ4 - 12,859,560,000 
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where Zk is the first Z variable identified in step 2. The Z, variable, which 
corresponds to the ith regression equation, with the largest value of the 
multiple correlation coefficient R and whose coefficient is found to be 
significant at the a level of significance, is chosen as the second Z variable to 
enter the regression equation. If none of the Z, variables gives a significant 
regression coefficient, the process is terminated and the variable chosen in 
step 1 is the only one included in the regression equation. 

For our example, the multiple correlation coefficient corresponding to 
each of the (f - 1) = 7 regression equations and the t value for testing 
significance of the regression coefficient corresponding to each of the seven 
remaining Z variables (Z2 to Z8) are shown below. Each regression equation 
has two independent variables-the first is Z1 (identified in step 2) and the 
second is each of the remaining seven Z variables. 

Second 
Z Variable R t 

Z2 .914 4.48 + 

Z3 .768 -0.58 
Z4 .897 3.89 + 

Z5 .777 0.91 
Z6 .774 0.81 
Z7 .762 0.23 
Z8 .762 0.22 

The largest R value is exhibited by Z2, whose regression coefficient is 
significant at the 20% level of significance. Thus, Z2 is the second variable to 
be entered in the rLgression equation. 

0 	smp 4. Fit the following (f - 2) multiple linear regression equation, 
following the same procedure used in step 3: 

Y,"= a' + PjZk + rZm + Rj'ZI i = 1,...,fland i # m or k 

where Zk is the first Z variable identified in step 2, Zm is the second Z 
variable ident:,ied in step 3, and Z, refers to each of the (f - 2) remaining Z 
variables (i.e., except for Zk and Z,). And use the procedure in step 3 to 
identify the third Z variable or to terminate the process. 

For our example, the multiple correlation coefficient corresponding to 
each of the (f - 2) = 6 regression equations and the t value for testing 
significance of the regression coefficient corresponding to each of the six 
remaining Z variables (Z3 to Z8) are shown below. Each regression equation 
has three independent variables, two of which are Z, and Z2 and the third is 
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each of the remaining six Z variables. 

Third 

Z Variable R t 

Z 3 .919 -0.90 
Z 4 .914 -0.27 
Z5 .979 -5.95+ 

4 .973 -5.06 + 

Z 7 .974 -5.12 + 

Z8 .970 -4.64 + 

The largest R value is exhibited by Z5, whose regression coefficient is 
significant at the 20% level of significance. Thus, Z5 is the third variable to 
enter the regression equation. 

0 	smp 5. Fit the following (f - 3) multiple linear regression equations, 
following the same procedure used in step 4: 

17' = ai + flk + fl.Zm + fZ. + P1741 

i=1,...,f and i0m,korn 

where Zk, Zm, and Z,, are the three previously identified Z variables and Z, 
refers to each of the (f - 3) remaining Z variables (i.e., except for Zk, Zm , 
and Zn). And use the procedure in step 3 to identify the fourth Z variable or 
to terminate the process. 

For our example, the multiple correlation coefficient corresponding to 
cach of the (f - 3) = 5 regression equations, each having four independent 
variables, three of which are Z,, Z2 , and Z5 and the fourth is each of the 
remaining five Z variables (Z 3 , Z4 , 46, Z7, and Z). 

Fourth 

Z Variable R 

+Z3 .984 -1.92 
Z4 .979 -0.51 

Z6 .980 -0.65 
Z7 .980 -0.78 
Z8 .980 -0.73 

The largest R value is exhibited by Z3, whose regression coefficient is 
significant at the 20% level of significance. Thus, Z3 is the fourth variable to 
be entered in the regression equation. 
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o3 	 snp 6. Fit the following (f - 4) multiple linear regression equations, 
following the procedure used in step 4: 

lt= a" + l' Zk + Pht"Z. + in," Z. + P;,'" Z + fi," 

i=1,...,fand i 0 m,k, norp 

where Zk, Z,,,, Zn, and ZP are the four previously identified Z variables and 
Z, refers to eac.h of the (f - 4) remaining Z variables (i.e., except for Zk, 
Zm, Z,, and ZP). And use the procedure in step 3 to identify the fifth Z 
variable or to terminate the process. For our example, the multiple correla­
tion coefficient corresponding to each of the (f - 4) = 4 regression equa­
tion's, each having five independent variables, four of which are Z1, Z2 , Z5 , 
and Z3, are: 

Fifth 

Z Variable R I 

Z4 .985 -0.57 
Z6 .985 -0.72 
Z7 .986 1.12 
Z8 .984 0.20 

Because none of the regression coefficients associated with the fifth 
variable is significant at the 20% level, the process is terminated. Thus, the 
regression equation that should be used is one that consists of the four Z 
variables identified in step 5. The estimate of this regression equation is: 

= 0.33300 + 0.00123Z, + 0.00254Z 2 - 0.00016Z 3 

- 0.00007Z5 

That is, 

" 0.33300 + 0.00123X, + 0.00254X2 - 0.00016X12 

- 0.00007X X2 

9.4 COMMON MISUSES OF CORRELATION 
AND REGRESSION ANALYSIS 
IN AGRICULTURAL RESEARCH 

The regression and correlation analysis is a powerful tool for analyzing the 
relationship and association among physical and biological variables. Thus, it 
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is one of the most widely used statistical procedures in agricultural research 
and its use is consistently increasing. However, the analysis is often misused 
which frequently causes misleading and incorrect interpretation of results. 

The common cause of misuse of regression and correlation analysis in 
agricultural research is :hat, unlike the analysis of variance which requires 
some rigid assumptions about .he data to which it is applied, the regression 
and correlation analysis is applicable to many types of data from almost any 
source. To illustrate this point, consider the association between grain yield 
and protein content in rice. The association between these two traits is usually 
negative when computed from data taken from different varieties. When 
computed from data covering a wide range of nitrogen fertilization, however, 
the relationship becomes positive. Although these two results seem conflicting, 
it is, in reality, consistent with biological expectations. This is so because 
incieased nitrogen fertilization for a single rice variety is expected to increase 
both grain yield and protein content-and thus have a positive correlation; 
whereas for different varieties grown at the same level of nitrogen, those having 
higher grain yield are expected to have lower protein content, and vice 
versa-and thus have a negative correlation. 

The common misuses of the regression and correlation technique in agricul­
tural research can be classified into four categories: 

" Improper match between data and objective 
" Broad generalization of results 
* Use of data from individual replications 
• Misinterpretation of the simple linear regression and correlation analysis 

9.4.1 Improper Match Between Data and Objective 

As indicated previously, the interpretation of the results of a regression and 
correlation analysis depends greatly on the type of data used. Of particular 
importance in this regard are the primary sources of variability among the data 
points. These sources of variability must be selected to properly match the 
objective of the analysis. 

The association between grain yield and protein content illustrates clearly 
the importance of proper matching of data and objective. In one case, the 
primary source of variability is variety; in the other case it is the rate of 
nitrogen fertilizer. Clearly, the negative correlation obtained from data with 
variety as the primary variable is appropriate for answering the objective of the 
rice breeders whose aim is to select for high-yield and high-protein varieties, 
while the positive correlation obtained from data with nitrogen rate as the 
primary variable is appropriate for answering the objective of the agronomists 
whose aim is to determine the optimum rate of nitrogen .. rtilizer. Obviously, a 
substantial error would have resulted if there were a mismatch between the 
type of data used and the objective of the analysis. 
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Although the choice of the appropriate data to match a given objective is 
fairly obvious in the foregoing example, such a choice is often not simple in 
practice. Take the case of a researcher who wishes to evaluate the effect of stem 
borer infestation on grain yield, in a rice variety such as IR8. Such possible 
sources of data for his study are: 

A. Data on grain yield and corresponding stem borer incidence in IR8 
obtained from several secondary sources, such as his own experiments, or other 
rc..earchers' experiments, that were conducted previously for other purposes. 

B. Data on grain yield and stem borer incidence measured from sample 
crop-cuts of IR8 made at different sites in one or more farmers' fields. 

C. Data on grain yield and stem borer incidence measured from several 
subplots that are generated by subdividing an area that is large enough to 
allow variation in stem borer incidences. The whole area grows IR8 with 
uniform management and without insecticide application so that variability in 
insect infestation is induced. 

D. Data on grain yield and stem borer incidence collected from each 
experimental plot of a replicated field trial in which different levels of stem 
borer control (e.g., different types and rates of insecticide application) con­
stitute the treatments tested. 

E. Data on grain yield and stem borer incidence from each experimental 
unit of an experiment in which the treatments are the varying numbers of stem 
borers per plant or per unit area. Such an experiment may be a greenhouse 
trial where one or more experimental pots represent an experimental unit, or a 
field trial where a unit area (covered with a net to confine the insects) 
represents an experimental unit. 

Although regression and correlation analysis can be applied to an) one of 
these sources of data, the specific manner of application, the degree of 
accuracy of the estimated regression equation, and the interpretation of the 
result vary greatly from one data source to another. For example, the degree of 
accuracy is expected to be lowest with source A and becomes gradually higher
with source B, C, D, and E, in that order. On the other hand, the complexity of 
the analysis and its interpretation is expected to be highest with source A and 
becomes gradually less with source B, C, D, and E, in that order. 

With data from source A, many noncontrolled factors besides stem borer 
incidence can be expected to contribute to the variation in yield. Different 
observations could have come from different sites or different crop seasons 
and, therefore, could have been exposed to different environments (soil and 
climate), could have been fertilized with different types and rates of fertilizer, 
and so on. These factors could cause variation in yield that could be larger 
than that caused by stem borer, which is th- factor of major interest. Conse­
quently, the estimate of the relationship between yield and stem borer inci­
dence is expected to be poor. In fact, for such a data source, it may be 
necessary to use a multiple regression technique that can handle several more 
variables besides stem borer incidence. For any variable to be eligible for 
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inclusion in the multiple regression analysis, however, it should have been 
measured uniformly on all experiments comprising the data source. This 
requirement is difficult to satisfy in practice because data from several nonre­
lated secondary sources seldom record a uniform set of variables. 

With data from source B, some improvements over source A can be 
expected. For example, seasonal effects are expected to be minimized because 
the data are collected in the same crop season. Morever, any major difference 
in management and in soil conditions between farms can be noted during the 
process of crop cutting. These factors can then be used as additional indepen­
dent variables in the multiple regression. For this technique to succeed, 
however, all variable factors that significantly influence yield must be included. 
Because the number of noncontrolled factors that can potentially affect yield 
for this source of data is large, the choice of the appropriate variables to 
measure and to include in the analysis is usually not easy.

With data from source C, variation in the cultural and management 
practices and in soil and climate is expected to be minimal. However, the 
major problem of this source of data is that the variability in stem borer 
incidence, and in turn that for yield, may not be sufficiently large for a 
meaningful assessment of their relationship. 

With data from source D, the above mentioned deficiency of source C is 
remedied because .-c treatments are selected to induce different levels of stem 
borer control and a large variability in the stem borer incidences between 
observations can be expected. 

With data from source E, the problem of controlling incidence of other 
insects and diseases, which is present in all other data sources (A through D) is 
expected to be remedied. Although this data source can control many undesir­
able sources of variation, it has two major problems, namely high cost and high 
level of artificiality. Yield data may not be realistic in a greenhouse trial; and 
with the use of screen, or a net in a field trial, the resulting environment may 
be highly artificial. 

We make two major points from the foregoing discussion: 

1. The choice of data source is critical in the application of the regression 
and correlation technique. This is even more critical in the interpretation of 
results. The important considerations for selecting the data source are the 
expected accuracy of results and the estimated cost, both in money and time. 
Often, the correct choice is a compromise between those two considerations. 
Usually the alternatives with low accuracy are used in preliminary studies 
because of their low cost and fast turnaround. But when a high degree of 
accuracy is desired, data from properly controlled experiments may be more 
appropriate. 

2. A critical examination of the data source and identification of possible 
factors that may affect the result and its interpretation is essential for proper 
use of the regression and correlation technique. 
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9.4.2 Broad Generalization of Regression and Correlation Analysis Results 

One of the most common misuses associated with a regression and correlation 
analysis is the tendency to generalize the coverage of the functional relation­
ship, or the association between variables, beyond the scope of the data to 
which the analysis was applied. This is usually done by extrapolating the result 
of a regression and correlation analysis outside of the range of X values 
permitted. For example, the result of a linear relationship between rice yield 
(Y) and nitrogen rate (X) obtained from data whose X values are in the range 
of 0 to 90 kg N/ha is valid only within the specified range. It is not valid to 
extrapolate the results beyond the rate of 90 kg N/ha, because the relationship 
could easily change beyond that point. Another example is the relationship 
between yield of IR8 and stem borer incidence as discussed in Section 9.4.1. In 
this case, it is not valid to extend the result to cover all rice varieties, or even all 
semidwarf rice varieties such as IR8, because the relationships may vary 
between varieties with different levels of resistance to this insect or between 
varieties differing in their yield potential. 

Another area that is prone to improper generalization of results is the use of 
regression and correlation analysis to identify substitute methods for measur­
ing plant characters. Two examples of this type of application are: 

" The use of ear weight as a substitute for grain weight in variety trials in 
maize, because the former is faster and easier to measure and because the 
two characters are highly correlated. 

" The use of leaf length and leaf width in place of leaf area, because the 
measurement of leaf length and leaf width is not only simple and inexpen­
sive but does not require destruction of plants. 

The large size of the simple linear correlation coefficient between the difficult­
to-measure character and its potential substitute is generally used as the 
justification for the use of the substitute method. Obviously, a perfect correla­
tion means no information is lost in the substitution, but a perfect correlation 
cannot always be expected and the loss of information for a less-than-perfect 
correlation is proportional to the quantity (1 - r 2). 

Even though the rationale for such substitution is valid, mistakes are 
sometimes committed in interpreting and applying the results. Two common 
mistakes are: 

The result of a simple linear correlation coefficient obtained from one set of 
data is overextended to cover all types of data. For example, although the r 
value between two characters, obtained from data covering a large number 
of varieties exhibiting a wide range in values of the character under 
examination, can be adequately extended to cover various variety tests; it 
may not be applicable for other types of experiment, such as fertilizer trials 
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and insecticide trials. Thus, substituting one character for another could be 
satisfactory for certain types of trial but not for others. It is, therefore, not 
correct to assume that a substitute method found satisfactory based on one 
set of data will be satisfactory for all types of data. 
The simple linear correlation coefficient used to identify a substitute method 
is usually estimated from data covering an extremely wide range of values of 
the character under study; and, thus, its high value may no longer hold in 
situations with a much narrower range. For example, the simple linear 
correlation coefficient r between grain yield and ear weight in maize 
computed from tests involving only promising maize varieties can be 
expected to be smaller than the corresponding r value computed from a 
variety test involving varieties randomly chosen from the world germ plasm 
collection. This is because variability in the latter set of materials is expect­
ed to be much higher than that in the first set. Thus, it is extremely import­
ant to know the data source used in estimating the correlation coefficient 
used to select a substitute method of measurement, and to not apply the 
result beyond the scope of that data. 

While it is clear that the extrapolation of a regression or correlation analysis 
to cover areas beyond the scope of the original data is risky and should be 
attempted only with the justification of a well-known biological phenomenon, 
the temptation to do so can be strong in certain cases. To minimize this error, 
the results of any regression and correlation analysis should always be pre­
sented with the following inf, 'nation: 

" 	 The range value for each and all independent variables, so that the underly­
ing population in which the results are applicable is properly defined. 

" 	 The correlation coefficient (or the coefficient of determination) and its 
significance, to indicate the amount of variation in the dependent variable 
that can be explained by the independent variable or variables. 

" The sample size (n), for proper judgment of the size of the correlation 
coefficient. 

" The source of data, for proper interpretation of the results. 
• 	 Graphical presentation of the data points together with the regression and 

correlation results, to help in the understanding of the underlying basis for 
the specific relationship derived (the form and the relative sizes of the 
regression parameters) and the degree of association observed. 

9.4.3 Use of Data from Individual Replications 

When the regression and correlation analysis is applied to data from replicated 
trials-for example, to evaluate the relationship between crop response and 
treatment-there are two choices of data that can be used. One is the data by 
replication and another is the treatment means averaged over all replications. 
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As a general rule, although use of the data by replication seems more appealing 
because the number of data points is larger, use of the treatment means 
averaged over replications is more appropriate. This is so because variation 
between experimental units receiving the same treatment (experimental error) 
need not enter into the evaluation of the association between crop response 
and treatment. For example, if the researcher wishes to examine yield response 
to different rates of nitrogen, based on data from a replicated fertilizer trial, 
the treatment means rather than the replication data should be used. This 
avoids confounding the residual sum of squares with the experimental error. 

The use of replication data is justified only in some rare cases. One of the 
most common cases is when response to treatments is not the primary objective 
of the analysis. For example, in evaluating the relationship between grain yield 
and leaf-area index in rice, several plant spacings may be tested-not to study 
spacing effects on grain yield and on leaf-area index, but merely to induce 
variation in both characters so that their association can be examined. In such 
a case, the replication data may be used instead of the treatment means. 
However, because the use of replicaLion data involves more than one source of 
variation, interpretation of results becomes more complex and consultation 
with a competent statistician is advisable. 

9.4.4 Misinterpretation of the Simple Linear Regression 
and Correlation Analysis 

Because of its simplicity, the simple linear regression and correlation analysis is 
one of the most frequently used techniques in agricultural research. Unfor­
tunately, it is also the most frequently misused. Three common types of 
misinterpretation of the simple linear regression and correlation analysis are: 

" 	Spurious Data. A set of data points is termed spurious when its distribution 
over the range of the independent variable is uneven. An example is shown 
by Figure 9.12, where there are two clusters of data points, one at each end 
of the range of X values. For such type of spurious data, the simple linear 
regression and correlation coericients would almost always be significant. 
However, such a significant result is not a valid indication of a linear 
relationship, because nothing is known about data points between the two 
extremes. To avoid such misinterpretation, a scatter diagram of the observed 
data should be constructed and checked for uneven distribution of data 
points whenever significant results are obtained, or even before the simple 
regression and correlation analysis is applied. 

" 	 Cause and Effect. One of the most common misinterpretations of the simple 
linear correlation coefficient r is to say that a significant r indicates the 
presence of a causal relationship between the two variables. Even though the 
correlation analysis can quantify the degree of association between two 
characters, it cannot and should not provide reasons for such an association. 
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Figure 9.12 A case of spurious data with a highly significant simple linear correlation coefficient r 
between spikelet sterility (Y) and panicle exsertion (X) of rice variety IR36, but without a clear 
indication of the type of relationship. 

For example, a high positive associaiion between tiller number and plant 
height observed from a rice fertilizer trial does not indicate that higher tiller 
number is the effect of higher plant height, or vice versa. In fact, it is the 
increase in the fertilizer rate that cause:, both characters to increase simulta­
neously. 
Nonsignificant r Value -nd the Absence of a Functional Relationship. The 
simple linear correlation coefficient is designed to detect the presence of a 
linear association between two variables. It cannot detect any other type of 
variable association. Thus, a nonsignificant r value cannot be taken to imply 
the absence of any functional relationship between the two variables. As 
shown in Figure 9.5, two variables may have a strong nonlinear relationship 
even if their r value is low and nonsignificant. 

http:9c106.66


CHAPTER 10 

Covarlance Analysis 

On the premise that the various biophysical features of an experimental plot do 
not behave independently but are oten functionally related to each other, the 
analysis of covariance simultaneously examines the variances and covariances 
among selected variables such that the treatment effect on the character of 
primary interest is more accurately characterized than by use of analysis of 
variance only. 

Analysis of covariance requires measurement of the character of primary 
interest plus the measurement of one or more variables known as covariates. It 
also requires that the functional relationship of the covariates with the char­
acter of primary interest i7 known beforehand. 

Consider the case of a rice variety trial in which weed incidence is used as a 
covariate. With a known functional relationship between weed incidence and 
grain yield, the character of primary interest, the covariance analysis can adjust 
grain yield in each plot to a common level of weed incidence. With this 
adjustment, the variation in yield due to weed incidence is quantified and 
effectively separated from that due to varietal difference. 

Covariance analysis can be applied to any number of covariates and to any 
type of functional relationship between variables. In this chapter, we deal 
primarily with the case of a single covariate whose relationship to the character 
of primary interest is linear. Although this limited focus greatly simplifies our 
discussion, we do not expect it to unduly reduce the applicability of the 
procedures because the condition of a single covariate with a linear relation­
ship to the primary variable is adequate for most agricultural research. 

10.1 USES OF COVARIANCE ANALYSIS IN 

AGRICULTURAL RESEARCH 

Three important uses of covariance analysis in agricultural research are: 

1. To control experimental error and to adjust treatment means 

2. To estimate missing data 
3. To aid in the interpretation of experimental results 

424 
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10.1.1 Error Control and Adjustment of Treatment Means 

We have emphasized repeatedly that the size of experimental error is closely 
,related to the variability between experimental units. We have also shown th-z

proper blocking (Chapter 2, Section 2.2.1) can reduce experimental error by 
maximizing the differences between blocks and thus minimizing differences 
within blocks. Blocking, however, cannot cope with certain types of variability 
such as spotty soil I :terogeneity and unpredictable insect incidence. In both 
instances, heterogeneiiy between experimental plots does not follow a definite 
pattern, which causes difficulty in getting maximum differences between blocks. 
Indeed, blocking is ineffective in the case of nonuniform insect incidences 
because blocking must be done before the incidence occurs. Furthermore, even 
though it is true that a researcher may have some information on the probable 
path or direction of insect movement, unless the direction of insect movement 
coincides with the soil fertility gradient, the choict, of whether soil heterogene­
ity or insect incidence should be the criterioi, for blocking is difficult. The 
choice is especially difficult if both sources of variation have about the same 
importance. 

Use of covariance analysis should be considered in experiments in which 
blocking cannot adequately reduce the experimental error. By measuring an 
additional variable (i.e., covariate X) that is known to be linearly related to the 
primary variable Y, the source of variation associated with the covariate can be 
deducted from experimental error. With that done, the primary variable Ycan 
be adjusted linearly upward or downward, depending 3n the relative size of its 
respective covariate. The adjustment accomplishes ,wo important improve­
ments: 

1. 	 The treatment mean is adjusted to a value that it would have had, had 
there been no differences in the values of the covariate. 

2. 	 The experimental error is reduced and the precision for comparing 
treatment means is increased. 

Although blocking and covariance technique are both used to reduce 
experimental error, the differences between the two techniques are such that 
they are usually not interchangeable. The analysis of covariance, for example, 
can be used only when the covariate representing the heterogeneity between 
experimental units can be measured quantitatively. However, that is not a 
necessary condition for blocking. In addition, because blocking is done before 
the start of the experiment, it can be used only to cope with sources of 
variation that are known or predictable. Analysis of covariance, on the other 
hand, can take care of unexpected sources of variation that occur during the 
experiment. Thus, covariance analysis is useful as a supplementary procedure 
to take care of sources of variation that cannot be accounted for by blocking. 

When covariance analysis is used for error control and adjustment of 
treatment means, the covariate must not be affected by the treatments being 
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tested. Otherwise, the adjustment removes both the variation due to experi­
mental error and that due to treatment effects. A good example of covariates 
that are free of treatment effects are those that are measured before the 
treatments are applid, such as soil analysis and residual effects of treatments 
applied in past experinents. In other cases, care must be exercised to ensure 
that the covariates defined are not affected by the treatments being tested (see 
Section 10.1.1.4). 

We describe some specific application of the covariance technique in con­
trolling experimental error and in adjusting treatment means. 

10.1.1.1 Soil Heterogeneity. The covariance technique is effective in con­
trolling experimental error caused by soil heterogeneity when: 

" The pattern of soil heterogeneity is spotty or unknown.
 
" Variability between plots in the same block remains large despite blocking.
 

Use of covariance technique in such cases involves the measurement, from 
individual experimental plots, of a covariate that can distinguish differences in 
the native soil fertility between plots and, at the same time, is linearly related 
to the character of primary interest. Two types of covariate that are commonly 
used for controlling experimental error due to soil heterogeneity are uniformity 
trial data and crop performance data prior to treatment. 

10.1.1.1.1 Uniformity Trial Data. Uniformity trial data are crop perfor­
mance records of small plots obtained from an experimental field that is 
managed uniformly (see also Chapter 12, Section 12.2.1). 

Based on the premise that a uniform soil cropped uniformly gives uniform 
crop performance, soil heterogeneity is measured as the differences in crop 
performance from one plot to another. Thus, in using uniformity trial data as 
the covariate, the two variables involved are: 

" 	 The primary variable Y, recorded from experimental plots after the treat­
mients are applied 

* 	The covariate X, recorded from a uniformity trial in the same area but 
before the experiment is conducted 

Uniformity trial data is an ideal covariate to correct for variability due to 
soil heterogeneity. It clearly satisfies the requirement that it is not affected by 
the treatments since measurements are made before the start of the experiment 
and, thus, before the treatments are applied. 

Despite the substantial gains in precision that can be expected from using 
covariance analysis with uniformity trial data as the covariate, it has not been 
widely used in agricultural research. There are two important reasons for this: 

* 	 A uniformity trial is expensive to conduct. In research stations where 
experimental fields are limited, the conduct of uniformity trials may take 
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away land that otherwise would have been used for one or more field 
experiments. In addition, because of the need for small basic units, the 
uniformity trial involves a more complex data collection scheme than the 
standard field experiments. 
The data from a uniformity trial is, strictly speaking, valid only in the 
specific field in which the trial was conducted. 

10.1.1.1.2 Data Collected prior to Treatment Implementation. In experi­
ments where there is a time lag between crop establishment and treatment 
application, some crop characteristics can be measured before treatments are 
applied. Such data represent the inherent variation between experimental plots. 
In such c-ses, one or more plant characters that are closely related to crop 
growth, such as plant height and tiller number, may be measured for each 
experimental plot just before the treatments are applied. Because all plots are 
managed uniformly before treatment, any difference in crop performance 
between plots at this stage can be attributed primarily to soil heterogeneity. 

Crop performance data is clearly easier and cheaper to gather than uniform­
ity trial data because crop performance data is obtained from the crop used for 
the experiment. However, such data are only available when the treatments are 
applied late in the life cycle of the experimental plants. 

10.1.1.2 Residual Effects of Previous Trials. Some experiments, because of 
the treatments used, may create residual effects that increase soil heterogeneity 
in the succeeding crops. In cases where soil heterogeneity caused by residual 
effects of previous trials is expected to be large, the field should be left in 
fallow or green manure for a period of time between experiments. This 
practice, however, is costly and is not commonly used where experimental field 
areas are limited. When a fallow period or a green manure crop cannot be 
used, the expected residual effects can be corrected by blocking, or by a 
covariance technique, or by both. With the covariance technique, the covariate 
could be plot yield in the previous trial or an index representing the expected 
residual effects of the previous treatments. 

IO.LL3 Stand Irregularities. Variation in the number of plants per plot 
often becomes an important source of variation in field experiments. This is 
especially so in the annual crops where population density is high and 
accidental loss of one or more plants is quite commoa. Several methods for 
stand correction are available (see Chapter 13, Section 13.3.3) but the covari­
ance technique with stand count as the covariate is one of the best alternatives, 
provided that stand irregularities are not caused by treatments. Such a condi­
tion exists when: 

" The treatments are applied after the crop is already well established. 
" The plants are lost due to mechanical errors in planting or damage during 

cultivation. 
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The plants are damaged in a random fashion from such causes as rat 
infestation, accidental cattle grazing, or thefts. 

Frer':ently, the cause of stand irregularity is related to the effect of the 
treatments. In such cases, covariance analysis may still be applied but its 
purpose is totally different. Such usage of the covariance technique is to aid in 
the interpretation of results (see Section 10.1.3) rather than to control experi­
mental error and to adjust treatment means. 

10.1.1.4 Nonuniformity in Pest Incidence. The distribution of pest damage 
is usually spotty and the pattern of occurrence is difficult to predict. Conse­
quently, blocking is usually ineffective and covariance analysis, with pest 
damage as the covariate, is an ideal alternative. However, to ensure that the 
difference in pest damage between plots is not due to treatment effects, the 
following steps may be followed: 

o STEp 1. Classify the experiment as either Type A or Type B. Type A 
experiments are those in which the specific pest incidence (e.g., insect or 
disease incidence) is a major criterion for answering the experimental 
objective, such as those where treatments involve control of the insects and 
diseases or variety trials in which insect and disease resistance is a major 
criterion. Type B experiments are those that do not belong to Type A. 

o 	STEP 2. For type A experiments, apply the covariance technique only if 
variation in pest damage occurs before treatment implementation. For 
example, in a trial testing different insecticides, the covariate could be the 
insect count made before the insecticides are applied. Or, in a weed control 
trial, the covariate could be the weed population before treatment. In a 
variety trial to evaluate insect resistance, however, it is not possible to 
separate insect infestation from the varietal characteristics and the covari­
ance technique is not applicable for error control. 

o1 	 STEP 3. For type B experiments, the covariance technique can be applied to 
adjust for any variability in pest damage either before or after treatment 
implementation. For example, rat damage is a valid covariate in an insecti­
cide trial or in a variety trial for insect resistance. 

10.1.1.5 Nonunifotrmity in Environmental Stress. To selct varieties that 
are tolerant of environmental stress, competing genotypes are usually tested at 
a specified level of stress in a particular environment. Some examples are insect 
and disease incidence, drought or water logging, salinity, iron toxicity, and low 
fertility. It is usually difficult to maintain a uniform level of stress for all test 
varieties. For example, in field screening for varietal resistance to an insect 
infestation, it is often impossible to ensure a uniform insect exposure for all 
test varieties. Or in a field test for varietal tolerance for alkalinity, nonuniform­
ity in the level of alkalinity over an experimental field is normal. 
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To monitor the variation in the stress condition over an experimental area, a 
commonly used field plot technique is to plant, at regular intervals, a check 
variety whose reaction to the stress of interest is well established. A susceptible 
variety is commonly used for this purpose. The reaction of the susceptible 
check nearest to, or surrounding, each test variety can be used as the covariate 
to adjust for variability in the stress 2evels between the test plots. 

10.1.1.6 Competition Effects in Greenhouse Trials. Despite the potential 
for better control of environment in greenhouse trials, variation between 
experimental units in such trials is generally as large as, and frequently larger 
than, the variation in field trials. This is mainly because space limitation in the 
greenhouse usually requires experimental unit sizes that are much smaller than 
that used in fic!d experiment. With small experimental units, competition 
effects between adjacent units are large and the standard remedial measures, 
such as the removal of border plants, are usually not feasible. The covariance 
technique can control experimental error due to competition effects in 
greenhouse trials. For example, in a trial where an experimental unit is a pot of 
plants, the average height of plants in the surrounding pots can be used as the 
covariate to adjust for varietal competition effects. 

For greenhouse trials where there is a time lag between planting and the 
implementation of treatments, nondestructive measurement of certain plant 
characters (such as tiller number and plant height) before treatment implemen­
tation can also be used as the covariate to correct for variation between 
experimental plants. 

10.1.2 Estimation of Missing Data 

The standard analysis of variance procedure is not directly applicable to data 
with one or more missing observations (see Chapter 7, Section 7.1). The most 
commonly used procedure for handling missing data is the missing data 
formula technique, in which the standard analysis of variance is performed 
after the missing data is estimated. 

Covariance analysis offers an alternative to the missing data formula 
technique. It is applicable to any number of missing data. One covariate is 
assigned to each missing observation. The technique prescribes an appropriate 
set of values for each covariate. 

10.1.3 Interpretation of Experimental Results 

The covariance technique can assist in the interpretation and characterization 
of the treatment effects on the primary character of interest Y, in much the 
same way that the regression and correlation analysis is used. By examining the 
primary character of interest Y together with other characters whose functional 
relationships to Yare known, the biological processes governing the treatment 
effects on Y can be characterized more clearly. For example, in a water 
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management trial, with various depths of water applied at different growth 
stages of the rice plants, the treatments could influence both the grain yield 
and the weed population. In such an experiment, covariance analysis, with 
weed population as the covariate, can be used to distinguish between the yield 
difference caused directly by water management and that caused indirectly by 
changes in weed population, which is also caused by water management. The 
manner in which the covariance analysis answers this question is to determine 
whether the yield differences between treatments, after adjusting for the 
regression of yield on weeds, remain significant. If the adjustment for the effect 
of weeds results in a significant reduction in the difference between treatments, 
then the effect of water management on grain yield is due largely to its effects 
on weeds. 

Another example is the case of rice variety trials in which one of the major 
evaluation criteria is varietal resistance to insects. With the brown planthopper, 
for example, co--ariance analysis on grain yield, using brown planthopper 
infestation as covariate, can provide information on whether yield differences 
between the test varieties are due primarily to the difference in their resistance 
to brown planthopper. 

The major difference between the use of covariance analysis for error 
control (Section 10.1.1) and for assisting in the interpretation of results, is in 
the type of covariate used. For error control, the covariate should not be 
influenced by the treatments being tested; but for the interpretation of experi­
mental results, the covariate should be closely associated with the treatment 
effects. We emphasize that while the computational procedures for both 
techniques are the same, the use of covariance technique to assist in the 
interpretation of experimental results requires more skill and experience and, 
hence, should be attempted only with the help of a competent statistician. 

10.2 COMPUTATIONAL PROCEDURES 

Covariance analysis is essentially an extension of the analysis of variance and, 
hence, all the assumptions for a valid analysis of variance apply. In addition, 
the covariance analysis requires that: 

" The relationship between the primary character of interest Y and the 
covariate X is linear. 

" This linear relationship, or more specifically the linear regression coefficient, 
remains constant over other known sources of variation such as treatments 
and blocks. 

The most important task in the application of covaiiance analysis is the 
identification of the covariate, a task influenced greatly by the purpose for 
which the technique is applied. Once the values of the covariote are assiFned, 
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the computational procedures are the same regardless of the type of applica­
tion. However, because of the unique nature of the covariate assigned in the 
case of missing data, some of the standard procedures can be simplified. We 
illustrate computational procedures for error control and for estimation of 
missing data. 

10.2.1 Error Control 

The data required for the use of covariance technique for error control are the 
paired observations (X, Y) measured on each and all experimental units, where 
X 	refers to the covariate and Y to the primary character of interest. The 
covariate should represent the particular source of variation that the analysis 
aims to control and must satisfy the requirement that the covariate is not 
affected by treatments. Because the computational procedure varies somewhat 
with the experimental design used, we give three examples: CRD, RCB design, 
and split-plot design. 

10.2.1.1 Completely Randomized Design. We illustrate the procedure for 
use of covariance analysis with a CRD by a greenhouse trial on brown 
planthopper damage to rice plants. The trial tested varying numbers of brown 
planthopper nymphs per tiller. The main character of interest was number of 
productive panicles per pot. Tiller count, made before the brown planthopper 
nymphs were placed on the plant, is used as the covariate. Data on productive 
panicle (Y) and initial tiller number (X), for each of the 50 experimental pots 
(10 treatments and 5 replications), are shown in Table 10.1. The computational 
procedure of the covariance analysis is: 

o 	STEP 1. Compute the various sums of squares for each of the two variables 
following the standard analysis of variance procedure for a CRD, described 
in Chapter 2, Section 2.1.2.1. For our example, the results are shown in 
Table 10.2, under column XX for the X variable and column YY for the Y 
variable. 

o1 	 STEP 2. With r as the number of replications and t as the number of 
treatments, compute the sum of cross products (SCP) for each source of 
variation as: 

Compute the correction factor as: 

GG,C.F. = 
rt 

where G. is the grand total of the X variable and G,,, the grand total of 
the Y variable. For our example, using the value of G and GY from Table 
10.1, the correction factor is: 

C.F. = (443)(425) = 3,765.50
(5)(10) 

http:3,765.50
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Table 10.1 Panicle Number per Hill (Y) and Initial Tiller Number per Hilla 

(X) In a Greenhouse Study of Brown Planthopper Damage to Rice 

Treatment Treatment 

Nymphs, Rep. I Rep. II Rep. III Rep. IV TotalRep. V 

Number no./tillerb X Y X Y X Y X Y X Y T TY 

1 0.0 5 5 12 12 11 11 5 8 10 10 43 46 
2 0.1 7 7 9 9 14 8 9 8 8 8 47 40 
3 0.2 9 9 5 5 12 13 5 7 14 16 45 50 
4 0.5 7 6 10 10 6 8 8 8 14 11 45 43 
5 1.0 8 8 5 5 13 11 5 5 15 5 46 34 
6 2.0 12 11 5 5 9 11 7 8 8 8 41 43 
7 5.0 7 7 4 4 11 11 6 51010 38 37 
8 10.0 7 8 20 16 6 7 9 9 8 10 50 50 
9 25.0 10 4 6 7 12 11 5 5 13 6 46 33 

10 50.0 10 10 10 13 7 11 7 8 8 7 42 49 
Total 82 75 86 86 101 102 66 71 108 91 
Grand total (G) 443 425 

'Counted four days after transplanting. 
5Placed on 88-day-old plant. 

Compute the total sum of cross products as: 

, r 
- C FTotal SCP= E ( Xj)(Yij) . . 

where Yj is the value of the Y variable for the ith treatment and thejth 

replication, and X is the corresponding value of the X variable. 

Table 10.2 Analysis of Covarlance of CRD Data in Table 10.10 

Source Degree Sum of Cross Products YAdjusted for X 
of of __ _ _ 

YY d.f. SS MS F"Variation Freedom XX 
_ 

XY 
_ _ _ __ 

Treatment 9 20.82 4.90 73.30 
Error 40 515.20 305.60 321.20 39 139.93 3.59 
Total 49 536.02 310.50 394.50 48 214.64 
Treatment adjusted 9 74.71 8.30 2.31" 

"cv = 22.3%, R.E. - 223%. 

, significant at 5%level. 



Computational Procedures 433 

For our example, the total sum of cross products is computed as: 

TotalSCP = [(5)(5) +(12)(12) + + (8)(7)] 

-3,765.50 

= 310.50 

Compute the treatment sum of cross products as: 

Treatment SCP = (T)(TY)
r 

where T and Ty are the treatment totals of the X variable and the Y 
variable, and the summation is over the t treatments. 

For our example, the treatment sum of cross products is computed as: 

Treatment SCP = (43)(46) + (47)(40) + ... + (42)(49) 

5 

-3,765.50 

= , 90 

" Compute the error sum of cross products, by subtraction, as:
 

Error SCP = Total SCP - Treatment SCP
 

= 310.50 - 4.90 = 305.60
 

3 STEP 3. For each source of variation, compute the adjusted sum of squares 
of the Y variable as: 

~(Total SCp )2 
= Total SS of Y - Total SS of XTotal adjusted SS of Y 

= 394.50 - (310.50)2 214.64
536.02 

= Eror -(ErrorS of~ SCP )2 

Error SS of X
' Error adjusted SS of 

= 321.20 - (305.60)2- 139.93
515.20 

http:3,765.50
http:3,765.50
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Treatment adjusted SS of Y = Total adjusted SS of Y 

- Error adjusted SS of Y. 

= 214.64 - 139.93 = 74.71 

o smEp 4. For each adjusted SS computed in step 3, compute the corre­

sponding degree of freedom: 

Adjusted error d.f. = Error d.f. - 1 

= 40-1 =39 

Adjusted total d.f. = Total d.f. - 1 

= 49 - 1 = 48 

Adjusted treatment d.f. = Treatment d.f. = 9 

o 	STEP 5. Compute the adjusted mean squares of Y for treatment and 
adjusted error as: 

Treatment adjusted SS of YTreatment adjusted MS of Y = 
Adjusted treatment d.f. 

74.71 
- =8.30 

Error adjusted MS of Y = Error adjusted SS of Y 
Adjusted error d.f. 

= 139.93- =3.59 
39 

O Sp 6.- Compute the F value as: 

Treatment adjusted MS of Y 
Error adjusted MS of Y 

8.30 
3.59 

o 	Smp 7. Compare the computed F value to the tabular F values from 
Appendix E with fl = adjusted treatment d.f. and f2 = adjusted error d.f. 
For our example, the tabular F values with fl = 9 and f2 = 39 degrees of 
freedom are 2.13 at the 5%level of significance and 2.90 at the 1% level. 
Because the computed F value is greater than the corresponding tabular F 
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value at the 5% level of significance but smaller than that at the 1% level, it 
is concluded that there are significant differences between the adjusted 
treatment means at the 5% probability level. 

0 	 STEP 8. Compute the relative efficiency of covariance analysis compared to 
the standard analysis of variance as: 

(100)(Error MS of Y)
R.E. = ( Treatment MS ofX) 

(Error adjusted MS of Y) 1 + Error SS of X 

= 	 (100)(321.20/40) = 223% 

)+ 	202(3.59)(1 

The result indicates that the use of initial tiller number as the covariate 
has increased precision in panicle number by 1231.6 over that which would 
have been obtained had the standard analysis of variance been used. 

o 	STEP 9. Compute the coefficient of variation as: 

_=Error adjusted MS of YGrand mean of Y 

- X 100 = 22.3%8.50 

o 	sup 10. Compute the error regression coefficient as: 

b.X 	Error SCP 

Error SS of X 

For our example, the error regrescsion coefficient is computed as: 

305.60 
0

by' 515.20- 0.593 

" 	sTEP 11. Compute the adjusted treatment means as: 

Y," -b Y -X 

where Y'and Y,are the adjusted and unadjusted means of the Y variable for 
the ith treatment, , is the mean of the X variable for the ith treatment, and 
X is the grand mean of the X variable. 
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Table 10.3 Computation of the Adjusted Treatment Means for Data on Panicle 
Number per Hill (Y) and Initial Tiller Number (X) InTable 10.1 

Unadjusted Adjustment Adjusted 

Treatment Treatment Mean Deviation Factor Treatment Mean 
Number Y X, (D -X-X) (C - 0.593 D) (Y-y 1 -C) 

1 9.2 8.6 -0.3 -0.18 9.38 
2 8.0 9.4 0.5 0.30 7.70 
3 10.0 9.0 0.1 0.06 9.94 
4 8.6 9.0 0.1 0.06 8.54 
5 6.8 9.2 0.3 0.18 6.62 
6 8.6 8.2 -0.7 -0.42 9.02 
7 7.4 7.6 -1.3 -0.77 8.17 
8 10.0 10.0 1.1 0.65 9.35 
9 6.6 9.2 0.3 0.18 6.42 

10 9.8 8.4 -0.5 -0.30 10.10 
Sum 85.0 88.6 -0.4a -0.24a 85.24 

Av. 8.5 - V 8.9 - 8.52 b 

aExcept for rounding error, the value should be zero.
 
bExcept for rounding error, this value should equal , the grand mean of the Y variable.
 

For our example, the computation of the adjusted treatment means for 

the 10 treatments is shown in Table 10.3. For example, the adjusted mean of 
treatment 1 is computed as: 

= 9.2 - 0.593(8.6 - 8.9) = 9.38 

0 	 STEP 12. Test the significance of the differences between the adjusted 

treatment means. To make a pair comparison (see Chapter 5), compute the 

standard error of the mean difference for a pair consisting of the ith andjth 
treatments as: 

s3= (Error adjusted MS)[ Error SS of X 

where I and ,? are the means of the X variable for the ith and jth 

treatments, and r is the number of replications which is common to both 

treatments. In some specific situations, this equation should be modified as: 
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When the error d.f. exceeds 20, the following approximate formula may 
be used: 

sjI(approx.) 2(Error adjusted MS) Treatment SS ofX 

r L (t - 1)(Error SS of X). 

where t is the total number of treatments. With this modification, only 
one s,7value is needed for any and all pairs of means being compared. 

For our example, the computation of the approximate standard error 
of the mean difference is: 

2(3.59) [ + 20.82 ]
s,(approx.)= V 5 1+(10 - 1)(515.20) ] 

= 1.2010 

Thus, to compare the adjusted means of any two treatments of Table 
10.3, the LSD values may be computed, following procedures of Chapter 
5, Section 5.1.1, as: 

LSD = tsj 

where ta is the tabular t value, from Appendix C, with the adjusted error 
d.f.and at a level of significance. For our example, the LSD values at the 
5%and 1% levels of significance are computed as: 

LSD 05 = (2.0231)(1.2010) = 2.43 

LSD 01 = (2.7086)(1.2010) = 3.25 

For example, to compare the adjusted means of treatments 1 and 2 in 
Table 10.3, the mean difference is computed as 9.38 - 7.70 = 1.68. 
Because the mean difference is smaller than the computed LSD value at 
the 5% level of significance, the difference is not significant. 
When the treatments have unequal numbers of replications, replace 2/r 
in both of the preceding equations of s, by [(1/r) + (1/Ir)], where r and 
r are the numbers of replications of the ith andjth treatments. 

1.2.1.2 Randomized Complete Block Design. We illustrate the procedure 
for use of covariance analysis with RCB, by a trial designed to evaluate 15 rice 
varieties grown -n soil with a toxic level of iron. The experiment was in a RCB 
design with three replications. Guard rows of a susceptible check variety were 
planted on two sides of each experimental plot. Scores for tolerance for iron 

http:1)(515.20
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toxicity were collected from each experimental plot as well as from guard rows. 
For each experimental plot, the score of the susceptible check (averaged over 
two guard rows) constitutes the value of the covariate for that plot. Data on 
the tolerance score of each test variety (Y variable) and on the score of the 
corresponding susceptible check (X variable) are shown in Table 10.4. The 
step-by-step procedures for the computation of the analysis of covariance are: 

o 	STEP 1, Compute the various sums of squares for each of the two variables, 
following the standard analysis of variance procedure for a RCB design as 
described in Chapter 2, Section 2.2.3. For our example, the results are 
shown in columns XX and YY in Table 10.5. 

O1 	 STEP 2. With r as the number of replications and t the number of 
treatments, compute the correction factor, total SCP, and treatment SCP, 
following formulas in Section 10.2.1.1, step 2. Then, compute the replication 
SCP and error SCP as: 

Replication SCP EBXBt C.F. 

Error SCP = Total SCP - Treatment SCP - Replication SCP 

Table 10.4 Scores for Tolerance for Iron Toxicity (Y)of 15 Rice Varieties 
and Those of the Corresponding Guard Rows of a Susceptible Check 
Variety (X) Ina RCB Trial 

Variety Rep. I Rep. II Rep. III Variety Total 
Number X Y X Y X Y T1 TY 

1 5 2 6 3 6 4 17 9 
2 6 4 5 3 5 3 16 10 
3 5 4 5 4 5 3 15 11 
4 6 3 5 3 5 3 16 9 
5 7 7 7 6 6 6 20 19 
6 6 4 5 3 5 3 16 10 
7 6 3 5 3 6 3 17 9 
8 6 6 7. 7 '6 6 19 19 
9 7 4 5 3 5 4 17 '11 

10 7 7 7 7 5 6 19 20 
11 6 5 5 4 5 5 16 14 
12 6 5 5 3 5 3j 16 11 
13 5 4 5 4 6 5 16 13 
14 5 5 5 4 5 3 15 12 
15 5 4 5 15 6 6 16 15 

Total 88 67 82 62 81 63 251, 192 
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Table 10.5 Analysis of Covariance of RCB Data InTable 10.4 a 

Source Degree Sum of Cross Products YAdjusted for X 
of of S__________ Y__Adjusted___forX 

Variation Freedom XX XY YY d.f. SS MS Fb 

Total 44 22.9778 28.0667 82.8000 
Replication 2 1.9111 1.2667 0.9333 
Treatment 14 10.3111 19.4000 68.1333 
Eror 28 10.7556 7.4000 13.7333 27 8.6,120 0.3201 
Treatment + error 42 21.0667 26.8000 81.8666 41 47.7730 
Treatment adjusted 14 39.1310 2.7951 8.73* 

acv - 13.2%, R.E. - 143%. 
b, significant at 1%level. 

where B, and B are the replication totals of the X variable and the Y 
variable, and the summation is over the r replications. 

For our example, the correction factor and the various SCP are com­
puted as: 

C.F. = (251)(192) = 1,070.9333 

(3)(15) 

Total SCP = [(5)(2) +(6)(3) + .. +(6)(6)] - 1,070.9333 

= 28.0667 
Treatment SCP = [(17)(9) +(16)(10) + ... +(16)(15)] 

3 

-1,070.9333 

= 19.4000 

Replication SUP = [(88)(67) + (82)(62) + (81)(63)] 1,070.933315
 

= 1.2667 

Error SCP = 28.0667 - 19.4000 - 1.2667 = 7.4000 

0 	STEP 3. Compute the error adjusted SS of Y, following formula in Section 
10.2.1.1, step 3, as: 

=86 2(7.4000)2 
Error adjusted SS of Y = 13.7333 - 1.755C - 8.6420 
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E3 sup 4. Compute the (treatment + error) adjusted SS of Y as: 

(Treatment + error) adjusted SS of Y = A ­

where: 

A - (Treatment + error) SS of Y 

- Treatment SS of Y + Error SS of Y 

B = (Treatment + error) SS of X 

= Treatment SS of X + Error SS of X 

C = (Treatment + error) SCP 

= Treatment SCP + Error SCP 

For our example, the computation of the (treatment + error) adjusted SS 
of Y is as follows: 

A = 68.1333 + 13.7333 = 81.8666 

B = 10.3111 + 10.7556 = 21.0667 

C = 19.4000 + 7.4000 = 26.8000 

= 81.8666 - (26.8000)'(Treatment + error) adjusted SS of Y 
21.0667 

= 47.7730 

o] smEp 5. Using the results of steps 3 and 4, compute the treatment adjusted 

SS of Y as: 

Treatment adjusted SS of Y = (Treatment + error) adjusted SS of Y 

- Error adjusted SS of Y 

= 47.7730 - 8.6420 = 39.1310 

o sTp 6. For each aujusted SS computed in steps 3 to 5, compute the 

corresponding degree of freedom as:
 

Adjusted error d.f. = Error d.f. - I
 

= 28 - 1 = 27 
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Adjusted(treatment + error) d.f. = Treatment d.f. + Error d.f. - 1 

-	 14 + 28 - 1 = 41 

Adjusted treatment d.f. = Treatment d.f. = 14 

o 	sTp 7. Compute the treatment adjusted mean square of Y and the error 
adjusted mean square of Y as: 

Treatment adjusted SS of YTreatment adjusted MS of Y 
Adjusted treatment d.f. 

39.1310 - 14 = 2.795114
 

=Error adjusted SS of YError adjusted MS of Y 
Adjusted error d.f. 

8.6420 
- 2 =0.320127
 

o 	STEP 8. Compute the Fvalue as: 

Treatment adjusted MS of Y 
Error adjusted MS of Y 

2.7951 
0.3201 =8.73 

O STEP 9. Compare the computed F value to the tabular F values, from 
Appendix E, with f, = adjusted treatment d.f. and f2 = adjusted error d.f. 
For our example, the tabular F values with fl = 14 and f2 = 27 degrees of 
freedom are 2.08 at the 5% level of significance and 2.83 at the 1%level. 
Because the computed F value is greater than the corresponding tabular F 
value at the 1% level of significance, it is concluded that the difference 
between the treatment means of Y adjusted for X are significant at the 1% 
level of significance. 

o 	STEP 10. Follow steps 8 to 12 of the procedure for CRD described in 
section 10.2.1.1. 

1ia2..3 Split-Plot Design. We illustrate the procedure for use of covari­
ance analysis with a split-plot design, by a field trial to evaluate eight different 
managements of nitrogen fertilizer on three rice varieties. The experiment was 
in a split-plot design with variety as main-plot and fertilizer management as 
subplot factors. The Yvariable is the number of filled grains per panicle and 
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Table 10.6 Number of Filled Grains per Panicle (Y) and Score of Brown 
Planthopper Damage' (X) of Three Varieties ( 141to V13) 	tested with Eight
Different Fertilizer Managements (F to F) 

Fertilizer Rep. I Rep. II Rep. III Rep. IV 
Variety Management X Y X Y X Y X Y 

VI 	 F 3 46.9 1 37.3 1 28.9 3 58.1 
F2 3 81.9 1 45.5 3 49.0 1 55.1 
F3 5 50.0 1 78.1 3 71.6 3 79.1 
F4 5 98.7 1 91.2 5 76.0 5 61.2 
Fs 5 65.3 1 87.3 3 80.4 5 61.1 
F6 3 55.5 3 66.5 5 63.2 5 70.2 
F7 5 51.0 5 54.1 5 62.1 5 58.3 
F8 1 49.5 3 45.6 5 37.4 3 50.9 

V2 	 F 1 57.7 3 40.3 1 51.5 3 31.3 
F2 5 69.6 1 81.6 3 56.1 5 73.5 
F3 5 38.7 1 71.2 7 37.4 3 69.5 
F4 7 53.8 3 64.5 7 52.5 3 53.5 
F5 7 53.4 3 64.8 7 19.7 5 39.3 
F6 5 73.2 1 86.0 7 41.7 5 61.3 
F7 7 57.7 1 87.6 5 63.5 5 45.8 
Fs 7 61.8 1 58.7 5 22.8 7 35.8 

V3 	 F 3 37.5 3 63.8 7 36.8 4 95.5 
F2 5 71.2 3 88.7 5 60.1 3 142.8 
F3 3 64.8 1 139.5 3 50.7 3 110.6 
F4 5 57.8 1 104.3 7 51.8 1 106.9 
F5 3 637 1 77.8 3 125.4 1 98.5 
F6 5 49.2 5 52.4 7 92.6 9 0.0 
F7 1 60.5 7 30.4 7 16.0 9 0.0 
Fs 5 43.7 7 66.0 5 91.5 9 0.0 

a Brown planthopper damage is based on scores 0 to 9 with 1 referring to the lowest, 
and 9 to the greatest, damage. 

the X variable is the score of brown planthopper damage on the rice plants. 
Data are shown in Table 10.6. 

The step-by-step procedures for the computation of the covariance analysis 
for data in Table 10.6 are: 

0 	 STEP 1. For each of the two variables Y and X, compute the various sums 
of squares, following the standard analysis of variance procedure for a 
split-plot design, described in Chapter 3, Section 3.4.2. For our example, the 
results are shown in Table 10.7, under column YY for the Y variable and 
under column XX for the X variable. 
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Table 10.7 Analysis of Covarlance of Split-PlotData In Table 10.6a 

o or Sum of Cross Products 	 YAdjusted for Xof of _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 


Variation Freedom XX XT YY d.f. SS MS 
_ _ 

Fb
 

Replication 3 82.8646 - 470.1989 2,751.0086 
Main-plot factor (A) 2 22.3958 26.6667 2,194.0602 
Error(a) 	 6 27.8542 64.4583 2,262.3598 5 2,113.1948 422.6390 
A + Error(a) 8 50.2500 91.1250 4,456.4200 7 4,291.1709 
A adjusted 	 2 2,177.9761 1,088.9880 2.58-s 
Subplot factor (B) 7 73.7396 -384.6781 11,567.1132 
A x B 14 77.1042 -523.0500 13,367.8915 
Error(b) 63 171.0312 -1,285.0094 31,448.5441 62 21,793.8778 351.5142 
B + Error(b) 70 244.7708 - 1,669.6875 43,015.6573 69 31,625.9967 
B adjusted 7 9,832.1189 1,404.5884 4.00*-
A x B + Error(b) 77 248.1354 -1,808.0594 44,816.4356 76 31,641.8592 
A x 	B adjusted 14 9,847.9814 703.4272 2.00' 

Total 95 454.9896 -2,571.8114 63,590.9774 
0cv(a) = 33.5%, cv(b) -30.5%, R.E. (main plot) - 64%, R.E. (subplot) - 134%, R.E. (subplot within main 
plot) = 136%.
b** 	 = significant at 1%level, * - significant at 5% level, = not significant. 
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Table 10.8 The Replication x Variety Table of Totals (RA) Computd from 
Data In Table 10.6 

V, V2 V3 Rep. Total (R) 

Replication X Y X Y X Y X Y 

1 30 498.8 44 465.9 30 448.4 104 1,413.1 
II 16 505.6 14 554.7 28 622.9 58 1,683.2 
I1 30 468.6 42 345.2 44 524.9 116 1,338.7 
IV 30 494.0 36 410.0 39 554.3 105 1,458.3 

Variety total (A) 106 1,967.0 136 1,775.8 141 2,150.5 
Grand total (G) 383 5,893.3 

13 	 sTEP 2. Construct two-way tables of totals for X and Y: 

The replication X factor A two-way table of totals, with the replication 
totals, factor A totals, and grand total computed. For our example, the 
replication x variety table of totals (RA), with the replication totals (R), 
variety totals (A), and grand total (G) computed are shown in Table 
10.8. 

The factor A x factor B two-way table of totals, with factor B totals 
computed. For our example, the nitrogen x fertilizer management table 
of totals (AB) with fertilizer management totals (B) computed are shown 
in Table 10.9. 

O 	 STEP 3. Using subscripts x and y to differentiate the totals for the X 
variable from those for the Y variable (G, refers to the grand total of X, and 

Table 10.9 The Variety x Fertilizer Management Table of Totals (AB) Computed 
from Data In Table 10.6 

Fertilizer Total (B)Fertilizer V, V2 V3 

Management X Y X Y X Y X Y 

F, 8 171.2 8 180.8 17 233.6 33 585.6 
F2 8 231.5 14 280.8 16 362.8 38 875.1 
F3 12 278.8 16 216.8 10 365.6 38 861.2 
F4 16 327.1 20 224.3 14 320.8 50 872.2 
F 14 294.1 22 177.2 8 365.4 44 836.7 
F6 16 255.4 18 262.2 26 194.2 60 711.8 
F7 20 225.5 18 254.6 24 106.9 62 587.0 
Fs 12 183.4 20 179.1 26 201.2 58 563.7 
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G., the grand total of Y), compute the correction factor and the various 
sums of cross products (SCP) of X and Y for the main-plot analysis as: 

C.F. = 
-rab 

(383)(5,893.3) =23,511.8114 
(4)(3)(8)
 

Total SCP = EXY - C.F. = [(3)(46.9) +(1)(37.3)
 

+... + (9)(0.0)] - 23,511.8114
 

= -2,571.8114
 

Replication SCP = ab C.F. 

= ([(104)(1,413.1) +(58)(1,683.2) +(116)(1,338.7) 

+ (105)(1,458.3)] /(3)(8)) - 23,511.8114 

= -470.1989 

EAXAY
 

A (variety) SCP = rb C.F. 

= (106)(1,967.0) + (136)(1,775.8) + (141)(2,150.5) 
(4)(8) 

-23,511.8114 

26.6667
 

Error(a)SCP= b - C.F.- Replication SCP - A SCP
b 

[(30)(498.8)+ (44)(465.9)+ +(39)(554.3)] 

-23,511.8114 -(-470.1989) - 26.6667 

-64.4583 
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0 sup .A Compute the various sums of cross products of X and Y for the 

subp,.,, analysis as: 

B (fertilizer management) SCP = EBXBY- C. F. 
ra 

- [(33)(585.6) +(38)(875.1) + +(58)(563.7)1 

-23,511.8114 

-384.6781 
A X B (variety x fertilizer management) SCP = 

- C.F.- B SCP-A SCP 

[(8)(171.2) +(8)(180.8) + +(26)(201.2)] 

-23,511.8114 - (-384.6781) - 26.6667 

-523.0500 

Error(b)SCP - Total SCP - [Replication SCP + A SCP 

+ Error(a)SCP + B SCP + A X B SCP] 

-2,571.8114 -(-470.1989 + 26.6667 + 64.4583 

- 384.6781 - 523.0500) 

- 1,285.0094 

o STEP 5. Compute the adjusted SS of Y that involves an error term, using 
the formula:
 

Adjusted SSof Y= YY (Xy) 2
 

XX 
For our example, the various adjusted SS of Yinvolving either error(a) 

or error(b) term are computed as: 

Error(a) adjusted SS of Y = Error(a) SS of Y - [Error(a) SCP] 2 

Error(a) SS of X 

- 2,262.3598 (64.4583)2 = 2,113.194827.8542 2 
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[A + Error(a)] adjusted SS of Y = [A + Error(a)] SS of Y
 

f[A + Error(a)] SCP) 2
 

[A + Error(a)] SS of X
 

= 	4,456.4200 - (91.1250)2 = 4,291.1709
50.2500 

[Error(b) SCP] 2 

Error(b) adjusted SS of Y - Error(b) SS of Y Error(b) SS of X 

= 31,448.5441 - (-1,285.0094)2 

171.0312 
= 21,793.8778
 

[B + Error(b)]adjusted SS of Y [B + Error(b)] SS of Y
 

([B + Error(b)] SCP) 2 

[B 	+ Error(b)] SS of X 

-	 (- 1,669.6875) 
2 

= 43,015.6573 244.7708 

= 31,625.9967 

[(A X B) + Error(b)] adjusted SS of Y = [(A x B) + Error(b)] SS of Y 
2 

([(A X B) + Error(b)] SCP) 

[(A X B) + Error(b)] SSofX 

- 44,816.4356 - ( -1,808.0594)2 
248.1354 

= 31,641.8592
 

0 	sm 6. Compute the adjusted SS of Y for the main effect of each factor 
and for their interaction, using the formulas: 

A adjusted SS of Y = [A + Error(a)] adjusted SS of Y 

- Error(a) adjusted SS of Y 

B adjusted SS of Y = [B + Error(b)] adjusted SS of Y 

-Error(b) adjusted SS of Y 

'A X B adjusted SS of Y = [A X B + Error(b)] adjusted SS of Y 

- Error(b) adjusted SS of Y 
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For our example, the three adjusted SS of Y, one for factor A, one for factor 
B, and one for A x B interaction, are computed as: 

A adjusted SS of Y = 4,291.1709 - 2,113.1948 

= 2,177.9761 

B adjusted SS of Y = 31,625.9967 - 21,793.8778 

= 9,832.1189 

A X B adjusted SS of Y = 31,641.8592 - 21,793.8778 

= 9,847.9814 

o sm 7. For each adjusted SS of Y computed in steps 5 and 6, compute the 
corresponding degree of freedom: 

Adjusted error(a) d.f.= Error(a) d.f.- 1 

=6-1 =5 

Adjusted [A + Error(a)] d.f. A d.f.+ Error(a) d.f.- 1 

=2+6-1 =7 

Adjusted A d.f.= A d.f. = 2
 

Adjusted error(b) d.f. Error(b) d.f.- 1
 

= 63 - 1 = 62 

Adjusted [B + Error(b)] d.f.= Bd.f.+ Error(b) d.f.- 1 

= 7 + 63- 1 = 69 

Adjusted B d.f. = B d.f.= 7 

Adjusted [A x B + Error(b)]d.f.= A x Bd.f.+ Error(b)d.f.- 1 

= 14 + 63 - 1 = 76 

Adjusted A X B d.f.= A x B d.f. = 14 

o sTEP 8. Compute the adjusted MS of Y: 

Error(a) adjusted MS =Eror(a) adjusted SS 
Adjusted error(a) d.f. 

2,113.1948
5 = 422.6390 
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= 	 A adjusted SSA 	adjusted MS 
Adjusted A d.f. 

-	 2,177.9761 - =1,088.9880 
2 

Error(b) adjusted MS =adjusted SS 
Adjusted error(b) d.f. 

21,793.8778 =351.5142 
62 

B adjusted MS = B adjusted SS 
Adjusted B d.f. 

9,832.1189- 7 =1,404.5884 

A X B adjusted MS = A XBadjustedSS
Adjusted A X B d.f. 

-	 9,847.9814 703.4272 
14 

o 	sTEP 9. Compute the F value, for each effect that needs to be tested, by
dividing the mean square by its corresponding error term: 

F(A) = A adjusted MS 
Error(a) adjusted MS 

1,088.9880 
422.6390 

F(B) = B adjusted MS 
Error(b) adjusted MS 

1,404.5884 400 
351.5142 

F(A X B) = A _ B adjusted MSError(b) adjusted MS 

703.4272 
351.5142 

o 	sTEP 10. Compare each computed F value to the tabular F value from 
Appendix E, with f, = d.f. of the numerator MS and f2 = d.f. of the 
denominator MS, at the prescribed level of significance. 
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For our example, the three sets of the corresponding tabular F values are: 
" Tabular F(A) values, with f1 = 2 and! 2 = 5, are 5.79 at the 5%level of 

significance and 13.27 at the 1%level. 
" Tabular F(B) values, with f, = 7 and f2 = 62, are 2.16 at the 5% level of 

significance and 2.94 at the 1%level. 
" Tabular F(A x B) values, with f, = 14 and /2 = 62, are 1.86 at the 5% 

level of significance and 2.39 at the 1%level. 

Because the computed F(A) value of 2.58 is smaller than the correspond­
ing tabular F value at the 5% level of significance of 5.79, the A main effect 
is not significant at the 5%level. On the other hand, the computed F(B) 
value and the computed F(A x B) value are larger than their corresponding 
tabular F values at the 1%level and the 5% level, respectively. Hence, both 
the B main effect and the A X B interaction effect are significaut. 

o 	sm, 11. Compute the coefficient of variation, corresponding to the main­
plot analysis and subplot analysis: 

cv(a) = VError(a) adjusted MS of Y < 100
Grand mean of Y 

_ /422.6390
= 	r×-.69 100 = 33.5% 

61.389 

c Error(b) adjusted MS of Y
cv(b) = Grand mean of Y X 100 

_ /351.5142
=351.142X 100 = 30.5% 
61.389 

o 	sTEP 12. Compute the error regression coefficients, corresponding to the 
two error terms: 

.,(a)= Error(a)SCP 
Error(a) SS of X 

64.4583 
= 	2.31427.8542 

b,..(b) Error(b) SCP 
Error(b) SS of X 

- 1,285.0094 -7.513 
171.0312 

o 	sTp 13. Compute the adjusted treatment means: 

- - [ by..x(a)][~ [by..(b)][Y~j - , 
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where Y',.and Y, are the adjusted and unadjusted means of the Yvariable
for the treatment combination involving the ith level of factor A and thejth
level of factor B, respectively; , is the mean of the X variable for the ith
level of factor A (i.e., main-plot mean); Y,, isthe mean of the X variable for
the treatment combination involving the ith levei of factor A and thejth
level of factor B; and Y' is the grand mean of the X variable. 

For our example, the computation of the adjusted mean of treatment 
VF' , for example, is obtained (using data in Tables 10.8 and 10.9) as: 

IF1 [by.xJa)][Y, - YJ -[by..(b)][ -11 

where 

- 171.2 
Y1 = = 42.800 

8

X =1 2.000 

(-"--3.312= 
(4)(8) 

= 383 = 3.990 

(4)(3)(8)
 

by.,,(a) = 2.314 

by..Jb) = -7.513 

Thus,
 

' - 42.800 - 2.314 (3.312 - 3.990) 

- -(-7.513)(2.000 - 3.312) 

= 34.5 

The results of the adjusted treatment means computed for all the 3 x 8
treatment combinations are shown in Table 10.10. 

0 	sTp 14. Test the significance of the difference among the adjusted treat­
ment means. To make pair comparisons (Chapter 5, Section 5.1), the sj
values are computed as: 
* For a pair of A adjusted means, at same or different levels of B: 

s= / g[(b - 1) z +E,] 1+ (a- 1)A 
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Table 10.10 Adjusted Treatment Means of the Number 
of Filled Grains per Panicle, Using the Score of Brown 
Planthopper Damage as the Covariate, Computed from 
Data InTables 10.8 and 10.9 

Adjusted Mean, no./panicleFertilizer 
Management V, V2 V3 Av. 

F, 34.5 27.7 56.3 39.5 
49.6 64.0 86.7 66.8F2 
68.9 51.7 76.1 65.6F3 
88.5 61.1 72.4 74.0F4 

F 76.5 53.1 72.4 67.3 
F6 70.5 66.9 63.4 66.9 

70.7 64.9 37.7 57.8F7 
45.0 49.8 65.1 53.3F8 

Av. 63.0 54.9 66.3 

where Ebyy and E*yy are the adjusted error(b) mean square and the 
adjusted ,rror(a) mean square of the Yvariable; and A., and E,,xx are A 
SS and Error(a) SS of the X variable. For our example, the s,7value for 
comparing two A (variety) means, at same or different levels of B 
(fertilizer management), is computed as: 

S/74(2 [(8 - 1)(351.5142) + 422.6390] 

V (4)(8) 

22.3958 1
VL1 + (3- 1)(27.8542)J 

= 15.895 

For a pair of B adjusted means at the same level of A: 

27 YY1 +[ Bx. +(AB)XX] 

s;= -E~Yr + a(b- 1)EXX 

where B, (AB)x., and EbX are B SS, A x B SS, and Error(b) SS of 
the X variable. 
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For our example, the s, value for comparing two B (fertilizer) means 
under the same A (variety) is computed as: 

/2 35151421 (73.7396 + 77.1042)1
s = + 3(8 - 1)(171.0312) 

= 13.533 

For a pair of A adjusted means, averaged over all levels of B: 

5j7 /2 E*YY[I + Ax jb= (a -.1)+(--E..x 

For our example, because of the A x B interaction effect is significant 
at the 5%level (Table 10.7), the comparison between A (variety) means, 
averaged over all levels of B (fertilizer management), should not be made 
(see Chapter 3,Section 3.1) and, hence, no s7value for such a comparison 
iscomputed. 
For a pair of B adjusted means, averaged over all levels of A: 

V; (b ­+rEY 1)Ebxx} 

For our example, because of the same reason given previously, no s7 
value for such a comparison is computed. 

o STEP 15. Compute the efficiency of covariance analysis relative to the 
standard analysis of variance as: 

R.E. (main plot) = Eror(a) SS of Y A X 100 

(a - 1)(r - 1)E.*y41 + I-ax
(a xx 

2,262.3598 

(3 - 1)(4 - 1)(422.6390)[1 + (3 - 15427.85420 

= 64% 



454 CovarianceAnalysis 

Error(b) SS of Y 
R.E. (subplot) -- [ + ]×100 

Sa(r - 1)(b - 1)Ebyy 1 
+ (b - I)Ex 

31,448.5441 X 100 

3(4 - 1)(8 - 1)(351.5142) 1 + (8- 1)171.0312)] 

134%
 

R.E. (subplot within main plot) 

Error(b) SS of Y X 100 

[ x.,100B)a(r- 1)(b- 1)E /1 +B +(AB)X]} 
a(b - 1)Ebx 

31,448.5441 x 100 
3(4 1)(8 1)(351.5142)(1 + [73.7396 + 77.1042] 

3(4 - )(8 - 1)(171.0312)f-3(8 

= 136% 

The results indicate that the use of brown planthopper damage as the 
covariate (X variable) increased the precision of the B main effects and the 
A X B interaction effects of the number of filled grains per panicle (Y 
variable) by 34% and 36%, respectively, over that which would have been 
obtained had the standard analysis of variance been used. On the other 
hand, no increase in precision due to the use of covariate was observed for 
the A main effect. 

10.2.2 Estimation of Missing Data 

The only difference, between the use of covariance analysis for error control 
and that for estimation of missing data, is the manner in which the values of 
the covariate are assigned. When covariance analysis is used to control error 
and to adjust treatment means, the covariate is measured along with the Y 
variable for each experimental unit. But when covariance analysis is used to 
estimate missing data, the covariate is not measured but is assigned, one each, 
to a missing observation. We confirc uur discussion to the case of only one 
missing observation. For more than one missing observation and, thus, more 
than one covariate, see references such as Steel and Torrie, 1980, and Snedecor 
and Cochran, 1980.* 

OR. G. D. Steel and J. A. Torrie. Principles and Procedures of Statstici, 2nd ed., USA: McGraw 
Hill, 1980. pp. 428-434. 
G. W.Snedccor and W.G.Cochran. Statistical Methods. USA: The Iowa State University Press, 
1980. pp. 388-391. 
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Table 10.11 Assignment of Values for the Missing Data of Grain Yield (Y)and 
for All Values of the Covarlate (X), when Covarlance Analysis Is 
Applied to EsUmate Missing Data 

Treatment 
Treatment, Rep. I Rep. 11 Rep. III Rep. IV Total 
kg seed/ha X Y X Y X Y X Y X Y 

25 
50 
75 

100 
125 
150 

Rep. total 
Grand total 

0 
0 
0 
0 
0 
0 
0 

5,113 
5,345 
5,272 
5,164 
4,804 
5,254 

30,953 

0 5,398 
0 5,951 
0 5,713 
1" 0 
0 4,848 
0 4,542 
1 26,453 

0 
0 
0 
0 
0 
0 
0 

5,307 
4,719 
5,483 
4,986 
4,432 
4,919 

29,846 

0 
0 
0 
0 
0 
0 
0 

4,678 
4,264 
4,749 
4,410 
4,748 
4,098 

26,947 

0 20,496 
0 20,281 
0 21,217 
1 14,560 
0 18,832 
0 18,813 

1 114,199 

a"Missing data. 

The rules for the application of covariance analysis to a data set with one 
missing observation are: 

1. 	 For the missing observation, set Y = 0. 
2. 	 Assign the values of the covariate as X = 1 for the experimental unit 

with the missing observation, and X = 0 otherwise. 
3. 	 With the complete set of data for the Y variable and the X variable as 

assigned in rules 1 and 2, compute the analysis of covariance following
the standard procedures discussed in Section 10.2.1. However, because 
of the nature of the covariate used, the computational procedures for 
the sums of squares of the covariate and for the sums of cross products 
can be simplified. 

We illustrate the simplified procedure with data from the RCB experiment
involving six rates of seeding, discussed in Chapter 2, Section 2.2.3. We assume 
that the observation of the fourth treatment (100 kg seed/ha) from the second 
replication is missing. The step-by-step procedures to obtain the analysis of 
covariance are: 

E1 SMP 1. Assign the Y value for the missing plot and the X values for all 
plots, following rules 1 and 2 above. The results are shown in Table 10.11. 

o srEP 2. Compute the various sums of squares for the Y variable following 
the standard analysis of variance procedure for a RCB design described in 
Chapter 2, Section 2.2.3. The results are shown in Table 10.12, under 
column YY. 
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Table 10.12 Analysis of Covarance to Estimate a Missing Value for Data InTable 10.11 

Source fegre Sum of Cross Products YAdjusted for X 
of of ______________ ___________ 

Fa 
XX XY YY d.f. SS MSVariation Freedom 

__ 

Total 23 0.9583 -4,758.2917 28,409,561 
Replication 3 0.1250 - 349.458A 2,403,507 
Treatment 5 0.2083 - 1,118.2917 7,141,065 
Error 15 0.6250 - 3,290.5416 18,864,989 14 1,540,727 110,052 
Treatment + error 20 0.8333 -4,408.8333 26,006,054 19 2,679,748 
Treatment adjusted 5 1,139,021 227,804 2.07­

a - not significant. 

0 sTEP 3. Compute the various sums of squares for the X variable as: 

1 
Total SS = 1 - ­

rt 

1 
= I -1 24 0.9583 

Replication SS = 1 1 
t rt 

1 1* 
.....=0.1250
6 24
 

1 1 
Treatment SS - - ­

r r7 

.. . . 0.20834 24 

Error SS = Total SS - Replication SS - Treatment SS 

= 0.9583 - 0.1250 - 0.2083 = 0.6250 

o3 sTEP 4. Compute the various sums of cross products as: 

C.F. = G(r)(t) 

114,199 = 

(4)(6) - 4,758.2917 

Total SCP = - (C. F.) = -4,758.2917 



Computational Procedures 457 

Replication SCP = 
B 
,t _ C.F. 

26,453' 

6 4,758.2917 = -349.4584 

T 
Treatment SCP -T -_ C.F. 

r 

44 4,758.2917 ='-1,118.2917 

Error SCP Total SCP - Replication SCP - Treatment SCP 

-	 - 4,758.2917 - (- 349.4584) -(-1,118.2917) 

S-	 3,290.5416 

where By is the replication total for the Y variable, of the replication in 
which the missing data occurred (replication II in our example), and Ty is 
the treatment total, for the Yvariable, corresponding to the treatment with 
the missing data (the fourth treatment in our example). 

o 	STEP 5. Follow steps 3 to 9 of Section 10.2.1.2. The final results are shown 
in Table 10.12. 

o 	STEP 6. Compute the estimate of the missing data as: 

Estimate of missing data = -byx = Error SCP 
nussg SS ofX-Error 

= -(-3,290.5416) 
0.6250 - 5,265 kg/ha 

Note that the estimate of the missing data computed agrees with that 
obtained by the missing data formula technique of Chapter 7, Section 
7.1.2.1. 



CHAPTER 11 

Chi-Square Test 

Hypotheses about treatment means are the most common in agricultural 
research but they are by no means the only one of concern. A type of 
hypothesis commonly encountered is that concerning the frequency distribu­
tion of the population or populations being studied. Examples of questions 
relating to this type of hypotheses are: 

" Does the frequency distribution of the kernel color in maize follow a 
hypothetical genetic segregation ratio? 

" Do individuals from several treatments in the same experiment belong to 
the same population distribution? 

" Are the frequency distributions of two or more populations independent of 
each other? 

The chi-square test is most commonly used to test hypotheses concerning 
the frequency distribution of one or more populations. We focus on three uses 
of the chi-square test that are most common in agricultural research: analysis 
of attribute data, test for homogeneity of variance, and test for goodness of fit. 

11.1 ANALYSIS OF ATTRIBUTE DATA 

Data from an agricultural experiment can either be measurement data or 
attribute data. Measurement data is specified along a continuous numerical 
scale, such as yield, plant height, and protein content; but attribute data is 
concerned with a finite number of discrete classes. The most common types of 
attribute data are those having two classes, which consist of the presence or 
absence of an attribute such as male or female, success or failure, effective or 
ineffective, and dead or alive. Examples of attribute data with more than two 
classes are varietal classification, color classification, and tenure status of 
farmers. 

The number of discrete classes in attribute data may be specified based on 
one or more classification criteria. When only one criterion is used, attribute 
data is referred to as a one-way classification. Presence or absence of one 
458
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character, color classification of a plant tissue, and tenure status of farmers are 
illustrations of attribute data with one-way classification. When more than one 
classification criterion is used to specify the classes in attribute data, such data 
may be referred to as a two-way classification, a three-way classification, and 
so on, depending on the number of classification criteria used. Attribute data 
with two-way classification form an r X c two-way classification, or an r X c 
contingency table, where r and c denote the number of classes in the two 
classification criieria used. For example, if rice varieties in a variety trial are 
classified based on two criteria-color of its leaf blade (green or purple) and 
varietal type (indica, japonica, or hybrid)-the resulting attribute data repre­
sent a 2 x 3 contingency table. Note that the contingency table progresses to 
three-way, four-way, and so on, with successive additions of more classification 
criteria. 

In general, attribute data are obtained when it is not possible to use 
measurement data. However, in some special cases experimental materials may
be classified into discrete classes despite the availability of a quantitative 
measurement. For example, plants can be classified into three discrete height
classes (tall, intermediate, or short) instead of being measured in centimeters. 
Or, vertical resistance to an insect pest may be scored on a scale from 0 
through 9 instead of measuring the actual percentage of plant damage or of 
insect incidence. 

There are three important applications of the chi-square test in the analysis 
of attribute data: 

" Test for a fixed-ratio hypothesis 
" Test for independence in a contingency table 
" Test for homogeneity of ratio 

We provide specific examples of each of these types of application and use 
actual data to give the corresponding computational procedures. 

11.1.1 Test for a Fixed-Ratio Hypothesis 

As the name implies, the chi-square test for a fixed-ratio hypothesis is a 
technique for deciding whether a set of attribute data conforms to a hypothe­
sized frequency distribution that is specified on the basis of some biological 
phenomenon. We give three examples where this test is commonly applied in 
agricultural research. 

Exunple 1. A plant breeder is studying a cross between a sweet maize inbred 
line with yellow kernels and a flint maize inbred line with white kernels. He 
would like to know whether the ratio of kernel type and color in the F2 
population follows the normal di-hybrid ratio of 9: 3 : 3: 1. From the F,plants
produced by crossing the two inbred lines, he obtains F2 kernels and classifies 
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them into four categories according to kernel color (yellow or white) and kernel 
type (flint or ,weet) as follows: yellow flint, yellow sweet, white flint, and white 
sweet. Suppose he examines 800 F2 kernels and finds that 496 are yellow flint, 
158 are yellow sweet, 112 are white flint, and the rest (34) are white sweet. He 
then asks: does the observed ratio of 496:158:112: 34 deviate significantly 
from the hypothesized ratio of 9: 3 : 3 : 1? 

Example 2. In rice, the green leafhopper is suspected to differ in feeding 
preference between an already diseased plant and a healthy plant. The re­
searcher, therefore, encloses a prescribed number of green leafhoppers in a 
cage that holds an equal number of healthy and diseased rice plants. After two 
hours of cagiig, he then counts the number of insects found on diseased and 
on healthy plants. Of 239 insects confined, 67 were found on the healthy plants 
and 172 on the diseased plants. Does the observed ratio of 67:172 deviate 
significantly from the hypothesized no-preference ratio of 1 : 1? 

Example 3. To determine the eating quality of a newly developed rice variety 
relative to that of a traditional variety, the researcher may conduct a taste-panel 
study and ask a number of judges to rank their preference between the two 
varieties. Suppose that out of a total of 40 judges, 22 judges prefer the new 
variety and 18 judges prefer the traditional variety. Does the observed ratio of 
22: 18 deviate significantly from the hypothesized ratio of 1 : 1? 

From the foregoing examples, it is clear that the test for a fixed-ratio 
hypothesis is applicable to any number of classes derived from any number of 
classification criteria. The maize example, for instance, invoices four classes 
derived from a two-way classification data; the two rice examples have two 
classes derived from a one-way classification data. 

We give the procedures for -pviying the chi-square test for a fixed-ratio 
hypothesis using the rice test to determine the feeding preference of green 
leafhoppers. The step-by-step procedures are: 

0 sTEP 1. Compute the X2 value, depending on class number: 
* With more than two classes: 

2 
p (n, -E)XX2 E,

I-I 

where p is the number of classes, n, is the observed number of units 
falling into class i, and E, is the number of units expected to fall into 
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class i assuming that the hypothesized ratio holds. Ei is computed as:P 

(ri)(ni) 

Ej = (II 

1-1 

where r: r2 :... :rp is the hypothesized ratio. 
With two classes: 

2. (In, - Ell-
El 

0.5)2 + (In 2 - E2-

E 2 

0.5)2 

where I I refers to absolute value; and n, and n2 are observed values and 
E, and E2 are the expected values, as defined previously, of class 1 and 
class 2, respectively. 

For our example, there are two classes (67 healthy and 172 diseased 
plants). With r, = r2 = 1, n, = 67, and n 2 = 172, the values of El and E 2 
are computed following the formula as: 

-= 	 E (1)(67 + 172) 239 = 119.51 + 1 =2 

And the X2 value is computed as: 

X2 	 = (67 - 119.51 - 0.5)2 + (1172 - 119.51 - 0.5)2 = 45.26119.5 	 119.5 

X20] 	 STEP 2. Compare the computed value with the tabular X2 values 
obtained from Appendix D with (p - 1) degrees of freedom. Reject the 

X2hypothesis that the hypothesized ratio holds, if the computed value 
exceeds the correspending tabular X2 value at a prescribed level of signifi­
cance. 

For our example, the tabular X2 values, with (p - 1) = 2 - 1 = 1 degree 
of freedom, are 3.84 at the 5% level of significance and 6.63 at the 1%level. 
Because the computed X2 value exceeds the corresponding tabular X2 value 
at the 1%level of significance, the hypothesis of no preference (i.e., the ratio 
of 1 : 1) is rejected at the 1%level of significance. The observed data, in 
which 72% of the confined insects were found on diseased plants and 28% 
were found on healthy plants, strongly suggest that green leafhoppers 
preferred diseased plants over healthy plants. 
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11.1.2 Test for Independence in a Contingency Table 

When the number of classes in attribute data is based on two classification 
criteria, one with r classes and another with c classes, the resulting data form 
an r X c contingency table. For example, an agricultural economist studying 
factors affecting the adoption of the newly introduced high-yielding rice 
varieties wishes to know if adoption is affected by the tenure status of farmers. 
With three distinct classes of tenure status (the first classification criteri­
on)-owner operator, share-rent farmer, and fixed-rent farmer-and two 
classes of adoption status (the second classification criterion)-adopter and 
nonadopter-the resulting data form a 3 X 2 contingency table. For such data, 
each sample farmer can be classified into one of the six possible categories: 
owner operator and adopter, owner operator and nonadopter, share-rent 
farmer and adopter, share-rent farmer and nonadopter, fixed-rent farmer and 
adopter, and fixed-rent farmer and nonadopter. 

With such a contingency table, the question usually raised is whether the 
ratio of the various chasses in the first classification criterion remains the same 
over all classes of the second classification criterion, and vice versa. If the 
answer is yes, the two classification criteria are said to be independent. 

For our example, the question is whether the ratio of adopter to nonadopter 
remains the same for all the three classes of tenure status or whether tie 
farmer's adoption of the new rices is independent of tenure stato's. The 
chi-square test for independence in a contingency table is the appropriate 
procedure for answering such a question. We use data from this study (Table 
11.1) to show the procedure for applying the chi-square test to test the 
hypothesis of independence between two classification criteria in a r X c 
contingency table. 

Note the following in the succeeding discussions: 

" We use a row variable with r classes and a column variable with c classes to 
refer to the two classification criteria in a r X c contingency table. 

" We use nj to denote the observed value in the ith class of the row variable 
and thejth class of the coluran variable; or the (i, j)th cell, for short. The 
step-by-step procedures are: 

o sTEP 1. Compute the row totals (R), column totals (C), and grand total 
(G). For our example, these totals are in Table 11.1. 

o sTEP 2. Compute the expected value of each of the r X c cells as: 

jj(= R)() 

G 

where E,, is the expected value of the (i, j)th cell, R,is the total of the ith 
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Table 11.1 Frequencies of Farmers Classified According to Two
 
Categories: Tenure Status and Adoption of New Rice Varieties
 

Farmers, no. 

Row Total 
Tenure Status Adopter Nonadopter (R) 
Owner operator 102 26 128 
Share-rent farmer 42 10 52 
Fixed-rent farmer 4 3 7 

Column total (C) 148 39 
Grand total (G) 187 

row, Cj is the total of the jth column, and G is the grand total: For our 
example, the expected value of the first, c,.ll is computed as: 

(R 1)(C) = (128)(4AS)
 
EG 1 -101.3
G 187 

The results for all six cells are shown in Table 11.2. 

13 	 s'm, 3. Compute the X2 value as: 

rc (n,, - i) 

i- j-1 

where EJ is as computed in step 2.
 
For our example, the X2 value is computed as:
 

X= (102 - 101.3)2 + (42- 41.2)2 (3- 5)2 
101.3 41.2 + + 1.5 

2.01 

0 	STP 4. Compare the computed X2 value with the tabular x2 values, from 
Appendix D, with (r - 1Xc - 1) degrees of freedom; and reject the hy-

Table 11.2 The Expected Values for the Data InTable 

11.1 under the Hypothesis of Independence 

Tenure Status Adopter Nonadopter 

Owner operator 101.3 26.7 
Share-rent farmer 41.2 10.8 
Fixed-rent farmer 5.5 1.5 
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pothesis of independence if the computed X2 value is larger than the 
corresponding tabular X2 value at the prescribed level of significance. 

For our example, the tabular X2 values, from Appendix D, with (r - 1) 
(c - 1) = (2)(1) = 2 degrees of freedom, are 5.99 at the 5%level of signifi­
cance and 9.21 at the 1%level. Because the computed X2 value is smaller 
than the corresponding tabular X2 value at the 5% level of significance, the 
hypothesis of independence betweern the adoption of newly introduced 
high-yielding rice varieties and the tenure status of the farmers cannot be 
rejected. 

In the foregoing procedure for testing independence between two classifica­
tion criteria, there ;s no evaluation of the nature of the frequency distribution 
of each criterion. That is, the test for independence does not, and cannot, 
specify the type of frequency distribution that exists in each classification 
criterion. If this is desired, the test for a fixed-ratio hypothesis, discussed in 
Section 11.1.1, should be separately applied, depending upon the result of the 
independence test. That is, if the various classification criteria are judged 
independent, then the test for a fixed-ratio hypothesis-either on the row 
variable or column variable, or both-should be done on the mrginal totals 
(i.e., row totals for the row variable and column totals ior the columi variable). 
However, if the two classification criteria are not independent, then the test for 
a fixed ratio hypothesis should be applied for the row variable separately for 
each column, and for the column variable separately for each row. 

For our example, because the two classification criteria are judged to be 
independent, the chi-square test for a fixed ratio hypothesis should be done on 
the marginal totals. Assuming that the researcher is interested in testing a 2: 1 
ratio for thie adoption criterion (i.e., the column variable), the chi-square test 
for a fixed ratio hypothesis (Section 11.1.1), applied to the column totals, 
would be computed as: 

2 (1148 - 124.71 - 0.5)2 + (139 - 62.31 - 0.5)2 

124.7 62.3 

12.51 

Because the computed X2 value is greater than the corresponding tabular X2 

value at the 1%level of significance, the hypothesis that the frequency of 
adopters is twice that of the nonadopters is rejected at the 1% level of 
significance. 

11.1.3 Test for Homogeneity of Ratio 

Experiments whose primary character of interest is based on attribute data are 
commonly repeated several times. For example, the preference study of the 
green leafhoppers in rice (Section 11.1.1) could be repeated over time or could 
be repeated in several cages at the same time. 
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When data from several trials are available, it is essential to determine how 
to pool the information over all trials. For the leafhopper preference study, the 
questions may be: is it valid to simply add the numbers of insects on diseased 
plants and on healthy plants over all trials, and apply the chi-square procedure 
to test the hypothesized ratio of 1:1 only once based on these totals? Or, 
should the chi-square test be applied to the result of each trial separately? And, 
if so, how would all the test results be interpreted and combined? The 
chi-square test for homogeneity of ratio is appropriate in answering these 
questions. 

We illustrate the procedure for applying the chi-square test for homogeneity 
of ratio by using the data from the green leafhopper preference study involving 
four trials (Table 11.3). The step-by-step procedures are: 

o 	STp 1. Apply the X2 test for a fixed-ratio hypothesis, as described in 
Section 11.1.1, to each trial separately. For our example, note that the X2 

value for the first trial wa computed in Section 11.1.1. The X2 value for the 
second, third, and fourth trials are computed in the same manner as that for 
the first. The results for all four trials are shown in the first four rows of 
Table 11.3. 

o 	sEp 2. Compute the sum of all the X2 values computed in step 1 as: 

X$ X 
i-I
 

where X' is the computed X2 value for the ith trial and s is the total number 
of trials involved. For our example, the sum over the four computed X2 

values is: 

X2 = X = 45.26 + 6.32 + 22.48 + 37.33 = 11.39 

Table 11.3 Application of the Chi-Square Test for Homogeneity of 1 :1 
Ratio on the Number of Green Leafhoppern, Found on Diseased and 
Healthy Rice Plants In Four Trials 

Trial Total Observed Values Expected Values X2 
Number Insects Healthy Diseased Healthy Diseased Value 

1 239 67 172 119.5 119.5 45.26 
2 183 74 109 91.5 91.5 6.32 
3 171 54 117 85.5 85.5 22.48 
4 301 97 204 150.5 150.5 37.33 

Total 894 292 602 447.0 447.0 106.80 - XT
 
Sum 111.39 - X2
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03 	 sTP 3. Compute the totals of observed values and of expected values over 

all trials, and apply the same X2 test procedure used in step I to these totals. 
For our example, the computed totals are shown at the bottom of Table 

11.3; and the X2 value is computed, based on these totals as: 

-	 0.5)2-	 4471+ 	 (02T447 0.5)2-	 4471 - +447
X- (1292 

= 	106.80 

O3 	 sTP 4. Compute the chi-square value for additivity as the difference 
between the X2 value computed in step 2 and the X2 value computed in 
step 3: 

2 = 2 -2 
Xd X XT 

For our example, the X2 value for additivity is computed as: 

X2 = 111.39 - 106.80 = 4.59 

O3 	 STEP 5. Compare the computed X2 value with the tabular X2 value, from 

Appendix D, with (s - 1) degrees of freedom and at the prescribed level of 

significance, and take the following action depending upon the outcome: 

" 	 If the computed X' value is smaller than, or equal to, the corresponding 
tabular X2 value, data from the total of s trials can be pooled and the X. 
value used as the test criterion to test the hypothesis of the hypothesized 
ratio. That is, only the single X, value needs to be compared to the 

tabular X2 value with s d.f., at the prescribed level of significance. 
• 	 If the computed X2 value is larger than the corresponding tabular X2 

va=ue, the indication is that data from the s trials are heterogeneous (i.e., 

the s data sets do not share a common ratio) and, hence, data from the s 
trials cannot be pooled. In such a case, the individual X2 values should be 

examined and the possible causes for the differences in the ratios between 
trials determined. 

For our example, the tabular X2 values with (s - 1) = (4 - 1) = 3 d.f. 

are 7.81 at the 5%level of significance and 11.34 at the 1%level. Because the 

computed X2 value is smaller than the corresponding tabular X2 value at the 
be pooled and the X2

5%level of significance, data from the four trials can 

value compared with the tabular X2 value with 4 d.f. Because the X2 value 

of 111.39 is larger than the corresponding tabular X2 value at the 1%level of 

significance of 13.28, the hypothesis of the 1 :1 ratio is rejected. This result 

indicates that there were more green leafhoppers on diseased plants than on 



Testfor Homogeneity of Variance 467 

healthy plants and, hence, the hypothesis of no preference is rejected. In 
fact, the data seem to indicate that the ratio is about 2: 1 in favor of the 
diseased plants. 

11.2 TEST FOR HOMOGENEITY OF VARIANCE 

Most of the statistical procedures we have discussed are concerned with the 
treatment effects and with equality of treatment means as the most common
hypothesis being tested. In this section, we deal with a statistical procedure for 
testing the equality (or homogeneity) of several variances. This is the chi-square
test for homogeneity of variance, commonly known as the Bartlett's test. In 
agricultural research, this test is usually used to: 

" Verify homogeneity of variances as a requirement for a valid analysis of 
variance (Chapter 7, Section 7.2). 

" Verify homogeneity of error variances in combining data from a series of 
experiments (Chapter 8). 

" Verify homogeneity of variances in a genetic study where the test materials 
consist of genotypes belonging to different filial generations. 

" Verify homogeneity of sampling variances among samples taken from two 
or more populations. 

The chi-square test for homogeneity of variances is applied whenever more 
than two variances are tested. The F test should be used when there are only
two variances, with the Fvalue computed as the ratio of the two variances- the 
larger variance in the numerator and the smaller variance in the denominator. 
This is well demonstrated through the standard F test in the analysis of
variance, which is used to test the homogeneity of two mean squares-gener­
ally the treatment mean square and the error mean square.

We use two cases to illustrate the procedure for applying the chi-square test 
for homogeneity of variances. In one case, all the variances are estimated with 
the same (equal) degree of freedom; in the other case the variance estimates 
have unequal degrees of freedom. 

11.2.1 Equal Degree of Freedom 

We use data from an experiment with 11 rice varieties tested in three 
temperature regimes in a growth chamber, to illustrate the test for homogeneity
of variances with equal degree of freedom. For each temperature, the varieties 
were grown in a randomized complete block design with three replications. In 
order to combine the data from the three trials (one corresponding to each
temperature) homogeneity of error variances from the three individual RCB 
analyses of variance must be established. The data collected are plant height in 
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centimeters, and the three error mean squares, each with 20 degrees of 

freedom, are: 
11.459848 

= 17.696970 

= 10.106818 

The step-by-step procedures to apply the chi-square test to test for homo­
geneity of k variances with equal d.f. are: 

O3 	 srEP 1. For each variance estimate s2, compute log s2, where log refers to 
logarithm base 10. Then, compute the totals of all k values of s2 and of 
log s 2. 

For our example, the values of s2,and logs 2 , for each of the three error 
mean squares and their totals are shown below: 

2 
Temperature s2 log s 

1 11.459848 1.059179 
2 17.696970 1.247899 
3 10.106818 1.004614 

Total 39.263636 3.311692 

o 	smr 2. Compute the pooled estimate of variance as: 

k 

~2 
p = - 39.263636 = 13.087879 

s; k3 

OsrP 3. Let f be the degree of freedom of each s, compute the x2 value 
as: 

- logs)(2.3026)(f) klog 

1 +[(k + 1)/3kf] 

For our example, the X2 value iscomputed as: 

-	 3.311692]13.087879)
X= (2.3026)(20)[(3)(log1 +[(3 + 1)/(3)(3)(20)] 

- 1.75 

[] sTEP 4. Compare the computed X2 value with the tabular X2 value from 
1) d.f.; and reject the hypothesis of homogeneousAppendix D with (k ­
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variance if tL.- computed X2 value exceeds the corresponding tabular X2 

value at the prescribed level of significance. 
For our example, the computed X2 value is smaller than the correspond­

ing tabular X2 value with (k - 1) = (3 - 1) = 2 d.f. and at the 5% level of 
significance of 5.99. Thus, the hypothesis that the three error variances are 
homogeneous cannot be rejected. 

11.2.2 Unequal Degrees of Freedom 

The procedure for testing homogeneity of variances with unequal degrees of 
freedom is illustrated, using data on lesion length collected from rice leaves 
inoculated with four different isolates. For each isolate, 17 to 20 randomly
selected lesions were measured. The resee-cher wished to determine whether 
there were differences in the lesion length between the different isolates. Before 
applying a test for mean comparison, the homogeneit) of sampling variances 
between the isolates must first be established. Data on the four sampling
variances and their corresponding degrees of freedom are shown in Table 11.4. 

The step-by-step procedures for the application of the chi-square test for 
homogeneity of the four sampling variances with unequal degrees of freedom 
are outlined: 
0 STEP 1. Let s2 be the ith variance estimate (i = 1,... ,k) withfj degrees of 

freedom, compute the following parameters: 

(f,)(s,) 

(f,)(logs,) 
1 

For our example, these parameters are computed and shown if, Table 
11.4. 

Table 11.4 Computation of the Chi-Square Test for Homogeneity of 
Variances with Unequal Degrees of Freedom 

Sampling 
Variance d.f. 

Isolate (S2) (f) (f)(s2) log s2 (f)(log s 2) 

1 
2 

6.73920 
1.93496 

19 
16 

128.0448 
30.9594 

0.828608 
0.286672 

15.743552 
4.586752 

0.0.,'6 
0.06.5 

3 1.15500 17 19.6350 0.062582 1.063894 0.0588 
4 10.58450 19 201.1055 1.024670 19.468730 0.0526 

Total 71 379.7447 40.862928 0.2265 
Pooled 5.34852 0.728234 51.704614 

(s,2) 
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3 srseP 2. For each parameter computed in step 1, compute its total over k 

values: 

A -f,=19+ 16 +,17 + 19 71 

I-1I 

= 128.0448 + 30.9594 + 19.6350+ 201.1055 

- 379.7447 

k 
c= ()(log S)

1-1 

= 15.743552 + 4.586752 + 1.063894+ 19.468730 

= 40.862928 
k 1 

D = 7 = 0.0526 + 0.0625 + 0.0588 + 0.0526 

= 0.2265 

o3 sTeP 3. Compute the estimate of the pooled variance as: 

2 B 
sP-A 

where the A an,' B values are as defined and computed in step 2.
 
For our example, the pooled variance is estimated as:
 

379.7447 = 5.34852-PI 71 

13 STEP 4. Compute the X2 value as: 

X2 - 2.3026[(A)(logs,2 ) - C] 

1+3(k - 1) A 

where A, C, and D are as defined in step 2.
 
For our example, the X2 value is computed as:
 

X2 2.3026[(71)(0.728234) - 40.8629281 

S1 (0.2265 1 

1+ 3(4- 1)7 

24.964 
= -. 2 = 24.381.024 
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0 STEP 5. Compare the computed X2 value of step 4 with the tabular X2 value 
from Appendix D with (k - 1) d.f.; and reject the hypothesis of homoge­
neous variance if the computed X2 value exceeds the corresponding tabular 
X2 value at the prescribed level of significance. 

For our example, the tabular X2 values with (k - 1) = 3 d.f.are 7.81 at 
the 5%level of significance and 11.24 at the 1%level. Because the computed 
X2 value exceeds the corresponding tabular X2 value at the 1% level of 
significance, the hypothesis of homogeneous variance is rejected. That is, the 
test showed significant differences between the four sampling variances. 

11.3 TEST FOR GOODNESS OF FIT 

Thu test for goodness of fit determines whether a set of observed data 
conforms to a specified probability distribution. For example, data on rice 
yield or protein content may be suspected to follow a normal distribution.* 
The spatial distribution of weeds in a rice field or of insects caught in traps 
over time may be suspected to have Poisson distribution.t 

In a study to determine the mode of inheritance of protein content of rice, 
the percentage of brown rice protein in the grains of F3 plants derived from a 
cross between two rice varieties was measured. Visual examination of the data 
(Figure 11.1) seems to suggest a substantial deviation from the normal distribu-

F3 plants (no) 
100
 

80 

60 

20 

50 70 90 110 130 150 Figure 11.1 Frequency distribution of brown rice 
Brown rice protein %) protein in 450 F plants. 

*The most important continuous distribution in agricultural research. It is bell-shaped, symmetric, 
and is governed by two parameters: the mean and the variance of the distribution. 
tA discrete distribution which is widely used to represent occurrence of rare events over space or 

time. It is governed by a single parameter, which is both the mean and the variance of the 
distribution. 
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tion. The researcher wishes, therefore, to verify whether his visual observation 
can be substantiated by a statistical test. For this purpose, a chi-square test for 
goodness of fit of the observed data to the hypothesized normal distribution is 
most appropriate. We give the step-by-step procedures for applying the chi­
square test for goodness of fit to the protein data in Figure 11.1. 

[ 	 STEp 1. Let n be the number of observations in the data set, construct the 
frequency table as follows: 

A. 	 Determine the range of the data as the difference between the largest 
observation and the smallest observation, and divide the range into p 
classes using the following guidelines: 
" The number of classes (p) should be between 8 and 18 depending 

on the number of observations (n) and the range of variation. The 
recommended size of p for various ranges of n is: 

Number of Observations Number of Classes 

(n) 	 (p) 

20-100 	 8-12 
101-500 	 10-15 
501-1000 	 12-18 

Note that the specific choice of p within each of the three 
specified ranges of n should depend upon the range of variation of 
the data. The wider the range, the larger p should be. 

" 	There should be no class with zero entry and classes with less than 
three entries should be avoided, especially classes near the middle of 
the range. When classes with less than three entries are encountered 
at the middle of the range, reduce the number of classes. When they 
appear near either end of the range, two or three adjacent classes can 
be combined. 

" 	To simplify computations, the class boundaries should be specified 
such that the midpoints of the class range (i.e., class values) are as 
close to whole numbers as possible. 

For our example, with n = 450 and the data ranging from 4.6 to 
16.3, we divide the range into p = 12 classes. 

B. 	 For each class, determine the class value (i.e., the midpoint of the class 
range) by taking the average of the lower and upper limits of the class. 
For our example, the class values of the 12 classes are shown in the 
third column of Table 11.5. 

C. 	 Determine the number of observations falling into each class and 
designate these as the observed frequencies (f). The sum of the 
observed frequencies over all classes should be equal to the total 
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Table 11.5 Frequency DlstribuUon and Computation of Mean and Variance for Data 
on Brown Rice Protein of 450 F3 Plants 

Class Computation of Mean and 
Observed 

Number Limits 
Value 
(X) 

Frequency 
(f) ()(X) X2 (0(X2 ) 

1 4.5-5.4 5.0 7 35 25 175 
2 5.5-6.4 6.0 52 312 36 1872 
3 6.5-7.4 7.0 70 490 49 3430 
4 7.5-8.4 8.0 81 648 64 5184 
5 8.5-9.4 9.0 74 666 81 5994 
6 9.5-10.4 10.0 63 630 100 6300 
7 10.5-11.4 11.0 39 429 121 4719 
8 11.5-12.4 12.0 24 288 144 3456 
9 12.5-13.4 13.0 21 273 169 3549 

10 13.5-14.4 14.0 10 140 196 1960 
11 14.5-15.4 15.0 6 90 225 1350 
12 15.5-16.4 16.0 3 48 256 768 

Total - - 450 4,049 - 38,757 

number of observations. For our example, the observed frequency for 
each of the 12 classes is shown in the fourth column of Table 11.5. Note 
that their sum is equal to 450, which is the total number of F3 plants in 
the study. 

03 	 STEP 2. Compute the mean (Y) and variance (s2) from the frequency table 
derived in step 1: 

_ p 

(,)(x,)	 E 

El, 
i-1 

S= 1 ()(X2) [ 
EA,-1 	 E A! 
1-I 	 1-1
 

where X, is the class value of the ith class, f, is the observed frequency of the 
ith class, and p is the total number of classes. 

For our example, with the required basic computation given in the fifth 
through seventh column of Table 11.5, the mean and variance are computed 
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as: 

= 	4_= 8.998
'450 

2 (40 [757 (4o49j2 '=5.178 
(4 0-1)450 

,03 STP 3. Compute the expected frequency of each class based on the' hy­
poihesized probability distribution: 

A. 	 For each class, compute two standardized Z values, one for the lower 
limit (Z,) and another for the higher limit (Zh): 

Z_, s
 

Lh - X 

Zh= 
 s 

where L, and Lh are the lower and upper true class limits of each class. 
The lower true class limit of a given class is defined as the average of its 
own lower class limit and the upper class limit of the previous class. 
Similarly, the upper true class limit is defined as the average of its own 
upper class limit and the lower class limit of the succeeding class. The 
lower true class limit of the first class is - oo and the upper true class 
limit of the last class is + oo. 

For our example, the lower true class limit (LI) and the upper true 
class limit (Lh) of the second class in our example are: 

5.4 + 5.5 = 545 
= 2 

Lh 64 + 6.5 = 6.45 
L= 2 

and the corresponding Z value and Zh value are computed as: 

Zt= 2.2755 =-.55.45 	- 8.998 1.559 

6.45 - 8.998 
Zh = 2.2755 = -1.120 

The standardized Z values for all 12 classes are shown in the third 
and fourth columns of Table 11.6. 
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Table 11.6 Computation of the Expected Frequency and the Chi-Square Test 
for Goodness of Fit to aNormal Distribution, from Data InTable 11.5 

Class 
Observed 
Frequency 

Standardized 
Z Values Probability 

Expected 
Frequency (I, -

Number (f) Z Zh (P,) F, - (n)(P,) F 

1 7 - 0 - 1.559 .5000 - .4405 - .0595 26.775 14.605 
2 52 -1.559 -1.120 .4405 - .3686 - .0719 32.355 11.928 
3 70 -1.120 -0.680 .3686 - .2517 - .1169 52.605 5.752 
4 81 -0.680 -0.241 .2517 - .0952 - .1565 70.425 1.588 
5 74 -0.241 0.199 .0952+ .0789 - .1741 78.345 0.241 
6 63 0.199 0.638 .2383 - .0789= .1594 71.730 1.062 
7 39 0.638 1.078 .3595 - .2383 - .1212 54.540 4.428 
8 24 1.078 1.517 .43f3 - 3595 - .0758 34.110 2.997 
9 21 1.517 1.956 .4748 - .4353 - .0395 17.775 0.585 

10 10 1.956 2.3% .4917 - .4748- .0169 7.605 0.754 
11 6 2.396 2.835 .4977 - .4917 - .0060 2.700 4.033 
12 3 2.835 oo .5000 - .4977 - .0023 1.035 3.731 

Total 450 - n 450.000 X2 -51.704 

B. 	 Determine the probability associated with each class interval, based on 
the hypothesized probability distribution, as: 

P = P(z, < x < Zh) 

where the term P(ZI < X < Zh) refers to the probability that X lies 
between Z, and Zh. 

For our example, because the normal distribution is hypothesized, 
the probability associated with each class is determined from Appendix 
B by reading the area under the standardized normal curve between Z, 
and Zh. This is done with the use of the following rules: 
" The accuracy of the Z values given in Appendix B is only to two 

decimals. Hence, when the Z values have three or more decimals, 
such 	as in our example, linear interpolation is needed to determine 
the area desired. 

For example, to determine the area from 0 to (Z = 1.559), we 
first obtain from Appendix B the area from 0 to 1.55 of .4394 and 
the area from 0 to 1.56 of .4406; and, through linear interpolation, 
compute the area from 0 to 1.559 as: 

.4394 + (.4406 - .4394)(1.559 - 1.55) ­

(1.56 - 1.55) 

" 	The area between any two Z values carrying the same sign, say, Z, 
and Zh (or -Z, and -Zh), is equal to the difference between the 
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areas from 0 to Z, and from 0 to Zh. For example, to compute the 
area between the two Z values of class 2 (Table 11.6) namely,
Z, = -1.559 and Zh = -1.120, first determine the area from 0 to 
1.559 of .4405 (computed above) and that from 0 to 1.120 of .3686 
(from Appendix B) and compute their difference as: 

P(-1.559 < X < -1.120)= P(1.559 < X < 1.120) 

= 	.4405 - .3686 

= 	.0719 

" 	The area between any two Z values carrying different signs (-Z,
and Z h or Z, and - Z.) is equal to the sum of the area from 0 to Z,
and the area from 0 to Zh. For example, to compute the area 
between the two 	Z values of class 5 (Table 11.6), namely, Z = 
-0.24i and Z h = 0.199, the areas from 0 to 0.241 and from 0 to 
0.199 are first determined through linear interpolation as .0952 and 
.0789. Then, the area between Z, =-0.241 and Z h = 0.199 is 
computed as: 

P(-0.241 < X < 0.199) = .0952 + .0789 

= 	.1741 

" 	The area from - oo to Z, or from Z to + o, is computed as the 
difference between .5 and the area from 0 to Z. For our example, to 
compute the area from - oo to (Z h = - 1.559) of the first class, the 
area from 0 to 1.559 is first determined as .4405 and the area from 
- oo to - 1.559 is then computed as .5 - .4405 = .0595. 

The computation of probabilities for all the 12 classes is shown in 
the fifth column of Table 11.6. 

C. 	 Compute the expected frequency for the ith class (F,) as the product of 
the probability associated with the ith class (P,), determined in the 
previous step, and the total number of observations, (n): 

F,=(n)(P,) 

For our example, the expected frequency for each of the 12 classes is 
computed and shown in the sixth column of Table 11.6. 

O srEP 4. Compute the X2 value as: 

p 

1)1 
2 

F, 
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where f, is the observed frequency and F, is the expected frequency, for the 
ith class, as defined in steps 1 and 3. For our example, the computation of 
the X2 value is shown in the last column of Table 11.6. The computed X2 is 
51.70. 

01 	 STEP 5. Compare the computed X2 value with the tabular X2 values, from 
Appendix D, with (p - 3) degrees of freedom, and reject the h)pothesized 
probability distribution if the computed X2 value exceeds the corresponding 
tabular X2 value at the prescribed level of significance. For our example, the 
tabular X2 value with 9 d.f. is 21.67 at the 1%level of significance. Because 
the computed X2 value is greater than this tabular X2 value, the test indicates 
that the data set does not fit the hypothesized normal probability distribu­
tion. 



CHAPTER 12 

Soil Heterogeneity 

Adjacent plots, planted simultaneously to the same variety and treated as alike 
as possible, will differ in as many characters as one would care to measure 
quantitatively. The causes for these differences are numerous but the most 
obvious, and probably the most important, is soil heterogeneity. 

Experience has shown that it is almost impossible to get an experimental 
site that is totally homogeneous. This chapter deals with soil heterogeneity, and 
the techniques to cope with it. 

12.1 CHOOSING A GOOD EXPERIMENTAL SITE 

To choose an experimental site that has minimum soil heterogeneity, a re­
searcher must be able to identify the features that magnify soil differences. 

12.1.1 Slopes 

Fertility gradients are generally most pronounced in sloping areas, with lower 
portions more fertile than high areas. This is because soil nutrients are soluble 
in water and tend to settle in lower areas. An ideal experimental site, therefore, 
is one that has no slope. If a level area is not available, an area with a uniform 
and gentle slope is preferred because such areas generally have predictable 
fertility gradients, which can be managed through the use of proper blocking 
(see Chapter 2,Section 2.2.1). 

12.1.2 Areas Used for Experiments in Previous Croppings 

Different treatments used in experimental planting usually increase soil hetero­
geneity. Thus, areas previously planted to different crops, fertilized at different 
levels, or subjected to varying cultural managements should be avoided, if 
possible. Otherwise, such areas should be planted to a uniform variety and 
fertilized heavily and uniformly for at least one season before conducting an 
experiment. 

478 
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Another source of soil heterogeneity is the presence of nonplanted alleys, 
which are common in field experiments. Plants grown in previously nonplanted 
areas tend to perform better. Nonplanted areas should be marked so that the 
same areas are left as alleys in succeeding plantings. 

12.1.3 Graded Areas 

Grading usually removes top soil from elevated areas and dumps it in the 
lower areas of a site. This operation, while reducing the slope, results in an 
uneven depth of surface soil and at times exposes infertile subsoils. These 
differences persist for a long time. Thus, an area that has had any kind of soil 
movement should be avoided. If this is not possible, it is advisable to conduct a 
uniformity trial to assess the pattern of soil heterogeneity (Section 12.2.1) so 
that a suitable remedy can be achieved by proper blocking or by appropriate 
adjustment through use of the covariance technique (see Chapter 10). 

12.1.4 Presence of Large Trees, Poles, and Structures 

Avoid areas surrounding permanent structures. Such areas are usually unde­
pendable because the shade of the structures, and probably some soil move­
ment during their construction, could contribute to poor crop performance. 

12.1.5 Unproductive Site 

A productive crop is an important prerequisite to a successful experiment. 
Thus, an area with poor soil should not be used, unless the experiment is set up 
specifically !o evaluate such conditions. 

12.2 MEASURING SOIL HETEROGENEITY 

An adeouate characterization of soil heterogeneity in an experimental site is a 
good guide, and at times even a prerequisite, to choosing a good experimenta­
tion technique. Based on the premise that uniform soil when cropped uni­
formly will produce a uniform crop, soil heterogeneity can be measured as the 
difference in performance of plants grown in a uniformly treated area. 

12.2.1 Uniformity Trials 

Uniformity trial involves planting an experimental site with a single crop 
variety and applying all cultural and management practices as uniformly as 
possible. All sources of variability, except that due to native soil differences, 
are kept constant. The planted area is subdivided into small units of the same 



480 Soil Heterogeneity 

size (generally referred to as basic units) from which separate measurements of 

are made. Yield differences between theseproductivity, such as grain yield, 
basic units are taken as a measure of the area's soil heterogeneity. 

The size of the basic unit is governed mostly by available resources. The 

smaller the basic unit, the more detailed is the measurement of soil heterogene­
ity. 

We illustrate this with a uniformity trial on rice. An area 20 X 38 m was 

planted to rice variety IR8 using a 20 X 20-cm spacing. No fertilizer was 

applied and management was kept as uniform as possible. At harvest, an area 

1 meter wide on all four sides of the field was discarded as borders, leaving an 
effective area of 18 x 36 m, from which yield measurements were made 

separately from each basic unit of 1 X 1 m. Grains from each of the 648 basic 
units were harvested, bagged, threshed, cleaned, dried, and weighed separately. 
Grain yield data are in Table 12.1. 

Several types of analyses are available to evaluate the pattern of soil 
heterogeneity based on uniformity triai. We discuss four procedures. 

12.2.1.1 Soil Productivity Contour Map. The soil productivity contour 

map is a simple but informative presentation of soil heterogeneity. The map 

describes graphically the productivity level of the experimental site based on 

moving averages of contiguous units. 
The steps involved :n constructing a fertility contour map are: 

o1 	 STEP 1. Decide on the number of contiguous units to go into each moving 

average. The object of combining several basic units into each moving 

average is to reduce the large random variation expected on small plots. 
unitsExperience has shown that moving averages of contiguous basic 

describe productivity better than the original basic units. The area involved 

in each moving average should be as square as possible. For this example, a 

3 x 3 unit area is chosen as the size of the moving average. 

o 	STEP 2. Compute the 3 x 3 moving average, corresponding to the sth row 
and the tth column, as: 

s+l t+1 

I-s-1 -t-I 
P5,' 9 

where s = 2,..., (r - 1) and t = 2,..., (c - 1); Y,, represents the grain 

yield data of the (i, j)th basic unit (i.e., from the ith row and the jth 
and c is the number ofcolumn) in Table 12.1; r is the number of rows; 
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ible 12.1 Grain Yield (g / M2) of Rice Variety IR8 from a Rico Uniformity Test 
)vering an Area 18 x 26 m 

Column 

ow 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 842 844 808 822 979 954 965 906 898 856 808 920 808 889 943 894 968 917 
2 803 841 870 970 943 914 916 836 858 926 922 910 872 805 775 846 947 965 
3 773 782 860 822 932 971 765 875 853 936 927 779 865 720 566 893 914 861 
4 912 887 815 937 844 661 841 844 809 778 945 876 9()1 802 836 778 923 949 
5 874 792 803 793 818 799 767 855 792 858 912 839 813 740 730 832 813 914 
6 908 875 899 788 867 790 831 757 751 774 863 (X12 771 747 819 699 670 934 
7 875 907 921 963 875 880 898 802 874 928 872 834 892 760 753 720 751 894 
8 891 928 871 875 865 777 738 796 855 901 792 752 722 781 739 733 783 786 
9 823 784 754 873 764 775 752 753 820 798 ,47 858 811 875 659 661 759 767 
0 785 794 764 822 714 748 724 717 736 724 838 769 819 823 724 750 764 764 
1 785 808 823 826 801 712 826 665 759 738 867 725 794 755 730 638 724 734 
2 829 895 774 891 h41 815 834 778 760 822 103 754 703 743 728 692 748 671 
3 861 883 739 762 725 717 746 766 662 634 743 719 710 682 694 675 709 720 
4 906 885 790 655 690 769 765 719 74t3 770 728 740 691 767 648 715 655 665 
5 819 911 788 654 742 786 791 779 645 810 816 746 729 814 718 721 708 722 
6 893 862 769 727 725 721 739 736 o72 814 756 748 714 718 694 704 915 705 
7 813 750 742 872 746 812 705 724 640 757 708 750 767 638 754 767 763 685 
8 816 758 811 702 728 741 757 732 623 786 805 786 739 727 767 738 659 695 
9 676 783 734 626 782 7(14782 707 672 703 698 758 762 625 623 699 662 (1 
,0 813 809 695 707 753 681) 720 683 757 782 789 811 789 769 751 648 680 6,)6 
;1 801 764 701 716 753 680 706 665 680 650 690 699 768 751 701 665 603 6A0 
2 718 7P,4 730 750 733 705 728 667 703 684 777 747 713 696 717 732 712 679 
3 756 725 821 685 681 738 630 599 629 703 780 720 709 697 731 661 627 644 
4 789 681 732 669 681 698 689 622 672 704 705 625 677 704 648 605 585 651 
5 652 622 695 677 698 666 691 688 682 713 670 708 707 695 681 716 626 637 
6 729 650 700) 764 680 681 645 622 661 728 715 775 690 726 669 766 709 645 
7 698 713 714 734 651 649 675 614 634 635 639 690 694 637 590 640 658 609 
8 745 677 685 711 688 614 585 534 533 671 6W,) 647 592 595 563 634 666 644 
9 964 727 648 664 623 629 616 594 619 631 628 591 675 654 640 718 667 649 
0 671 729 690 687 705 622 523 526 661 683 61') 709 621 651 676 728 547 682 
1 717 694 727 719 669 630 7(11 645 638 714 633 670 649 665 557 734 674 727 
2 652 713 656 584 517 572 574 539 545 629 636 581 6(17 654 585 674 6(08 612 
3 605 708 684 715 659 629 632 596 627 644 661 682 690 636 665 731 753 64(0 
4 559 722 726 705 571 637 637 577 561 5.)0646 639 672 636 651 684 584 622 
5 589 681 690 570 619 624 580 57) 568 589 550 622 623 706 725 738 669 636 
6 614 633 619 658 678 673 652 602 590 605 538 682 651 653 680 696 633 660 

columns. For example: 

P22= (YII + YI2 + YI3 ) +(Y + + Y23 +(Y 3 1 + 2 1 Y2 2 Y3 2 + Y33 ) 

9 

= (842 + 844 + 808) + (803 + 841 + 870) + (773 + 782 + 860) 
9 

= 825 
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P2.3 - (Y12 + Y13+ Y 4 )+(Y 22 + Y923 + Y24 ) +(Y 32 + Y33 + Y34) 

(844 + 808 + 822) +(841 + 870 + 970) +(782 + 860 + 822) 
9 

- 847 

(894 + 968 + 917) +(846 + 947 + 965) +(893 + 914 + 861) 

9 

= 912 

(803 + 841 + 870) + (773 + 782 + 860) + (912 + 887 + 815) 

9 

= 8383 

(841 + 870 + 970) + (782 + 860 + 822) + (887 + 815 + 937) 
9 

= 865 

(684 + 584 + 622) + (738 + 669 + 636) + (596 + 633 + 660) 

P35.17 =9 

658
 

The result of the computation of all moving averages is shown in Table 
12.2. Note that the dimension of Table 12.2 is 34 X 16, which is two rows 
and two columns less than that of Table 12.1. 

3 STEP 3. Group the values of the moving averages in Table 12.2 into m 
classes, where m should be between five and eight. For our LAample, m is 
chosen to be six. The six classes are generated by dividing the range of the 
544 moving averages (with values from 577 to 927) into six equal intervals 
as: 

Class 1: 577-636 
Class 2: 637-694 
Class 3: 695-752 
Class 4: 753-810 
Class 5: 811-869 
Class 6: 870-927 
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Table 12.2 Moving Averages Based on 3 x 3 Basic Units, Computed from the 
Uniformity Trial Data In Table 12.1 

Column 
Row 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

2 825 847 890 923 927 900 875 883 887 887 868 841 805 815 861 912 
3 838 865 888 888 865 847 844 857 884 889 889 837 794 780 831 897 
4 833 832 847 842 822 820 822 844 868 872 873 815 775 766 809 875 
5 863 843 840 811 802 794 805 802 831 861 869 821 795 776 789 835 
6 873 860 859 841 836 820 814 821 847 865 855 811 781 756 754 803 
7 897 892 880 853 836 808 811 8?6 846 846 822 796 776 750 741 774 
8 862 875 862 850 814 797 810 F36 854 842 820 809 777 742 729 762 
9 822 829 811 801 762 753 766 789 812 809 801 801 773 749 730 752 
10 791 805 793 782 757 741 750 746 792 796 814 803 777 735 712 729 
11 806 822 806 797 779 758 755 744 783 782 786 765 758 731 722 721 
12 822 822 798 788 780 762 755 732 754 756 758 732 727 704 704 701 
13 840 808 763 763 767 768 753 739 741 746 732 723 707 705 696 694 
14 842 785 727 722 748 760 735 725 728 745 736 733 717 715 694 699 
15 847 782 727 719 748 756 732 743 750 770 741 741 721 722 720 723 
16 816 786 752 754 752 755 715 731 735 767 748 736 727 725 749 743 
17 802 777 758 753 742 741 703 720 729 768 753 732 724 723 751 737 
18 765 753 749 746 751 740 705 705 710 750 753 728 711 704 715 698 
19 766 736 726 714 739 723 715 716 735 769 771 752 728 705 692 677 
20 753 726 719 711 729 703 708 700 713 731 752 748 727 692 670 661 
21 757 740 726 720 718 693 701 697 724 737 754 749 739 714 690 677 
22 756 742 730 716 706 680 667 664 70) 717 734 722 720 706 683 667 
23 748 731 720 704 698 675 660 665 706 716 717 699 699 688 669 655 
24 719 701 704 688 686 669 656 668 695 703 700 694 694 682 653 639 
25 694 688 700 690 681 667 664 677 694 705 697 701 689 690 667 660 
26 686 697 701 689 671 659 657 664 675 697 699 702 677 680 673 667 
27 701 705 703 686 652 624 611 626 646 678 671 672 640 647 655 b63 
28 730 697 680 663 637 612 6(X) 607 621 637 640 642 627 630 642 654 
29 726 691 678 660 623 583 577 606 627 642 631 637 630 651 649 659 
30 730 698 681 661 635 610 614 635 647 63 644 654 643 669 660 681 
31 694 689 662 634 613 592 595 620 640 653 636 645 629 658 643 665 
32 684 689 69 633 620 613 611 620 636 650 645 648 634 656 665 684 
33 669 690 646 621 603 599 588 590 615 634 646 644 644 657 659 656 
34 663 689 660 637 621 609 594 591 604 625 643 656 667 686 689 673 
35 648 667 648 637 630 617 593 584 582 607 625 654 666 685 673 658 

o 	STEP 4. Assign a shading pattern to each of the six classes as shown in 
Figure 12.1. The darkest shade should be assigned to the class with the 
highest yield, the second darkest shade to the class with the second highest
yield, and the lightest shade is assigned to the class with the lowest yield. 
This allows for an easier visualization of the fertility pattern. 

o 	STE? 5. Draw the productivity map as shown in Figure 12.1. The top left 
corner of the figure corresponds to row 2 and column 2, and the bottom left 
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Figure 12.1 Fertility contour map of a field meas.uring 34 X 16 basic units, constructed from 

moving averages of 3 x 3 ba.sic units in Table 12.2. 

484 
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corner corresponds to row 35 and column 2, of Table 12.2. The map shows a 
unidirectional fertility gradient. There is a gradual change of productivity 
from one side of the field to another with yields in the upper portion higher 
than in the lower portion. 

12.2.1.2 Serial Cornlation. Serial correlation procedure is generally used 
to test the randomness of a data set. However, it is also useful in the 
characterization of the trend in soil fertility using uniformity trial data. The 
formula for computing a serial correlation coefficient of n observations 
(X, X 2, ... X") is: 

- I X ) 

t--I 
 n
 

jr~ ~ (Ei IXi)2 
x-/2 n 

where X,,,, = X1. A serial correlation can be viewed simply as a simple 
correlation beteen two variables, one at site i and another at site (i + 1). A 
low serial correlation coefficient indicates that fertile areas occur in spots, and 
a high value indicates a fertility gradient. 

Two serial correlation coefficients-one for the horizontal and another for 
the vertical arrangemerit-can be computed from one set of uniformity trial 
data. Using the uniformity data in Table 12.1, the procedure for computing 
serial correlation is: 

l 	STEP 1. Tabulate, separately for vertical and horizontal arrangement, the 
data of Table 12.1 in pairs of X, and X, I as shown in Table 12.3. The total 
number of pairs for each arrangement equals the total number of observa­
tions(r X c = 36 x 18 = 648). 

For example, in the vertical arrangement, the first pair is composed of the 
first two observations in the first column, namely, X, = Y11 = 842 and 
X+, = Y21 = 803; the second pair is composed of the second and third 
observatinns in the first column, namely, X, = Y21 = 803 and X, I = Y31 = 
773; and so on. The last observation of the first column is then paired with 
the last observation of the second column, that is, the thirty-sixth pair is 
composed of X, = Y36.1 = 614 and X, I = Y36.2 = 633. However, the first 
observation of the second column is paired with the first observation of the 
third column, that is, the seventy-second pair is composed of X, = Y12 = 844 
and X,+I = Y13 = 808, and so on. 

In the horizontal arrangement, the first pair is composed of the first two 
observations in the first row, namely, X, = Yj = 842 and X,,, = Y12 = 844; 
the second pair is composed of the second and third observations in the first 
row, namely, X, = Y12 = 844 and X, I = Y13 = 808; and so on. The last 
observation of the first row is then paired with the last observation of the 
second row, that is, the eighteenth pair is composed of X, = Y.1 8 = 917 and 
X+j = Y2,1 8 = 965. However, the first observation of the second row is 
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Table 12.3 Data Tabulation to Facilitate the Computation of 
Two Serial Correlation Coefficients, One for Vertical and 
Another for Horizontal Arrangement, Based on Uniformity 
Data in Table 12.1 

Vertical Horizontal 

Pair (i) X,1 X' Pair(i) X Xi+I 

1 842 803 1 842 844 

2 803 773 2 844 808 
3 773 912 3 808 822 

35 589 6i4 17 968 9i7 
36 614 633 18 917 965 

37 633 681 19 965 947 

965 	 6i9
646 861 646 	 633
 

647 965 917 647 	 633 614
 
614 842
648 917 842 648 


paired with the first observation of the third row, that is, the thirty-sixth pair 

is composed of Xa, = Y21 = 803 and XAI = Y31 = 773, and so on. 

0 	 STEP 2. Using the formula, compute the serial correlation coefficients for 

vertical and horizontal arrangement as: 

[(842)(803) +(803)(773) + +(917)(842)] - G2 
= 

Vertical r, 

+ - +(917) 
2] G 2 

+(773)2[(842)2 +(803)2 

= 	0.7324 

[(842)(844) + (844)(808) + " + (614)(842)] ­
r, = 

Horizontal G 2 
+ 	 ... + (614)21+ (808)2[(842)2 + (844)2 	 648 

= 0.7427 

where G is the grand total over all observations in Table 12.1 (i.e., G = 

i+ I I Yuj = 475,277). 
Both coefficients are high, indicating the presence of fertility gradients in 

both directions. The relative magnitude of the two serial correlations should 

not, however, be used to indicate the relative degree of the gradients in the 

two directions. For instance, the contour map (Figure 12.1) indicates that 
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the gradie.,. was more pronounced horizontally than vertically, even though 
the two serial correlation coefficients are of the same size. 

12.2.1.3 Mean Square Between Strips. Mean square between strips has an 
objective similar to that of the serial correlation but is simpler to compute. 
Instead of working with the original basic units, the units are first combined 
into horizontal and vertical strips. Variability between the strips ;- each 
direction is then measured by the mean square between strips. The relative size 
of the two MS, one for horizontal strips and another for vertical strips, 
indicates the possible direction of the fertility gradient and the suitable 
orientation for both plots and blocks. 

Using the data in Table 12.1, the steps in the computation of the MS 
between strips are: 

o1 	 STEP 1. For each of the c = 18 column, (i.e., vertical strips) compute the 
sum of the r = 36 values, one corresponding to each row. For example, the 
sum of the first column is computed as: 

36 

EY = 842 + 803 + 773 + ... + 589 + 614 = 27,956 
8-1 

The totals for the 18 vertical strips are: 

27,956 28,001 27,248 27,095 26,740 26,173 

26,126 25,090 25,182 26,668 26,926 26,762 

26,409 25,936 25,130 25,925 25,836 26,074 

And, the grand total is 475,277. 

o STEP 2. For each of the r = 36 rows (i.e., horizontal strips) compute the 
sum of the c = 18 values, one corresponding to each column. For example, 
the sum of the first row is computed as: 

18 

Yj = 842 + 844 + 808 + .+ 968 + 917 =16,021 
I,-1 

The totals for the 36 horizontal strips are: 

16,021 15,919 15,094 15,338 14,744 14,645 

15,399 14,585 14,133 13,779 13,710 14,081 

13,147 13,301 13,699 13,612 13,393 13,370 

12,609 13,332 12,673 12,975 12,536 12,137 

12,224 12,555 11,874 11,384 11,937 11,729 

12,163 10,937 11,957 11,419 11,349 11,517 
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r0 STEP 3. Denote the total of the ith vertical strip by V, the total of thejth 
horizontal strip by H, and the grand total by G; compute the vertical-strip 
SS and horizontal-strip SS as: 

C 

Vertical-strip SS=I ­r rc 
_ (27.956)2 + (28.001)2 + ... + (26.074)2 (475,277)2 

36 (36)(18) 

= 349,605 

r 

EH2 

Horizontal-strip SS -­ 1 G 
c rc 

(16,021)2 + (15,919)2 + + (11,517) 2 (475,277)2 
18 (36)(18) 

3,727,595 

[o STEP 4. Compute the vertical-strip MS and horizontal-strip MS as: 

Vertical-strip MS = Vertical-strip SS 
c-i 

349,605 
- 18-1 =20565 

Horizontal-strip MS = Horizontal-strip SS 
r- 1 

3,727,595 
- 36-1 = 106,503 

Results show that the horizontal-strip MS is more than five times higher 
than the vertical-strip MS, indicating that the trend of soil fertility was more 
pronounced along the length than along thc width of the field. This trend is 
confirmed through the visual examination of the contour map (Figure 12.1). 

12.2.1.4 Smith's Index of Soil Heterogeneity. Smith's index of soil hetero­
geneity is used primarily to derive optimum plot size. The index gives a single 
value as a quantitative measure of soil heterogeneity in an area. The value of 
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the index indicates the degree of correlation between adjacent experimental 
plots. Its value varies between unity and zero. The larger the value of the index, 
the lower is the correlation between adjacent plots, indicating that fertile spots 
are distributed randomly or in patches. 

Smith's index of soil heterogeneity is obtained from the empirical relation­
ship between plot variance and plot size: 

where V is the variance between basic units, V is the variance per unit area 
for plot size of x basic units, and b is the Smith's index of soil heterogeneity. 
The steps involved in the computation of the index b are: 

01 	 STEP 1. Combine the r X c basic units to simulate plots of different sizes 
and shapes. Use only the combinations that fit exactly into the whole area, 
that is, the product of the number of simulated plots and the number of 
basic units per plot must equal to the total number of basic units. 

For our example, the simulated plots of different sizes and shapes are 
shown in Table 12.4. The simulated plot sizes range from I to 27 M2 . Note 
that only combinations the fit exactly into the whole area are included. For 
example, for plot size of 12 m2 with the total number of plots of 54, its 

2product is 12 x 54 = 648. On the other hand, a simulated plot of size 15 m
is not inclut. d because the maximum number of plots that can be derived is 
42, and 15 X 42 is not equal to 648. 

11 	 STEP 2. For each of the simulated plots constructed in step 1, compute the 
yield total T as the sum of the x basic units combined to construct that plot, 
and compute the between-plot variance V, as: 

VtX) = ,-I G 

X rc
 

where w = rc/x is the total number of simulated plots of size x basic units. 
For example, the between-plot variance for the plot of the same size as 

the basic unit (i.e., 1 X 1 m) is computed as: 
2
 

r c y2 = v = _ G 
i- J-1 rc 

= 	(842)2 + (844)2 + ... + (660)2 _ (475,277)2 

(36)(18) 

= 9,041 



490 Soil Heterogeneity 

The between-ploi variance for the plot of size 2 x I m is computed as: 
324 T2 2'2V(2) =	E T

,-1 2 (36)(18) 

(1,645)2 + (1,685)2 + .. + (1,296) 2 (475,277)2 
2 (36)(18) 

31,370 

Table 12.4 Between-Plot Variance [V,)], Variance per Unit Area 
(V), and Coefficient of Variability (cv) for Plots of Various Sizes and 
Shapes, Calculated fron Rice Uniformity Data In Table 12.1 

Plot Size and Shape 

Size,a 
2 

Width," 
m 

Length,' 
m 

Plots, 
no. V(.) V 

cv, 

1 1 1 648 9,041 9,041 13.0 
2 2 1 324 31,370 7,842 12.1 
3 3 1 216 66,396 7,377 11.7 
6 6 1 108 235,112 6,531 11.0 
9 9 1 72 494,497 6,105 10.7 
2 1 2 324 31,309 7,827 12.1 
4 2 2 162 114,515 7,157 11.5 
6 3 2 108 247,140 6,865 11.3 

12 6 2 54 908,174 6,307 10.8 
18 
3 

9 
1 

2 
3 

36 
216 

1,928,177 
66,330 

5,951 
7,370 

10.5 
11.7 

6 
9 

2 
3 

3 
3 

108 
72 

247,657 
537,201 

6,879 
6,632 

11.3 
11.1 

18 6 3 36 1,981,408 6,115 10.7 
27 9 3 24 4,231,622 5,805 10.4 
4 1 4 162 113,272 7,080 11.5 
8 2 4 81 427,709 6,683 11.1 

12 3, 4 54 943,047 6,549 11.0 
24 6 4 27 3,526,179 6,121 10.7 
36 9 4 18 7,586,647 5,854 10.4 

6 1 6 108 238,384 6,622 11.1 
12 2 6 54 913,966 6,347 10.9 
18 3 6 36 2,021,308 6,239 10.8 
36 6 6 18 7,757,823 5,986 10.5 
9 1 9 72 514,710 6,354 10.9 

18 2 9 36 2,017,537 6,227 10.8 
27 3 9 24 4,513,900 6,192 10.7 

aNumber of basic units combined. 
"Number of rows in Table 12.1. 
"Number of columns in Table 12.1. 
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The results of the between-plot variances for all plot sizes and shapes 
constructed in step I are shown in the fifth column of Table 12.4. 

o 	simp 3. For each plot size and shape, compute the variance per unit area 
as: 

V.)vx 

For example, the variance per unit area for the plot of size 2 X 1 m is 
computed as: 

V(2) 31,370 = 7,842 
,42 

The results for all plot sizes and shapes are shown in the sixth column of 
Table 12.4. 

o 	STEP 4. For each plot size having more than one shape, test the homogene­
ity of between-plot variances V(,), to determine the significance of plot­
orientation (plot-shape) effect, by using the F test or the chi-square test (see 
Chapter 11, Section 11.2.1). For each plot size whose plot-shape effect is 
nonsignificant, compute the average of V, values over all plot shapes. For 
others, use the lowest value. 

For example, there are two plot shapes (2 X 1 m and 1 X 2 m) for plot of 
size 2 m2 , in our example. Hence, the F test is applied as 

F = 3 = 1.00ns 
31,309 

2For plot size of 6 m , there are four plot shapes (6 x 1 m, 3 X 2 m, 2 X 3 m, 
and 1 x 6 m) and, hence, the chi-square test is applied as 

2 (2.3026)(108)[(4)(log 242073.25) - 21.535346] 
1+ (4+ 1) 

(3)(4)(108)
 

= 	 .11ns 

The tests for homogeneity of variances associated with different plot shapes 
of the same size, applied to 7 plot sizes ranging from 2 to 27 m2, are all 
nonsignificant. The average of V values over all plot shapes of a given size 
is, therefore, computed. 

o3 	 STEP 5. Using the values of the variance per unit area V computed in steps 
3 and 4, estimate the regression coefficient between V and plot size x. 

http:242073.25
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Because the relationship between V, and x, namely, V = V1/x", is not 
linear, the first step is to linearize the function into a linear form of Y = cX, 
where Y = log V - log VI, c-- -b, and X = logx; and compute the re­
gression coefficient as: 

Em wI,YJr 
= I-IC
 m

E WIX, 
I-I
 

where w, is the number of plot shapes used in computing the average 
variance per unit area of the ith plot in stcp 4, and m is the total number of 
plots of different sizes. 

For our example, using the m = 12 pairs of values of V, and x, taken 
from Table 12.4 for plots having only one shape and from those computed 

VI
 x
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Figure 12.2 Relationship between variance per unit area (V,) and plot size (x), computed from 
data in Table 12.4. 
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in step 4 for plots having more than one shape, we have 

wx,Y- -3.8503 
I-I 

12 
2E 	 wx -27.9743 

1-1 

-	 3.8503
27.9743 

Thus, the estimated regression equation is computed as: 

9,041 

X 0.1376 

The coefficient of determination R2 is .98, which is highly significant. The 
result is represented graphically in Figure 12.2. 

0 	 STEP 6. Obtain the adjusted b value from Table 12.5 based on the com­
puted b value from step 5 and the value of x1/n, where x, is the size of basic 
unit and n is the size of the whole area. For our example, because the size of 
the basic unit is 1 m2 and the total area is 648 in2 , the value of x1/n = 1/648 

Table 12.5 The Adjusted Values of Smith's Index 
of Soil Heterogeneity (b) 

Computed Adjusted b in Range xl/na 
b 0.001 to 0.01 0.01 to 0.1 

1.0 1.000 1.000 
0.8 0.804 0.822 
0.7 0.710 0.738 
0.6 0.617 0.656 
0.5 0.528 0.578 
0.4 0.443 0.504 
0.35 0.403 0.469 
0.3 0.364 0.434 
0.25 0.326 0.402 
0.2 0.291 0.371 
0.15 0.257 0.343 
0.1 0.226 0.312 

ax, is the size of the basic unit and n is the size of the 

total area. 
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which, based on Table 12.5, is in the range of 0.001 to 0.01. To obtain the 
adjusted value of the computed b value of 0.1376 (from step 5), we 
interpolate between the adjusted value of 0.226 (corresponding to the 
computed b value of 0.10) and the adjusted value of 0.257 (corresponding to 
the computed b value of 0.15) from T 'ole 12.5 as: 

Adjusted b = 0.226 + (0.0376)(0.257 - 0.226) 

0.05 

= 0.249 

The relatively low value of the adjusted Smith's index of soil heterogene­
ity of 0.249 indicates a relatively high degree of correlation among adjacent 
plots in the study area: the change in the level of soil fertility tends to be 
gradual rather than in patch-s. This result agrees closely with the fertility 
contour map (Figure 12.1) where it can be seen that the fertility level is the 
highest with row I and reduces gradually with the increase in the row 
number. 

12.2.2. Data from Field Experiments 

Data from replicated field experiments can also be used to measure the Smith's 
index of soil heterogeneity. Experiments most sLtable for this procedure are 
those involving designs with several plot sizes, such as split-plot and split­
split-plot design. 

The procedure involves the use of the basic analysis of variance to estimate 
the variances for plots of different sizes, and the use of these estimates to 
derive a relationship between plot variance and plot size. The number of plot 
variances that can be estimated through this procedure is only as many as the 
number of plot sizes available in the design used. For example, in a random­
ized complete block (RCB) design, there are two plot sizes-the unit plot and 
the block; in a split-plot design there are three-the subplot, the main plot, 
and the block; and in a split-split-plot design there are four-the sub-subplot, 
the subplot, the main plot, and the block. Correspondingly, the number of 
variance estimates for different plot sizes is two for RCB, three for split-plot, 
and four for split-split-plot design. Clearly the estimate of the index of soil 
heterogeneity b improves as the number of plot sizes increases. 

Using data from field experiments to estimate the index of soil heterogeneity 
has two main advantages: 

" 	 This procedure is less expensive than conducting the uniformity trial 
because the time and money iecessary for the trial are saved. 

" 	 Several experiments can be used without entailing too much cost and, thus, 
more areas and seasons are covered instead of the limited areas of the 
uniformity trial. 
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Using data from replicated field experiments, however, has a few disad­
vantages: 

" 	 Because variance estimates can usually be obtained for only a few plot sizes 
from each experiment, the fitting of the regression, and thus the estimate of 
b, have low accuracy. 

" 	 Because blocks in most field experiments are set up so that a large portion 
of the soil variability remains between blocks, the variance between plots 
the size of a block is generally overestimeted. 

Because of such disadvantages in the use of data from field experimwlits, a 
researcher should conduct at least one uniformity trial to assess and confirm 
the validity of the variance and plot size relationship before attempting to use 
data from existing field experiments in estimating the index of soil heterogene­
ity. 

To illustrate the use of data from replicated field experiments in measuring 
the index of soil heterogeneity, we use an experiment on rice from a split-plot 
design with six nitrogen levels as main plot and thirteen rice varieties as 
subplot treatments in three replications. The size of the subplot is 3.7 x 5.0 m, 
the main plot is 3.7 X 65.0 m, and the replication is 22.2 x 65.0 m. The 
step-by-step procedures are: 

rO 	 sTEP 1. The basic formats of the analysis of variance for a RCB, a 
split-plot, and a split-split-plot design are shown in Table 12.6. Construct an 
analysis of variance according to the experimental design used, following the 
standard procedures outlined in Chapters 2 to 4. For our example, the 
analysis of variance is given in Table 12.7. 

13 	 STEP 2. Compute estimates of the variances associated with the different 
plot sizes, following the formulas given in Table 12.8. For our example, the 
design is a split-plot. Hence, there are three between-plot variances corre­
sponding to the three plot sizes as follows: 

VI = the variance between plots the size of a block 

V = the variance between plots the size of a main plot 

== the variance between plots the size of a subplot 

The computation of these variances is based on the mean square values in 
the an.Ilysis of variance (Table 12.7) and the formulas given in Table 12.8. 



Table 12.6 Basic Format of the Analysis of Variance for Randonized Complete Block, Split-Plot, and 

Split-Split-Plot Design 

Randomized Complete Block Split-Plot 

Source 
of 

Degree 
of Mean 

Source 
of 

Degree 
of Mean 

Source 
of 

Variation Freedom Square Variation Freedom Square Variation 

Total rt- 1 Total abr- 1 Total 
Replication r - 1 M1 Replication r - 1 M, Replication 
Treatment t- 1 A a- 1 A 
Error (r- IXt ­1) M2 Error(a) (a ­1Xr- 1) M2 Error(a) 

B b-1 B 
AXB (a-IXb-1) A XB 
Error(b) a(r- IXb - 1) M3 Error(b) 

C 
A XC 
BxC 
AXBXC 
Error(c) 

Split-Split-Plot 

Degree 
of Mean 

Freedom Square 

rabc- 1 
r - 1 M, 
a- 1 

(a ­1Xr- 1) M2 
b-1 

(a-iXb-1) 
a(r - lXb - 1) M 3 

c-1 
(a-IXc-1) 
(b - lXc - 1) 

(a-i)(b-IXc-i) 
ab(r- IXc - 1) M4 
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Thus: 

V 	 = dl = 1,141,670 

r(a.- 1)M 2 +(r - 1)MI 
V2 ~ ra- 1 

3(5)(433,767) +(2)(1,141,670) 
3(6)- l 

= 517,050 

ra(b - 1)M3 + r(a - 1)M 2 +(r - 1)M 
V3 rab- 1 

3(6)(12)(330,593) + 3(5)(433,767) + 2(1,141,670) 
[3(6)(13)] - 1 

= 344,197 

0l 	 STEP 3. For each variance estimate V/ obtained in step .2, compute the 
corresponding comparablevariance V with the size of the smallest plot in the 
particular experiment as the base: 

where x is the size of the ith plot in terms of the smallest plot involved. 

Table 12.7 Analysis of Variance of aSplit-Plot Design with Six Main-Plot 
and 13 Subplot Treatments 

Source 
of 

Degree 
of 

Sum 
of Mean Computed 

Variation Freedom Squares Square FO 

Total 233 330,087,531 
Replication 2 2,283,340 1,141,670 
Nitrogen (N) 5 27,404,236 5,480,847 12.64** 
Errov(a) 10 4,337,669 433,767 
Variety (V) 12 207,534,092 17,294,508 52.31* 
V X N 60 40,922,735 682,046 2.06** 
Errnr(b) 144 47,605,459 330,593 

a** - significant at 1%level. 



O0 

Table 12.8 Formulas for the Computation of Variances between Plots of Various Sies, Using Data from Existing 
Experiments for a Randomized Complete Block, Split-Plot, and Split-Split-Plot Design" 

Variance Randomized Complete Block Split-Plot Split-Split-Plot 

vil M, M, AM, 
(r - 1)M I + r(t - 1)M 2 r(a - 1)M 2 +(r - 1)M r(a - 1)M 2 +(r - 1)M I rt- ra-1 ra -1 

- 1)M 3 + r(a - )M 2 +(r - 1)MI ra(b - 1)M 3 + r(a - 1)fii, +(r- 1)MIV'ra(b 
tab - I rab - 1 

rab(c - 1)M 4 + ra(b - I)M 3 + r(a - 1)M.. +(r- I)M
rabc 
- 1 

"MI, -M2, M 3, and M4 are as defined in Table 12.6. 
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For our example, the smallest plot is the subplot, the size of the main p!ot 
is 13 times that of the subplot, and the size of the block is 13 x 6 = 78 
times that of the subplot. Hence, the comparable variances are computed as: 

V, --=x', - 1,141,67078 = 14,637 

I= X'-2 1"- -3V2 = 517,050- 3 9, 7 

V= 344,197 = 344,197 
1X3 

L 	STEP 4. Apply the appropriate regression technique (see Section 12.2.1.4, 
step 5) to estimate the regression coefficient b from the equation 

log V = log V3 - b log x, 

where V and x, are as defined in step 3. 
For our example, there are three pairs of (V, x,) values, namely, 

((14,637),78], [(39,773), 13] and [(344,197), 1]. The estimate of the b value 
obtained is 0.755, with a highly significant coefficient of determination R2 of 
.995. 

Note that when data frcm ield experiments are used to estimate the 
index of soil heterogeneity, the number of plots, and, hence, the number of 
pair values used in the regression estimate, are small. For most purposes, 
therefore, the estimate of b value can be obtained through the graphical 
method: 

-	 Plot the logarithm of the comparable variance (log V) against the loga­
rithm of the plot size (log x,). 

" Draw a straight line through the plotted points. 
" Compute the b value as Y(/xo, where Y is the y intercept (the point 

where the line meets the Yaxis) and xo is the x intercept (the point where 
the line meets the X axis). 

For our example, the three pairs of (log V, x,) values are plotted and the 
line drawn through them, as shown in Figure 12.3. The line meets the Yaxis 
at Y = 5.45 and meets the X axis at 7.35. The b value is, then,0 	 xO = 
computed as: 

= 5.45 0.74 
x0 7.35 

which agrees fairly well with the b value of 0.755 obtained earlier through 
regression technique. 
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Comparable variance (log scale) 

4- b -O 545_0^74 " 
44 

0 2 4 6 
Plot size (log scale) Xo 

Flgure 12.3 Estimation of the index of soil heterogeneity bby graphical method. 

12.3 COPING WITH SOIL HETEROGENEITY 

Once the fertility pattern of an experimental area is described, several options 
are available for reducing the effect of soil heterogeneity. Three options that 
are commonly used involved the proper choice of plot size and shape, block 
size and shape, and number of replications. These options can be inexpensive, 
involving only a change of plot or block orientation, but at times, the option 
may involve enlarging the experimental area or increasing the total number of 
plots. 

12.3.1 Plot Size and Shape 

The contribution of soil heterogeneity to experimental error stems from 
differences in soil fertility between plots within a block. The smaller this 
difference is, the smaller is the experimental error. The choice of suitable plot 
size and shape, therefore, should reduce the differences in soil productivity 
from plot to plot within a block and consequently reduce experimental error. 

12.3.1.1 Optimum Plot Size. Two major considerations are involved in 
choosing plot size, namely, practical considerations and the nature and size of 
variability. Practical considerations generally include case of management in 
the field. The nature and size of variability is generally related to soil 
heterogeneity. From the empirical relationship between plot size and between­
plot variance (Section 12.2.1.4), it can be seen that while variability becomes 
smaller as plot size becomes larger, the gain in precision decreases as plot size 
becomes increasingly large (Figure 12.2). Furthermore, higher costs are in­
volved when large plots are used. Hence, the plot size that a researcher should 
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aim for is one that balances precision and cost. This is commonly referred to as 
optimum plot size. 

Given an estimate of the soil heterogeneity index b and the cost of 

conducting the experiment, optimum plot size can be calculated as: 

b(KI + K9A) 
(1- b)(K 2 + K9B) 

where K1 is the part of the cost associated with the number of plots only, K 2 is 
the cost per unit area, Kg is the cost associated with the borders, B is the ratio 
of the side-borders to the test area, A is the area of the plot end borders, and b 

is the index of soil heterogeneity. If nonbordered plots are used, K. is zero. 
Note that such optimum plot size can only be computed if a good estimate 

of costs is available. Dividing costs into three categories may be confusing at 
times because the cost items, especially K, and K 2, are not easy to separate. 
For example, it is easy to visualize why the cost of labeling the plots should 
depend on the number of plots alone and not at all on area; or that cost of 
plowing, harrowing, and so on, depends on area alone because these costs are 
incurred even before the area is subdivided into plots. However, for other 
items, such as harvesting or threshing, the line of demarcation is not as clear. 
Even though harvesting is done plot by plot, it is also true that the larger the 
plot area, the longer it takes to harvest and the higher the cost. Thus, one part 
of this expense is included in K1 and another part is in K 2. The same is true for 
threshing and seed cleaning. 

An example of the cost estimates in labor-hours for the various operations 

in an agronomic rice experiment is given in Table 12.9. These estimates were 

obtained based on the following conditions: 

" Costs other than labor were ignored.
 
" Relative monetary costs of labor-hours for the various operations were not
 

considered. 
• 	 The collection of data included tiller count, measurement of plant height, 

and determination of dry matter production at three growth stages. 

With the cost estimates in Table 12.9 and the estimated b value of 0.249 

(Section 12.2.1.4), optimum plot size is computed as: 

For Nonbordered Plots: 

=~ bK, 

(1 - b)K 2 

(0.249)(2.9505) 
(1 - 0.249)(0.13686) 

2=7.1 mn
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Table 12.9 Estimates of Costs In Labor-Hours for Completing 
a Rice Field Experiment 

Operation 

1. Land preparation 
2. Seedbed preparation 
3. Laying out of plots 
4. Transplanting 
5. Fe:tilizer application 
6. Insecticide application 
7. Hand weeding 
8. Labeling tags and making stakes 
9. Plot observationh 

10. Measurem, nts of plant 
characteristics besides yield 

11. Harvesting 
12. Threshing 
13. Grain cleaning 
14. 	Weighing grains and determining 

moisture content 
15. 	Statistical analysis 

Total 

"Not applicable to border areas. 

Cost K 2, Cost K1, 
h/m 2 h/plot 

0.02583 
0.00111 ­

0.00120" 0.2200 
0.01700 ­
0.00110 ­
0.00080 ­

0.02225 ­
- 0.10?3 

0.00394a 0.8925 

- 1.2330 
0.00943 a 0.1893 
0.00417" 0.0622 
0.05003a 0.0419 

- 0.0333 
- 0.1750 

0.13686 2.9505 

"Observing panicle initiation date, flowering date, lodging, pest and 

disease incidence, and others. 

For Bordered Plots: With two border rows and two en,' hills designated as 
borders in each plot, and the width of plot is fixed at 3 m or 15 rows using a 
20 x 20-cm spacing, the area of the plot end-borders A is 2(3)(0.4) = 2.4 

2in , and the ratio of the side borders to the test area B is 2(0.4)/[3 - 2(0.4)] 
= 0.36. 

An estimated cost associated with the area of borders (Kg) can be obtained 
as the sum of K 2 minus costs of items 1, 2, 4, 5, 6, and 7 of Table 12.9, which 
results in the value of 0.06877. The optimum plot size is computed as: 

P= (0.249)[2.9505 + (0.06877)(2.4)] 
-	 (1 - 0.249)[0.13686 + (0.06877)(0.36)] 

= 	6.4m 2 

2The resulting optimum plot size of 6.4 m refers to the test area only and 
does not include the borders. Thus, for this example, the total plot size 
including border areas is 11.1 m 2. 

http:0.06877)(0.36
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12.3.1.2 Plot Shape. Once the optimum plot size is determined, the 
choice of plot shape is governed by the following considerations: 

" Long and narrow plots should be used for areas with distinct fertility 
gradient, with the length of the plot parallel to the fertility gradient of the 
field. 

" Plot should be as square as possible whenever the fertility pattern of the 
area is spotty or not known, or when border effects (see Chapter 13, Section 
13.1) are large. 

12.3.2 Block Size and Shape 

Block size is governed by the plot size chosen, the number of treatments tested, 
and the experimental design used. Once these factors are fixed, only the choice 
of block shape is left to the researcher. 

The primary objective in choosing the shape of blocks is to reduce the 
differences in productivity levels among plots within a block so that most of 
the soil variability in the area is accounted for by variability between blocks. 
Information on the pattern of soil heterogeneity in the area is helpful in 
making this choice. When the fertility pattern of the area is known, orient the 
b! cks so that soil differences between blocks are maximized and those within 
the same block are minimized. For example, in an area with a unidirectional 
fertility gradient, the length of the block should be oriented perpendicular to 
the direction of the fertility gradient. On the other hand, when the fertility 
pattern of the area is spotty, or is not known to the researcher, blocks should 
be kept as compact, or as nearly square, as possible. 

Because block size, for most experimental designs, increases proportionately 
with the number of treatments and because it is difficult to maintain homo­
geneity in large blocks, a researcher must also be concerned with the number of 
treatments. If the number of treatments is so large that uniform area within a 
block cannot be attained, incomplete block designs (see Chapter 2, Section 2.4) 
may be used. 

12.3.3 Number of Replications 

The number of replications that is appropriate for any field experiment is 
affected by: 

" The inherent variability of the experimental material 
" The experimental design used 
" The number of treatments to be tested 
" The degree of precision desired 

Because experimental variability is a major factor affecting the number of 
replications, soil heterogeneity clearly plays a major role in determining' the 
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number of replications in field experiments. In general, fewer replications are 
required with uniform soil. 

Given an estimate of Smith's index of soil heterogeneity (b) and an 
estimated variance between plots of basic unit size (V), the number of 
replications required to satisfy a given degree of precision expressed as 
variance of a treatment mean (V) can be estimated as: 

(V0 )(Xb) 

where x is the plot size under consideration expressed in terms of the number 
of basic units. 

For example, consider an experiment to be conducted in the area on which 
the uniformity trial data of Table 12.1 were obtained. If the estimate of each 
treatment mean should not deviate from the true value by more than 10%, to 
estimate the number of replications required, the following quantities are 
needed:
 

• 	 The variance between plots of the size of the basic unit (VI). This is taken 
from Table 12.4 to be 9,041. 

" The degree of precision desired expressed in terms of variance of the 
treatment mean (V0 ). Using the mean yield of 733.5 g/m 2 as the true value, 
the specification of 10% margin of error (10% of 733.5) is equivdlen to 
specifying the variance of the mean to be (73.35/2)2 = 1,345.06. 

• 	 The number of basic units in the plot (x). If the researcher plans to use 15 
m2 plot size in his experiment, x is 15 times the size of the basic unit. 

" 	The Smith's index of soil heterogeneity b.This was computed as 0.249 (see 
Section 12.2.1.4). 

With these quantities, the number of replications required is computed as: 

9,041 0 

(1,345.06)(15)0249 

This indicates that the experiment should be conducted with four replica­
tions to attain the level of precision specified (i.e., 10% margin of error). 

http:1,345.06


CHAPTER 13 

Competition Effects 

A plant's growth is affected greatly by the size and proximity of adjacent 
plants. Those surrounded by large and vigorous plants can be expected to 
produce less than those surrounded by less vigorous ones. Plants a greater 
distance from one another generally produce more than those nearer o each 
other. Interdependence of adjacent plants because of their common need for 
limited sunshine, soil nutrients, moisture, carbon dioxide, oxygen, and so on, is 
commonly referred to as competition effects. 

Because field experiments are usually set up to assess the effects on crop 
performance of several management factors or genetic factors, or both, experi­
mental plots planted to different varieties and subjected to different production 
techniques are commonly placed side by side in a field. As a consequence 
border plants have an environment different from those in the plot's center: 
r!ants in the same plot are exposed to differing competitive environments. 

Competition effects between plants within a plot should be kept at the same 
level to ensure that the measurement of plant response really represents the 
condition being tested and to reduce experimental error and sampling error. In 
this chapter we identify some competition effects important in field experi­
ments, give techniques for measuring those effects, and describe procedures for 
coping with them. 

13.1 TYPES OF COMPETITION EFFECT 

For a given experiment, the significance of any competition effect depends 
primarily on the treatments being tested and the experimental layout. 

13.1.1 Nonplanted Borders 

Nonplanted borders are areas between plots or around the experimental areas 
that are left without plants and serve as markers or walkways. These areas are 
generally wider than the area between rows or between plants in a row, and 
plants adjacent to these nonplanted borders have relatively more space. They 
are, therefore, exposed to less competition than plants in the plot's center. 

505 
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13.1.2 Varietal Competition 

In trials involving different varieties of a given crop, adjacent plots are 
nec _.oarily planted to different varieties. Because varieties generally differ in 
their ability to compete, plants in a plot will be subjected to different 
environments depending upon location relative to adjacent plots. This effect is 
called varietal competition. 

Plants generally affected by varietal competition effect are the ones near the 
plot's perimeter. The size of the difference in plant characters between the 
varieties included in the trial plays an important role in determining the extent 
of varietal competition effects. In rice, for example, tall and high-tillering 
varieties compete better than the short and low-tillering ones. Thus, a short 
and low-tillering variety would be at a disadvantage when planted adjacent to 
a plot with a tall and high-tillering variety. The larger the varietal difference is, 
the greater is the expected disadvantage. The disadvantage of one plot is 
usually accompanied by a corresponding advantage to the adjacent plot. 

13.13 Fertilizer Competition 

Fertilizer competition effect is similar to the vanietal competition effect except 
that adjacent plots receive different levels of fertilizer instead of being planted 
to different varieties. Here the competition effect has two sources. First, plots 
with higher fertilizer application will be more vigorous and can probably 
compete better for sunshine and carbon dioxide. Second, the fertilizer could 
spread to the root zone of an adjacent plot, putting the plot with higher 
fertilizer at a disadvantage. Because these two effects are of different direction, 
their difference constitutes the net competition effect. In most instances, the 
effect of fertilizer dispersion is larger than that due to the difference in plant 
vigor, and the net advantage is usually with the plot receiving lower fertilizer. 

13.1.4 Missing Hills 

A spot in an experimiintal plot where a living plant is supposed to be but is 
absent because of poor germination, insect or disease damage, physical mutila­
tion, and so on, is called a missing hill or a missing plant. Because of the 
numerous factors that can kill a plant, even the most careful researcher cannot 
be assured of a complete stand for all plots in an experiment. A missing hill 
causes the plants surrounding its position to be exposed to less competition 
than the other plants. These plants, therefore, usually perform better than 
those surrounding a living plant. 

13.2 MEASURING COMPETITION EFFECTS 

Because the type and size of the competition effects can be expected to vary 
considerably from crop to crop and from one type of experiment to another, 
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competition effects should be evaluated separately for different crops grown in 
different environments. Measurements of competition effects can be obtained 
from experiments planned specifically for that purpose or from those set up for 
other objectives. 

13.2.1 Experiments to Measure Competition Effects 

Exrenments can be set up specifically to measure competition effects by using 
treatments that simulate different types of compeition. At least two treat­
ments, representing the extreme types of competi'or, should be used. For 
example, to evaluate fertilizer competition effects, use a no-fertilizer applica­
tion and a high-fertilizer rate to represent the two extremes. For varietal 
competition, u-e a short and a tall variety, a high-tillering and a low-tillering 
variety, or an early-maturing and a late-maturing variety. When resources are 
not limited, intermediate treatments can be included to assess the trend in the 
effects under investigation. For example, to find out whether border effects are 
affected by the width of an unplanted alley, test several sizes of unplanted 
alley. Too many tr;ratments should be avoided, however, to cut costs and to 
simplify the design and the interpretation of results. 

Experiment. specifically set up to measure competition effects have two 
distinctive featu.ts: 

1. 	 Because the competition effects are usually small relative to the treat­
ment effects in the regular experiments, the number of replications is 
usually large. 

2. 	 The plot size that is optimum for the regular experiments may not 
necessarily be optimum for experiments to measure competition effects. 
First, the unit of measurement is usually the individual rows, or 
individual plants, rather than the whole plot. Second, the plot must be 
large enough to ensure sufficient number of rows (mostly in the center 
of the plot) that are completely free of competition effects. 

For example, experiments at IRRI to specificaliy study varietal competition 
effects in rice used a plot size of 10 rows 6 m long instead of the usual six rows 
5 m long, and with nine replications instead of the usual four for the regular 
variety trials. 

We give examples of rice experiments designed to study the four types of 
competition effect described in Section 13.1. For researchers working with 
crops other than rice, slight modiications are needed to adapt these techniques 
to their own work. 

13.2.1.1 Nonplanted Borders. For illustration, we consider a rice experi­
ment to examine the border effects of several sizes of nonplanted alleys. Alleys 
20, 40, 60, 100, and 140 cm wide were evaluated, with variety IR8 planted at 

http:featu.ts
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20 x 20-cm spacing. Thus, the 20-cm wide alley, with the same spacing as that 
between rows, is the control treatment. 

The exp-riment was in a randomized complete block design with each of the 
five treatments replicated 10 times. The plot size was 3.2 X 6.0 m, or 16 rows, 
each 6 m long. The actual layout for the first three replications of the 
experiment is shown in Figure 13.1. In each replication, there are two plots 
that are exposed to each alley width, one on each side of the nonplanted alley. 
Hence, the actual experimental unit in this trial is not the plot as seen in the 
layout. Instead, it is composed of two parts, one from the right half of the plot 
on the left of the alley and another from the left half of the plot on thc right of 
the alley. For each experimental unit, grain yield data were measured from 
each of the eight row positions with the first row position representing the 
outermost row, the second row position representing the second outermost 
row, and so on. Each row position is composed of a pair of rows, one on each 
side of the nonplanted alley. Eight hills at each end of the row were removed 
before plants were harvested for yield determination. 

The raw data, therefore, consist of 400 observations representing eight row 
positions, five alley widths, and 10 replications. The standard analysis of 
variance procedure for a split-plot design (Chapter 3, Section 3.4.2) is applied 
with the alley widths as main-plot treatments and the row positions as subplot 

T 1 40M 40m 20m IOOM 6M 

Rep I aoo. 

100R 2Oe 40m 60m 140m 

lOOm, 40m 20m, 1 40m 60mRep ]I 

§N N, 

Figure 13.1 A part of thc field layout in a study of the effects of nonplanted alley at five alleywidths: 20, 40, 60, 100, and 140 cm (only three :plications of a total of 10 replications are shown 
here) 
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Table 13.1 Analysis of Variance for Data from an Experiment to Study 
the Effects of Nonplanted Alley, the Layout of Which Is Shown In 
Figure 13.10 

Source Degree 
of of Mean Computed Tabular F 

Variation Freedom Square Fb 5% 1% 

Replication 9 7,167 
Alley width (W) 4 34,008 13.82"* 2.63 3.89 
Error(a) 36 2,460 
Row position (R) 7 260,383 382.92** 2.04 2.71 
W X R 28 25,974 38.20"* 1.52 1.79 
Error(b) 315 680 

Total 399
 

"cv(a) - 14.0%, cv(b) 1.4%. 
b.. - significant at 1%level. 

treatments. The results are shown in Table 13.1 There is a highly significant 
interaction between alley width and row position, indicating that the yield 
differences between the row positions varied with the width of the nonplanted 
alley. Suitable partitioning of the sums of squares is made, following proce­
dures for group comparison and factorial comparison of Chapter 5. Results 
(Table 13.2) indicate that only the outermost row (row 1) gave yield signifi­
cantly different from the inside rows, and this yield difference varied with alley 
widths. From the mean yields shown in Table 13.3, the yield differences 
between row I and the seven inside rows for the five different alley widths can 
be summarized as: 

Mean Yield, g/m 2
Alley -___ __ 

Width, Inside Yield Increase in Row 1 
cm Row 1 Rows g/m 2 %* 

20 314 325 - 11ns ­

40 475 334 141"* 42 a 

60 556 324 232** 72 b 

100 667 337 330** 98 c 

140 654 326 328** 101 c 

As expected, no significant difference between row positions is observed 
with the 20-cm alley width, whereas with all other alley widths the yield of the 
outermost row is significantly higher than the inside rows. This yield difference 
becomes larger as the nonplanted alley is widened up to 100 cm, after which no 
further increase is observed. The yield advantage exhibited in the outermost 
row ranges from 42% for alley width of 40 cm to about 100% for alley width of 
100 cm or wider. 

'Mean separation by DMRT at 5% level. 



510 Competition Effects 

Table 13.2 Partitioned Sums of Squares of Row Position, and of Its
 
Interaction with Alley Width, of the Analysis of Variance In Table 13.1
 

Source 
of 
Variation 

Degree 
of 

Freedom 
Mean 
Square 

Computed 
Fa 

Tabular F 
5% 1% 

Row position (R) 
RI: Row 1vs. inside rows 
R2 :Between inside rows 

Wx R 
WX R1 
Wx R2 

Error(b) 

7 
(1) 
(6) 
28 
(4) 

(24) 
315 

260,383 
1,820,190 

415 
25,974 

179,533 
381 
680 

2,676.75* 
< 1 

264.02" 
< 1 

3.87 6.73 
- -

2.40 3.38 
- -

as* - significant at 1%level. 

13.2.1.2 Varietal Competition. To illustrate varietal competition we con­

sider an experiment to investigate the performance of border plants when 

different rice varieties were planted in adjacent plots. Three rice varieties that 

differ in tillering ability and plant height were used-!R8 (short and high­

tillering), Peta (tall and medium-tillering), and IR127-80-1 (medium-short and 

low-tillering). All possible pairs of the three varieties were planted side by side 

without any nonplanted alley between adjacent plots. Plot size is 6 X 2 m, or 

10 rows ech 6 m long, and plant spacing is 20 x 20 cm. The field layout is 

shown in Figure 13.2 The layout consists of three strips of 11 plots each. The 

sequence of varieties planted in those plots remains the sa.le in each strip but 

Tab 13.3 Mean Grain Yielda (g/ rn2 ) of Border Rows of 
IRS Plots Adjacent to Varying Widths of Nonplanted Alley 
between Plots 

Alley Width, cm 

Row 20 
Position (control) 40 60 100 140 

1 314 475 556 667 654 
2 325 329 329 326 317 
3 322 323 326 336 317 
4 330 333 315 352 326 
5 322 331 318 335 334 
6 327 337 318 338 328 
7 318 342 322 342 329 
8 330 341 343 332 330 

aAverage of 10 replications. 
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Strip I Strip 2 Strip 3 

iRI27-80-i IRS PETA 

PETA IR127-80-1 IR8 

IRS PETA IR127 - 80-I 

Rp IRI27-80-1 IR8 PETA 

PETA IR127-80-1 IRS 

PETA IR127-80-1Rp.I IRS 

IR127-80-1 IR8 PETA 

PETA IR127-80-I IRS 

I IR127-80-1 p 127IR8 PETA 

. R27- 80-I PETAIR27IRI80-

PETA IRIfl-S8-I IRS 

Figure 13.2 Field layout of a varietal competition experiment involving three rice varieties and 

nine replications (three replications per strip). Each plot consists of 10 rows 6 m long. Shaded plots 
are not measured. 

differs from strip to strip. Excluding the first and last plots of each strip, the 
rest of the plots in each strip is grouped into three replications (as shown in the 
first strip of Figure 13.2). For each replication, a variety is adjacent to each of 
the other two varieties once. Harvests were made on a per-row basis and only 
from the 20 hills in the center of each row (i.e., 5 hills at each end of the row 
are considered as borders). Thus, for each variety, and in each replication, 
there are 10 row observations-five row observations corresponding to each of 
the two adjacent varieties. With nine replications, the total number of row 
observations for each variety is 9 X 10 = 90. 

The analysis of variance ir made, separately for each variety, following the 
standard procedure for a split-plot design (Chapter 3, Section 3.4.2) with the 
two halves of the plot (each corresponding to one of the two adjacent varieties) 
as main-plot treatments and the five row positions within each half as subplot 
treatments. The results are shown in Table 13.4. The significant difference 
between row positions is indicative of the presence of varietal competition 
effect, and the presence of interaction between row position and adjacent 
variety indicates that tte competition effect is affected by the plant characters 
(namely tillering ability and plant height) of the adjacent variety. 

Results of the analyses of variance show a highly significant difference 
between row positions in all three varieties. Significant interaction between row 



Table 13.4 Analysis of Variance for Data from an Experiment to Study the 
Effects of Varietal Competition, tAe Layout of Which Is Shown In 
Figure 13.2 

Source 	 Degree Mean Square' 
of of MeanSquare_
 
Variation Freedom IR8 Peta IR127-80-1
 

Total 89 
Replication 8 3,446 2,052 1,376 
Adjacent variety (A) 1 37,465** 3,738-' 1,914' 
Error(a) 8 1,310 4,075 1,523 
Row position (R) 4 5,713" 28,292"* 21,804"* 

R,: Row 1 vs. inside rows (1) 11,264* 105,145"* 82,778** 
R 2 : Between inside rows (3) 3,863"- 2,674"' 1,479"-

A x R 4 18,314"* 12,654"* 2,748** 
A x R1 (1) 72,287** 46,017** 4,633* 
A (3) 323"' 1,533"' 2,120"'X R 2 

Error(b) 	 64 1,606 1,756 964 
cv(a), % 	 9.1 13.7 9.2 
cv(b), % 	 10.0 9.0 7.3 

a,,- F test significant at 1%level, * - F test significant at 5%level, , F test not 

significant. 

Table 13.5 Varietal Competition Effects of Three Rice Varieties, as Affected by 
the Plant Characters of the Adjacent Variety 

Mean Yield, g/m 2a 

Variety in 	 Inside 
Rows"Adjacent 

Variety Plot Row 1 Row 2 Row 3 Row 4 Row 5 (R) Row 1-R 

400 99**
IR8 IR127-80-1 499 390 387 408 417 

Peta 345 377 380 384 412 388 -43** 
29Peta 	 IR8 482 476 434 459 442 453 's 

1R127-80-1 585 453 437 432 452 444 141*0 
440 -58**IR127-80-1 	 IR8 382 438 460 445 419 

Peta 345 429 432 452 441 438 - 93** 

'Average of nine replications.
 
bMean of row 2 through row 5.
 
C,,- significant at 1%level, , not significant.
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position and adjacent variety is also indicated. Results of the partitioning of 
the sum of squares (following procedures of Chapter 5) indicate clearly that, in 
all three varieties, the competition effect reached only the outermost row (i.e., 
row 1), but the size of these effects differed depending on the characters of the 
adjacent variety. 

Yield difference between row I and the inside rows of IR8, for instance, was 
positive and laige when the adjacent variety was IR127-80-1 (the medium-short 
and low-tillering variety) but was negative when the adjacent variety was Peta 
(the tall and medium-tillering variety) (Table 13.5). On the other hand, the 
outermost row of Peta gave a significantly higher yield than the inside rows 
only when adjacent to IR127-80-1. And, the outermost row of IR127-80-1 gave 
significantly lower yields than the inside rows regardless of whether it was 
adjacent to IR8 or Peta. 

13.2.1.3 Fertilizer Competition. We illustrate fertilizer competition with a 
rice experiment to study the effects of applying two widely different nitrogen 
levels on adjacent plotL separated by a 40-cm nonplanted alley. Fertilized (120 
kg N/ha) and nonfertilized 28-row plots were arranged systematically in an 
alternating series. There was a total of 16 plots. Each plot was bordered on one 
side by plot of the same nitrogen level (control) and on the other side by plot 
of a different level (Figure 13.3). Grain yields were determined from the center 
15 hills of each of the 28 rows per plot. The first and the last nonfertilized plots 
were excludeu from the determination of grain yield. Of the 14 plots harvested, 
six arc nonfertilized plots and eight are fertilized plots. Each 28-row plot is 
divided into two parts, each consisting of 14 row positions-with row I being 
immediately adjacent to the adjacent plot, and so on. 

The analysis of variance is performed, separately for the fertilized plots and 
the nonfertilized plots, following the standard procedure for a split-plot design 
(Chapter 3, Section 3.4.2) with plots as replications, the two nitrogen levels of 
adjacent plot as main-plot treatments, and the 14 row positions as subplot 
treatments. The results, with suitable partitioning of sums of squares, following 
procedures of Chapter 5, are shown in Table 13.6. Note that, unlike the case of 

40- cm
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Figure 13.3 Field layout of a nitrogen competition experiment involving nonfcrtilizcd and 
fertihzed (120 kg N/ha) plots separated by a 40-cm nonplanted alley. Two end plots are not 
measured 



Table 13.6 Analysis of Variance of Data from an Experiment to Study the Effects 
of Fertilizer Competition, the Layout of Which Is Shown In Figure 13.3 

Nonfertilized Plots Fertilized Plots 

Source Degree Degree 
of of Mean of Mean 
Variation Freedom Squarea Freedom Square' 

Total 167 223 
Between plots 5 81,268 7 301,446 
Adjacent nitrogen rate (N) 1 764 1 145 
Error(a) 5 20,556 7 2,851 
Row position (R) 13 65,490"* 13 54,832** 

RI: Row 1 vs. inside rows (1) 823,8620* (1) 694,894** 
R2 : Between inside rows (12) 2,292- (12) 1,494r4 

N X R 13 6,027** 13 4,695-' 
(1) 62,732-* (1) 20,200*N x R1 

(12) 1,302' (12) 3,403"N X R 2 
Error(b) 130 2,324 182 3,553 

cv(a), % 31.8 8.3 
cv(b), % 10.7 9.3 

a**- F test significant at 1%level, *- F test significant at 5% level, n, F test not 

significant. 

Table 13.7 Fertilizer Competition Effects In IR8 Plots, as Affected 
by the Rate of Fertilizer Applied In Adjacent Plots 

Nitrogen
 
Rate
 
of Adjacent Mean Yield, g/m 2 


U 

Plot, kg/ha Row 1 Inside Rows 

Nonfertilized plots 
0 (control) 631.3 434.5 
120 775.0 428.1 ns
 6.4
- 143.7*Difference 

Fertilizedplots 
120 (control) 877.0 624.0 
0 810.1 630.8 

66.9* - 6.8 n' Difference 

'Six nonfertilized plots and eight fertilized plots. Adjacent plots are 

separated by a 40-cm nonplanted alley. Inside rows are average of 
thirteen row positions; **- significant at 1%level, * = significant at 
5%level," - not significant. 
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00000control. 

varietal competition (Section 13.2.1.2) where the difference between row posi­
tions measures the varietal competition, in this case some differences between 
row positions are expected because of the 40-cm nonplanted alley used to 
separate adjacent plots (see Section 13.2.1.1). Thus, the presence of fertilizer 
competition effect is indicated only by the presence of the interaction between 
row position and adjacent nitrogen rate. 

Results (Table 13.6) show significant interaction beween row position and 
adjacent nitrogen rate, indicating the presence of fertilizer competition effect. 
The competition effects, however, were confined only to the outermost row 
(row 1): the outermost row of the nonfertilized plot adjacent to a fertilized plot 
gave significantly higher grain yield than the outermost row adjacent to a 
similarly nonfertilized plot (Table 13.7). Likewise, the grain yield of the 
outermost row of a fertilized plot adjacent to a nonfertilized plot was signifi­
cantly lower than that adjacent to a similarly fertilized plot. 

13.2.1.4 Missing Hill To examine the effect of a missing hill on the 
performance of adjacent plants, an experiment was set up with two rice 
varieties, IR22 and IR127-80-1, that differ in tillering ability. Planting distance 
was 20 x 25 cm. Two weeks after transplanting, the center hill of each test plot
(1.6 x 2.0 m) was pulled. Because grain yields have to be measured from small 
units (i.e., 2 to 4 hills), 36 replications were used for each variety. From each 
plot, the different hill positions surrounding the missing hill, as illustrated in 
Figure 13.4, were harvested. 

The analysis of variance with SS partitioning is presented in Table 13.8, and 
the mean grain yields in Table 13.9. The results show that yields of the four 
hills immediately adjacent to a missing hill (hill positions A and B) are 
significantly higher than that of control. The effects are consistent for both 
varieties. 

13.2.2 Experiments Set Up for Other Purposes 

Any experiment undertaken for other purposes, such as fertilizer trials or 
variety trials, can also be used to test or measure competition effects. Because 
division of plots into subsections is an integral part in measuring competition
effects, the experiments suited for this purpose are those having relatively large 



Table 13.8 Analysis of Variance of Data from an Experiment to Study the 
Effects of Missing Hilla 

Source Degree
of Mean Computed Tabular Fof 

Fb
Variation Freedom Square 5% 1% 

Replication 35 49.164 
Variety (V) 1 9.481 <1 - ­

Error(a) 35 26.920 
Hill positionc (H) 5 565.793 32.02* 2.24 3.07 

Control vs. other 
hill positions (1) 332.987 18.85** 3.87 6.72 

Between other hill 
positions (4) 623.996 35.32** 2.40 3.37 

(A, B) vs. (D, E, F) 1 2,373.007 134.30"* 3.87 6.72 
Between A and B 1 61.361 3.47n"S 3.87 6.72 
Between D, E, and F 2 30.807 1.74 nm. 3.02 4.67 

H X V 5 22.237 1.26n' 2.24 3.07 
Error(b) 350 17.669 

Total 431 

"cv(a) - 22.0%, cv(b) - 17.8%. 
b**. - significant at 1%level, ns. not significant. 
cFor definition, see Figure 13.4. 

Table 13.9 Mean Grain Yields of Hills Surrounding a Missing Hill, 
for Two VarleUes 

Mean Yield, g/hill'Hill 
Position' IR22 JR127-80-1 Av.' 

A 27.8 27.9 27.8** 
B 27.0 26.0 26.5** 
D 22.2 23.1 22.6" 

n'E 20.4 22.6 21.5 n21.6 ,
F 21.9 21.3 

Control 21.6 21.8 21.7 

aFor definition, see Figure 13.4.
 
bAverage of 36 replications.
 
CO*- significantly different from control at 1%level, - not signifi­
cantly different from control.
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RR1__R2_R3R2 R3 R4 R5 R5 R4 R3 R2 R Figure 13.5 The subdivision of a 1O.row plot__R4_R._R _ for measuring competition effects. 

plots. For example, in experiments where the plants are grown in rows, and 
both sides of a plot are subjected to the same type of competition effect, a plot 
can be subdivided into a pair of outermost rows, a pair of second outermost 
rows, and so on, up to the center rows. Figure 13.5 shows a plot consisting of 
10 rows divided into five row positions: R, refers to the outermost pair of rows, 
R 2 the second outermost pair, and so on. For crops not planted in rows, area 
delineation can be used. 

Measurements of plant response, such as grain yield, are then made sep­
arately for each subunit (i.e., row position or area delineation). Because 
subunits in each plot differ primarily in their exposure to competition, their 
differences measure the competition effect. 

Aside from quantifying competition effects, this procedure also measures 
the interaction between competition effects and treatments that are tested in 
the experiment (i.e., varieties, fertilizers, etc.). The measurement of competition
effects indicates whether certain rows or subunits are favored or are at a 
disadvantage because of their plot position, and the interaction shows whether 
such effects are consistent from one treatment to another. For example, in rice, 
plants in the outermost row of a plot adjacent to nonplanted area yield more 
than the other plants. This yield increase, however, differs from variety to 
variety. In general, varieties with high-tillering ability can make better use of 
the nonplanted area than the low-tillering ones. Such differential effects, if not 
corrected, can alter the varietal rankings in the experiment. 

We use a study superimposed on a rice variety trial at IRRI to illustrate the 
procedure. The trial had 178 rice varieties replicated three times. Plot size was 
six rows, each 5 m long. Plant spacing was 30 x 15 cm. For vaiietal compari­
son, which was the major objective of the trial, yield measurement %,-Is made 
by harvesting the four center rows in each plot. Because of cost consideration, 
investigation of varietal competition effect was confined to only 12 out of 178 
varieties. For each of the 12 selected varieties, the two border rows-one on 
each side of the plot-were harvested separately. The two end hills on each 
row were not harvested. 

To test the presence of varietal competition and its effect on varietal 
comparisons, we constructed an analysis of variance based on a split-plot 
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Table 13.10 Analysis of Variance for Data from a Variety Trial to Study the Effects of 
Varietal Competition' 

Source Degree Sum 
of of of Mean Tabular FComputed 

Variation Freedom Squares Square Fb 5% 1% 

Replication 2 27,959 13,980 
Variety (V) 11 202,625 18,421 5.66** 2.26 3.18 
Error(a) 22 71,568 3,253 
Method of yield 
determination (M) 1 204 204 < 1 - -

V x M 11 3,938 358 1.36n' 2.22 3.09 
Error(b) 24 6,338 264 

Total 71 312,632 

cv(a) ­ 8.5%, cv(b) ­ 2.4%. 
b** significant at 1%level, " - not significant. 

design (Chapter 3, Section 3.4.2) treating the 12 varieties as main-plot treat­
ments and the two methods of yield determination (including and excluding 
border rows) as subplot treatments. The results (Table 13.10) indicate no 
significant difference between the two methods of yield determination nor 
significant interaction between variety and method. This means that varietal 
competition was not appreciable in this trial. Variety means for each of the two 
methods of determination are shown in Table 13.11. 

Table 13.11 Grain Yields of 12 Rice Varieties, Including and 

Excluding Border Rows 

Mean Yield, g/m 2 a 

Variety Excluding Includio'g
 
Border Rows Border rows Difference b 

Number 


1 564 590 -26 
2 674 683 -9 
3 599 593 6 
4 628 656 -28 
5 639 635 4 
6 665 663 2 
7 672 684 -12 
8 680 665 15 
9 777 753 24 
10 695 694 1
 
11 723 726 -3
 
12 734 747 -13
 
Av. 671 674 -3
 

aAverage of three replications.
 
bus _ not significant. 
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13.2.3 Uniformity Trials or Production Plots 

Large production plots or uniformity trials are usually subdivided into blocks 
using nonplanted alleys as markers. In such plantings, the effect of nonplanted 
alleys can be evaluated by comparing 'he performance of the outermost rows 
with the center rows. However, nonphtnted alleys for such plantings are usually 
wide and because the effects in certain crops such as rice become larger as the 
nonplanted alley becomes wider, such a study could result in a much larger 
effect than that actually existing in a standard field experiment. Nevertheless, 
such a study can be used as a guide for planning a more detailed study. 

For illustration, we present grain yield data coslected from the border rows 
of a rice uniformity trial. The nonplanted alley surrounding the experimental 
area was about 1 m wide. Hill spacing was 20 x 20 cm. From the perimeter of 
the trial, grain yield data were collected from a total of 22 sections each 30 hills 
long. In each section, five successive rows starting from the nonplanted side 
were harvested separately. The data are presented by row positions in Table 

Table 13.12 Grain Yields of Rice Variety IR8 from Five Successive Rows a 

Adjacent to Nonplanted Alley 

Section Grain Yield, g/30 hills 
Number Row 1 Row 2 Row 3 Row 4 Row 5 Av. 

1 1,321 775 765 852 731 1,089 
2 1,740 571 662 615 530 824 
3 1,627 472 493 500 474 713 
4 1,400 421 480 545 497 669 
5 1,633 571 544 541 564 771 
6 1,883 562 588 675 580 858 
7 1,657 579 613 638 632 824 
8 1,658 590 642 680 610 836 
9 931 441 483 487 456 560 
10 929 430 455 475 450 548 
11 850 431 415 379 380 491 
12 1,636 589 764 831 680 900 
13 1,417 589 692 694 709 820 
14 1,172 546 581 558 575 686 
15 1,057 531 520 522 613 649 
16 1,221 478 526 635 594 691 
17 1,297 474 558 504 555 678 
18 1,723 499 515 529 557 765 
19 1,637 584 505 533 555 763 
20 1,676 893 823 717 834 989 
21 1,677 845 792 748 802 973 
22 1,730 919 817 873 889 1,046 
Av. 1,494 581 602 615 603 779 

"Row 1 refers to the outermost row, row 2 the second outermost row, and so on. 
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Table 13.13 Analysis of Variance for Data InTable 13.12 from an Experiment 
to Study the Effects of Nonpianted Alloya 

Source 
of 

Degree 
of Mean Computed Tabular F 

Variation Freedom Square Fb 5% 1% 

Replication 21 124,651 
Row position 4 3,519,409 190.05"* 2.48 3.55 

Row 1vs. inside rows (1) 14,064,766 759.52** 3.96 6.95 
Between inside rows (3) 4,289 < 1 - -

Error 84 18,518 
Total 109 

cv - 17.5%. 
-** significant at 1%level. 

13.12. The analysis of variance to test differences between the row positions is 
shown in Table 13.13. The computation of this analysis of variance followed 
the procedures for randomized complete block design (Chapter 2, Section 
2.2.3) with the section treated as replication and row position as treatment. The 
results indicate a highly significant difference between yield of the outermost 
row (row 1) and that of the four inside rows, but there was no significant 
difference between the yields of the four inside rows. That is, the effect of the 
1-rn nonplanted alley was shown to retch only the outermost row. 

13.3 CONTROL OF COMPETITION EFFECTS 

Competition effects can be a major source of experimental error in field 
experiments. At times, competition effects may even alter the treatment com­
parisons-for example, in variety tests where the comoetition effect favors 
certain varieties more than others. The need to minimize, if not entirely 
eliminate, competition effects in field experiments is clar. 

13.3.1 Removal of Border Plants 

Because the effects of varietal competition, fertilizer competition, and non­
planted borders are usually shown only on plants in the outer rows, an obvious 
solution is to exclude those from plot measurements. The width of borders or 
the number of rows (or plants) to be discarded on each side of the plot 
depends primarily upon the size of competition effects expected. In general, 
competition between plots is greater in grain crops where plant spacing is 
narrow. For example, in rice experiments, varietal competition has been found 
to reach the second outermost row and, sometimes, even the third row when 
the row spacing is 20 or 25 cm. Thus, in most rice variety trials, the yield data 
from the two outermost rows on either side of a plot are discarded. In crops, 
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;uch as maize or sorghum, where plant spacing is wide (row spacing is 
,enerally wider than 50 cm), removal of only one outermost row is usually 
,ufficient. 

Naturally, border width or the number of rows to be discarded also affects 
lot size. The plot must be large e iough so that sufficient plants are left for the 

Jesired measurements after border plants are discarded. The larger the border 
irea, the bigger is the plot size and consequently the block size. This will bring 
tbout a corresponding increase in variability or experimental error, especially 
vith a large number of treatments. The selection of border width should, 
herefore, be based on the knowledge of the size of the particular type of 
)order effect encountered. Too large a border implies waste of experimental 
esources and possible increase in experimental error, whereas too small a 
)order biases the results. 

We caution researchers: to minimize the possibility of mixing the border 
lants with the inner ones, especially when unskilled labor is used during 

iarvest, cut border plants before the experimental plants are harvested. 

13.3.2 Grouping of Homogeneous Treahnents 

3ecause competition between adjacent p!ots in a variety trial is magnified by 
arge morphological differences of test varieties, and in a fertilizer trial by large 
lifferences in the fertilizer rates applied, an obvious remedy is to ensure that 
idjacent plots are planted to varieties of fairly similar morphology or are 
ubjected to similar fertilizer rates. 

In the case of variety trials, this could be done by grouping together 
,arieties that are fairly . omogeneous in competition ability, and use a group 
)alanced block design (Chapter 2, Section 2.5). 

In the case of fertilizer trials, fertilizer is generally tested together with 
everal varieties or several management practices, in a factorial experiment. 
,he use of a split-plot type of designs (Chapters 3 and 4) with fertilizer as 
nain-plot factor would allow the grouping together of plot: having the same 
ertilizer rate and thus minimize fertilizer competition. 

3.3.3 Stand Correction 

Vhen there is one or more missing hill in an experimental plot, measurement 
if data is affected. This is so because plants immediately adjacent to a missing 
ill usually perform better than the normal plants. For plant characters whose 
aeasurement is made on a per-plant basis, plot sampling (Chapter 15) should 
ietaken such that all plants surrounding the missing hill are excluded from the 
ample. For yield determination, however, one of the following two procedures 
an be chosen: 

1. Mathematicai Correction. The corrected yield (i.e., yield that should 
ave been with perfect stand) is computed as: 

Y.,=fY 
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where Y, is the corrected yield, Y,, is the actual yield harvested from the plot
with missing data, and f is the correction factor. Note that if the total number
of plants in the plot is supposed to be n but there are m missing hills, then Ya is
the grain weight or yield from the (n - m) plants in the plot.

The correction factor f must be derived from the estimate of yield increase over normal plants of those plants adjacent to one or more missing hills.Because yield compensation (or yield advantage) varies not only with crops but
also with other factors, such as crop variety, fertilizer rate, plant spacing, and crop season; an appropriate correction factor needs to be worked out for each crop and for different conditions. For some crops, such as rice, where there is alarge variation in the yield advantage between different varieties and different
management practices, the required set of correction factors is too large to bepractical. Hence, this procedure of m'othematical correction is not effective. For
these crops, the second procedure of excluding plants surrounding the missing
hill from harvest is more appropriate. 

2. Excludefrom Harvest PlantsSurroundingthe Missing Hill. Because the
increase in yields of plants surrounding one or more missing hills depends on so many factors, it is sometimes impossible to obtain an appropriate correction
factor. An alternative, therefore, is to discard all plants immediately adjacent
to a missing hill and harvest only those that are fully competitive (i.e., hillssurrounded by living hills). This procedure is especially fitted for experiments
with a large plot size and a large number of plants per plot. 



CHAPTER 14 

Mechanical Errors 

rrors that occur in the execution of an experiment are called mechanical 
:rrors. In field experiments, these can occur from the time the plots are laid out 
such as error in plot measurement), during the management and care of the 
:xperiment (such as the use of mixed or unpure seeds), and during collection of 
lata (such as errors in the measurement of characters and in the transcription 
)fdata). 

In contrast to other sources of error in field experiments, such as soil 
eterogeneity (Chapter 12) and competition effects (Chapter 13), mechanical 
rrors are primarily human errors and, thus, cannot be effectively controlled by
tatistical techniques. Mechanical errors can make a substantial difference in 
xperimental results, however, especially if the are committed duringerrors 
ritical periods of the experiment. The most effective prevention of mechanical 
rrors is the researcher's awareness of potential errors in relation to the various 
,perations of the experiment. 

It is not possible to enumerate all mechanical errors that could occur in all 
ypes of field experiment. We, therefore, pinpoint primarily the critical stages
f an experiment when large mechanical errors are most likely to occur and 
aggest some practical procedures that can minimize or eliminate them. In 
ddition, we mention areas in which uniformity of the experimental material 
an be enhanced. 

4.1 FURROWING FOR ROW SPACING 

or row crops, any errors in row spacing are reflected as error in plot
leasurement. For example, consider a sorghum variety test sown on rows 0.75 
apart. A plot size consisting of four 5-m-long rows would measure 3 X 5 m.Ithe spacing between rows in one plot were incorrectly set at 0.80 m, instead 

Fthe 0.75 m intended, then a plot size of 3.2 x 5.0 m would result. In such a 
ise, yield determination would definitely be affected by the difference in the 
•ea size planted. 

523 
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Errors in row spacing for directly seeded row crops are sometimes caused by 
faulty furrowing. To avoid this error, the following procedures are suggested. 

" If an animal-drawn furrower is used (single furrow per pass), the area width 
both ends and marker sticks set for each furrow somust be measured on 

that every prospective furrow has a stick on each end before furrowing 
starts. 

" 	 If a tractor-drawn furrower is used (usually with a three-furrow attachment), 

the distance between the attachments should be checked before furrowing. 
Furthermore, although there is no need to mark the area for every furrow, 
the distance between adjacent furrows must be checked every time the 
tractor turns. 

Despite these suggested precautions, if anomalies in row spacing are not 
discovered early enough for re-furrowing, then one of the following alternatives 
should be chosen: 

" 	 Harvest only from portions of the plot where row spacing is correct. 
* 	 Harvest the whole plot and mathematically correct plot yield based on the 

discrepancy in area between normal and anomalous plots. This alternative 
should be used only when discrepancy in row spacing is not large. 

To illustrate, consider an experiment with plot size 5 m long and 6 rows 
wide. If five rows in one plot were spaced correctly at 50 cm, but the sixth was 
spaced at 40 cm, then the total area occupied by the anomalous plot is 
5.0 	x 2.9 m instead of the intended 5 x 3 m. 

If a mathematical correction is to be made, the corrected plot yield is 
computed as: 

y = EX
 

where y and x are the corrected and uncorrected plot yields, respectively, and a 

and b are the intended and actual plot areas, respectively. Thus, in this 
example, the corrected plot yield, when no rows are considered as borders, is 

= (5)(3) x = 1.034x
(5)(2.9) 

and the corrected plot yield, when the first and sixth rows are considered as 

borders, is 

= (5)(2) x = 1.026x 
(5)(1.95) 
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If the partial-harvest alternative is chosen, yields should be harvested only 
rom the first four rows for a nonbordered plot; and from the second, third, 
nd fourth rows for a bordered plot. 

Note that the adequacy of the mathematical correction diminishes as the 
itio between a and b deviates farther from unity (one). On the other hand, 
nomalous rows can be excluded from harvest only when the plot is large 
riough. 

4.2 SELECTION OF SEEDLINGS 

or transplanted crops, seedlings are raised in seedbeds and transplanted to 
ie experimental area. To assure sufficient plants, more seedlings are usually 
,own than are actually required. This allows for some type of seedling 
Jlection. The usual practice in transplanting is to use the best looking
edlings first and the poorer seedlings are leftovers. Although this procedure 
iay be adequate when there are few leftover seedlings or when seedboxes are 
nail, as in many vegetable crops, a more systematic selection should be used 
ir such crops as rice where seedbeds are generally large and the ratio of 
tailable seedlings to those actually used in transplanting is much larger. For 
:ample, rice seedlings adjacent to the seedbed's edge are usually more healthy 
id vigorous than those in the middle. Use of such seedlings is not recom­
ended because their inclusion could increase the variability among plants 
ithin an experimental plot. To ensure uniform plants, all seedlings used 
iould be taken from the center of the seedbed where no undue advantage is 
forded to any seedling. Furthermore, the seedbed should be visually ex­
nined before removing the seedlings so that unusually poor or unusually 
!althy seedlings can be excluded. At any rate, the basis for selection should be 
iiformity and not maximum vigor. 

1.3 THINNING 

)r most directly seeded crops, a high seeding rate is used to ensure that 
ough seeds will germinate. Several days after germination, however, the 
imber of plants per plot is reduced to a constant number by thinning (pulling 
it) the excess plants. Some of the more common factors in the thinning 
ocess that could increase experimental error are: 

Selecting Plants to be Retained. This decision is easy for crops planted in 
hills (e.g., maize). All that needs to be done is to remove the poorest looking 
plant in a hill until only the desired number (usually one or two) is left. The 
problem becomes more complicated for crops drilled in the row. Aside from 
trying to retain the best-looking seedlings, plants have to be kept at the 
prescribed spacing. In sorghum, for example, the prescribed distance be­
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tween plants in the row, after thinning, is 10 cm. At this spacing, it is not 
easy to determine visually which plants to remove and which to retain. 
Usually each worker is provided with a stick about the length of a plot row 
that is properly marked every 10 cm. The worker then sets this stick beside 
every row to be thinned and only plants growing closest to the 10 cm marks 
are retained. Because this practice still depends to a certain degree on the 
judgment of the particular worker, the same worker should thin all plots in 
a replication and should finish the whole rep!icaticn within a day (see 
Chapter 2, Section 2.2.1). 
Presence of Vacant Spaces in the Row. In row-sown crops, it is common to 
find spots in a row with no plants. While some excess seedlings can be 
transplanted in these vacant spots or gaps, such practice is not recom­
mended because the transplants are usually weaker and less productive than 
the normal plants. What is usually done is to manipulate the thinning 
process so that the areas adjacent to the vacant space are left with more 
plants. For example, if there is a vacant space of about 30 cm in a row of 
sorghum that is to be thinned to one plant per 10 cm, the researcher can 
retain one plant more than required in the normal thinning at each end of 
the gap. The resulting spacing of the plants in a 1-m row will be as in Figure 
14.1. This procedure is appropriate only if deficient spaces are not too wide 
or too numerous. For example, it would be impractical to use this procedure 
if the empty space in a sorghum row were 2 to 3 m. 

The decision as to how much vacant space can be corrected by this 
procedure has to be left to the researcher. The vacant space must be small 
enough to be substantially compensated for by increasing the population in 
the surrounding area. Thus, the smaller the vacant area, the more complete 
is the compensation, and as the vacant space becomes larger, much space is 
wasted and the compensation becomes smaller. In sorghum, with 20-cm 
spacing between plants, the usual practice is to use this procedure only 
when the vacant space in a row is no more than 40 cm long. Otherwise, long 
vacant spots are excluded from the plot and appropriate correction is made 
on plot size. 

0 10 20 30 40 50 60 70 80 90 100 

Figure 14.1 The spacing of plants in a 1-m row of sorghum, after thinning to adjust for a30-cm 
gap when the intended spacing between plants is 10 cm. Filler plants arc indicated by arrows. 
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Presence of Hills with Fewer Plants than Intended. For directly seeded crops, 
despite all precautions to assure enough seedlings per hill, it is not uncom.. 
mon to have some hills with fewer plants than needed. A researcher has two 
alternatives in dealing with this problem. He can ignore it at the seedling 
stage and then adjust to the same number of plants at harvest or he can 
attempt to correct the problem at the seedling stage by thinning. If the latter 
alternative is applied, the procedure is to retain more plants per hill in the 
adjacent hills so that the desired plan' population is obtained. For example, 
two plants per hill are normally retained in maize performance tests. If a hill 
has only one plant, three plants could be retained in the next hill. 
The Correct Stage for Thinning. Thinning should be done before any tillers 
are formed so that counting of primary seedling stalks is not confused with 
tillers. Anothe, consideration is the incidence of serious seedling insects and 
diseases. For experiments not primarily concerned with evaluating insect 
and disease reaction, allow the seedlings to pass through the most suscepti­
ble stage before completing the final thinning. In maize, for example, downy 
mildew is a serious problem, and during planting when the disease is a 
serious threat, thinning car be delayed for as long as a month after planting. 
Meanwhile any seedling affected by the disease is removed as soon as it is 
detected. 

In sorghum, shoot fly is a serious seedling pest. Sorghum, however, 
develops resistance to shoot fly soon after the seedling stage. During 
plantings when the pest is serious, thinning can be done more than once. 
The first thinning is about a week after germination when twice as many 
plants as needed aie left, and the second and final thinning about 2 weeks 
later. The first thinning reduces the variability in density of seedlings within 
and between plots while still allowing for flexibility in correcting for 
seedling damage in the susceptible period. 

It should be realized, however, that removing damaged plants during the 
thinning process will tend to f.1vor treatments that are more susceptible to 
the insect or disease. Thus, when many damaged plants are removed during 
thinning, the experimental results should be interpreted as applicable only 
to cases where the incidence of the insect or disease is negligible. 

14.4 TRANSPLANTING 

For transplanted crops, the number of seedlings per hill should be uniform. In 
most vegetable crops this is easy because seedlings are usually large and easily 
separated from each other. In rice, however, seedlin-,s are crowded in the 
seedbed, and extra effort is needed to separate them into equal groups of 
seedlings. Thus, it is not uncommon in rice experiments for the number of 
transplanted seedlings to vary from two to five per hill. It has been alleged that 
these differences are corrected by tillering; that is, hills with fewer seedlings 
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produce more tillers per plant and consequently their yields per hill remain 
constant despite the difference in the number of seedlings transplanted. Even if 
this were true, it does not necessarily follow that other plant characters will not 
also be affected. In fact, it has been shown that tiller number and number of 
productive panicles are higher for hills with more seedlings planted to a hill. 
Consequently, variability among hills for these characters would be larger in 
plots where the number of seedlings transplanted to a hill is not uniform. 
Therefore, an equal number of seedlings should be used per hill in rice ex­
periments especially when plant characters other than yield are to be meas­
ured through plot sampling (see Chapter 15). 

14.5 FERTILIZER APPLICATION 

Uniform application of fertilizer, even in large areas, is not much of a problem 
if mechanical fertilizer spreaders are available. All that is needed is a constant 
watch to ensure that the equipment is functioning properly and mechanical 
defects and imbalances are properly corrected. In most developing countries, 
however, fertilizer application is primarily done manually and uniformity is 
difficult to ensure, especially when large areas are involved. It is almost 
impossible to uniformly fertilize a hectare by hand, but it is a much simpler 
task to do so when only 10 to 50 m2 areas are involved. Therefore, a large 
experimental area should be subdivided into smaller units before fertilizer is 
applied. This can be conveniently done by fertilizing each plot, or each row of 
a plot, separately. Fertilizer for each subunit can then be measured and applied 
separately. The usual procedure is to weigh the fertilizers in the laboratory, put 
them in small paper bags or in plastic sacks, transport them to the field, and 
spread the contents of each sack uniformly over a small unit. 

This procedure, however, becomes laborious and time consuming when the 
subunit is small and the number of subunits is large. An alternative is to 
measure the fertilizers, usually by volume, right in the field. To avoid both 
errors and delays in the process, the measurement must be accurate and fast. 
The field worker carrie., bulked fertilizer and a volume measuring container 
(empty milk can, a spoon, etc.). He fills the measuring container, spreads the 
contents over the specified unit area, moves to the next unit, fills the same 
container again, and empties it over this area, and so on. This procedure saves 
sacks as well as weighing time. 

14.6 SEED MIXTURES AND OFF-TYPE PLANTS 

The seed materials used in an experiment can be contaminated mechanically or 
biologically from the previous harvest. This cannot be detected in the seeds but 
is usually easy to pinpoint a month or so after planting. Thus in a solid stand 
of pure lines of rice, some exceptionally tall or vigorous plants may be 
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detected. These plants are referred to as mixtures or off-types. These plants in 
experimental plots, especially when detected after thinning, pose several prob­
lems: 

" Off-types cannot be treated as normal plants because their performance is 
definitely affected not only by the treatments being evaluated but also 
substantially by genetic makeup different from the others. 

" Off-types cannot simply be ignored, pulled, or removed, because by the time 
they are detected they could already have affected surrounding plants 
through a competition effect that is different from the normal plants. Even if 
the detection is early enough, their removal creates missing hills and would 
probably affect the surrounding plants. 

Thus, the usual procedure is to allow the off-types to grow up to maturity, 
and count and remove ihem from the field just before harvest. The yield of the 
plot is then computed as 

where Y is the corrected plot yield, X is the actual grain weight from harvest of 
a normal plants in the plot, and b is the number of off-types. 

For example, consider a plot with a complete stand of 50, in which 2 plants 
turned out to be off-types. The 2 off-types were removed and the remaining 48 
plants yielded a harvest of 500 g. Thus, the -orrected plot yield is 

50
 
500 x = 521 g

48 

This correction assumes that the competition effects provided by the off-types 
to the surrounding plants are similar to those of the normal plants. Such a 
correction procedure is applicable, for instance, in field experiments with rice. 

14.7 PLOT LAYOUT AND LABELING 

One of the most common errors in laying out field experiments is in measuring 
plot dimensions. For plots with the length of 5 to 10 m, an error of 0.1 to 0.5 m 
is not easily visible. But because even a small error in plot dimension can 
greatly affect the experimental results, it is important to double-check plot 
dimensions as plots are laid out in the field. 

Confusion sometimes occurs in making decisions regarding the border line 
of a plot when crops are planted in rows. For example, for a 6-row plot with a 
30-cm distance between rows, the width of the plot is 1.8 m, with the starting 
and ending points as shown in Figure 14.2. Note that the plot width is not 
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Figure 14.2 Boundaries of plot width in a6-row plot with a 30-cm distance between rows. 

measured from the first to the last row of the plot. Instead, the width of the 
plot should include half of the space between rows on each side of the plot. 

Mistakes in plot labeling can occur as early as seed preparation or plot 
marking. An incorrect label can be attached either to the seed packet or to the 
plot. Although these errors are sometimes easily detected and corrected by an 
experimenter familiar with his experimental materials, it is not uncommon that 
the error remains undetected up to the end of the experiment. Only extreme 
care or counter-checking, or both, by at least two persons can reduce this 
source of error. 

14.8 MEASUREMENT ERRORS 

Reading of weight, height, and other such physical measurements in experi­
ments can become monotonous if repeated for long periods of time. Once 
boredom sets in, measurements can be easily misread, misheard, or miscopied. 
Many of these mistakes can be corrected by rechecking the collected data at 
the end of each day. For example, in measuring plant height, the researcher 
should review the data collected for the day immediately after completing the 
measurement, to detect any unusually high or unusually low readings. The 
plants will still be in the field the following day, and doubtful figures can be 
rechecked by actual measurements of the specific plants. 

The same procedure can be followed for any other character in which a 
repeat measurement is still possible. In determining grain weight, the grains 
from separate plots should not be mixed immediately after weighing but 
should be kept separate until at least the editing of data is completed and, if 
possible, until the analysis of data has been completed and the final report 
made. This practice will allow for rechecking whenever necessary during data 
processing. 

Another common source of errors in measurement is the differential effects 
of the enumerators, that is, the persons making the measurements. In recording 
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height of rice plants, for instance, plant height is measured from the ground 
level to the tip of the tallest leaf for young plants and to the tip of the tallest 
panicle for adult plants. The decision on the definite position of either the 
groundlevel or the tip of the tallest leaf (or panicle) leaves room for personal 
judgment. The possible differences in measurements of such characters among 
observers have been recognized. To minimize such errors, the number of 
persons involved in the measurement process must be kept at minimum. When 
several enumerators are involved, the same person should measure all plots in 
one replication (see Chapter 2, Section 2.2.1). 

14.9 TRANSCRIPTION OF DATA 

Data in the field book is primarily arranged for ease of measurement in the 
field. At times, this may not be the form convenient for statistical analysis. 
Thus, transcribing of data from the field book to the form required for data 
analysis may be necessary. The number of times data are transcribed depends 
on the complexity of the computation desired and, to a certain extent, on the 
whims of the researcher. The researcher should minimize the number of times 
data are transcribed. Aside from saving time and expense, the chance for errors 
is also reduced. Indeed, it is strongly advised that the field book should be 
designed so that statistical analy,,T3 can be done directly from it. If this is not 
possible, a plan should be evolved so that only one data transcription is needed 
for all analyses. For all transcriptions, two persons must proofread any data 
transcribed. 



CHAPTER 15 

Sampling in 
Experimental Plots 

Plot size for field experiments is usually selected to achieve a prescribed degree 
of precision for measurement of the character of primary interest. Because the 
character of primary interest- usually economic yield such as grain yield for 
grain crops, stover yield for forage crops, and cane yield for sugar cane--is 
usually the most difficult to measure, the plot size required is often larger than 
that needed to measure other characters. Thus, expense and time can be saved 
if the measurements of additional characters of interest are made by sampling 
a fraction of the whole plot. For example, make measurements for plant height 
from only 10 of the 200 plants in the plot; for tiller number, count only I m2 of 
the 15 in2 plot; and for leaf area, measure from only 20 of the approximately 
2,000 leaves in the plot. 

There are times, however, when the choice of plot size may be greatly 
influenced by the management practices used or the treatments tested. In an 
insecticide trial, for example, relatively large plots may be required to minimize 
the effect of spray drift or to reduce the insect movement caused by insecticide 
treatments in adjacent plots. In such cases, plot size would be larger than that 
otherwise required by the character of primary interest. Consequently, even for 
the primary character such as grain yield, it may still be desirable to sample 
from a fraction of the whole plot. 

An appropriate sample is one that provides an estimate, or a sample value, 
that is as close as possible to the value that would have been obtained had all 
plants in the plot been measured-the plot value. The difference between the 
sample value and the plot value constitutes the sampling error. 

Thus, a good sampling technique is one that gives a small sampling error. In 
this chapter we deal with the basic features of sampling technique as applied to 
replicated field trials (plot sampling) and the development of an appropriate 
sampling technique for a given field experiment. 

532 
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15.1 COMPONENTS OF A PLOT SAMPLING TECHNIQUE 

For plot sampling, each experimental plot is a population. Population value, 
which is the same as the plot value, is estimated from a few plants selected 
from each plot. The procedure for selecting the plants to be measured and used 
for estimating the plot value is called the plot sampling technique. To develop a 
plot sampling technique for the measurement of a character in a given trial, the 
researcher must clearly specify the sampling unit, the sample size, and the 
sampling design. 

15.1.1 Sampling Unit 

The sampling unit is the unit on which actual measurement is made. Where 
each plot is a population, the sampling unit must necessarily be smaller than a 
plot. Some commonly used sampling units in replicated field trials are a leaf, a 
plant, a group of plants, or a unit area. The appropriate sampling unit will 
differ among crops, among characters to be measured, and among cultural 
practices. Thus, in the development of a sampling technique, the choice of an 
appropriate sampling unit should be made io fit the requirements and specific 
conditions of the individual experiments. 

The important features of an appropriate sampling unit are: 

" 	Ease of Identifications. A sampling unit is easy to identify if its boundary 
with the surrounding units can be easily recognized. For example, a single 
hill is easy to identify in transplanted rice because each hill is equally spaced 
and is clearly separated from any of the surrounding hills. In contrast, plant 
spacing in broadcasted rice is not uniform and a single hill is, therefore, not 
always easy to identify. Consequently, a single hill may be suitable as a 
sampling unit for transplanted rice but not for broadcasted rice. 

" Ease of Measurement. The measurement of the character of interest should 
be made easy by the choice of sampling unit. For example, in transplanted 
rice, counting tillers from a 2 x 2-hill sampling unit can be done quite easily
and can be recorded by a single ramber. However, the measurement of 
plant height for the same sampling unit requires independent measurements 
of the fout hills, the recording of four numbers and, finally, the computation 
of an average of those four numbers. 

" 	 High Precision and Low Cns;. Precision is usually measured by the reciprocal 
of the variance of the sample estimate; while cost is primarily based on the 
time spent in making measurements of the sample. The smaller the variance, 
the more precise the estimate is; the faster the measurement process, the 
lower the cost is. To maintain a high degree of precision at a reasonable 
cost, the variability among sampling units within a plot should be kept 
small. For example, in transplanted rice, variation between single-hill sam­
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pling units for tiller count is much larger than that for plant height. Hence, 
although a single-hill sampling unit may be appropriate for plant height, it 
may not be so for tiller count. Thus, for transplanted rice, the use of a 
2 x 2-hill sampling unit for tiller count and a single-hill sampling unit for 
the measurement of plant height is common. 

15.1.2 Sample Size 

The number of sampling units taken from the population is sample size. In a 
replicated field trial where each plot is a population, sample size could be the 
number of plants per plot used for measuring plant height, the number of 
leaves per plot used for measuring leaf area, or the number of hills per plot 
used for counting tillers. The required sample size for a particular experiment 
is governed by: 

• The size of the variability among sampling units within the same plot 
(sampling variance) 

" The degree of precision desired for the character of interest 

In practice, the size of the sampling variance for most plant characters is 
generally not known to the researcher. We describe procedures for obtaining 
estimates of such variances in Section 15.2. The desired level of precision can, 
however, be prescribed by tl e researcher based on experimental objective and 
previous experience. The usual practice is for the researcher to prescribe the 
desired level of precision in terms of the margin of error, either of the plot 
mean or of the treatment mean. For example, the researcher may prescribe that 
the sample estimate should not deviate from the true value by more than 5 or 
10%. 

With an estimate of the sampling vriance, the required sample size can be 
determined based on the prescribed margin of error, of the plot mean, or of the 
treatment mean. 

15.L2.1 Margin of Error of the Plot Mean. The sample size for a simple 
random sampling design (Section 15.1.3.1) that can satisfy a prescribed margin 
of error of the plot mean is computed as: 

2 )n () v) 
(d )(YI) 

where n is the required sample size, Z. is the value of the standardized normal 
variate corresponding to the level of significance a (the value Z. can be 
obtained from Appendix B), v, is the sampling variance, Y is the mean value, 
and d is the margin of error expressed as a fraction of the plot mean. 

For example, a researcher may wish to measure the number of panicles per 
hill in transplanted rice plots with a single hill as the sampling unit. Using data 
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from previous experiments (see Section 15.2.1) he estimates the variance in 
panicle number between individual hills within the same plot (vs) to be 5.0429 
-or a cv of 28.45 based on the average number of panicles per hill of 17.8. He 
prescribes that the estimate of the plot mean should be within 8%of the true 
value. The sample size that can satisfy the foregoing requirennt, at the 5% 
level of significance, can be computed as: 

n (1.96)2(5.0429) 

(0.08)'(17.8)2 

= 9.6 = 10 hills/plot 

Thus, panicle number should be counted from 10 single-hill sampling units 
per plot to ensure that the sample estimate of the plot mean js within 8%of the 
true value 95% of the time. 

15.1.2.2 Margin of Error of the Treatment Mean. The information of 
primary interest to the researcher is usually the treatment mean (the average 
over all plots receiving the same treatment) rather than the plot mean (the value 
from a single plot). Thus, the desired degree of precision is usually specified in 
terms of the margin of error of the treatment mean r ither than of the plot 
mean. In such a case, sample size is computed as: 

n ~ (Z.)(u5,)2)r(2)(Yg (-2)(vp 

here n is the required sample size, Z. and v, are as defined in the equation in 
Section 15.1.2.1, vp is the variance between plots of the same treatment (i.e., 
experimental error), and D is the prescribed margin of error expressed as a 
fraction of the treatment mean. Take note that, in this case, additional 
information on the size of the experimcntal error (vp) is needed to compute 
sample size. 

To illustrate, consider the same example we used in Section 15.1.2.1. For an 
experiment with four replications, the researcher wishes to determine the 
sample size that can achieve an estimate of the treatment mean within 5%of 
the true value. Using an estimate of vp = 0.1964 (see Section 15.2.1), sample 
size that can satisfy this requirement at the 5%level of significance can be 
computed as: 

(1.96)2(5.0429) 

4(0.05)2(17.8)2 - (1.96)2(0.1964) 

= 8.03 = 8 hills/plot 
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Thus, eight single hills per plot should be measured to satisfy the require­
ment that the estimate of the treatment mean would be within 5%of the true 
value 95% of the time. 

15.1.3 Sampling Design 

A sampling design specifies the manner in which the n sampling units are to be 
selected from the whole plot. There are five commonly used sampling designs 
in replicated field trials: simple random sampling, multistage random sam­
pling, stratified random sampling, stratified multistage random sampling, and 
subsampling with an auxiliary variable. 

15.L3.1 Simplf Random Sampling. In a simple random sampling design, 
there is only one type of sampling unit and, hence, the sample size (n) refers to 
the total number of sampling units to be selected from each plot consisting of 
N units. The selection of the ,nsampling units is done in such a way that each 
of the N units in the plot is given the same chance of being selected. In plot 
sampling, two of the most commonly used random procedures for selecting n 
sampling units per plot are the random-number technique and the random-pair 
technique. 

15.1.3.1.1 The Random-Number Technique. The random-number tech­
nique is most useful when the plot can be divided into N distinct sampling 
units, such as N single-plant sampling units or N single-hill sampling units. We 
illustrate the steps in applying the random-number technique with a maize 
variety trial where plant height in each plot consisting of 200 distinct hills is to 
be measured from a simple random sample of six single-hill sampling units. 

ol 	STEP 1. Divide the plot into N distinctly differentiable sampling units (e.g., 
N hills/plot if the sampling unit is a single hill or N I x 1 cm sub-areas per 
plot if the sampling unit is a I x 1 cm area) and assign a number from 1 to 
N to each sampling unit in the plot. 

For our example, beause the sampling unit is a single hill, the plot is 
divided into N = 200 hills, each of which is assigned a unique number from 
1 to 200. 

1o 	 STEP 2. Randomly select n distinctly different numbers, each within the 
range of 1 to N, following a randomization scheme described in Chapter 2, 
Section 2.11. 

For our example, n = 6 random numbers (each within the range of I to 
200) are selected from the table of random numbers, following the proce­
dure described in Chapter 2, Section 2.1.1. The six random numbers selected 
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may be: 

Sequence Random Number 

1 78 
2 17 
3 3 
4 173 
5 133 

6 98 

0 	sEP 3. Use, as the sample, all the sampling units whose assigned numbers 
(step 1) correspond to the random numbers selected in step 2. For our 
example, the six hills n the plot whose assigned numbers are 78, 17, 3, 173, 
133, and 98 are used as the sample. 

15.1.3.1.2 The Random-Pair Technique. The random-pair technique is 
applicable whether or not the plot can be divided uniquely into N sampling 
units. Hence, the technique is more widely used than the random-number 
technique. We illustrate the procedure with two cases-one where the plot can 
be divided into N distinct sampling units and another where clear division 
cannot be done. 

Case I is one with clear division of N sampling units per plot. For 
illustration, we use the example in Section 15.1.3.1.1. Assuming that the plot 
consists of 10 rows and 20 hills per row (N = 200 hills), the steps involved in 
applying the random-pair technique to select a random sample of n = 6 
single-hill sampling units are: 

o 	STEP 1. Determine the width (W) and the length (L) of the plot in terms 
of the sampling unit specified, such that W X L = N. For our example, thp 
sampling unit is a single hill; and W = 10 rows, L = 20 hills, and N = 
(10X20) = 200. 

o 	STEP 2. Select n random pairs of numbers, with the first number of each 
pair ranging from 1 to W and the second number ranging from 1 to L; 
where W and L are as defined in step 1. 

For our example, n = 6 random pairs of numbers are selected by using 
the table-of-random-pumber procedure described in Chapter 2, Section 
2.1.1, with the restrictions that the first number of the pair must not exceed 
W (i.e., it must be within the range from 1 to 10) and the second number of 
the pair must not exceed L (i.e., it must be in the range from 1 to 20). The 
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six random pairs of numbers may be as follows: 

7,, 6 
6, 	 20 
2, 	 3 
3, 9 
9, 15 
1, 10 

0 	STEP 3. Use the point of intersection of each random pair of numbers, 
derived in step 2, to represent each selected sampling unit. For our example, 
the first selected sampling unit is the sixth hill in the seventh row, the second 
selected sampling unit is the twentieth hill in the sixth row, and so on. The 
location of the six selected single-hill sampling units in the plot is shown in 
Figure 15.1. 

Case 1I is one without clear division of N sampling units per plot. For 
illustration, consider a case where a sample of six 20 X 20-cm sampling units is 
to be selected at random from a broadcast-rice experimental plot measuring 
4 X 5 m (after exclusion of border plants). The steps involved in applying the 
random-pair technique to select a random sample of n = 6 sampling units are: 

o 	STEP 1. Specify the width (W) and length (L) of the plot using the same 
measurement unit as that of the sampling unit. For our example, the 
centimeter is used as the measurement unit because the sampling unit is 
defined in that scale. Thus, the plot width (W) and length (L) are specified 
as 400 cm and 500 cm. Note that with this spc4ification, the division of the 
plot into N distinct sampling units cannot be made. 

(1,10) 
X X X X X X X X XII X X X X x x X X x x 

(2,3) 

x x x x X X X x X x X X X x X X' x x x 

XXX X X X X X XXX X XXXXX 

X XX XX X X X XX X XX X XXlX X X 

X X X X X x 
(7,6) 

x x x X X x X X x 

X x X X X x X X X x x X X X x x X X 

X X X x x X K X X X X X X X x X X X X 

XXX XX x x x x x x x x x x x x x x x X 

Figure 15.1 The location of six randomly selected sample hills, using the random-pair technique, 
for a plot consisting of 10 rows and 20 hills per row. 
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01 	 STEP 2. Select n random pairs of numbers, following the table-of-random­
number procedure described in Chapter 2, Section 2.1.1, with the first 
number of the pair lying between 1 and W and the second number lying 
between 1 and L. 

For our example, the six random pairs of numbers may be: 

253, 74 
92, 187 

178, 167 
397, 394 
186, 371 
313, 228 

0 	STEP 3. Use the point of intersection of each of the random pairs of 
numbers (derived in step 2) to represent the starting point of each selected 
sampling unit. For our example, we consider the starting point to be the 
uppermost left corner of each sampling unit. Thus, with the first random 
pair of (253,74) the first selected sampling unit is the 20 x 20-cm area 
whose uppermost left corner is at the intersection of the 253 cm along the 
width of the plot and the 74 cm along the length of the plot (see Figure 
15.2). The rest of the selected sampling units can be identified in the similar 
manner. The locations of the six selected 20 x 20-cm sampling units in the 
plot is shown in Figure 15.2. 

400 	 397,.394[ 

300 3 13. 228 -0 
53 74
 

74c-f2
 

J1= 

-'o =e,16 " D 16371-E] 
too-

I 92187" 

O0 - I I I I 

100 200 300 400 500 
Plot length (cm) 	 I 

Figure 15.2 The location of six randomly selected 20 x 20-cm sampling units, using the random­
pair technique for a plot measuring 4 X 5 m. 
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15.1.3.2 Multistage Random Sampling. In contrast to the simple random 
sampling design, where only one type of sampling unit is involved, the 
multistage random sampling design is characterized by a series of sampling 
stages. Each stage has its own unique sampling unit. This design is suited for 
cases where the best sampling unit is not the same as the measurement unit. 
For example, in a rice field experiment, the unit of measurement for panicle 
length is a panicle and that for leaf area is a leaf. The use of either the panicle 
or the leaf as the sampling unit, however, would require the counting and 
listing of all panicles or all leaves in the plot-a time-consuming task that 
would definitely not be practical. 

In such cases, a single hill may still be used as the basic sampling unit. 
However, to avoid difficulty of measuring all leaves or all panicles in each 
sample hill, a multistage random sampling design could be used to identify a 
few sample leaves or sample panicles that need to be measured in each sample 
hill. Thus, such a design provides more than one type of sampling unit and, 
subsequently, more than one stage of sampling. 

In the measurement of panicle length, for example, a two-stage sampling 
design with individual hills as the primary sampling unit and individual 
panicles as the secondary sampling unit can be employed. This would involve 
the application of a simple random sampling design twice-once to the 
primary sampling unit (the hill) and another to the secondairy sampling unit 
(the panicle). To get this, a simple random sample of t, hills would first be 
taken from the plot (first.stage sampling) and a simple random sample of n 2 

panicles would then be taken from each of the selected n, hills (second-stage 
sampling). This would result in n = (n1 )(n.2) sample panicles per plot. 

The extension of the multistage random sampling design to three, four, or 
more stages is straightforward. For example, in ihe case where leaf area is to be 
measured, a three-stage sampling design, with individual hills as the primary 
sampling unit, individual tillers as the secondary sampling unit, and individual 
leaves as the tertiary sampling unit, would be appropriate. 

The selection of the sample is done separately and independently at each 
stage of sampling, starting with the first-stage sampling, then the second-stage 
sampling, and so on, in the proper sequence. At each sampling stage, the 
random selection procedure follows that of the simple random sampling design 
described in Section 15.1.3.1. For example, in the case of the two-stage 
sampling design for the measurement of the panicle length, the selection 
process starts with the random selection of n single-hill sampling units from 
the plot. Then, for each of the n, sample hills, the total number of panicles is 
determined and the random-number technique is applied to select a random 
sample of n2 panicles from the particular hill. This random selection process is 
repeated ni times, separately and independently for each of the n1 sample hills, 
resulting in the total of n = (nj)(n 2 ) panicles, on which panicle length is to be 
measured. 

15.1,3.3 Stratified Random Sampling. In a stratified random sampling 
design, sampling units within a plot are first grouped into k strata before a set 
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of m sampling units is selected randomly from each stratum. Thus, the total 
number of sampling units per plot (n) is equal to (m)(k). 

The stratified random sampling design is useful where there is large varia­
tion between sampling units and where important sources of variability follow 
a consistent pattern. In such cases, the precision of the sample estimate can be 
improved by first grouping the sampling units into different strata in such a 
way that variability between sampling units within a stratum is smaller than 
that between sampling units from different strata. Some examples of stratifica­
tion criterion used in agricultural experiments are: 

" Soil Fertility Pattern. In an insecticide trial where blocking was based 
primarily on the direction of insect migration, known patterns of soil 
fertility cause substantial variability among plants in the same plot. In such 
a case, a stratified random sampling design may be used so that each plot is 
first divided into several strata based on the known fertility patterns and 
sample plants are then randomly selected from each stratum. 

" Stress Level. In a varietal screening trial for tolerance for soil salinity, areas 
within the same plot may be stratified according to the salinity level before 
sample plants are randomly selected from each stratum. 

" Within-Plant Variation. In a rice hill, panicles from the taller tillers are 
generally larger than those from the shorter ones. Hence, in measuring such 
yield components as panicle length or number of grains per panicle, panicles 
within a hill are stratified according to the relative height of the tillers before 
sample panicles are randomly selected from each position (or stratum). 

It should be noted at this point that the stratification technique is similar to 
the blocking technique, described in Chapter 2, Section 2.2.1. It is effective 
only if it can ensure that the sampling units from the same stratum are more 
similar than those from different strata. Thus, the efficiency of the stratified 
random sampling design, relative to the simple random sampling design, will 
be high only if an appropriate stratification technique is used. 

15.1.3.4 Stratified Multistage Random Sampling. When the stratification 
technique of Section 15.1.3.3 is combined with the multistage sampling tech­
nique of Section 15.1.3.2, the resulting design is known as stratified multistage 
random sampling. In it, multistage sampling is first applied and then stratifica­
tion is used on one or more of the identified sampling stages. 

For example, consider the case where a rice researcher wishes to measure 
the average number of grains per panicle through the use of a two-stage 
sampling design with individual hills in the plot as the primary sampling unit 
and individual panicles in a hill as the secondary sampling unit. He realizes 
that the number of grains per panicle varies greatly between the different 
panicles of the same hill. Hence, if the mnpanicles from each selected hill were 
selected entirely at random (i.e., a multistage random sampling design), the 
high variability between panicles within hill would cause the precision of the 
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sample estimate to be low. A logical alternative is to apply the stratification 
technique by dividing the panicles in each selected hill (i.e., primary sampling 
unit) into k strata, based on their relative position in the hill, before a simple 
random sample of m panicles from each stratum is taken separately and 
independently for the k strata. 

For example, if the panicles in each selected hill are divided into two stfata 
based on the height of the respective tillers-the taller and shorter strata-and 
a random sample of three panicles taken from each stratum, the total number 
of sample panicles per plot would be (2)(3)(a) = 6a, where a is the total 
number of randomly selected hills per plot. In this case, the sampling tech­
nique is based on a two-stage sampling design with stratification applied on the 
secondary unit. Of course, instead of the secondary unit (panicles) the re­
searcher could have stratified the primary unit (i.e., single-hill) based on any 
source of variation pertinent to his experiment (see also Section 15.1.3.3). In 
that case, the sampling technique would have been a two-stage sampling design 
with stratification of the primary unit. Or, the researcher could have applied 
both stratification criteria-one on the hills and another on the panicles-and 
the resulting sampling design would have been a two-stage sampling with 
stratification of both the primary and secondary units. 

15.1.3.5 Subsampling With an Auxiliary Variable. The main features of a 
design for subsampling with an auxiliary variable are: 

" In addition to the character of interest, say X, another character, say Z, 
which is closely associated with and is easier to measure than X, is chosen. 

" Character Z is measured both on the main sampling unit and on the 
subunit, whereas variable X is measured only on the subunit. The subunit is 
smaller than the main sampling unit and is embedded in the main sampling 
unit. 

This design is usually used when the character of interest, say X, is so 
variable that the large size of sampling unit or the large sample size required to 
achieve a reasonable degree of precision, or both, would be impractical. To 
improve the precision in the measurement of X, without unduly increasing 
either the sample size or the size of sampling unit, the subsampling with an 
auxiliary variable design can be used. 

Improvement is achieved by measuring Z from a unit that is larger than the 
unit where X is measured. By using the known relationship between Z and X, 
it is as if X were measured from the large unit. With the proper choice of the 
auxiliary variable Z, a large increase in the degree of precision can be achieved 
with only a small increase in the cost of measuring Z from a larger unit. This 
means that Z must be chosen to best satisfy two conditions: 

" Z must be closely associated with X and its relationship known. 
" Measurement of Z must be with minimum cost. 
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For example, weed count is usually one of the characters of primary interest 
in evaluating the effect of weed infestation. Weed count is, however, highly 
variable and requires a relatively large sampling unit to attain a reasonable 
degree of accuracy. Furthermore, the task of counting weeds is tedious and 
time consuming, and its cost increases proportionally with the size of the 
sampling unit. On the other hand, weed weight, which is closely related to 
weed count, is simpler to measure and its measurement cost is only slightly 
affected by the size of the sampling unit. Thus, weed weight offers an ideal 
choice as the auxiliary variable for weed count. 

To count weeds in a replicated field trial, the following sampling plan, based 
on the subsampling design with weed weight as the auxiliary variable, may be 
used: 

" A sample of n 60 x 60-cm sampling units is randomly selected from each 
plot. 

" From each of the n units, weed weight (Z) and weed count (X) is measured 
on a subsample (say 20 x 20-cm subunit) while the rest of the weeds in the 
main sampling unit is used only for measuring weed weight (Z). 

15.1.4 Supplementary Techniques 

So far, we have discussed sampling techniques for individual plots, each of 
which is treated independently and without reference to other plots in the same 
experiment. However, in a replicated field trial where the sampling technique is 
to be applied to each and all plots in the trial, a question usually raised is 
whether the same set of random sample can be repeated in all plots or whether 
different random processes are needed for different plots. And, when data of a 
plant character are measured more than once over time, the question is 
whether the measurements should be made on the same samples at all stages of 
observation or should rerandomization be applied. 

The two techniques aimed at answering these questions are block sampling 
and sampling for repeated measurements. 

15.1.4.1 Block Sampling. Block sampling is a technique in which all plots 
of the same block (i.e., replication) are subjected to the same randomization 
scheme (i.e., using the same sample locations in the plot) and different 
sampling schemes are applied separately and independently for different 
blocks. For example, for a RCB experiment, the total number of times that the 
randomization process is applied is the number of replications (r). Consider a 
case where the researcher wishes to measure panicle number in a RCB trial 
with eight treatments and four replications. He dcides to use a simple random 
sampling design with the single-hill sampling unit and a sample size of six. 
With block sampling, he needs only to apply the randomization scheme four 
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,mes to obtain four different sample locations, as shown in Figure 15.3. The 
first is used for all eight plots of replication I, the second for all eight plots of 
replication II, the third for all eight plots of replication III, and the fourth for 
all eight plots of replication IV. 

The block sampling technique has four desirable features. They are: 

1. 	 Randomization is minimized. With block sampling, randomization is 
done only r times instead of (r)(t) times as it is when randomization is 
done separately for each and all plots. 

(a) 	 (b) 
X X X X XXX XX XXX X XX X X x X 

X ( X X X X X XX X X X X X X X X 

X X XX X X X X X X X X®(2X X X X X X 
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X X XX XXX XX XXX X X X( ®X XX 
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XX X X XXXXXXXXX(--%XX 


%VXXX~ x®(Dx xx xx xxx
 

XX 	X XX X XXX X X X X X X X X XX 

Figure 15.3 The four independently selected sets of six random sample hills per plot, one set for 
each of the four replications in the trial: set (a) for replication I, set (b) for replication 11, set (c) 
fot replication III, and set (d) for replication IV; in the application of the block sampling 
technique. 
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2. 	 Data collection is facilitated. With block sampling, all plots i. the same 
block have the same pattern of sample locations so that an observer 
(data collector) can easily move from plot to plot within a block without 
the need to reorient himself to a new pattern of sample location. 

3. 	 Uniformity between plots of the same block is enhanced because there 
is no added variation due to changes in sample locations from plot to 
plot. 

4. 	 Data collection by block is encouraged. For example, if data colltction 
is to be done by several persons, each can be conveniently assigned to a 
particular block which facilitates the speed and uniformity of data 
collection. Even if there is only one observer for the whole experiment, 
he can complete the task one block at a time, taking advantage of the 
similar sample locations of plots in the same block and minimizing one 
source of variation among plots, namely, the time span in data collec­
tion. 

15.1.4.2 Sampling for Repeated Measurements. Plant characters are com­
monl) measured at different growth stages of the crop. For example, tiller 
number in rice may be measured at 30, 60, 90, and 120 days after transplanting 
or at the tillering, flowering, and harvesting stages. If such measurements are 
made on the same plant,, at all stages of observation, the resulting data may be 
biased because plants that are subjected to frequent handlings may behave 
differently from others. In irrigated wetland rice, for example, frequent tram­
pling around plants, or frequent handling of plants not only affect the plant 
characters being measured but also affect the plants' final yields. On the other 
hand, the use of an entirely different set of sample plants at different growth 
stages could introduce variation due to differences between sample plants. 

The partial replacement procedure provides for a satisfactory compromise 
between the two conflicting situations noted. With partial replacement, only a 
portion p of the sample plants used in one growth stage is retained for 
measurement in the succeeding stage. The other portion of (1 - p) sample 
plants :-: randomly obtained from the remaining plants in the plot. The size of 
p depends on the size of the estimated undesirable effect of repeated measure­
ments of the sample plants in . particular experiment. The smaller this effect, 
the larger p should be. For example, in the measurement of plant height and 
tiller number in transplanted rice, p is usually about .75. That is, about 75% of 
the sample plants measured at a given growth stage is retained for measure­
ment in the succeeding stage and the remaining 25% is obtained at random 
from the other plants in the plot. Figure 15.4 shows the locations of the 15 
single-hill sampling units per plot for the measurement of plant height at two 
growth stages, using the partial replacement procedure with 25% replacement 
(1 - p = .25). At each growth stage, measurement is made from a total of 12 
sample hills, out of which nine hills are common to both growth stages. 
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Figure 15A Fifteen sample hills (randomly selected with 25% replacement) (or height measure­
ment at two growth stages: 12 sample hills for the first stage are@ and ®,and12 sample hills 

for the second stage are B] andE 

15.2 DEVELOPING AN APPROPRIATE
 
PLOT SAMPLING TECHNIQUE
 

A plot sampling technique that is appropriate for a particular character in a 
particular field experiment must satisfy the following requirements: 

" The precision of the estimate obtained must be as good as, or better than, a 
level needed to achieve the experimental objective. 

" The cost of its implementation must be within the resources available to the 
researcher. 

Precision of a sample estimate generally increases with the size of sampling 
unit, the number of sampling units selected per plot, and the complexity of the 
sampling design used. However, an increase in either the size or the number of 
sampling units almost a~ways results in an increase in cost. Hence, the choice 
of an appropriate sampling technique is primz~rily concerned with maintaining 
the proper balance between the size of sampling unit, sample size, and a 
sampling design to achieve the minimum cost. 

How, then, does a researcher select the proper combination of sampling 
unit, sample size, and sampling design? The task requires information on the 
variability of the character of interest so that the precisions that will result 
from the various types of sampling technique can be estimated. There are three 
sources of data from which the required information can be obtained: data 
from previous experiments, additional data from on-going experiments, and 
data from specifically planned sampling studies. 



Developingan AppropriatePlot Sampling Technique 547 

Table 15.1 Data on Panicle Number per Hill Obtained from a Simple Random 
Sample of 12 Single-HIll Sampling Units per Plot Ina Variety Trial Involving 
Eight Rice Varieties and Three Replications 

Panicles, no./hill 

Variety Rep. I Rep. II Rep. III 

IR22 5,8,12,14,10,10 10,13,10,13,11,11 7,6,11,10,7,8 
6,10,8,11,11,8 12,5,10,7,14,5 8,8,10,10,6,11 

IR160-27-3 11,11,11,12,4,12 13,4,4,7,5,7 8,7,9,10,5,5 
8,14,8,7,9,9 11,8,7,8,10,9 9,10,4,9,12,11 

BPI-76-1 4,5,8,5,8,4 6,8,4,5,6,10 8,7,6,5,6,7 
5,9,6,6,7,10 8,3,7,8,7,11 6,8,6,6,5,4 

C4-63 8,10,9,7,9,7 9,7,9,5,8,9 8,10,7,6,7,6 
9,13,13,5,7,5 8,10,6,5,6,5 9,8,6,4,5,7 

RD-3 7,12,7,11,12,7 9,7,6,8,4,8 9,3,4,6,5,3 
7,6,5,9,8,9 8,9,8,9,6,7 9,7,9,6,6,7 

IR480-5-9 7,7,6,11,7,8 8,10,7,6,8,8 7,6,9,7,11,8 
8,8,9,6,4,14 10,5,7,5,8,7 12,7,8,9,8,9 

Jaya 8,9,12,7,7,3 8,6,7,8,9,9 10,4,8,9,4,6 
10,10,8,7,9,8 14,8,9,11,6,7 7,4,3,4,4,6 

IR20 5,5,10,9,7,5 8,8,8,3,13,13 5,12,10,9,7,9 
9,10,9,6,12,8 7,12,9,9,8,11 8,7,5,8,10,7 

15.2.1 Data from Previous Experiments 

Data from previous experiments can usually be analyzed at minimum cost, to 

provide valuable information for use in improving plot sampling techniques in 

subsequent experiments. To illustrate, we usc a rice trial with eight rice 

varieties tested in a randomized complete bick designt with three replications. 

Data on panicle number were collected based on a simple random sampling 

design with 12 single-hill sampling units per plot (Table 15.1). Using these 

data, the variability between single-hill sampling units can be estimated and 
the efficiencies of various sample sizes evaluated. The step-by-step procedures 

Table 15.2 Analysis of Variance (RCB Design) of Data (Table 15.1) from Plot 
Sampling 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Replication 2 53.5208 26.7604 
Variety 7 191.0556 27.2937 
Experimental error 14 103.5903 7.3993 
Sampling error 264 1,331.3333 5.0429 
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for doing so are: 

o 	sTEP 1. Compute the analysis of variance of data from plot sampling based 
on a RCB design, following the procedure described in Chapter 6, Section 
6.1. The result is shown in Table 15.2. 

o STEP 2. Compute the estimates of sampling variance (i.e., the variance 
between hills within a plot) and of experimental error (i.e., the variance 
between plots of the same treatment) as: 

s2 = MS 

2 MS2 -MSI 
n 

where MS, is the sampling error mean square and MS 2 is the experimental 
error mean square in the analysis of variance computed in step 1, and n is 
the sample size (i.e., the number of sample hills per plot). For our example, 
the estimates of sampling variance and experimental error are computed as: 

s 	= 5.0429 

s - 7.3993 12- 5.0429 = 0.1964 

o 	STEP 3. Compute the estimates of the variance of a treatment mean and of 
the corresponding cv value (i.e., standard error of the treatment mean 
expressed as percent of the mean value) as: 

rn 

100 V(T)
cv(X) = ­

arewhere r is the number of replications, X is the gr, id mean, and s2 and s 

as computed in step 2. For our example, the estimates of the variance of a 
trea.ment mean and its cv value are: 

5.0429 + (12)(0.1964)
v(s) (3)(12) 

= 0.2055 

cv( - (100)0. 2055
8 

= 5.7% 
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Note that the values of v(,) and cv(X) can be directly related to the 
concept of margin of error (as described in Section 15.1.2) because the 
margin of error (d or D) is about twice the value of cv(X). Thus, for 
the measurement of panicle number with cv(,X) = 5.7%, a variety mean can 
be expected to be within plus or m;nus 11% of the true mean. If such a level 
of the margin of error is satisfactory, then the researcher can go on with the 
present sampling procedure for panicle count (i.e., that based on a simple 
random sampling design with 12 sample hills per plot). If the margin of 
error of 11% is too high, however, then the researcher could take either or 
both of the following approaches: 

" Increase the number of replications. 
" Use a different sampling procrure with a change in sampling design, 

type of sampling unit, or sample size. 

Because the change in either the sampling design or the type of sampling 
unit must be based on information that is generally not available, the two 
choices that are left for the researcher in practice are the increase in the 
number of replications and the increase in the sample size. The decision on 
whether to increase the number of replications or the sample size, or both, 
depends on the relative magnitude of the sampling variance and the experi­
mental error and their relative costs. The higher the experimental error, the 
higher the number of replications that should be used; the higher the 
sampling variance, the greater the number of samples per plot that should 
be taken. 

In general, adding more sa-mples is likely to cost less than adding more 
replications. Thus, increasing the number of sample hills per plot is gener­
ally a preferred choice. In our example, the experimental error s' of 0.1964 
is much smaller than the sampling variance s2 of 5.0429 and, hence, 
increasing the sample size would be the best alternative to increase the 
precision of the sample estimate. 

01 	 STEP 4. As an aid in deciding whether to increase the number of replica­
tions (r) or the sample size (n) to achieve a desired degree of precision, 
compute the standard error cf the treatment mean, expressed as percent of 
the mean value [i.e., cv(X)], for different combinations of r and n values, 
using the formula in step 3. For our example, the results are shown in Table 
15.3. 

For example, an increase in the number of sample hills per plot from 8 to 
12 is shown to be able to achieve the same improvement in the degree of 
precision (i.e., reducing the standard error of the treatment mean from 6.6 to 
5.7%) as an increase in the number of replications from 3 to 4. Thus, to 
improve the precision of the estimate of the treatment mean in this case, it is 
better to increase the sample size than to increase the number of replica­
tions; especially so if cost is considered. 
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Table 15.3 Estimated Standard Error of Treatment 
Mean for Panicle Count, Computed from Data In Table 
15.2, for Different Numbers of Sample Hills per Plot 
and Different Numbers of Replications (r) 

Sample Hills, Estimated Standard Error, % 

no./plot r = 3 r - 4 r = 5 

8 6.6 5.7 5.1 
10 6.0 5.2 4.7 
12 5.7 4.9 4.4 
14 5.4 4.7 4.2 
16 5.2 4.5 4.0 

Note at this point that while the foregoing data can provide information 
that could aid in the proper choice of sar,ipLz size, it does not allow for the 
evaluation of the proper choice of sampling unit. For example, based on these 
data, we cannot tell whether the single-hill sampling unit currently used is 
better or worse than a 2 x 2-hill sampling unit for panicle count. To be able to 
make such a decision, sources of data such as those described in Sections 15.2.2 
and 15.2.3 must be considered. 

15.2.2 Additional Data from On-Going Experiments 

To evaluate the efficiency of various types of sampling unit, additional data 
may be collected from on-going experiments. Even though the collection of 
these additional data requires more of the researcher's time and effort, there is 
generally sufficient flexibility for planning the collection to suit available 
resources. For example, even if there are many plots in an on-going experi­
ment, not all plots need to be included in the additional data collection 
scheme. Or, if resources are limited, the types of sampling unit could be limited 
to only a few. 

As an illustration, we use a two-factor experiment with four rice varieties 
and three levels of nitrogen in a randomized complete block design with three 
rzplications. The original plot sampling technique is based on a simple random 
sampling design that calls for the measurement of tiller number from eight 
single-hill sampling units per plot consisting of 150 hills. We wish to evaluate 
the efficiency of the 1 X 2-hill sampling unit relative to that of the single-hill 
sampling unit. The additional data needed would be the tiller count of eight 
more hills, each immediately adjacent to the original eight single-hill sampling 
units in each of the 36 plots. The positions of the eight original sample hills, 
and those of the eight additional hills for one of the plots, may be as shown in 
Figure 15.5. 
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Although it is usually advisable to incorporate the additional measurement 
in all plots, if resources are limited it is possible tr, measure the additional data 
on only a few plots. For example, if resources allow for the measurement of 
only I of the experiment (i.e., a total of six plots), the researcher may choose to 
collect the additional data from only the plots with two (the two extreme 
levels) of the three nitrogen treatments and only one of the four varieties. 

The choice of the particular set of factors or treatments to be included in the 
study should be iased on its expected large effects on the sampling variance. In 
this example, the decision to include two nitrogen levels and only one variety is 
based on the as:,umption that nitrogen rather than variety is the larger 
contributor to tho: variability in tiller number. The raw data on tiller count 
from such a sche,.ne of additional data from on-going experiments are shown in 
Table 15.4. 

Note that the additional work in data collection is modest but, with the 
added data, two alternative types of sampling unit-single hi~l and two 
adjacent hills-can be evaluated. Computational procedures for evaluating the 
efficiency of alternative sampling units, using the data in Table 15.4, are: 

o sTP 1. For each treatment, construct the analysis of variance for a 
three-stage nested classification, with the first stage corresponding to plots, 
the second stage corresponding to the larger sampling units, and the third 
stage corresponding to the smaller sampling units. The format of such an 
analysis of variance is shown below, with p = number of plots, s = number 
of the large sampling units per plot, and k = number of the small sampling 

x x x x x xc x xt x x x xc x x x 

xx xx i x x x x xZG x 

xx xx xEXX x xxx x xX] 

x x ~ x x x x x x x x x x
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Figure 15.5 The location of the additional sample hills, W", relative to the original sample hills, 

@, in the sampling study to compare two types of sampling unit, namely, 1 X I hill and I x 2 hill. 

http:sche,.ne
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units within a large sampling unit: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Between plots p - 1 SSi MS, 
Between large sampling units 

within plot p(s - 1) SS2 MS2 

Between small sampling units 
within large sampling unit ps(k - 1) MS 3SS3 

For our example, the large sampling unit is the two-hill sampling unit, 
the small sampling unit is the single-hill sampling unit, p f 3, s = 8, and 
k = 2. Thus, the outline of the analysis of variance is: 

Source Degree Sum 
of of of Mean 
Variation Freedom Squares Square 

Between plots 2
 

Between 2-hill units
 
within plot 21
 

Between single-hill units
 
within 2-hill unit 24
 

Total 47
 

Table 15.4 Tiller Count, Measured from Eight 1 X 2-Hill Sampling Units per 
Plot, from Fertilized (120 kg N /ha) and Nonfertilized Plots of IR22 Rics 

Tillers, no./hill 
0 kg N/ha 120 kg N/ha 

Sampling Plot I Plot II Plot III Plot I Plot II Plot III 
Unit, Hill ilHll Hill H-illW I-ill 111l ill Hill il Hill Hill 
no. 1 2 1 2 1 2 1 2 1 2 1 2 

1 9 9 6 7 8 7 15 9 10 9 12 11 
2 9 8 11 6 11 6 14 13 12 11 15 9 
3 5 8 9 9 8 3 11 15 20 9 13 7 
4 9 3 4 7 6 7 11 9 15 10 14 7 
5 9 8 8 7 8 6 11 18 16 6 13 9 
6 11 8 9 8 8 5 13 10 13 6 12 10 
7 7 9 10 8 8 7 10 11 12 10 13 16 
8 10 ' 10' 9 9 5 15 13 12 9 14 18 
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o3 	 sTEP 2. For each treatment, construct the plot x large sampling unit table 
of totals (AB), with the plot totals (A), the large sampling unit totals (B), 
and the grand total (G) computed. For our example, the results are shown 
in Table 15.5. 

o 	STEP 3. Compute the various SS as follows: 

2=F 
C.F. 


psk
 

Total SS 'X 2 -C.F., 

~p A2 
Between plots SS= - C.F. 

1-I
 

Between large sampling units within plot SS 

p $ (AB% 
= k - C.F.- Between plots SS

I- IJ-1 

Between small sampling units within large sampling 
unit SS 

= Total SS - (sum of all other SS) 

For our example, we describe the computation of SS, using only data 
from the nonfertilized plots, as follows: 

C.F.= (370)2 =2,852.0833 
(3)(8)(2) 

Total SS = (92 + 92 + .. + 92 + 52) - 2,852.0833 

= 	165.9167 

Between plots SS = (130)2 + (128)2 + (112) 2 , . 
(8)(2) 2,852.0833 

= 	12.1667 



Table 15.5 The Plot X 2-hill Sampling Unit Table of Totals from Data in Table 15.4 

Tiller Number Total (AB) 

0 kg N/ha 120 kg N/ha 

Unit, Sampling Unit Sampling Unit 
no. Plot I Plot I Plot HI Total (B) Plot I Plot i Plot II3 Total (B) 

1 18 13 15 46 24 19 23 66 
2 17 17 17 51 27 23 24 74 
3 13 18 11 42 26 29 20 75 
4 12 11 13 36 20 25 21 66 
5 17 15 14 46 29 22 22 73 
6 19 17 13 49 23 19 22 64 
7 16 18 15- 49 21 22 29 72 
8 18 19 - 14 51 28 21 32- 81 

Plot total (A) 130 128, 112 198 180 193 
Grand total (G) 370 571 



Developing an AppropriatePlot Sampling Technique 555 

Between two-hill sampling units within plot SS 

(18)2 +(17)2 + - +(15)2 +(14)2 

2 

-2,852.0833 - 12.1667 

= 	59.7500 

Between single-hill sampling units within two-hill sampling unit SS$' 

= 	165.9167 -(12.1667 + 59.7500) 

= 	94.0000 

o 	sP 4. Compute the MS for each SS, by dividing the SS by its d.f. The 
results of the nonfertilized plots, together with the results of the fertilized 
plots, are shown in Table 15.6. 

o 	Smp 5. Compute the estimates of the sampling variance corresponding to 
the two alternative sampling units-the large and the small sampling units 
-as: 

2 [(N - 1)MS2 + N(k - 1)MS3]
Nk-1 

52
2 MS2 

where s' and s2 are the estimates of the sampling variances based on the 
small and the large sampling units, N is the total number of the large 
sampling units in the plot, and MS2 and MS are as defined in step 1. 

Table 15.6 Analysis of Variance for Data In Table 15.4 

Source 
of 
Variation 

Degree 
of 

Freedom 

Mean Square 
MeanSquare 

0 kg N/ha 120 kg N/ha 

Between plots 
Between 2-hill units 

2 6.0833 5.3958 

within plot 
Between single-hill units 

within 2-hill unit 

21 

24 

2.8452 

3.9167 

6.5327 

12.4375 
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For our example, each plot consists of 150 hills and the total number of 
the two-hill sampling units is N - = 75. Thus, the values of the two 
variances are computed as: 
" For nonfertilized plots: 

s2 = 74(2.8452) + 75(3.9167) = 3.38451491 

2 
S2 = 	2.8452 

* 	 For fertilized plots: 

s2 = 74(6.5327) + 75(12.4375) = 95049149 

S2 = 	6.5327 

0 	STEP 6. Compute the relative efficiency of the two alternative sampling 
units, with and without cost consideration: 
* 	 Without cost consideration. The relative efficiency of the two alternative 

sampling units, without cost consideration, is computed as: 

R.E. = 10Os2 
s 2 

For our example, these relative efficiency values are computed as: 

R.E.= 2.8452R.E. (100)(3.3845) = 119% for nonfertilized plots 

R. E. = (100)(9.5049) = 146% for fertilized plots
6.5327 

Thus, for the measurement of tiller number, the two-hill sampling unit 
gives about 19% more precision than the single-hill sampling unit for the 
nonfertilized plots, and 46% more for the fertilized plots. 
With cost consideration. If the costs of gathering data for the various 
sizes of sampling unit are considered, the relative efficiency of two sizes 
of sampling unit, with the size of the larger unit being k times that of the 
smaller unit, is computed as: 

= 	 1O0kcs22R.E. (k) Ck
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where c1 estimates the time required to make measurement on the smaller 
sampling unit and ck estimates the time required on the large unit of size 
k, and sI and s2 are their corresponding sampling variances. It is 
presumed that the cost associated with the alternative sampling units is 
proportional to the time needed to measure the various sampling units. 

For our example, the estimate of the time spent in locating the 
sampling units and in counting their tiller numbers will be expressed in 
terms of the total number of hills that can be counted in 10 minutes. For 
a variety with medium tillering ability, it is estimated that 15 hills can be 
counted in 10 minutes with single-bill sampling units and 22 hills can 
be counted in 10 miautes with two-hill sampling units. More hills can be 
counted in a given time for larger sampling units because less time is 
spent in movin,; from one unit to another. Thus, the cost of counting 
tillers with a two-hill sampling unit relative to that with a single-hill 
sampling unit is computed as: 

C2 = 22- = 0.6818c, 

Based on this relative cost estimate, the relative efficiency of the two 
alternative sampling units is computed as: 

R.E. = (100)(2)(3.3845) = 349% for nonfertilized plots
(0.6818)(2.8452) 

R. E. = (100)(2)(9.5049) = 427% for fertilized plots
(0.6818)(6.5327) 

Note that the inclusion of cost consideration greatly increases the 
efficiency of the two-hill sampling unit over the single-hill sampling unit. 
With cost consideration, the two-hill sampling unit gave about 249% 
more precision than the single-hill sampling unit for the nonfertilized 
plots, and 327% more precision for the fertilized plots. 

Based on the data we used, it is clear that the sampling plan for tiller 
count in such a trial should use the two-hill sampling unit rather than the 
single-hill sampling unit, especially in fertilized plots. 

15.2.3 Specifically Planned Sampling Studies 

Experiments planned specifically for sampling studies are usually set up to 
answer the many questions related to the development of a sampling tech­
nique. Aside from providing information to evaluate the different types of 
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sampling unit, different sample sizes, and different sampling designs, such 
experiments may also be used to identify some of the important factors that 
should be considered in developing a sampling technique. 

Consider a sampling study whose objectives are: 

" 	 To determine the optimum sampling unit, sample size, and sampling design 
for measuring important agronomic characters in transplanted rice field 
experiments. 

• 	 To determine whether such factors as varieties and fertilizer rates influence 
the efficiencies of the different sEmpling techniques. 

Two rice varieties differing in growth duration and tillering capacity were 
tested with three nitrogen rates (0, 60, and 120 kg/ha). The 2 x 3 factorial 
experiment was laid out in a randomized complete block design with three 
replications. Plot size was 3.8 x 2.8 m. Each plot had 19 x 14 hills. Measure­
ment of several plant characters was made on all the 12 x 8 hills in the center 
of each plot (i.e., excluding border plants). Because the data analysis required 
is similar for all the characters measured, only data of panicle number from the 
three norfertilized IR22 plots (Table 15.7) are used to illustrate the computa­
tional procedures. 

13 	 Smp 1. Construct the different sizes and shapes of sampling unit that the 
researcher wishes to evaluate, by combining the measurements of adjacent 
hills. The five types of sampling unit we consider are the 1 x 2 hill, 1 x 3 
hill, 1 x 4 hill, 2 x 2 hill, and I X 6 hill. 

o 	STEP 2. For each of the sampling units constructed 'n step 1, construct an 
analysis of variance of a three-stage nested classification (following the 
procedure outlined in Section 15.2.2, steps 1 to 4) by treating each type of 
sampling unit as the large unit and the single-hill sampling unit as the small 
unit. The results of the five analyses of variance, one for each type of 
sampling unit, are shown in Table 15.8. 

o 	STEP 3. Using the result of any one of the five analyses of variance 
computed in step 2, compute the estimate of the sampling variance of the 
single-hill sampling unit as: 

2 (MS 2)( df2 ) + ( MS3)( df3)Si df2+df3 

where MS 2 and df2 are the mean square and degree of freedom correspond­
ing to the variation between the large sampling units within plot, and MS3 

and df3 are the mean square and degree of freedom corresponding to the 



Table 15.7 Complete Enumeration of Panicle Number per Hill of IR22 Rice from 
Three Nonfertillzed Plots, Each Consisting of 8 x 12 Hills 

Row Panirces,no.,/hi 
Number CoLI Col.2 CoL3 Col.4 CoL5 CoL6 CoL7 CoL8 CoL9 CoL10 ColI CoL 12 

plot I 
1 10 9 7 11 5 13 10 2 14 5 9 3 
2 4 5 9 12 5 10 14 12 10 8 12 5 
3 9 10 12 4 8 10 3 5 5 -6 8 11 
4 
5 

6 
10 

1W 
8 

13 
6 

10 
10 

11 
11 

3 
5 

5 
8 

11 
9 

5 
8 

6 
5 

7,-
12 

3 
4 

6 13 8 7 6 10 11 9 8 11' 6 9 7­
7 11 13 4 8 9 9 6 -10 7 -­ 7 5 6 
8 3 4 11 13 9 8 9 9 4 9 7 11 

Plot if -
1 9 4 8 4 8 9 6 6 4 10 7 8 
2- 8 7 4 8 5 4 8- 9 8 10 -6 8 
3 7 7_ 6 6 8 8 9 4 8 7- 7 8 
4 7 3 8 4 6 6 6 -'9 8 10-_ 6 5 
5-. 
6 

8 
4 

8 
9 

8 
10 

3 
5 

8 
7 

7 
7 

6,, 
.3 

9 
8 

-7 
9 

4 
'4. 

8 
6 

9 
'10 

7 8 5 6 7 6 7 5 9, 9 7 6 5 
8 9 9 9 9 7 7 8 8-. -6 7 -5 8 

Plot III 
1---6 9 4 9 10 10 8 5 5 10 6 5 
2 4 9 11 , 10 5 12 - 11 8 9 7..- 7 10 
3 
4 

10-
-9 

6-
7 

4. 
5 

5-
.9 

12 
10 

5 
5 

110 
10 

5 
6 

10 
: 6 

7 
4-

- 13 
-4 

.3 
6 

5 8 3 11 -9 7 7 9 9 13 10 9 10 
6 
7- ­

-13 
4 

7 
9 

3 
10 

5 
10 

7 
8 

7 
8 

7 
9, 

7 
9 

6 
-3-

3 
4 

5 
13. 

4 
12 

8 6 12 8 10 7 12 12 5 13 -7. 7 9 



560 

Table 15.8 Analysis of Variance to Evaluate Sampling Variances of Five Sizes and 
Shapes of Sampling Unit 

Sampling Unit 
of r 1 2chill 1 X 3 hill 1x 4 hill 2 x 2hill 1x 6 hill 

Variation d.f. MS d.f. MS d.f. MS d.f. MS d.f. N/S 

Between plots 
Between large units 

within plot 
Between single-hill 

units within 

2 

141 

32.21 

6.36 

2 

93 

32.21 

5.63 

2 

69 

32.21 

4.66 

2 

69 

32.21 

4.00 

2 

4. 

32.21 

6.26 

large unit 144 6.72 192 6.99 216 7.15 216 7.36 240 6.60 

variation between single-hill sampling units within the large sampling unit. 
For our example, applying the formula to the values from the analysis of 

variance of the I × 2 hill sampling unit in Table 15.8, we have: 

s2 + (6.72)(144)2 = (6.36)(141) =656.54(141 +144) 

0 	STEP 4. For each of the five sizes and shapes of sampling unit, compute its 
efficiency relative to the single-hill sampling unit as: 

100s2 
R.E. 2 

where s2 is as computed in step 3 and s2 is the MS2 value (i.e., MS between 

the large sampling units within plot) from the corresponding analysis of 
variance. For our example, the efficiency of the I x 2-hill sampling unit 

Table 15.9 Efficiency of Various Sizes and Shapes of 
Sampling Unit Relative to a Single-Hill Unit for a Panicle 
Count, Computed from Data In Tables 15.7 and 15.8 

Sampling Unit, Relative Efficiency, 
hill x hill 

1 X 2 	 102.8 
1 x 3 	 116.2 
1 X 4 	 140.3 
2 X 2 	 163.5 
1 X 6 	 104.5
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relative to the single-hill sampling unit is 

R.E. = (6.54)(100) = 102.8%
6.36 

The computed relative efficiencies for the five sizes and shapes of sampling 
unit are shown in Table 15.9. 

Results indicate that the 2 x 2-hill sampling unit gave the largest relative 
efficiency and, thus, seems to be optimum for measuring panicle number in 
experimental rice plots. 



CHAPTER 16 

Experiments in 
Farmers' Fields 

Agricultural research has traditionally been in research stations where facilities 
for experimentation are excellent and accessibility to researchers is favorable. 
The assumption has often been that the best technology in research stations is 
also the best in farmers' fields. But the assumption of consistency or repeatabil­
ity of technology performance between research stations and farmers' fields 
may not hold universally. The validity of this assumption is doubtful, for 
example, in the developing countries of the humid tropics where variability 
among farm conditions is high, crop yield is generally low, and response to 
improved crop management is less favorable than that in the research stations. 

If there is inconsistency in technology performance between research sta­
tions and farmers' fields, selection of the best technologies for farmers cannot 
be based solely on research-station trials. Such a selection process should, in 
fact, be based on farm trials in which the new technology is compared to the 
farmer's existing practice under the growing conditions of his farm. 

Experiments in farmers' fields can be classified either as technology-3en­
eration or technology-verification experiments. Technology-generation experi­
ments are designed to develop new production technologies that can increase 
biological yield or reduce cost of production; whereas technology-verification 
experiments are designed to compare the superority of new technologies­
identified as promising by technology-generation experiments-over that of 
the farmer's existing practice. 

The standard experimental and statistical procedures discussed in previous 
ch'pters are primarily for technology-generation experiments in research sta­
tions. Because of the distinctive differences between the research station and 
the farmer's field as the test site, not all of those procedures are suited for use 
with experiments in farmers' fields. However, because the primary objective of 
the technology-generation experiment is the same whether at a research station 
or in a farmer's field, only a slight modification of the statistical procedures 
discussed is needed for use in an on-farm technology-generation experiment. 
The process of technology verification, on the other hand, is greatly different 
from that for generating technology and, hence, requires an -ntirely different 
statistical approach. 

562 
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16.1 FARMER'S FIELD AS THE TEST SITE 

A farm is basically a production unit whose primary objective is to increase 
productivity, profit, and the well-being of the farm household. Consequently, 
researchers who experiment in faraners' fields must recognize and cope with the 
characteristics of an experimental area where production, not research, is the 
top priority. 

Som. of the distinctive features of the farmer's field as a test site, relative to 
research station, are: 

" Lack of experimental facilities such as good water control, pest control, and 
equipments for such operation as land preparation and processing of 
harvest 

" Large variation between farms and between fields in a farm 
" Poor accessibility, which creates problems of supervision by researchers 
" Lack of data desci.bing the soil and climate of the experimental field 
" Ava lability of the farmer and his practices for use in experimentation 

The first three features suggest that an on-farm experiment should be small 
and should be conducted on several farms. For an on-farm technology-genera­
tion experiment, the size of the trial is usually controlled by maintaining the 
number of treatments at a reasonable size while retaining the same standard 
number of replications as used in research-station trials. For technology-verifi­
cation trials, a large number of farms is needed to adequately sample the 
variation within the area in which the new technology may be recommended 
for adoption-the target area.Thus, there is a greater need to control the size 
of a technology-verification trial than there is for a technology-generation trial. 
For a technology-verification trial, both the numb.r of treatmernts and the 
number of replications are kept at the minimum level. 

Lack of information on soil and cliff.ate requires the collection of soil and 
weather data for the farm where the technology-gcneration trial is conducted. 

The farmer and his practices are generally used in technology-verification 
trials as a basis for comparison with the test technology. There is a question, 
however, about the merit of considering !he farmer as a component of the 
comparable farmer's practice. A farmer's management of his practice, for 
instance, makes the practice more realistic; a farmer's management of the test 
technology provides a practical assessment of its potential level of acceptability 
by farmers. However, in either case, th,= integration of farmer's management 
with the standard field-plot experimental techniques is not simple. In such 
cases, experimental error is usually increased and the chance of total experi­
mental failure is high. 

We discuss procedures for on-farm technology-generation experiments and 
technology-verification experiments, taking into consideration the distinctive 
objectives of the two types of trial and the distinctive features of the farmer's 
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field as the test site. Most of the procedures are modified versions of the 
procedures given in previous chapters. There are, however, a few procedures 
developed specifically for technology-verification trials. 

16.2 TECHNOLOGY-GENERATION EXPERIMENTS 

The farmer's field provides a convenient and economical way to sample a wide 
array of physical and biological conditions in the generation of technology. 
Procedures for on-farm technology-generation trials are similar to those at 
research stations and most of the experimental procedures discussed in the 
previous chapters can be used. Consequently, we concentrate on the modifica­
tion of existing procedures to allow researchers to cope with features of the 
farm that are distinctly different from that of the research station. 

16.2.1 Selection of Test Site 

The test site for a technology-generation trial is selected to provide a set of 
physical and biological conditions, under which the trial is to be conducted or 
for which the technology is to be developed. Thus, the method of site selection 
is deliberate, rather than at random. The selection procedures are: 

ol srp 1. Clearly specify the desired test environment in terms of the specific 
physical and biological characteristics such as soil, climate, topography, 
landscape, water regime, and so on. 

o 	STEP 2. Classify each of the specified environmental characteristics accord­
ing to: 
" The relative size of contiguous area in which homogeneity of a given 

characteristic is expected. For example, areas with the same climate will 
be larger than those having the same landscape or water regime. 

" 	The availability of existing information, or the relative ease in obtaining 
the information, on the desired characteristics. For example, climatic 
data is usually more readily available than information on landscape, 
water regime, and cropping pattern. The latter is usually obtained through 
farm visits by the researchers. 

o 	sTEP 3. Select . large contiguous area that satisfies :hose environmental 
features that are usually homogeneous over a wide area; and, within that 
area, identify sub-areas (or farms) that satisfy those environmental condi­
tions that are more variable. For example, a large contiguous area can be 
first selected to satisfy the required climate and soil. These can be based on 
weather-station records and a soil map. Within the selected area, farm visits 
and interviews of selected farmers will help identify farms that have the 
topography, landscape, water regime, and cropping pattern that most closely 
approximate the required test environment. 
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If more than one farm is found to satisfy the specified test environment, 
select those most accessible, have more available resources, and are managed 
by cooperative farmers. 

0 sTEP 4. For each selected farm, choose an area or a field that is large 
enough to accommodate the experiment and has the least soil heterogeneity 
(through visual judgment, based on information of past crops, etc.). If no 
single field is large enough to accommodate the whole experiment, select the 
smallest number of fields that can accommodate it. 

16.2.2 Experimental Design and Field Layout 

The design of experiments in farmers' fields must aim at keeping the size of 
experiment small. This is done by keeping the number of treatments and 
number of replications at the minimum. To reduce the number of treatments, a 
fractional factorial design (Chapter 4, Section 4.5) may be used. To determine 
the numbcr of replications, two contrasting considerations should be examined: 

" Errors can be expected to increase in on-farm trials because the fields are 
less accessible and more difficult for researchers to supervise. In addition, 
damage by rats, stray animals, vandalism, and theft are more apt to occur in 
on-farm trials and will increase experimental error. 

" The generally low insect and disease pressure and the more uniformly 
managed farmers' fields that are free of residual effects from previous 
treatments may, on the other hand, result to less experimental error. 

Thus, the choice of the number of replications to be used depends on the 
relative importance of these two conflicting features. For example, if the 
chance for increase in experimental error overshadows the chance for less 
error, the number of replications should be greater than that used in research­
station trials. Experience in rice research has indicated that, with proper 
management, experimental error of an on-farm technology-generation experi­
ment can be smaller than that in a research station; and, subsequently, the 
number of repications need not be larger than that used at research stations. 

For plot layout in a farmer's field, the techniques used in research stations 
generally apply. However, the following considerations should be used in 
laying out plots: 

" Plot shape may have to be adjusted to suit the irregular shape of the field 
and the manner in which the leveling of land has been done. 

" If one paddy or a distinct parcel of land is not enough to accommodate the 
whole experiment, each paddy or parcel must accommodate at least one 
whole replication. 
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16.2.3 Data Collection 

All data normally collected in research-station trials should be collected in an 

on-farm technology-generation trial. In addition, data such as those on weather, 

soil, and history of plot management that are usually available in research 

stations but not for farmers' fields must be collected. Data collection must be 

flexible enough to handle unexp~cted incidents such as damage by rats, stray 

cattle, or theft. 
Because a primary objective of technology-generation trials in farmers' 

Table 16.1 Grain Yield of Dry-Seeded Rice Tested In RCB Design with 
Five Weed-Control Methods on Four Farms and Three Replications 
per Farm 

Grain Yield, t/ha 

Treatment" Rep. I 

T" 5.5 
T2 0.6 
T3 0.2 
T4 5.7 
TS 0.3 

-

T1 5.6 
T2 6.8 
T3 5.7 
'T4 5.4 
T5, 0.4 

1.8 
T2 3.3 
T3 2.1 
T, 2.9 
71, 1.4 

T, 5.1 
T2 3.7 
T3 3.6 
T4 5.1 
T5 2.8 

Rep. II 

Farm) 
4.8 
2.5 
0.1 
5.2 
0.2 

Farm2 
5.8 
3.1 
5.7 
4.8 
0.6 

Farm3 
2.4 
3.7 
3.0 
1.1 
0.7 

Farm4 
5.4 
4.6 
4.2 
4.7 
4.2 

Rep. III Av. 

5.3 5.2 
1.2 1.4 
0.4 0.2 
4.9 5.3 
0.3 0.3 

6.0 5.8 
4.4 4.8 
5.1 5.5 
4.0 4.7 
0.6 0.5 

3.1 2.4 
2.9 3.3 
2.4 2.5 
4.0 2.7 
1.6 1.2 

5.6 5.4 
5.0 4.4 
4.5 4.1 
5.2' 5.0 
5.8 4.3 

IT, - Butachlor + proponil, T2 - Butralin + proponil, T3 - Proponil, 

T4 - Hand weeding, and T5 - Untreated. 
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fields is tc sample a wide array of environments, it is common for a technol­
ogy-generation trial to be on more than one farm. To effectively assess the 
interaction effect between treatment and farm environment, a uniform set of 
data should be collected on all farms. 

16.2.4. Data Analysis 

The objective of technology-generation trials remains the same whether on 
research stations or in farmers' fields. Consequently, data analysis on a 
per-trial basis is the same. When the trial is on more than one farm, the 
procedures for combining data over locations described in Chapter 8, Section 
8.2 apply. Because test farms represent different environments, emphasis 
should be placed on explaining th( nature of the interaction effect between 
treatment and farm in terms of the relevant environmental factor-to gain a 
better understanding of the influence of those factors on the effe4Aveness of 
the treatments tested. 

To illustrate the procedures, we use data from a weed-control trial on four 
farms, based on a RCB design with five treatments and three replications per 
farm (Table 16.1). The step-by-step procedures for examining interaction effect 
between treatment and farm are: 

o 	STEP 1. Compute a combined analysis of variance for data from all farms, 
following the appropriate procedure for combining data over sites outlined 
in Chapter 8, Section 8.2. For our example, the results are shown in Table 
16.2. The interaction effect between farm and treatment is highly significant, 
indicating that the relative performance of the weed-control treat,fnents 
varied among farms. 

o3 	 STEP 2. If the farm X treatment interaction in step I is not significant, 
indicating that treatment performance was consistent over all test farms, 
make a comparison of treatment means (averaged over all farms), following 

Table 16.2 Combined Analysis of Variance over Farms, from Data In Table 16.1a 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fb 

Farm (F) 3 60.8298 20.2766 25.05"* 
Replications within farm 8 6.4760 0.8095 
Treatment (T) 4 73.7773 18.4443 35.07* 
F x T 12 69.8161 5.8180 11.06*0 
Pooled error 32 16.8306 0.5260 

Total 59 227.7298 

"cv ­ 21.0%. 
b -*significant at 1%level. 
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the standard procedures of Chapter 5. Otherwise, examine the nature of the 
interaction through suitable partitionings of the interaction SS (see Chapter 
8, Section 8.2.1, step 3): 

A. 	 Plot the mean value of each treatment (Y axis) against the farm (X 
axis), as shown in Figure 16.1. For our example, the result shows: 

(i) Three distinct groups of treatments based on their relative perfor­
mance with respect to the test farms. One group consists of T and T4, 
another consists of T2 and T3, and the last consists of T5 (untreated). 
The major difference between the first two groups is the performance 
on farm 1: T, and T4 gave high yields while T2 and T3 gave low yields. 
That is, T, and T4 were highly effective in controlling weeds on farm 1 
while T2 ands T3 were not. 
(ii) Only on farm 4 where the yield of T5 (untreated) was not different 
from any of the other treatments, indicating that weeds were not the 
major problem on this farm. 
(iii) All weed-control treatments (TI, T2, T3, and T4) were effective on 
both farms 2 and 3 but the response was much higher on farm 2 than 
on farm 3. 

B. 	 Confirm the visual observation in A through an appropriate mean 
comparison, or through partitioni. .+ of the treatment X farm interac­
tion SS in the combined analysis of variance of step 1. For our 
example, observation (ii) is confirmed through the nonsignificant result 
of the pair comparison among the five treatment means on farm 4 
(T.')le 16.3). Observations (i) and (iii), on the other hand, are confirmed 
by thp results of the partitioning of the interaction SS (Table 16.4). 

Yield 	 (/ho)
6 

T 3
 Y " 


Farm I Farm 2 Form 3 Farm 4 

Fgue 16.1 ,Examination of the farm × trcatment interaction by plotting mean yield of each 
treatment against farm, from data in Table 16.1. 



Table 16.3 Yield Comparison Between Five Weed-Control Treatments 

Tested on Four Farms 

Mean Yield, t/ha 

Treatment Farm 1 Farm 2 Farm 3 Farm 4 Av. 

T, 5.20 a 5.80 a 2.43 ab 5.37 a 4.70 
T2 1.43 b 4.77 a 3.30 a 4.43 a 3.48 
T3 0.23 b 5.50 a 2.50 ab 4.10 a 3.08 
T4 5.27 a 4.73 a 2.67 a 5.00 a 4.42 
Ts (untreated) 0.27 b 0.53 b 1.23 b 4.27 a 1.58 

Av. 2.48 4.27 2.43 4.63 3.45 

"Average of three replications per farm. In each farm, means followed by a 
common letter are not significantly different at the 5% level of significance. 

Table 16.4 Partloning of the Treatment x Farm interaction S$ In Table 16.2, 
to Confirm Observations Made from Figure 16.1 

Source Degree Sum 
of of of Mean Computed

FaVariation Freedom Squares Square 

(T vs. others) x Farm 3 23.6535 7.8845 14.99** 
(T5 vs. others) x (Farm 2 

vs. Farm 3) (1) 12.0968 12.0968 23.00** 
(T5 vs. others) x othe,. (2) 11.5567 5.7784 10.99* 

(TI, T4 vs. T2 , T3) x Farm 3 41.5142 13.8381 26.31" 
(TI vs. T4 ) X Farm 3 1.5150 0.5050 < 1 
(T2 vs. T3) x Farm 3 3.1333 1.0444 1.99 ns 

a**- significant at 1%level, - not significrat. 

Table 16.5 Mean Total Weed Weight In the Weed-Control Trial on Four Farms 

Mean Total Weed Weight, g/m 2a 

Treatment Farm 1 Farm 2 Farm 3 Farm 4 

T, 28.0 44.4 176.8 7.2 
T2 290.6 93.8 197.4 12.2 
T3 528.6 19.2 351.6 45.2 
T4 16.4 39.2 32.4 5.8 
T5 (untreated) 828.2 421.8 430.4 49.6 

Av. 338.4 123.7 237.7 24.0 

aWeed data measured at 62 days after emergence and average of three replications 
per farm; the corresponding yield data are in Table 16.1. 

569 
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3 sTEp 3. Identify the environmental factors that are the most likely cause of 
the interaction effect between treatment and farm obtained in step 2. For 
our example, biological inference would lead us to suspect that weed 
incidence is the most likely cause. Thus, total weed weight is first examined 
in relation to the performance of the weed-control treatments from farm to 
farm (Table 16.5). The data indicate that: 

" 	 On farm 4, weeds, as represented by data in the untreated plots, were 
very few. This is probably the reason why the yields of untreated plots on 
this farm were high and no significant response to any weed-control 
method was observed (Table 16.3). 

" 	 On farm 1, weed weights in the untreated plots were the highest (almost 
double those on farms 2 and 3). This is probably the reason for the large 
variation among the ti eated plots, that is, T2 and T3 gave yields that were 
much lower than that of T, and T4 (Table 16.3). Apparently, grasses and 
sedges were the dominant weed types on this particular farm; and while 
T, and T4 were effective in controlling these types of weed, T2 and T3 
were not (Table 16.6). 

Table 16. Mean Weight of Weeds, Classified by Type
 
(BroadleLves, Grasses, and 3edges) In a
 
Weed Control Trial on Four Farms
 

Weed Weight, g/m 2 

Treatment Farm 1 Farm 2 Farm 3 Farm 4 

Broadleaves 
Ti 7.8 16.8 0.2 0.2 
T2 9.6 26.8 4.2 1.2 
T3 4.0 5.8 9.4 0.0 
T4 0.4 0.2 3.4 0.4 
T5 0.0 13.8 32.2 2.0 

Grasses 
T, 20.2 20.8 173.0 6.4 
T2 224.0 27.2 164.0 8.0 
T3 461.2 10.8 328.0 28.4 
T4 6.2 30.0 25.6 4.8 
T5 6%.0 390.6 387.0 40.8 

Sedges 
T, 0.0 6.8 3.6 0.6 
T2 57.0 39.8 29.. 0.6 
T3 63.4 2.6 14.2 8.0 
T4 9.8 8.8 3.4 0.4 
T5 132.2 17.6 11.2 6.6 
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The relatively lower yields and the smailcr response to weed-control 
treatments on farm 3, relative to farm 2, could not be satisfactorily 
explained by the weed data in Tables 16.5 and 16.6. First, total weed 
weights in untreated plots were similar on these two farms (Table 16.5) 
and even though farm 3 had more broadleaves in the untreated plots than 
farm 2, the control of this type of weed on farm 3 was even better than 
on farm 2 (Table 16.6). On the other hand, ahhough total weight of 
grasses was the same on farms 2 and 3, the three chemical treatments T1, 
T2, and T3 were more effective in controlling grasses on farm 2 than on 
farm 3. However, despite the effectiveness in reducing the amount of 
grasses through hand weeding (T4) on farm 3, its yield were not signifi­
cantly differunt from those of the chemical treatments. Thus, it seems that 
there were other yield limiting factors present on farm 3 besides weeds. 
These factors need to be examined further. 

16.3 TECHNOLOGY-VERIFICATION EXPERIMENTS 

The primary objective of a technology-verification trial is to compare the 
performance of the farmer's technology and the new technology in the farmers' 
fields. The primary bases of performance are biological yield and profitability. 
Thus, in contrast to a technology-generation trial, a technology-verification 
trial has the following distinctive features: 

1. Farmer's Field as the Test Site. Because superiority of a new tech­
nology over that of the farmers' must be established with the actual farm 
conditions, technology verification must be done in farmers' fields. Because of 
the large variation among farms, even in a small contiguous area, the number 
of farms required for technology verification is generally larger than that for 
technology generation. 

2. Farmer's Practice as the Basis of Comparison. In a technology-genera­
tion trial, it is customary to have a control treatment, which represents a zero 
level, such as no fertilizer application in a fertilizer trial or no insect control in 
an insecticide trial, as the basis for comparing the treatments tested. In the 
technology-verification trial, the control is the farmer's practice, which hardly 
ever represents zero level. Farmers usually use some fertilizers and some weed 
and insect control, but either at a lower rate or with a different method of 
application than that ,ecommended. 

3. Farmer's Practice as the Level of Management for Growing the Experi­
mental Crops. In a technology-generation trial, all prattices except the 
treatments tested are almost always prescribed at an optimum level. In a 
technology-verification trial, all practices except the test factors (the compo­
nents of the new technology that differ from that of the farmer's practice) are 
maintained at the farmer's level. 
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16.3.1 Selection of Test Farms 

The test farms for technology verification should adequately represent the 
farms in a target area-the area in which the new technology may be 
recommended for adoption. This makes it necessary to identify the specific 
boundaries of the area and choose the appropriate sampling technique for 
selecting test farms. 

16.3.1.1 Target Area. The target area is defined by one or more specific 
environmental components (physical, biological, social, and economic) that are 
considered critical to the superior performance and eventual adoption of the 
new technology. The farms in a target area may not create a single contiguous 
area, but a contiguous area is desirable because it facilitates the identification 
and selection of test farms and the diffusion of the recommended technology. 

16.3.1.2 Sampling Plan. To ensure that the test farms are representative 
of the target area, an adequate number of test farms (sample size) must be 
selected following a valid sampling technique. Sample size should increase with 
the variability between farms in the target area. Diversity in cropping pattern 
is a good indicator of the variability between farms. As a general rule, the 
number of test farms should be about 10 times the number of dominant 
cropping patterns in the target area. 

The most commonly used sampling design for selecting the test farms for a 
technology-verification trial is a stratified random sampling (Chapter 15, 
Section 15.1.3.3) with farms as the primary sampling unit and fields within 
farm as the secondary sampling unit. Cropping pattern and farm size are the 
most commonly used stratification criteria. 

16.3.2 Experimental Design 

A technology-verification trial with k test factors can be viewed as a 21 
factorial experiment in which the two levels of each test factor represent the 
level prescribed in the new technology and the level of the farmer's practice. 
For example, consider a case where the existing farmer's practice is to grow 
rice in the wet season to be followed by maize in tie dry season, and the new 
technology consists of the same cropping pattern but with a different variety, 
fertilizer rate, weed control, and insect control for rice and a different insect 
control and land preparation for maize. The new technology differs from the 
existing farmer's practice by six component technologies-four for rice and 
two for maize-hence, there are six test factors (i.e., k = 6). With two levels 
per !est factor, the technology-verification trial is a 26 factorial experiment. 

When k is large, as is the usual case for a technology-verification tial, a 
complete set of 2k factorial treatments becomes too large to be practical. To 
reduce the size of the experiment, three different sets of treatments are 
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generally tested. These are: 

1. 	 Set X, consisting of two treatments: the new technology (the test factors 
are all at the new-technology level) and the farmer's practice (the test 
factors are all at the farmer's level). 

2. 	 Set Y, consisting of (k + 2) treatments: the two treatments of set X plus 
the k intermediate treatments, each of which represents a treatment 
combination in which all test factors but one are at the new-technology 
level. 

3. 	 Set Z, consisting of either the 2 k complete factorial treatment combina­
tions or an appropriate fractional factorial set (Chapter 4, Section 4.5). 

To illustrate, consider a technology-verification trial involving a single rice 
:top in which the new technology represents an improvement over the farmer's 
3ractice in four components: fertiliz(,r (F), variety (V), weed control (W), and 

Table 16.7 The Three Sets of Treatment X, Y,and Z Associated with a 
Technology-VeriflcaUon Trial In Rice Involvio'g Four Test Factors: 
Fertilizer (F), Variety (V), Weed Control (W), and Insect Control (I) 

Factor Levela 	 Treatment b 

Set Z 

Treatment Set Set Complete Fractional 
Number F V W I X Y Factorial Factorial" 

1 n n n n * *
 
2 f n n a ­

3 n f n n - *
 
4 f f n - - *
 

5 n n f n - * *
 
6 f n f n - ­

7 n f f n * *
 
8 f f f n - ­
9 n h n f - • •
 

10 f n n f -- *
 
11 n f n f - - * *
 
12 f f n f - ­

13 n n f f - - *
 
14 f n f f - ­

15 n f f f - - *
 
16 f f f f *
 

an - level of the new technology and f - farmer's level. 
b_. not tested and * - tested. 

'A J of 24 fractional lwtcial design (Chapter 4, Section 4.5). 
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insect control (I). That is, there are four test factors and the technology-verifi­
cation trial is a 24 factorial experiment. The three sets of treatments (X, Y, and 
Z) associated with this technology-verification trial are shown in Table 16.7. 

Because the number of treatments is smallest in set X and largest in set Z, 
the number of farms testing the A set of treatments (nor) is usually the largest, 
followed by ny, the number of farms testing the Y set of treatments, and 
finally, n:, the number of farms testing the Z set of treatments. The size of n, is 
dependent on the degree of importance of the interaction effects among test 
factors anticipated. If the interaction is expected to be large and to involve a 
large number of test factors, then n, should also be large. The proportion of 
n,:ny:n, commonly used for technology-verification trials in rice is 3:1:1. 

16.3.3 Field-Plot Technique 

The field-plot technique for a technology-verification trial must cope with 
several potential problems: 

" Relatively large variation between and within farms 
" Diversity in the farmer's practice 
" Implementation of the farmer's practice as a treatment 
" Farmer's practice as the underlying test condition 

Because none of these problems is relevant to a technology-generation trial, the 
standard field plot techniques used in research-station trials are not effective in 
dealing with these problems. Development of appropriate field plot techniques 
for technology-verification trials is in the early stages and is confined primarily 
to rice. We describe these newly developed procedures, together with their 
potential application to other crops and to multiple cropping. 

16.3.3.1 Number of Replications. The precision of the technology-verifica­
tion trial depends primarily on the magnitude of the variation between farms 
and variation within farms. While the inclusion of several test farms is used to 
cope with variation between farms, the use of replications in each farm is used 
to cope with the within-farm variation. Because variation within farms is 
generally expected to be much smaller than that between farms, :he number of 
replications per farm need not be as large as that normally used for a 
technology-generation trial. In fact, two replications per farm is most com­
monly used in a technology-verification trial. 

16.3.3.2 Determination and Implementation of the Farmer'sPractice. Al­
though the level associated with the new technology is known beforehand and 
is common in all test farms that test the same new technology, the level 
associated with the farmer's practice is not known in advance and has to be 
determined independently for each test farm. This is because, in a target area, 
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the actual farmer's practice could vary greatly between farms; and the use of 
the average or representativefarmer's practice, although simple, is not valid. 

In each of the n, test farms in which the set X treatments (composed of the 
new technology and the farmer's practice) are tested (Section 16.3.2), the 
farmer's practice can be obtained directly from an adjacent area cultivated by 
the farmer as a part of his normal farming. Thus, only the ne'.v-technology plot 
is actually implemented and an accurate assessment and repetition of the 
farmer's level is not necessary. 

For farms testing the set Yand set Z treatments, however, the farmer's level 
must be established on each test farm because the experimental plots receiving 
the intermediate technologies have some test factors at the farmer's level and 
other factors at the new-technology level. 

Ideally, the farmer's level on each test farm should be monitored throughout 
the cropping season or throughout the duration of the experiment. However, 
such a procedure is tedious and time consuming. An alternative procedure 
frequently used is one in which the farmer's practice is based on his recollec­
tion of what he did last year, what he plans to do this year, and what factors 
may alter such a plan. 

There are two ways the farmer's practice can be incorporated in the test 
plots. First, the farmer himself can be requested to apply his practice to the 
experimental plot. Secondly, the researcher may implement the farmer's prac­
tice on the basis of his assessed perception of such a practice. 

16.3.3.2.1 Farmer's Implementation. With farmer's implementation, the 
whole experimental area is managed by the farmer as a part of his farm. To 
establish treatments other than the farmer's practice, the researcher applies the 
additional inputs and practices required by the new technology for the test 
factors specified. This procedure is most suited to cases where the new-technol­
ogy levels of all test factors require the level of management that is higher than 
the farmer's levels; for example, higher rate of fertilizer application, higher 
dosc, and frequency of insecticide application, and so on. 

Farmer's implementation is not applicable to cases where the new-technol­
ogy level and the farmer's level of a test factor share no common practice; for 
example, when the farmer's weed control is a manual one while the weed 
control of the new-technology involves only herbicide application. 

With farmer's implementation, the difficult task of assessing the farmer's 
practice in advance is avoided. Although information on the farmer's practice 
is still needed for the interpretation of results, this need can be satisfied by 
simply keeping records of the operation after it is actually performed, which is 
a much simpler task. 

On the other hand, with the experimental area managed by the farmer, the 
plot layout must be set up to facilitate the farmer's operations. For example, in 
wetland rice, large plots may be needed to eliminate the need for having bunds 
(or levees) to separate experimental plots. The presence of bunded plots 
oI-tructs such farmer's tasks as land preparation and irrigation. 
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16.3.3.2.2 Researcher's Implementation. With researcher's implementa­
tion, all treatments are implemented by the researcher according to thc 
specified level of each test factor. This procedure is applicable only if the 
researcher has acurate information, on the farmer's level of each test factor, 
prior to its implementation. For example, if one of the test factors is fertilizer, 
the researcher must have information on the farmer's anticipated fertilizer 
practice ,efore the time of the first fertilizer application. 

163.3.3 Managemem, of the Test Condition. Test condition in a technol­
ogy-verification t,ial refers to all management and cultural practices other than 
the test factors. For example, for the trial with four test factors of fertilizer, 
variety, insect control, and weed control, the test condition includes all other 
pracices such as land preparation, method of planting, plant density, and 
water management. 

The test condition of a technology-verification trial can be implemented by 
the farmer, or the researcher, or both. The choice is greatly related to that of 
the procedure for implementing the farmer's level of the test factors (Section 
16.3.3.2). If the farmer implements the farmer's level of the test factors, then it 
follows that he should implement the test condition. On the other hand, even if 
the researcher implements the farmer's level of the test factors, the test 
condition can be .mplemented by either the researcher or the farmer. The latter 
is preferred because of ease in implementation (there is no need for the 
researcher to gather the information on all aspects of the farmer's practice) and 
accuracy of the test condition (see Section 16..j.3.4). However, with the 
researcher managing the test condition and, consequently, the whole experi­
ment, the usual field plot technique does not need much modification, although 
an accurate assessment of the farmer's practice prior to the start of the 
experiment is still essential. 

16.3.3.4 Verification and Simulation of the Farmer'sPractice. In a tech­
nology-verification experiment, the establishment of each treatment becomes 
more difficult than that in a technology-generation experiment because the 
farmer's practice differs from farm to farm and from s.eason to season. One 
common difficulty occurs when the farmer's practice, ob!ained before the trial, 
is modified by the farmer inthe course of experimentation. Consequently, the 
farmer's practice used in the trial differs from that for the rest of the farm, thus 
reducing the validity and applicability of thc results of the trial. 

An important step is to evaluate how accurately the farmer's practice has 
been simulated in the trial. This is done by measuring the performance of the 
farmer's crop from areas immediately adjacent to the experimental plots. These 
measurements are compared to those from the experimental plot (or plots) 
receiving the farmer's practice. A large difference between .,e two values 
would indicate a failure in the simulation of the farmer's practice. 
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16.3A Data Collection 

Data collection for technology-verification trials is designed primarily to 
compare the new technology and the farmer's practice and to determine the 
potential for adoption of the new technology. Because of such a specific 
objective, the type of data to be collected generally differs from that of 
technology generation. Some of the important data to be collected for a 
technology-verification trial are: 

* 	 Productivity or yield measured in each plot. 
* 	 Physical and biological environment of the farm, such as the soil character­

istics, the histery of crops grown and the management applied, and the 
climatic and weatt'er data recorded on a per-trial basis. 

* 	 Social and economic data, which are essential in the evaluation of the 
potential for adoption of the new technology, such as farm size, household 
income and labor, cost of agricultural inputs, and prices of the farm 
products, that are collected in the target area. 

* 	 Current farmer's practice and its productivity. This type of data is usually 
obtained through interview of the farmer, monitoring of the farmer's 
operations, and crop-cut sample from appropriate areas of the farm. This 
information is needed for a meaningful interpretation of results and to 
verify the validity of the simulation of the farmer's practice in the trial. 

* 	 Data that are expected to help explain the performance of each test factor. 
For example, if insect control is a test factor, data on insect and disease 
incidences, on a per-farm basis, could be helpful in explaining the variation 
in performance of insect control over test farms. Similarly, if weed control is 
a test factor, data on weed incidence should be collected. 

Note that there are several types of data, normally collected for technology­
generation trials, which need not be collected in a technology-verification trial. 
A good example is the detailed data on agronomic traits (including the yield 
components) which are standard data for technology-generation trials in rice. 
Such information is not so useful for technology verification. 

16.3.5 Data Analysis 

Two types of data analysis are necessary in a technology-verification trial; 
yield gap analysis and cost and return analysis. 

16.3.5.1 Yield Gap Analysis. The yield gap analysis measures the dif­
ference in yield (or any other index of productivity) between the new technol­
ogy and the farmer's practice, and partitions this difference into components 
representing contributions from the individual test factors. Because, in most 
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cases, only te yields from the same crop, or crops, can be compared, the yield 
gap analysis is generally applicable only on a per-crop basis. 

When the new technology involves more than one crop, yield gap analyse is 
applicable only to crops that are common to both the new technology and the 
farmer's practice. For example, when the technology-verification experiment 
involves the same cropping pattern (for example rice followed by maize) in 
both the new technology and the farmer's practice, yield gap analysis is applied 
independently to each of the two crops. On the other hand, if the new 
technology involves a cropping pattern of rice followed by rice and the 
farmer's cropping pattern is a rice followed by maize, then the yield gap 
analysis is applicable only to the first rice crop, because it is common to both 
patterns. 

We illustrate the computational procedure for technology verification with 
yield data from a rice trial involving three test factors: fertilizer (F), insect 
control (1), and weed control (W). The tria, involves 19 test farms, with set X 
treatments tested on 12 farms (Table 16.8), stk Y treatments on 3 farms (Table 
16.9), and set Z treatments (i.e., the 2' complete factorial treatments) on 4 
farms (Table 16.10). On each farm, the treatments are tested in two replica­
tions. The step-by-step procedures for yield gap analysis are: 

01 	 STEP 1. For each test farm, compute the yield gap as the difference between 
the yield of the new technology and that of the farmer's practice. Then, 

Table 16.8 Grain Yield of the New Technology and the Farmer's 
Practice Tested on 12 Test Farms, with Two Replications per Farm, 
In a Technology-Verification Trial In Rice 

Grain Yield, t/ha 

Farm New Technology Farmer's Practice 
Number Rep. I Rep. II Av. Rep. I Rep. II Av. 

1 6.60 6.64 6.62 3.56 4.94 4.25 
2 6.50 5.96 6.23 3.88 4.62 4.25 
3 7.61 6.78 7.20 6.02 5.30 5.66 
4 7.20 7.02 7.11 5.26 5.15 5.20 
5 3.68 3.62 3.65 3.13 2.73 2.93 
6 4.18 4.47 4.32 3.00 3.05 3.02 
7 6.54 5.98 6.26 5.36 5.10 5.23 
8 7.26 6.20 6.73 5.76 4.69 5.22 
9 7.30 6.28 6.79 5.35 5.17 5.26 

10 7.60 7.60 7.60 5.96 5.74 5.85 
11 6.71 6.29 6.50 5.65 5.89 5.77 
12 7.14 6.16 6.65 5.02 4.56 4.79 
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Table 16.9 Grain Yield of Set Y Treatments of a Technology-Verification Trial In 
Rice, Involving Three Test Factors F, I, and W, tested on Three Test Farms with Two 
Replications per Farm 

Treatment Grain Yield, t/ha
 
Level" Farm 13 Farm 14 Farm 15
 

No F I W Rep. I Rep. II Av. Rep. I Rep. II Av. Rep. I Rep. II Av. 

I n n n 6.83 7.51 7.17 6.76 7.02 6.89 6.93 6.91 6.92 
2 f n n 6.26 5.92 6.09 6.74 6.23 6.48 6.06 6.06 6.06 
2 n f n 6.16 6.29 6.22 5.92 6.14 6.03 6.21 6.72 6.46 
4 n n f 6.97 7.15 7.06 7.57 6.73 7.15 6.50 7.27 6.88 
5 f f f 5.36 4.84 5.10 5.05 4.37 4.71 4.53 4.99 4.76 

"Fertilizer (F), insect control (I), and weed control (W); n = new-technology level and 
f = farmer's level. 

compute the average of these yield gaps over all n test farms as: 

'I 

G= ­

n 

where P, is the mean yield of the new technology, and Q is the mean yield 
of the farmer's practice, in the ith farm. 

For our example, the results for the 19 test farms are shown in Table 
16.11. The values of yield gap range from 0.72 t/ha in farm 5 to 3.45 t/ha 
in farm 17, with the mean yield gap over all test farms of 1.87 t/ha. 

[: 	 sn-i, 2. Evaluate the interaction amolig test factors by computing a com­
bined analysis of variance of data over all n. farms (where set Z treatments 
are tested), following the procedure for combining data from a RCB 
experiment over years outlined in Chapter 8, Section 8.1.2. That is, test 
farms in the technology-verification experiment are considered as a random 
variable. 

If no data from n, farms are availabie, either because no farm has 
successfully tested set Z treatments or there is no n, farm, disregard this step 
and proceed to Analysis I of step 3. 

For our example, there are four n: farms (Table 16.10). The results of the 
combined analysis of variance over four farms, based on RCB design, are 
shown in Table 16.12. A suitable factorial partitioning of the treatment SS 
into main effects of, and interactions between, the three test factors is 
performed. Results indicate no significant interaction effects between the 
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Table 16.10 Grain Yield of Set ZTreatments of a Technology-Verlflcation Trial In Rice, InvoMng Three 

Test Factors F, I, and W Tested on Four Test Farms with Two ReplicaUons per Farm 

Treatment C.rain Yieid, !/ha 

Level" Farm 16 Farm 17 Farm 18 Farm 19 
No. F I W Rep. I Rep. II Av. Rep. I Rep. II Av. Rep. I Rep. II Av. Rep. I Rep. H Av. 

1 n n n 8.76 6.90 7.83 7.21 7.05 7.13 6.98 6.36 6.67 6.28 5.98 6.13 
2 n n f 4.98 6.60 5.79 6.20 6.62 6.41 6.43 6.23 6.33 6.14 6.00 6.07 
3 h f n 6.50 6.50 6.50 5.74 5.76 5.75 6.00 6.16 6.08 4.96 4.44 4.70 
4 n f f 7.29 6.31 6.80 4.74 5.54 5.14 5.87 6.03 5.95 4.96 4.21 4.58 
5 f n n 7.63 6.73 7.18 5.14 5.52 5.33 5.80 5.81 5.80 4.86 4.39 4.62 
6 f n f 7.02 6.27 6.64 4.93 5.12 5.02 5.47 5.57 5.52 4.88 4.30 4.59 
7 f f n 5.58 5.12 5.35 4.40 5.06 4.73 4.69 4.67 4.68 3.80 3.16 3.48 
8 f f f 5.44 5.01 5.22 3.49 3.88 3.68 4.64 4.70 4.67 3.49 3.04 3.26 

'Fertilizer (F), insect control (I), and weed control (W); n = new-technology level and f = farmer's level. 
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Table 16.11 Computation of Yield Gap as the 
Difference between the New Technology and the 
Farmer's Practice, Compvted from Data In Tablea 
16.8 to 16.10 

Me:n Yield, t/ha 

Farm New Farmer's Yield
 
Number Technology Practice Gap
 

1 6.62 4.25 2.37 
2 6.23 4.25 1.98 
3 7.20 5.66 1.54 
4 7.11 5.20 1.91 
5 3.65 2.93 0.72 
6 4.32 3.02 1.30 
7 6.26 5.23 1.03 
8 6.73 5.22 1.51 
9 6.79 5.26 1.53 

10 7.60 5.85 1.75 
11 6.50 5.77 0.73 
12 6.65 4.79 1.86 
13 7.17 5.10 2.07 
14 6.89 4.71 2.18 
15 6.92 4.76 2.16 
16 7.83 5.22 2.61 
17 7.13 3.68 3.45 
18 6.67 4.67 2.00 
19 6.13 3.26 2.87
 
Av. 6.55 4.68 1.87
 

three test factors and that the main effects of all three test factors are 

significant. 

0 STEP 3. Calculate the contribution of each test factor to the yield gap by 

performing either one of two analyses: Analysis I when interaction effect 

between test factors is not significant, and Analysis II, otherwise. 

For. our example, no ir.teraction between the three test factors is signifi­

cant (step 2) and, hence, Analysis I is appropriate. However, computational 

steps of both analyse. will be illustrated using data of the present example. 

* 	 Analysis I. Average Contribution. Compute the average contribution for 

each test factor as: 

(i) For each of the ny farms (each testing set Y treatments), compute 

the contribution of each test factor, say factor A, as: 

CA 	=P- A 
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Table 16.12 Combined Analysis of Variance of Data InTable 16.10 over 
Four Test Farms; with Each Trial Involving 23 Complete Factorial 
Treatment Combinations 

Source Degree Stun 
of of of Mean Computed

Fa
Variation Freedom Squares Square 

Farm n,- 1 - 3 24.85006 8.28335 
Reps. within farm n,(r - 1) - 4 2.27329 0.56832 
Treatment 2k - 1 - 7 41.25957 5.89422 15.35** 

F (1) 20.38522 20.38522 53.10** 
1 (1) 16.99501 16.99501 44.27** 
W (1) 2.45706 2.45706 6.40* 
F X I (1) 0.48302 0.48302 1.260s 

F X W (1) 0.08410 0.08410 < 1 
I x W (1) 0.35106 0.35106 < 1 
F x I X W (1) 0.50410 0.50410 1.31 ns 

Treatment X Farm (2k - 1)(n. - 1) - 21 8.06227 0.38392
 
Pooled error n,(2k - 1)(r - 1) - 28 4.23951 0.15141
 

Total (n2)(r)(2k) - 1 - 63 80.68470
 

a** _ significant at 1%level, * - significant at 5% level, - not significant. 

where Fis the mean yield of the new technology and TA is the mean yield 
of the treatment in which only the level of factor A is at the farmer's level 
(i.e., all other test factors ae at the new-technology level). 

For our example, usint data in Table 16.9, the contribution of, say 
factor F, of farm 13 is computed as: 

CF= P-T 

= 7.17 - 6.09 = 1.08 t/ha 

And, the contribution of factor W of farm 14 is computed as: 

Cw=P-T w
 

= 6.89 - 7.15 = -0.26 t/ha 

The results for all three test factors and for all three test farms (farms 13, 
14, and 15) are shown in the first three rows of Table 16.13. 
(ii) For each of the n, farms (each testing set Z treatments) compute 
the contribution for each test factor, say fLctor A, as the difference 
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Table 16.13 Average Contribution of Each of the Three 
Test Factorsa Tested In a Technology-Verlflcatlon Trial; 
Computed from Data In Tables 16.9 and 16.10 

Farm Av. Contribution, t/ha 
Number F I W 

13 	 1.08 0.95 0.11 
14 	 0.41 0.86 -0.26 
15 	 0.86 0.46 0.04 
16 	 0.63 0.89 0.60 
17 	 1.42 1.15 0.68 
18 	 1.09 0.74 0.19 
19 1.38 1.35 0.11 

Av. 0.98 0.91 0.21 

aFertilizer (F), insect control (1), and weed control (W). 

between the mean yield of all treatments with factor A at the new-tech­
nology level (A-.) and the mean yield of all treatments with factor A at 
the farmer's level (A). 

For our example, using data in Table 16.10, the contribution of, say 
factor F, of farm 16, is computed as: 

7.83 	+ 5.79 + 6.50 + 6.80 7.18 + 6.64 + 5.35 + 5.22 
4 4 

S6.73 - 6.10 - 0.63 t/ha 

And, the contribution of factor W of farm 17 is computed as: 

7.13 + 5.75 	+ 5.33 + 4.73 6.41 + 5.14 + 5.02 + 3.68 

4 	 4 

- 5.74 - 5.06 = 0.68 t/ha 

The results for all three test factors and for all four test farms (farms 16, 
17, 18, and 19) are shown in Table 16.13. 
(iii) For each test factor, compute the mean, over all (nY + n,) farms, 
of all contributions computed in (i) and (ii). For our example, the mean 
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contribution for each test factor is computed over ny + n. = 3 + 4 = 7 
farms. The results are shown in the bottom row of Table 16.13. The mean 
contributions are 0.98 t/ha for fertilizer, 0.91 t/ha for insect control, and 
0.21 t/ha for weed control. 
(iv) Compute the adjusted mean contribution of each test factor as the 
product of the adjustment factor (g) and the mean contribution com­
puted in (iii): 

Adjusted mean contribution = (g) (mean contribution) 

(S-G)g=1 S 

where S is the sum of the mean contributions over all test factors, and G 
is the mean yield gap of step 1. 

Note that if S = G, no adjustment is needed. The difference between S 
and G should be small when thcre is no interaction between test factors, 
and large, otherwise. In cases where there is no data from n, farms and, 
hence, no assessment of interaction (step 2) can be made, the difference 
D = S - G that is greater than 20% of the mean yield gap can be taken 
as an indicator of the presence of interaction. Thus, if D is greater than 
(0.2)(G), Analysis I should be aborted and Analysis II applied instead. 

For our example, the difference D is computed as: 

D=S-G 

- (0.98 + 0.91 + 0.21) - 1.87 

= 0.23 t/ha 

which is less than 20% of the mean yield gap. This collaborates with the 
result of no significant interaction between test factors obtained in step 2. 
Hence, the adjusted mean contribution of each test factor is computed 
as: 

Adjusted mean contribution of fertilizer = (0.89048)(0.98) = 0.87 

Adjusted mean contribution of insect control = (0.89048)(0.91) = 0.81 

Adjusted mean contribution of weed control = (0.89048)(0.21) = 0.19 

Note that the sum of the adjusted mean contributions equals the mean 
yield gap. 

Analysis I. Individual and joint contributions. When one or more of the 
interaction effects between test factors is significant (step 2), compute the 

http:0.89048)(0.21
http:0.89048)(0.91
http:0.89048)(0.98
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individual cone;ibution of each test factor based on data from n. farms 
which testcd the complete factorial treatments, and the joint contribution 
of each combination of two or more test factors based on data from both 
the n, farms and the n. farms. 

(i) Individual contribution of a test factor, say factor A, measures the 
added yield over that of the farmer's practice, obtained from applying 
factor A at the new-technology level while maintaining all other test 
factors at the farmer's level. Thus, it is computed as the difference 
between the yield of the farmer's practice and the yield of the treatment 
that has only factor A at the new-technology level (i.e., all other test 
factors are at the farmer's level). For example, consider set Z with 
complete factorial treatments in Table 16.7. Here, the individual contri­
bution of factor F is computed as: 

HF = 15- 16 

where Y, and Y16 are the mean yields of treatments 15 and 16. 
For our example, using data in Table 16.10, the individual contribu­

tion of factor F for farm 16 is computed as: 

1F = 6.80 - 5.22 = 1.58 t/ha 

(ii) Joint contril.ution measures the added yield, over that of the farmer's 
practice, obtained from applying a combination of two or more test 
factors at the new-technology level. For example, the joint contribution 
of a set of two test factors, say, factors F and W, based on the list of 
treatments in Table 16.7, is computed as: 

1
J w = Y1I - Y16 

where Y1 and Y,6 are the mean yields of treatments 11 and 16. The joint 
contribution of a set of three test factors F, W, and I of Tabie 16.7 is 
computed as: 

JFW, = 3- Y6 

where Y3 and Y16 are the mean yields of treatments 3 and 16. 
For our example, using data in Table 16.10, the joint contribution of 

the test factors F and W, for farm 16, is computed as: 

JFw = 6.50 - 5.22 = 1.28 t/ha 

16.3.5.2 Cost and Return Analysis. The cost and return analysis measures 
the profitability of the new technology and its components represented by the 
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test factors. Unlike the yield gap analysis (Section 16.3.5.1) which is applied on 
a per-crop basis, the cost and return analysis is applied at the cropping-pattern 
level. Thus, the cost and return analysis is applicable even when there is no 
crop in common between the new technology and the farmer's practice. This is 
possible because the cost and return analysis is expressed in monetary values, 
which are comparable even among different crops. 

We illustrate the computational procedure for a cost and return analysis 
with the example we used in Section 16.3.5.1. The step-by-step procedures are: 

0 	STEP 1. For each farm, determine the added cost for each test factor by 
computing the added cost of applying the new-technology level over and 
above the farmer's level. Then, sum the added costs over all test factors to 
represent the added cost for the new technology. That is: 

A 

C -C, 

i-I
 

where c, is the added cost of the ith factor and k is the number of test 
factors. For our example, the added costs, for each of the three test factors 
and for each of the 19 test farms, are shown in Table 16.14. 

o) STEP 2. Determine the price of each product by determining the price per 
unit of yield for each crop. In most cases, a single value per crop, usually the 
mean value if moderate price variation exists in the target area, is adequate. 
If large price variation exists, stratification of the target area may be 
necessary and one price per stratum is established. For our example, a single 
price of rice of $0.28/kg is used. 

o] STEP 3. Determine the added returns for tLe new technology, and for each 
of its component test factor, as: 
* 	 For each test farm, multiply the yield gap (determined in step 1 of the 

yield gap analysis, Section 16.3.5.1) by the price of the product for each 
crop and sum over all crops. That is, the added return of the new 
technology over the farmer's practice is computed as: 

R = E(price)(yield gap) 

where the summation is over all crops in the cropping pattern. 
For our example, the values of added return for each of the 19 farms 

are computed from the yield gap values in Table 16.11 and the price 
value determined in step 2. The results are shown in the last column of 
Table 16.14. The added returns from the new technology over the 
farmer's practice range from $202 to $966/ha, with an average over all 
test farms of $524/ha. 
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Table 16.14 Added Costs and Added Returns of the New-Technology
 
Level over the Farmer's Level, for Each Test Factor, on 19 Test Farms
 

Added Cost, S/ha Added 

Farm Insect Weed Return, 
Number Fertilizer Control Control Total $/ha" 

1 0 72 23 95 664 
2 35 87 11 133 554 
3 -22 93 11 82 431 
4 -2 114 23 135 535 
5 -19 56 39 76 202 
6 -2 118 23 139 364 
7 1 175 23 199 288 
8 12 136 11 159 423 
9 15 120 11 146 428 

10 4 130 11 145 490 
11, 6 168 7 181 204 
12 10 112 23 145 521 
13 6 138 15 159 580 
14 1 172 15 188 610 
15 15 127 11 153 605 
16 -4 206 15 217 731 
17 4 141 27 172 966 
18 9 78 23 110 560 
19 17 145 39 201 804 
Av. 5 126 19 149 524 

aComputed from yield gap values in Table 16.11 and the price of rice of $0.28/kg. 

For each of the n , and n. farms, compute the added returns for each test 
factor, or for each combination of test factors, as the product of price 
and average contribution or individual or joint contribution, as the case 
may be (see Section 16.3.5.1, step 3). That is, the added return for each 
test factor, say factor A, is computed as: 

= pMAR A 

where p is the price (step 2) and M. is the contribution of factor A 
computed in step 3 of Section 16.3.5.1. 

For our example, the added returns are computed for each test factor 
from the average contributions in Table 16.13. The results for each of the 
7 farms are shown in Table 16.15. The added returns averaged $275/ha 
from fertilizer, $256/ha from insect control, and $59/ha from weed 
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Table 16.15 Added Return for Each Test Factor, 
Computed from Data In Table 16.13 

Added Return, $/haaFarm 
Number F I W 

13 302 266 31 
14 115 241 -73 
15 241 129 11 
16 176 249 168 
17 398 322 190 
18 305 207 53 
19 386 378 31 
Av. 275 256 59 

aFertilizer (F), insect control (I), and weed control 
(W). 

control. That makes the proportion of contribution by the three test 
factors to the total added returns from the new technology 47% for 
fertilizer, 43% for insecticide, and 10% for weed control. 

Because there is a difference of $66 between the average total added 
return in Table 16.14 ($524/ha) and the sum of the added returns of the 
three test factors in Table 16.15 ($590/ha), the added returns per hectare 
of the three test . 'ctors are adjusied to be $244 for fertilizer, $228 for 
insect control and $52 for weed control. 

0 STEP 4. In each farm, compute the addtc' profit as follows: 
" Added profit from the new technology over the farmer's practice is 

computed as: 

P=R-C 

where R is the added return of step 3 and C is the added cost of step 1. 
" Added profit of each test factor, say factor A, is computed as: 

PA = RA - CA 

where R A and cA are the added returns and added cost corresponding to 
factor A, computed in step 3 and step 1, respectively. 

For our example, the results are shown in Tables 16.16 and 16.17. The 
added profit from the new technology ranges from $23/ha for farm 11 to 
$794/ha for farm 17, with an average of $375/ha over all test farms. 
When classified by individual test factors, the highest added profit comes 
from fertilizer (with a mean of $268/ha), followed by insect control (with 
a mean of $112/ha), and weed control (with a mean of $38/ha). 
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Table 16.16 Added Profit of the New Technology over the Farmer's 
Practice, on 19 Test Farms, Computed from Data In Table 16,14 

Added Added Added 
Farm Profit, Farm Profit, Farm Profit, 

Number S/ha Number S/ha Number S/ha 

1 569 8 264 14 422 
2 421 9 282 15 452 
3 349 10 345 16 .314 
4 400 11 23 17 794 
5 126 12 376 18 450 
6 225 13 421 19 603 
7 89 

Table 16.17 Added Profit for Each Test Fac'tor,
 
Computed from Data InTables 16.14 and 16.15
 

Added Profit, S/haiFarm 
Number F I W 

13 296 128 16 
14 114 69 -88 
15 226 2 0 
16 180 43 153 
17 394 181 163 
18 296 129 30 
19 369 233 -8 
Av. 268 112 38
 

"Fertilizer (F), insect control (I), and weed control 

(W). 

o 	sTEp 5. Determine the marginal benefit-cost ratio for each farm as: 
" 	 Marginal benefit-cost ratio of the new technology over the farmer's 

practice is computed as: 

R 
C 

" 	 Marginal benefit-cost ratio of the new-technology level over the farmer's 
level of a test factor, say, factor A, is computed as: 

BA = R
A 

CA 
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Table 16.18 Marginal Benefit-Cost Ratio (B) of the New Technology 
over the Farmer's Practice, for Each of the 19 Test Farms, Computed 
from Data InTable 16.14 

Farm Farm Farm 
Number B Number B Number B 

1 6.99 8 2.66 14 3.24 
2 4.17 9 2.93 15 3.95 
3 5.26 10 3.38 16 3.37 
4 3.96 11 1.13 17 5.62 
5 2.66 12 3.59 18 5.09 
6 2.62 13 3.65 19 4.00 
7 1.45 

Table 16.19 Marginal Benefit-Cost Ratio for each Test 
Factor, for Each of the Seven Test Farms, Computed 
from Data In Tables 16.14 and 16.15 

Farm Marginal Benefit-Cost Ratioa 
Number F I W 

13 50.33 1.93 2.07 
14 115.00 1.40 -4.87 
15 16.07 1.02 1.00 
16 -44.00 1.21 11.20 
17 99.50 2.28 7.04 
18 33.89 2.65 2.30 
19 22.71 2.61 0.79 

Av. 41.93 1.87 2.79 

"Fertilizer (F), insect control (1), and weed control (W). 

For our example, the results are shown in Tables 16.18 and 16.19. The 
marginal benefit-cost ratio of the new technology ranges from 1.13 in farm 11 
to 6.99 in farm 1, with an average of 3.67 over all test farms. Based on 
individual test factors, the new-technology !evel of fertilizer gave the highest 
mean marginal benefit-cost ratio of 41.93 followed by weed control (mean of 
2.79); the lowest is that for insect control with the mean of 1.87. 



CHAPTER 17 

Presentation of 
Research Results 

The last and most important task for any researcher is the summarization and 
presentation of research results. The primary objective in this task is to put 
research findings in a form that can be easily understood by all interested 
parties. Raw data left unsummarized will generally remain in obscurity and 
valueless in the researchers' files; data well documented have the best chance of 
reaching intended users. 

Proper presentation of research results is a task well accepted by serious 
researchers; however, which techniques are appropriate for such a presentation 
is not well established. Although most scientific societies prescribe the style 
and format of articles they publish, those guidelines deal primarily with 
standardization and uniformity. They assume that each author will choose the 
best technique for presenting data. 

There are two types of information that are generally presented in agricul­
tural research: 

" 	 The first type of information is the description of experimental materials 
and environmental factors for the experimental site. Correct presentation 
involves primarily the choice of the characters to present, the type of 
statistics to use, and the appropriate measure of precision. For discrete 
characters, the arithmetic mean is the most commonly used statistic, with 
the standard error of the mean as the indicator of precision (Table 17.1). 
For characters measured over time, such as rainfall and solar radiation, the 
line graph or bar chart, or both, are commonly used (Figure 17.1). 

" 	 The second type of information presented concerns the results of data 
analysis. Its presentation varies greatly with the treatments tested (e.g., 
discrete or quantitative and single-factor or factorial treatments), the char­
acters meaisured (e.g., measurements over time or multicharacter data), and 
the statistical procedures used (e.g., mean comparison, regression, or chi­
square test). 
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Table 17.1 Chemical and Physical Properties of the Surface Soil 

at the Site of a Long-Term Fertility Experiment 

Soil Character Unit Mean" 

pH - 5.8 ± 0.1 

Organic matter % 4.15 ± 0.01 
Total nitrogen % 0.31 ± 0.01 
Extractable phosphorus ppm 7.3 ± 1.0 
Exchangeable potassium meq/100 g 1.46 ± 0.07 
Exchangeable calcium raeq/100 g 9.18 ± 0.27 
Cation exchatige capacity meq/100 g 73.3 ± 0.6 

"Average of eight samples ± standard error of the mean. 

Total rainfall (mm) Total solar radiation (cal/cm2) 
4,40030.0 

Rainfall 

4,000250 Solar 
radiation ­

3,60020.0 

3,20015.0 ­

2,80010.0 

-2,4005.0 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 2,000 
Week no 

Rainfall and solar radiation during the period of an experiment, by a combination ofFigure 17.1 
line grajh and bar chart. 
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Frequency of entries (% of total) < 96 days 
Year 0 .0 40 60 10 100 96-105 days 

1975. . 106-115 days 

1976 ! 6-125dys 

1977 12 -15dy 
,. 78 >135doys 

Figure 17.2 Bar ch ,n showing the frequency distribution of growth duration of rice varieties 
tested in IRRI tnals frcn 1975 to 1978. The chart emphasizes the increasing frequency of 
shortcr-growth-duration van:"'s VC,years 

The tabular form is the most commonly used form for presenting research 
results. A table is flexible and can be used to present a wide variety of results. 
In practice, any type of data that cannot be suitably summarized graphically 
can be presented in tabular form. Mean comparison of discrete treatments (see 
Chapter 5, Tables 5.1, 5.7, 5.9, and 5.11 for LSD test; and Chapter 6, Tables 
6.17 and 6.22 for DMRT) and the description of some key features of the 
environmLnt (Table 17.1) are two common uses of the tabular form. 

The most commonly used graphic presentations for agricultural research, 
arranged according to the le.'el of accuracy and frequency of use, are the line 
graph, the bar chart, and the pie chart. A line graph is suited for presenting the 
relationship between two quantitative (continuous) variables such as that 
between crop response and a quantitative treatment variable (see Chapter 6, 
Figure 6.1; Chapter 8, Figure 8.1; Chapter 9, Figure 9.9). A bar chart is 
generally used for discrete (discontinuous) data such as frequency distribution 
and percentage data (Figure 17.2). A pie chart is generally used to present 
striking differences in the relative magnitudes of a few components of a whole 
unit (Figure 17.3). 

~470,
 

\ INSECT CONTROL 

Figure 17.3 Pie chatt showing the relative contribution of insect control, fcrtilizcr, and weed 
control to improved rice yields in farmers' fields (data from Chapter 16, Table 16.13). 
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The primary focus of this chapter is to present guidelines for appropriate 
summarization and presentation of experimental results, with emphasis on 
mean comparison-the most commonly used data analyst- in agricultural 
research. 

17.1 SINGLE-FACTOR EXPERIMENT 

In a single-factor experiment, there are two types of comparison between 
treatment means: pair comparison for discrete treatments and trend compari­
son for quantitative treatments. 

17.1.1 Discrete Treatments 

The least significant difference (LSD) test and the Duncan's multiple range test 

(DMRT) are the two most commonly used procedures for comparing means of 

discrete treatments (Chapter 5, Section 5.1). The results of such comparisons 
can be presented either in tables or in bar charts. 

17.1.1.1 Tabular Form With LSD Test. The presentation of mean com­
parison based on the LSD test is simple and should be used whenever use of 
the LSD test is valid (Chapter 5, Section 5.1.1). Some rules for the proper 
presentation of mean comparison using the LSD test are: 

RULE 1. Use the LSD test only when the F tes' in the analysis of variance 
is significant. 

RULE 2. Use the LSD test only when there are no more than five 
treatments tested (Table 17.2) or whenever the comparison is between the 
control treatment and every other treatment (see Chapter 5, Table 5.1). 

Table 17.2 Tabular Presentation to Illustrate the Use of 
the LSD Test, In Comparing the Yields of Three Promising 
Maize Hybrids A, B, and D, and a Check Variety Ca 

Maize Mean Yield, 
Hybrid/Variety t/hah 

A 1.46 
B 1.47 
C (check) 1.07 
D 1.34 
LSD.05 0.25 

aSource: Chapter 2, Tables 2.7 and 2.8.
 
bAverage of four replications.
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RULE 3. Use only one test. Do not give both LSD test and DMRT for the 
same set of treatment means. 

RULE 4. The LSD value must have the same unit of measurement and the 
same number of significant digits as those of the mean values. 

RULE 5. When the analysis of variance is made with data transformation 
(Chapter 7, Section 7.2.2.1), the LSD test can be presented only if the mean 
values are presented in the transformed scale. 

RULE 6. For comparison of all possible pairs of means, present the LSD 
value either as the lact (bottom) row in the table (Table 17.2) or as a footnote. 
For comparison between the control treatment and every other treatment, 
mark each treatment with **, *, or ns (or no mark) depending on the level of 
the significance of the LSD test (see Chapter 5, Table 5.1). 

17.1.1.2 Tabular Form with DMRT Some rules for the proper use and 
presentation of the DMRT are: 

RULE 1. Foi comparing all possible pairs of treatments, use DMRT when 
the number of treatments exceeds five. For less than six treatments, the LSD 
test can be used (see Section 17.1.1.1). When data transformation is used in the 
analysis of variance and treatment means are presented in the original scale, 
use DMRT regardless of the number of treatments. 

RULE 2. Use hne notation (see Chapter 5, Table 5.12) when the treatments 
are arranged according to their rank, and use alphabet notation, otherwise (see 
Chapter 6, Tables 6.17 and 6.22). 

RULE 3. With the alphabet notation: 

" Stait the first letter for each mean at the same position (see Chapter 6, 
Tables 6.17 and 6.22). 

" Whenever four or more letters are required by more than two treatments, 
use the dash notation to shorten the string of letters. For example, the string 
abcd is written as a-d, the string bcdefg is written as b-g, and so on (see 
Chapter 7, Table 7.22). 

RULE 4. When only a fraction of total treatments are to be presented in 
the table, adjust the DMRT letters so that letters are consecutive and as few 
letters as possible are used. For illustration, see Table 17.3. 

RULE 5. Means with the same numerical value should not be presented 
with different DMRT letters. Such cases are usually caused by rounding errors 
resulting from the reduction of significant digits. When that happens, the 
remedy is to increase the significant digit of the mean values (Table 17.4). Note 
that it is possible for the mean values to be presented with a larger significant 
digit than the original data. In Table 17.4, for example, the mean values are 
presented with one decimal more than the raw data. 

RULE 6. Reduce the number of significant digits if the DMRT so indicates. 
For example, it is clear in Table 17.5 that the decimal in the mean values is not 



Table 17.3 Adjustment of DMRT Letters when Means of Only Six of the 10 Varieties Tested are Presented 

Variety b 

CPM-13-32-41 
CR214-JS-52-102 
D6-2-2 
Bala 
Annapuma 
CR245-1 
OR165-28-14-B 
IAC25 
KS109 
IR12787-3 

Grain Yield Plant Height 

Mean,a 
t/ha Original 

DMRT 
Unadjusted Adjusted 

Mean,a 
cm Original 

DMRT 
Unadjusted Adjusted 

1.16 
0.44 

a 
c 

a 
c 

a 
b 

56.5 
53.2 

f 
f 

f 
f 

d 
d 

0.98 
1.16 
0.49 
1.14 
0.60 
0.62 
0.51 

ab 
a 
c 
a 
bc 
bc 
c 

c 
a 
bc 

b 
a 
b 

120.2 
72.6 
64.7 

105.9 
66.3 

104.6 
67.4 

a 
d 
e 
b 
de 
b 
de 

e 
b 
de 

c 
a 
c 

0.81 abc abc ab 84.3 c c b 

'Average of four replications. Mean separation by DMRT at 5% level. 
bVarieties in boldface are to be excluded from presentation. 
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Table 17.4 Adjustment Inthe Number of 
SignificantDigits to Avoid the Occurrence 
of Different DMRT Lotters for Means 
with the Same Value 

Brown Planthopper, no./hilla 

Treatment Before After 
Number Adjustment Adjustment 

1 1 ab 1.1 ab 
2 1ab 1.2 ab 
3 lab 1.3ab 
4 1 a 1.4a 
5 lab 1.2ab 
6 1 b 0.6b 
7 2a 1.5 a 

aAverage of four replications. Mean separation 

by DMRT at 5% level. 

necessary because significant differences among means that are less than 10% 
cannot be detected. 

RULE 7. Do not present the DMRT when all treatments have the same 
letters. A footnote indicating no significant differences among treatments 
should suffice. 

17.1.1.3 Bar Chart. The bar chart is appropriate when the treatments are 
discrete and relatively few. A bar chart is generally used to emphasize striking 

Table 17.5 Adjustment In the Number of Significant 
Digits to Reflect the Degree of Precision 
Indicated by the DMRT 

Germination, %" 

Treatment Before After 
Number Adjustment Adjustment 

1 17.4 b 17b 
2 23.5 b 24 b 
3 21.3 b 21 b 
4 51.6 a 52 a 
5 54.7 a 55 a 
6 55.7 a 56 a 
7 57.5 a 58a 
8 58.2 a 58 a 
9 61.4 a 61 a 

aAverage of four replications. Mean separation by DMRT 

at 5% level. 
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Figure 17A Bar ch'at showing the use of DMRT in comparin, available soil ammonium nitrogen 
(NH 4-N) in three types of rice culture; bars with no common letter are significantly different at the 
5%level. 
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Figure 17.5 Bar chart showing the relative yields of rice hybrids, their parents, and a commercial 
variety IR36: the bars are grouped and the LSD value is presented. 
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differences between treatments (Figure 17.4), or to show some distinctive 
patteins of change among groups of treatments (Figure 17.5). 

Some rules for the use of bar chart to present the results of mean compari­
son involving discrete treatments are: 

RULE 1. Use a bar chart when a striking difference or relative pattern of 
change is to be emphasized, and when it is not important to maintain a high 
degree of precision of the individual mean values. 

RULE 2. When the DMRT is applied, use alphabet notation by placing 
DMRT letters on top of each treatment bar (see Figure 17.4). 

RULE 3. When the LSD test is used, show the size of the LSD as illustrated 
in Figure 17.5. 

RULE 4. Always begin the Yaxis at the zero level so that both the absolute 
and the relative bar heights reflect accurately the magnitude of the treatment 
means and the treatment differences (Figure 17.6). 

RULE 5. Avoid use of a cut-off bar for the purpose of shortening the height 
of the bar when there are extremely large differences in the bar height (Figure 
17.7). 

RULE 6. Avoid writing the actual data on top of each bar (see Figure 17.7). 
In a bar chart, the mean value should be read from the Y axis based on the 

No of insects No of insects
 
0(a)correctRb 
 incorrect 

20000 on7 

Ti T2 T3 T4 TI T2 T3 T4 

Figure 17.6 Bar charts illustrating the correct procedure (a) of starting the Y axis at the zero 

level The incorrct procdure (b) truncates the Y axis and exagerates the differences among 

treatmcnts. 
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Sporulation capacity (xlOO) 
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0 Figure 17.7 Bar chart showing the use of a 

N, , cut-off bar to shorten the height and the 
CL 4 i 2 . placement of data on top of each bar. Both 
- 0 0o practices should be avoided. 

height of the corresponding bar. If greater precision than what is obtainable 
from the bar chart is required, the bar chart is not the suitable form of 
presentation (see Rule 1). 

RULE 7. Avoid joining the tips of adjacent bars with a line, as illustrated in 
Figure 17.8. Such lipcs across the bars to show trend is inappropriate for 
discontinuous (disriete) variable. If the variable on the X axis is a continuous 
variable, use the lie graph and not the bar chart. 

RULE 8. Deteirnine the sequence of the bars based on the type of treat­
ments and the specific point that needs to be emphasized. When there is a 
natural grouping of treatments, bars may be presented in treatmerit groups 
(Figures 17.5 and 17.9). Otherwise, bars can be arranged according to their 
rank-from highest to lowest or lowest to highest (Figure 17.10). 

BEown planthopper nynmhs (no) 
300 

200 ­

1001 

0 Figure 17.8 Illustration of the combination of bar 

No One Two Three chart and line graph for a single character. This 
spray spray sprays rp practice should be avoided. 
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Figure 17.9 Bar chart showing the effect of fluctuating day and night temperatures on sporulation 
of Gibberella. This illustrates a group arrangement of bars based on night temperature. 

17.1.2 Quantitative Treatments: Line Graph 

Trend comparison showing the functional relationship between the treatment 
level and the crresponding biological response is the most appropriate method 
of mean comparison among quantitative treatments. For such comparisons, the 
line graph is most appropriate because the values of the response that are of 
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Figure 17.10 Bar graph showing the relative damage ratingsof"green leafhoppers on selected rice 

varieties. This illustrates the arrangement of bars according to rank. 
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interest are not limited to the treatment levels tested but are also on all points 
within the range of the treatments tested (see Chapter 5, Section 5.2.3). Note 
that with the tables or bar charts (Section 17.1.1), the response is specified only 
for each level of treatments actually tested. But with a line graph the response 
is specified for all points between the highest and the lowest treatment levels. 

Some rules for the use of line graph in presenting mean comparison of 
quantitative treatments are: 

RULE 1. Use the Y axis to represent response and the X axis to represent 
treatmept levels. Choose the scales for the X axis and the Yaxis to highlight 
important points, but avoid distortion of the results. Some guidelines for doing 
this are: 

" 	 Choose the scale on the Y axis that allows the reader to see the differences 
that are shown to be significant, and not to see nonsignificant differences as 
real. Difference is exaggerated with wide scale and is reduced with narrow 
scale. 

" 	 There is no need to start the Yaxis of a line graph at the zero level (Figures 
17.11 and 17.12). Similarly, the X axis should start at the lowest treatment 
level (Figure 17.13). 

Plant height (cm) 
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Figure 17.11 Line graph showing plant height of rice variety IR36 as affected by the extent of leaf 
removal: an illustration of an X axis with marks that are not equidistant and a Y axis that does not 
start at zero. 
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Loss ingroin weight (%) 
10 

6­

4­

2 9:0.59+0 2608X-o.046x 2+O000029X3 

(R2 - .96**) 

0 20 40 60 80 100 
Initial disease incidence ( ) 

Figure 17.14 Line graph showing the estimated yield loss due to disease: an illustration of on X 
axis with fewer marks than the levels of disease tested. 

The X axis should cover only the range of treatment levels tested. As much 
as possible, the mark on the X axis (i.e., the spot where the treatment level is 
indicated) should correspond to the treatment level (Figure 17.11). How­
ever, if the number of treatments is large, not all levels need to be marked 
(Figure 17.14), or if the treatments are of unequal intervals, the marks need 
not be equidistant (Figure 17.11). The marks on the Y axis should be 
equidistant. Minimize the number of marks to those necessary for clear 
readability. 

RULE 2. Use a line graph when there are at least three treatments. 
RULE 3. Whenever possible, estimate an appropriate regression equation, 

using the regression tezhniwe of Chapter 9, as shown in Figures 17.11 and 
17.14. Make sure that the line graph includes: 

" The observed points (i.e., data used in fitting the regression) 
" The estimated regression line, or curve, drawn over the rnge of the 

treatment levels tested 
" The estimated regression function, its significance, and its correlation coeffi­

cient 

RULE 4. When q proper regression equation cannot be derived, either 
because the number of treatments is not adequate (Figure 17.12) or because no 
meaningful functional relationship can be prescribed (Figure 17.13), simply 
draw a line to connect observed points and incorporate the appropriate test of 
significance. 
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17.2 FACTORIAL EXPERIMENT 

The presentation of mean comparison in a factorial experiment should be 
based on the following considerations: 

.	 Interactionbetween Test Factors. When interactions between test factors are 
significant and large, the presentation should emphasize the nature and 
magnitudc of the interactions. This can be done by constructing a multidi­
mensional graph or a multidimensional table involving the factors that 
interact. For example, if two discrete factors A and B interact, then a 
two-way table involving factrs A and B should be presented. 

" 	 Type of Test Factors.As in the case of a single-factor experiment (Section 
17.1), the appropriate mode of data presentation is a table or a bar chart for 
discrete factors and a line graph when at least one of the factors is 
quantitative. 

" 	Number of Test Factors. Data presentation increases in complexity as the 
number of test factors increases. When the number of test factors (k) is not 
more than three, a k-d.nensional table or graph is generally used. Other­
wise, only those factors that interact with each other should be included in 
the same table or graph. 

We limit our discussion to multidimensional tables and multidimensional 
graphs with no more than three dimensions. This is usually adequate in crop 
research because interactions of an order higher than three are infrequent. 

17.2.1 Tabular Form 

Rules for constructing a multidimensional table for presenting data from a 
factorial experiment are: 

RULE 1. Use a tabular form when all factors to be presented are discrete. 
Otherwise, consider using a line graph. 

RULE 2. Avoid presenting data from a factorial experiment in a one­
dimensional table (Table 17.6). Such a format does not facilitate evaluation of 
the interaction among test factors. 

RULE 3. The number of factors to be included in a multidimensional table 
should be determined as follows: 

" 	 Whenever possible, the dimension of the table should equal the number of 
test factors. This is usually done when the number of factors is not more 
than three and the levels in each facto. are not too large (Table 17.7). 

" 	 If the number of test factors exceeds three, include in the same table only 
those factors that interacted significantly with each other. For example, in a 
four-factor experiment, if A X B X C interaction is significant and no 
higher-order interaction is significant, then only a three-dimensional table 
involving three factors A, B, and C is needed. 
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Table 17.6 An Improper Presentation of Data from aFactorial Experiment 
In a One-Dimensional Table (see Table 17.7) 

Treatment Mean 
Manganese Yield, 

Lime Variety Dioxide t/haa 

Without IR26 Without 3.6 d 
With 3.9 d 

IR43 Without 4.0 cd 
With 6.2 a 

With IR26 Without 4.3 cd 
With 4.8 bcd 

IR43 Without 5.3 b 
With 6.2 a 

"Average of four replications. Mean separation by DMRT at 5%level. 

When there is more than one significant interaction of the same order, 
construct one table for each interaction or one table involving all interacting 
factors. For example, if both A × B and A x C interactions are si:;nificant, 
either construct two two-way tables of means, A x B and A X C, or present 
one A X B x C three-way table of means. 

RULE 4. Whenever one or more factors included in the same table have 
only two levels each, consider presenting the difference between the two levels, 
in addition to, or in place of, the means (Table 17.8). This facilitates the 
assessment of the magnitude, as well as the significance, of the effect of each 
factor. For example, from Table 17.8, the following conclusions can be easily 
arrived at: 

" 	 In IR26, the effect of either lime or manganese dioxide was not significant. 
" 	 In IR43, the effect of manganese dioxide was enhanced when lime was not 

applied, and the effect of lime was observed only when manganese dioxide 
was not applied. 

Table 17.7 AThree-way Table of Means for Presenting Data from a 
Three-Factor Experiment (This Format is Preferred to That In 
Table 17.6) 

Mean Yield, t/ha" 
IR26 IR43 

Manganese With Without With Without 
Dioxide Lime Lime Lime Lime 

With 4.8 bcd 3.9 d 6.2 a 6.2 a 
Without 4.3 cd 3.6 d 5.3 b 4.0 cd 

'Average of four replications. Mean separation by DMRT at 5%level, 
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Table 17.8 A Three-way Table of Means for a 23 Factorial Experiment,
 
Showing Differences Between the Two Levels In Each of Two Factors
 

Mean Yield, t/haa 

IR26 IR43 

Manganese With Without With Without 
Dioxide Lime Lime Difference Lime Lime Difference 

With 4.8 3.9 0.9 " ' 6.2 6.2 0.0 
Without 4.3 3.6 0.7n' 5.3 4.0 1.3* 

Difference 0.5n, 0.3' 0.9* 2.2** 

aAverage of 4 replications. ** - significant at 1%level, * - significant at 5% 
' 
level, - not significant. 

RULE 5. With a complete block design (CRD, RCB, or Latin square), use 
the letter notation to present the DMRT results such that mean comparison 
can be made, either vertically or norizontally, for all treatments (Table 17.7). 

RULE 6. For a two-factor experiment in either a split-plot or a strip-plot 
design, the test criterion for the row factor differs from that of the column 
factor. The guidelines for presenting the results of such types of data are: 

If the A x B interaction is significant and the level of factor A is less than 
six while that of factor B is not, assign factor A as the column factor and 
factor B as the row factor (Table 17.9). Place appropriate DMRT letters for 

Tabk 17.9 Effects of Weed Control and Land Preparation on Yield of 
Mungbean: an Illustration of the Use of DMRT for the Column Factor and of 
LSD Test for Row Factor 

Mean Yield, kg/haa 

Weed Stale Seedbed with 
Control Conventional Glyphosate One Rototillage 

Trifluralin 114 abc 274 ab 104 b 
Butralin 101 bed 265 ab 84 b 
Butachlor 26 d 232 ab 37 b 
Alachlor 48 cd 201 be 48 b 
Pendimenthalin 46 cd 200 be 58 b 
Thiobencarb 94 bed 137 c 44 b 
Hand weeding (2 x ) 182 a 289 a 230 a 
Hand weeding (Ix ) 160 ab 263 ab 224 a 
No weeding 75 cd 1.48 c 54 b 

Av. 94 223 98 

"Average of four replications. Mean separation in a column by DMRT at 5%level. 
LSD 5value for comparing land-preparation means in a row is 73 kg/ha. 
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Table 17.10 Effect of Three Sources of Urea and Five Tillage Methods on 
Panicle Length of Rice: an Illustration of the Use of DMRT Instead of LSD Test 
for the Factor Needing Emphasis 

Tillage frequency Mean Panicle Length, cm' 

Sulfur- Super-
Plowing Harrowing Rototillage Prilled coated granule 

1 1 0 20.8 a 21.6 a 22.1 a 
1 3 0 19.6 b 21.2 a 21.9 a 
1 1 1 20.5 b 20.4 b 22.4 a 
1 2 2 20.9 a 20.1 a 21.3 a 
2 2 0 21.6 a 21.7 a 21.2 a 

'Average of two varieties and four replications. Mean separation in a row by DMRT 

at 5%level. LSD.03 for comparing means in a column is 1.5 cm. 

comparing means of factor B at each level of factor A. To compare means of 
factor A at each level of factor B, use the LSD test and present the 
appropriate LSD value as a footnote (Table 17.9). 

" If the A x B interaction is significant and the levels of factors A and B are 
both less than six but one factor, say A, is more important or requires more 
emphasis than the other factor, use DMRT on factor A and the LSD test on 
factor B (Table 17.10). If both factors need equal emphasis, use the LSD 
test on both factors and prescribe the appropriate LSD values, one for each 
factor, as a footnote (Table 17.11). 

" If the A x B interaction is significant and both factors A and B have more 
than five levels each, use two sets of DMRT letters, one for the column 
factor and another for the row factor (Table 17.12). 

Table 17.11 Straw Weight of Different Rice Varieties with Various 
Methods of Straw Incorporation: an Illustration of the Use of LSD 
Test for Both Factors 

Straw Weight, t/haStraw 
Treatment IR38 IR40 IR42 IR44 IR46 Av. 

Straw removed 3.44 5.00 3.56 3.72 3.80 3.90 
Straw spread 3.30 4.28 4.08 3.60 3.24 3.70 
Straw burned 3.14 3.68 3.98 3.94 3.32 3.61 
Straw composted 2.88 3.90 3.60 4.12 3.84 3.67 

Av. 3.19 4.22 3.80 3.84 3.55 3.72 

Average of five replications. To compare means in a column, LSD.05 = 

0.71 t/ha; and in a row, LSD - 0.65 t/ha.05
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Table 17.12 Effects of Different Isolates of Bacterial Leaf Blight on Lesion 
Length of Six Rice Varieties: an Illustration of the Use of Two Sets of DMRT 
Letters -a to e for Comparing Means In a Column and w to z for 
Comparing Means In a Row 

Lesion Length, cm" 

Isolate IR8 IR20 IR1565 DV85 RD7 RD9 Av. 

TB7803 23.5bw 18.4a x 49ab y 5.3ab y 18.9b x 23.0bcw 15.7 
TB7805 16.0 c xy 15.0 b y 6.5 a z 6.2 a z 18.8 b wx 20.5 c w 13.8 
TB7807 1.4dw 1.4f w 2.2bc w 2.2bc w 1.1 d w 1.0d w 1.6 
TB7808 30.2 a w 4.4 de y 2.7 bc y 3.2 abc y 5.5 c y 25.6 b x 11.9 
TB7810 24.3 b x 5.3 de y 1.5 c z 3.2 abc yz 5.7 c y 30.0 a w 11.7 
TB7814 23.4 b w 8.6 c y 3.6 abc z 4.8 abc z 18.3 b x 25.2 b w 14.0 
TB7831 24.2 b x 2.7 ef y 1.9 bc y 3.0 abc y 4.8 c y 28.7 a w 10.9 
TB7833 1.4dw 1.2f w 2.0bc w 1.8c w 2.6cdw 2.2d w 1.9 
TB7841 29.0 a w 6.1 cd y 3.6 abc y 4.9 abc y 23.3 a x 30.4 a w 16.2 

Av. 19.3 7.0 3.2 3.8 11.0 20.7 10.8 

"Average of three replications. Mean separation by DMRT at 5%level. 

If the A X B interaction is significant and one of the factors, say A, has two 

levels and the other, say B, has six or more levels, assign factor A as the 
column factor and present the difference between the two levels of A 
following rule 4. For factor B, use DMRT (Table 17.13). 

If the A x B interaction is not significant and the A x B table of means 
is to be presented, simply compare the A means averaged over all levels of 
factor B and the B mean, averaged over all levels of factor A, using DMRT 
(Table 17.14). Note that, hj, this case, the same set of DMRT letters 
(a, b, c, ...) can be used for both factors. 

RULE 7. For a three-factor experiment whose design is either a split-plot, a 
strip-plot, a split-split-plot, or a strip-split-plot design, two or more test criteria 
are involved. The appropriate method of presentation depends on the factor 
interactions that are significant, the relative importance of the factors, and the 
number of levels tested in each factor. 

When the three-factor interaction is not significant, consider presenting one 

or more two-way table of means, one for each of the significant two-factor 
interactions. For example, consider a 5 x 2 x 3 factorial experiment, the 
analysis of variance of which is shown in Tab;e 17.15. Because only the A X C 
(tillage x nitrogen source) interaction is significant, only the A x C two-way 
table of means as shown in Table 17.10 needs to be presented. 

When all three factors are prLsented in one table, allocate the factors as 

either row or column factor as follows: 

* 	 Combine factors that are tested with the same degree of precision, and 
allocate the combination of these factors as the row or the column factor. 



Table 17.13 Plant Height of the Weed Cyperus rotundus 
at Harvest as Affected by Elevation and Water Regime: an 
Illustration of the Use of Difference Column for the Factor 
with Two Levels 

Plant Height, cmb 

Water Regime" Upland Lowland Difference 

Well drained 17.50 a 34.58 c - 17.08* 
Saturated 19.82 a 33.46 c - 13.64m 
Flooded 7 DAE 17.92 a 84.60 a -66.68** 
Flooded 14 DAE 24.85 a 85.07 a -60.22** 
Flooded 21 DAE 23.82 a 71.60 ab -47.78** 
Flooded 28 DAE 26.83 a 67.04 b -40.21* 

"DAE - days after emergence.
 
bAverage of six replications. Mean separation in a column by
 
DMRT at 5%level. **= significant at 1%level, * ,significant
 
at 5%level, n, = not significant.
 

Table 17.14 Effects of Different Herbicide Combinations (WI to W6) 
and Different Methods of Land Preparation (M1 to M10) on Yield of 
Maize: an Illustration of the Proper Comparison Between Means 
when the Two-Factor Interaction Is Not Significant 

Land Mean Yield, t/ha" 
Preparation W, W2 Av.bW3 W4 W5 W6 

M, 3.45 4.42 4.01 3.84 4.04 4.15 3.98 a 
M2 3.18 3.99 4.03 3.78 4.17 3.84 3.83 a 
M3 3.16 4.36 4.11 4.07 4.28 3.75 3.96 a 
M4 3.33 4.51 4.48 3.52 3.66 4.36 3.98 a 
M5 3.46 4.13 4.06 4.25 4.05 4.14 4.02 a 
M6 3.77 4.07 4.17 4.33 4.72 4.46 4.25 a 
M 7 2.88 3.89 3.52 3.69 3.62 4.06 3.61 a 
Ma 2.94 4.41 3.68 3.68 3.61 4.20 3.75 a 
Mg 3J 4 4.26 4.51 4.27 4.26 3.98 4.07 a 
M10 3.32 4.91 4.33 4.41 4.60 4.15 4.29 a 
AV.b 3.26 c 4.30 a 4.09 ab 3.98 b 4.10 ab 4.11 ab 

"Average of three replication,.
 
bIn a row (or column), rreans followed by a common letter are not
 

significantly different at 5%level.
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Table 17.15 Analysis of Varlance of Data on Panicle Length from a 5 x 2 x 3 
Factorial Experiment Ina Split-Split-Plot Dtslgn with Four Repllcotions 

Source Degree Sum 
of 
Variation 

of 
Freedom 

of 
Squares 

Mean 
Square 

Computed
Fb 

Replication 3 22.94025 
Tillage (A) 4 10.38033 2.59508 < 1 
Error(a) 12 38.35433 3.19619 
Variety (B) 1 304.96408 304.96408 154.53* 
A x B 4 5.56467 1.39117 <1 
Error(b) 15 29.60292 1.97353 
Nitrogen source (C) 2 26.72017 13.36008 8.33** 
A x C 8 31.94317 3.99290 2.49* 
B x C 2 10.01217 5.00608 3.12 nm 
A x B x C 8 17.31783 2.16473 1.35"' 
Error(c) 60 96.18000 1.60300 

Total 119 593.97992 

ac(a) - 8.5%, cv(b) - 6.6%, and cv(c) - 6.0%. 

"..- significant at 1%level, * - significant at 5% level, 1 - not significant. 

For example, whep the split-plot design is used in an experiment with more 
than two factors, a combination of two or more factors may be used as the 
main-plot or the subplot treatments (see Chapter 4, Section 4.2.2). This is 
the case in Table 17.16 where the six treatment combinations of water 
regime and straw treatment were used as the main-plot treatments and the 
four varieties as subplot treatments. Thus, in presenting the three-dimen­
sional table of means, water regime and straw treatments are combined 
together and treated as the row factor while the four varieties are assigned 
as the column factor. 
When all three factors have three different test criteria, identify the least 
important factor and combine it with one cther factor for assignment as 
either row factor or column factor. 

17.2.2 Bar Chart 

For data from a factorial experiment where none of the .Nictors is continuous, a 
bar chart provides an alternative to use of a table. In addition to the rules 
discussed in Section 17.1.1.3 for a single-factor experiment, the primary 
concern for factorial experiments is the proper sequencing and grouping of the 
factors and the levels to be presented. For example, in a 2 × 2 factorial 
experiment involving variety as factor A and manganese dioxide as factor B, 
there would be four bars-one corresponding to each of the four treatment 
combinations. The bars are usually arranged such that the levels of the factor 
of major interest are adjacent to each other; the levels of the less important 
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Table 17.16 Effects of Straw Treatment on Grain Yields of Four Rice 
Varieties Grown In Different Water Regimes: an illustration of the 
Combinations of Two Factors Into a Single Dimension 

Water Regime 

Midseason Straw Mean Yield, t/haa 

Fallow Drainage Treatment IR40 IR42 IR44 IR46 

Dry Without Yes 3.5 b 3.5 b 3.0 b 2.7 b 
No 3.4 b 3.8 ab 2.5 b 2.8 b 

Dry With Yes 
No 

4.0 ab 
3.7 ab 

4.4 a 
3.5 b 

3.4 a 
3.4 a 

3.3 b 
2.8 b 

Flood With Yes 4.3 a 3.8 ab 4.0 a 3.7 a 
No 3.9 ab 4.4 a 3.7 a 2.8 b 

aAverage of four replications. Mean separation in a column by DMRT at 5% 

level. To compare means in a row, LSD.05 - 0.7 t/ha. 

factor are not. Thus, if the researcher's primary interest is to examine the effect 
of manganese dicxide, Figure 17.15a is the more appropriate presentation. On 
the other hand, if the researcher wishes to emphasize varietal difference, Figure 
17.15b is more appropriate. 

When one of the factors has more than two levels, the proper sequencing of 
the levels within the factor becomes an issue. Some examples of the sequencing 

Grain yield (t/ho) 

(a) .(b)
6 

0 ciiiii
S00 

*cN N 

IR26 IR43 Without MnO 2 With MnO 2 

Figure 17.15 Bar charts showing two alternatives for the grouping or factors: alternative (a) to 
emphasize the effect of manganese dioxide application and altenative (b) to emphasize varietal 
differences. 
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criteria commonly used are: 

* The natural sequence of the treatments (Figure 17.16). 
* The ranking of the data according to one of the levels of the other 

factor-usually the first level (Figures 17.17 and 17.18a). In Figure 17.17, 
the sequence of the six varieties is based on their rankings with the first 
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'igure 17.16 Bar chart ,,howing the sequential arrangement of bars acording to the nature of 
reatments (levels within the factor). Means with the same rice culture (upland or lowland) with a 
ommon let:er are not significantly different at the 5%level. 
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Figure 17.17 Bar chart showing the sporulation capacity of three isolates of Pyricularia oryzae 

Cay. on six rice varieties: an illustration of the arrangement of bars (varieties) according to their 

rankings based on the first isolate (T27). 

isolate while the sequence of the isolates is not determined by any set 
criterion. In Figure 17.18a, on the other hand, the sequence of the seven 
varieties is based on their yield ranking when no zinc is applied. 

The ranking of the treatment difference if the other factor has two levels 
(Figure 17.18b). 

A proper choice of sequencing criterion is generally dependent upon the 
nature of the interaction between the factors. For example, Figure 17.! 8a is 
preferred over Figure 17.18b if the researcher wishes to emphasize that the 
significant response to zinc application is obtained only with varieties with 
intermediate yield levels. 

However, regardless of the sequencing criterion used, the same sequence 
must be used throughout (i.e., over all levels of the other factor). For example, 
in Figure 17.17, the same sequence for the six varieties at the first isolate is 
followed at the other two isolates. 

17.2.3 Line Graph 

When at least one of the factors in a factorial experiment is quantitative, use of 
a line graph should be considered. The basic considerations and rules for the 
use of line graph, described for single-factor experiments in Section 17.1.2, are 
also applicable for factorial experiments. Somc additional guidelines are: 

1. For an A x B factorial experiment where factor A is quantitative and 
factor B is discrete, the line graph would have the levels of the quantitative 
factor A on the X axis, the response on the Y axis, and one line is drawn for 
each level of the discrete factor B (Figures 17.19 and 17.20). 
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Figure 1"7.18 Bar charts showing two alternatives for the arrangemlent of bars: altcrnative (a) is 
based on the rank of yields without zinc and alternative (b) is based on the rank of zinc cfi'ect 
(differcnce between yields with and without zinc). 

In Figure 17.19, there are two factors: variety with four levels and nitrogen 
rate with six levels. Because the nitrogen rate is quantitative, a regression line 
to represent the response to nitrogen is fitted for each of the four varieties. If, 
on the other hand, no regression equation can be estimated, straight lines may 
be drawn to join adjacent points (Figure 17.20). 

2. For an A x B factorial experiment where both factors are quantitative, 
follow procedure 1, by treating one of the factors as discrete. The factor that ic 
treated as discrete should correspond to that with fewer levels and whose 
importance is lower, or to that whose relationship to crop response is not well 
defined (see Figure 17.21). 

3. For an A x B x C factorial experiment where factor ,Ais the only 
factor that is quantitative, follow procedure 1, treating the m= b x c factorial 
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Figure 17.19 Response to nitrogen of four rice varieties: an illustration of the use of line graph 
for factorial experiments in which one factor is quantitative and regression equation is fitted. 

treatment combinations as levels of the discrete factor, where b and c are the 
levels of factors B and C. In addition, use appropriate line-identification to 
clearly distinguish between the factors involved. For example, the results of a 
4 x 2 x 2 factorial experiment involving four levels of inoculum in the system, 
two types of soil (soil of wetland and dryland origin), and two water regimes 
(dry and submerged) are shown in Figure 17.22; with solid lines used for the 
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Figure 17.20 Linear growth of four different iso­
lates of Cercospora oryzae as affected by tempera­

1__ Il ture: an illustration of the use of line graph for 
15 20 25 28 30 factorial experiments in hich one factor is quantita­

Temperoture,C tive but no regression equation is fitted. 
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Figure 17.21 The effect of nymphal density on the number of macroptcrous females, as affected 
by four plant ages: an illustration of the use of line graph for factorial experiments where both 
factors are continuous. 
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Figure 17.22 Infectivity of rice straw buried in soil of wetland and dryland origin: an illustration 
of the use of appropriate line identification to differentiate factors; mean separation at each 
inoculum level by DMRT at 5% level. 
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Figure 17.23 Effect of rate, type, and method of application of herbicide and naphthalic 
anhydride (NA) on the germination of dry-seeded rice: an illustration of the use of more than one 
graph for data from a factorial experiment. 

dryland origin and broken lines for wetland c;igin, while solid points (9 and v) 
refer to a dry condition and empty points (0 and v) refer to a submerged 
condition. 

4. For an experiment with three factors or more, use more than one graph 
if needed. The factor, in which each level is represented by a graph, is usually 
one in which the main effect is not of primary interest, or whose effect is large 
(Figure 17.23). 

17.3 MORE-THAN-ONE SET OF DATA 

The effect of treatments is not confined to a single plant character at a single 
growth stage but rather to a series of characters (multicharacter data) at 
various growth stages (measurement over time, Chapter 6, Section 6.2), both of 
the crop and its immediate environment. Thus, for most experiments, the data 
that are gathered consist of the measurement of as many characters and in as 
many stages of observation as are expected to be affected by the treatments. 

Although the basic guidelines for the presentation of one character and one 
set of data, as discussed in Sections 17.1 and 17.2, are still applicable, the 
added volume and diversity of data to be presented can limit the number of 
feasible alternatives. For example, when different characters do not have the 
same unit of measurement, the use of a single bar chart (or line graph) is not 
appropriate. Even with the tabular form, which is more flexible and can easily 



025 

Damaged leaves (9) 

60 a re baa 

Ure sFigure 17.24 Rate of recovery from whorl maggot 

c damage, as affected by the method of urea applica­

tion: an illustration of the use of line Waph for 

0 1 measurements over time from a single-f ictor experi­1 

35 45 55 ment with a discrete factor. Mean separation at each
 

Days after transplanting day by DMRT at 5% level.
 

Growth (mm)
 
40 
 0 pp 

09-4c zt 3.607 X
 
. y-4.65+3.573 X iOppm
 

V Y=-4.92+2.891 X
 
30
 

100 ppmn 

20
 

10
 

1,000p.n 

0 E 

3 4 5 6 7 8 9 10 11 12
2 

Days (no) after inoculation
 

Growth rate of the blast pathogen (isolate T27) in nutrient agar plates containingFigure 17.25 
the extract of an indigeneous plant at different concentrations: an illustration of the use of line 

graph for presenting measurements over time from a single-factor experiment with a continuous 

factor. 

619 



620 Presentation of Research Results 

accommodate additional characters, clarity and readability decreases rapidly as 
the volume of data included in the same table is increased. 

17.3.1 Measurement Over Time 

Data for characters that are measured repeatedly over time may be classified 
into three groups: 

" Development-rate data in which measurements are made at regular time 
intervals in order to assess, over time, the rate of change of the character of 
interest. 

" Growth-stage data in which the period of measurement is associated to a 
stage of growth instead of a specified tine period. 

" Occurrence-date data, which measure the time of occurrence of biological
phenomenon whose rate of completion is fast. An example is leaf rust 
infestation, the occurrence of which comes in a flash and the information of 
interest is the date the flash occurred. 

In Chapter 6 (Section 6.2), we discussed the need for a combined analysis 
over time to evaluate the interaction between treatment and time of observa-

Table 17.17 Weight of Dry Matter of Rice, Measured at Three 
Growth Stages, with Differe:,tt Fertilizer Treatments: a Tabular 
Form of Presentation for Measurements over Time 

Dry Matter Weight, kg/m 2" 

Fertilizer AL 10 Days At Panicle At 
Treatment after Transplanting Initiation Harvest 

T, 0.7 f 1.4 f 3.9 d
 
T2 0.9 ef 2.1 def 6.3 cd
 
T3 1.0 ef 1.7 f 4.8 d
 
T4 2.3 ab 3.5 be 8.4 bc
 
T5 1.4 de 2.4 def 6.0 cd
 
T6 2.0 be 3.0 bcd 7.5 c
 
T7 1.1 def 2.0 ef 6.5 cd
 
T8 2.6 ab 4.8 a 10.8 ab
 
19 1.7 cd 2.8 cde 7.8 c 

T10 2.7 a 3.9 ab 8.3 bc 
T11 1.0 ef 2.0 ef 4.8 d 
T12 2.4 ab 4.7 a 12.2 a 
Av. 1.6 2.9 7.3 

aAverage of four replications. Mean separation in a column by DMRT 
at 5% level. 
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Figure 17.26 Effect of different sources (prilled urea - PU, super granule urea - SGU) and 
methods of application of urea on tiller number of rice plants measured at different growth stages. 
Mean separation at each growth stage by DMRT at 5%level. 

Table 17.18 Effect of Weeding on Grain Yield and Other 
Characters of Mungbean: an Illustrationof the Flexibilityof 
the Tabular Form InPresenting Multicharacter Data 

Character Weeded Not Weeded Differencea 

Yield, kg/ha 969 516 453** 
Plant height, cmh 79 87 -8** 
Leaf-area indexb 4.1 3.4 0.7** 
Pod length, cm 10.0 9.5 0.5m 
Pods, no./plant 13.2 10.5 2.7** 
Seeds, no./pod 12.2 11.7 0.5"S 
100-seed weight, g 5.3 5.3 0.0 

' as* - significant at 1%level, - not significant.
bMeasured at 5 weeks after emergence. 
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Table 17.19 Nitrogen, Phosphorus, and Potassium Content of Me!ze Ear Leaves at SlIking, as 
Influenced by Tillage and Mulch Treatments: an Illustration of the Flexibilityof the Tabular Form In 
Presenting Multicharacter Data0 

Nitrogen Phosphorus Potass;dmn 
Content, % Content, % Content, % 

Straw No Straw No Straw No 
Tillage Mulch Mulch Difference Mulch Mulch Difference Mulch Mulch Difference 

No tillage 2.57 a 2.27 a 0.30 0.31 a 0.24 b 0.07** 2.12 a 2.12 ab 0.00 
Moldboard plowing 2.53 a 2.16 a 0.37* 0.28 a 0.27 ab 0.01 2.12 a 2.06 b 0.06 
Chisel plowing, shallow 2.71 a 2.15 a 0.56** 0.30 a 0.28 ab 0.02 2.10 a 2.27 a -0.17" 
Chisel plowing, deep 2.29 a 2.16 a 0.13 0.28 a 0.30 a -0.02 2.10 a 2.03 b 0.07 
Rototilling 2.47 a 2.17 a 0.30 0.27 a 0.26 ab 0.01 2.13 a 2.15 ab -0.02 

Av. 2.51 2.18 0.29 0.27 2.11 2.13 

'Average of four replications. In each column, means followed by a common letter are not significantly different at 
the 5% level **= significant at 1% level, *= significant at 5% level. 
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tion. Data presentation should, therefore, reflect this important information. 
As a general rule, thc time of observations is considered as an additional 

factor. Hence, for a single-factor experiment, presentation of measurements 
over time follows that of a two-factor experiment; for a two-factor experiment, 
presentation follows that of a three-factor experiment; and so on. Thus, the 
guidelines discussed for factorial experiments in Section 17.2 are directly 
applicable. In addition, the following guidelines should be considered: 

" 	 If the time of observation is quantitative, line graphs such as shown in 
Figure 17.24 for discrete treatments, and in Figure 17.25 for quantitative 
treatments, are appropriate. Note that the time of observation is usually 
placed on the X axis, even though the treatments are themselves quantita­
tive, to reflect the emphasis placed on the response curves (or trends over 
time) and how they are affected by the treatments tested. 

" 	 If the time of observation is discrete, a table (Table 17.17) or a bar chart 
(Figure 17.26) can be used. 

17.3.2 Multicharacter Data 

In addition to crop yield, which is usually the character of primary interest, 
other characters such as plant height, crop maturity, pest incidence, soil 

Straw pieces that produced dark pigment (%) Weight loss of straw (%) 
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T cucumeris 

0--- T cucumeris alone 

V-- Trichoderma alone
 
80 80 ­
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40-	 40­
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2 4 8 10 12 14 16 2 4 6 8 10 12 14 -16 
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Figure 17.27 Two line graphs showing the effect of Trichoderma sp. (isolated from a dryland rice 
field) on rice straw decomposition and weight loss. 
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Figure 17.28 Effect of diazinon treatment followed by decamethrin sprays on the populations of 
brown planthopper and ripple bug, a predator, on a susceptible rice variety. 
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properties, and weather are usually measured to study their responses to the 
treatments or to explain their effect on yield. Some examples of multicharacter 
data in crop research are: 

" 	 In a variety trial, such characters as grain yield, plant height, growth 
duration, pest incidence, and grain qualty are measured simultaneously to 
identify the desirable traits associated with each variety. 

" 	 In an insect-control trial, several insect pests such as brown planthopper, 
whorl maggot, and green leafhopper are measured simultaneously, in as 
many stages of crop growth as are deemed necessary, to identify the manner 
with which pest species are affected by the pest control treatment. 

" 	 In a nitrogen-response trial, grain yield and its components such as panicle 
number, number of grains per panicle, and weight per grain may be 
examined, to quantify the contribution of the yield components, individu­
ally or jointly, to the variation in grain yield. 

Some rules for presenting mean-comparison results of multicharacter data, 
either from a single-factor or a factorial experiment, are: 

RULE 1. Because of its flexibility with regards to the number of characters 
involved, and its ease in handling different units of measurement, the table is 
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Figure 17.30 Bar chart showing the survival of brown planthoppcr nymph instars on resistant and 
susceptible rice varieties. 



Table 17.20 Tabular Presentation of Multicharacter Data Using DMRTO to Compare Insect-Control Treatments 

when Some Characters Require Data Transformation 

Insects, no./10 sweeps 

Preplanting 
Carbofuran 
Treatm... 

Plant 
Height, 

cm 

Caterpillar 
Damage, 

% 
Deadhearts, 

% 
Green 

Leafhopper 
Brown 

Planthopper Cyrtorhinus 

White-
backed 

Planthopper 

Whorl 
Maggot 
Adults 

Seedling soak 45 b 13 b 7.5 c 32 c 5 a 28 bc 7 b 87 bc 
Seedling soak + 

capsule 20 DT 
Soil incorporation 
No control 

53 a 
54 a 
35 c 

7 a 
9 a 

14 b 

0.4 a 
4.1 b 
4.4 b 

2 a 
8 b 

81 d 

3 a 
5 a 

12 b 

0 a 
19 b 
50 c 

2 a 
7 b 

25 c 

34 a 
60 b 

114 c 

'Average of four replications. Mean separation by DMRT at 5% level. 
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the most common method for presenting multicharacter data. Once the best 
tabular form for one character is determined, either from a single-factor 
experiment (Sections 17.1.1.1 and Section 17.1.1.2) or from a factorial experi­
ment (Section 17.2.1), other characters can be added either along the rows 
(Table 17.18) or along the columns (Table 17.19). 

RULE 2. Graphical presentation of multicharacter data is usually done 
with separate bar charts or line graphs-one for each character (Figures 17.27 
and 17.28). Exceptions to this guideline are: 

Two characters with different units of measurement can be accommodated 
in 	one graph (see Figure 17.1). 
Multicharacter data with additive features, such as dry weight for different 
plant parts or classification of weed by types, can be presented in a bar 
chart with subdivided bars (Figure 17.29). 
Multicharacter data with the same unit of measurements can be placed in 
the same graph (Figure 17.30). 

RULE 3. Whatever form of presentation is used, the same test criterion 
should be used for mean comparisons of all characters presented. For example, 
if the number of treatments is five or less but one or more of the characters 
were analyzed using data transformation (Chapter 7, Section 7.2.2.1), use 
DMRT for mean comparisons of all characters (see Table 17.20). 

RULE 4. Do not present more characters than needed: 

* 	 If only yield response to treatments is discussed, present only data on yield. 
There is no need to present data on yield components or other agronomic 
characters that are not discussed in the text. 

* 	 Avoid presenting data of characters whose treatment effect is not significant. 
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Appendlx A Table of Random Numbers 

81953 17629 83603 09137 26453 02148 30742 
09724 85125 48477 42783 70473 52491 66875 93650 91487 37190 
56919 17803 95781 85069 61594 85437 92086 53045 31847 36207 
97310 78209 51263 52396 82681 82611 70858 78195 47615 23721 

14620 95430 12951 

07585 28040 26939 64531 70570 98412 74070 83468 18295 32585
 

37904 06759 70799 59249 63461 75108 45703
25950 85189 69374 

82973 16405 81497 20863 94072 
 83615 09701 47920 46857 31924
 

60819 27364 59081 72635 49180 72537 46950 81736 53290 81736
 

59041 38475 03615 84093 49731 62748 39206 47315 84697 30853
 

74208 69516 79530 47649 53046 95420 41857 69420 79762 01935
 

29735 14308 46309 28493 75091 82753 15040
39412 03642 87497 

48480 50075 11804 24956 72182 59649 16284 83538 53920 47192
 

95318 28749 49512 35408 21814 07564 70949 50969 15395 26081
 

72094 16385 90185 72635 86259 38352 94710 36853 94969 38405
 

63158 49753 84279 56496 30618 23973 25354 25237 48544 20405
 

19082 73645 09182 73649 56823 95208 49635 01420 46768 45362
 

15232 84146 87729 65584 83641 
 19468 34739 57052 43056 29950
 

94252 77489 62434 20965 20247 03994 25989 19609 74372 74151
 

72020 18895 84948 53072 74573 19520 92764 85397 52095 18079
 

48392 06359 47040 05695 79799 05342 54212 21539 48207 95920
 

48192 84518 30210 23805 27837 24953 42610
 

09394 59842 39573 51630 78548 06461 06566 21752 78967 45692
 

34800 28055 91570 99154 39603 76846 77183 50369 16501 68867
 

36435 75946 85712 06293 85621 97764 53126 37396 57039 06096
 

28187 31824 52265 80494 66428 15703 05792 53376 54205 91590
 

37950 71387 35495 


67511 87939 68417 21786 09822 67510 23817
 

72201 08423 41489 15498 94911 79392 65362 19672 93682 84190
 

63435 45192 62020 47358 22286 41659 31842 47269 70904 62972
 

59038 96983 49218 57179 08062 25074 06374 96484 59159 23749
 

62367 45627 58317 76928 50274 28705 45060 50903 66578 41465
 

13838 79940 97007 


96086 89681 50212 92829 27698 62284
71254 81686 85861 63973 

07896 62924 35682 42820 43646 37385 37236 16496 51396 77975
 

71433 54331 58437 03542 76797 50437 13576 72876 02323 95237
 

54614 19092 83860 11351 32533 56032 42009 49745 14651 80128
 

30176 71248 37983 06073 89096 43498 95782 70452 90804 12042
 

62921 38385 69546 47104 72917 66273
 

75014 96754 67151 82741 24283 64276 78438 70757 40749 85183
 

37390 75846 74579 94606 54959 35310 31249 15101 95390 73432
 

24524 32751 28350 43090 79672 94672 07091 42920 46046 38083
 

26316 20378 16474 62438 42496 35191 49368 30074 93436 29425
 

79072 87795 23294 61602 


61085 96937 02520 86801 30980 58479 34924 25101 87373 61560
 

45836 41086 41283 97460 51798 29852 47271 42480 94156 49341
 

92103 19679 16921 65924 12521 31724 60336 01968 15971 07963
 

10317 82592 65205 12528 24367 15817 12479 52021 02350 76394
 
39764 21251 41749 43789 70565 35496 87172 76830 41843 83489
 

83594 95692 52910 23202 93736 10817 53164 10724 27035 67562
 

08087 01753 01787 51631 74978 79608 01242 07525 72656 80854
 

57819 39689 32509 87540 38150 47872 14614 18427 06725 69326
 
96957 81060 28587 60905 67404 80450 21082 16074 61437 24961
 
48426 43513 82950 79838 45149 07143 73967 23723 06909 75375
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Appendix A (Continued) 

57856 87037 57196 47916 15960 13036 84639 30186 48347 40780
 
61684 96598 28043 25325 81767 20792 39823 48749 79489 39329
 
06847 83825 12858 18689 41319 15959 38030 80057 67617 18501
 
40810 85323 18076 02821 94728 96808 11072 39823 63756 04478
 
06461 45073 88350 35246 15851 16129 57460 34512 10243 47635
 

82197 35028 96295 95795 76553 50223 37215 07692 76527 80764
 
47430 50260 03643 72259 71294 69176 21753 58341 07468 19219
 
25043 52002 84476 69512 95036 69095 96340 89713 06381 61522
 
34718 11667 96345 60791 06387 54221 40422 93251 43456 89176
 
23965 59598 09746 48646 47409 32406 80874 74010 91548 79394
 

67207 47166 44917 94177 31846 73872 92835 12596 64807 23978
 
08261 71627 96865 75380 42735 19446 78478 35681 07769 18230
 
10289 93145 14456 32978 82587 64377 54270 47869 66444 68728
 
75622 83203 14951 46603 84176 17564 53965 80771 10453 87972
 
62557 05584 27879 08081 01467 19691 39814 66538 65243 76009
 

51695 70743 68481 57937 62634 86727 69563 29308 51729 10453
 
54839 09596 25201 56536 54517 86909 92927 07827 28271 52075
 
75284 36241 59749 81958 44318 28067 67638 72196 54648 36886
 
64082 68375 30361 32627 38970 82481 94725 56930 34939 27641
 
94649 33784 84691 48334 74667 48289 29629 61248 47276 76162
 

25261 28316 37178 82874 37083 73818 78758 97096 48508 26484
 
21967 90859 05692 34023 09397 55327 39897 51482 81867 81783
 
63749 41490 72232 71710 36489 15291 68579 83195 60186 78142
 
63487 42869 24783 80895 78641 50359 20497 91381 72319 83280
 
91729 08960 70364 14262 76861 06406 85253 57490 80497 54272
 

38532 52316 41320 29806 57594 59360 50929 18752 12856 09587
 
27650 57930 25216 67180 42352 41671 78178 09058 42479 60463
 
68318 14891 96592 44278 80631 82547 39787 97394 98513 29634
 
91423 83067 14837 03817 21850 39732 18603 27174 71319 82016
 
54574 54648 29265 63051 07586 78418 48489 05425 27931 84965
 

93987 91493 61816 09628 31397 17607 97095 47154 40798 06217
 
59854 13847 37190 47369 39657 45179 06178 58918 37965 32031
 
12636 51498 34352 52548 57125 24634 95394 71846 98148 12839
 
04856 80651 35242 60595 61636 97294 56276 30294 62698 47548
 
92417 96727 90734 84549 04236 02520 29057 22102 18358 95938
 

95723 05695 64543 12870 17646 25542 91526 91395 46359 52952
 
14398 47916 56272 10835 76054 67823 07381 96863 72547 29368
 
97643 48258 46058 34375 29890 71563 82459 37210 65765 82546
 
14020 16902 47286 27208 09898 04837 13967 24974 55274 79587
 
38715 36409 52324 96537 99811 60503 44262 70562 82081 64785
 

70051 31424 26201 88098 31019 36195 23032 92648 74724 68292
 
56602 58040 48323 37857 99639 10700 98176 34642 43428 39068
 
69874 15653 70998 02969 42103 01069 68736 52765 23824 31235
 
35242 79841 46481 17365 84609 26357 60470 35212 51863 00401
 
20364 89248 58280 41596 87712 97928 45494 78356 72100 32949
 

16572 14877 42927 46635 09564 45334 63012 47305 27136 19428
 
74256 15507 02159 21981 00649 40382 43087 34506 53229 08383
 
04653 48391 7844 67282 46854 61980 10745 73924 12717 25524
 
32077 87214 14924 45190 51808 30474 29771 51573 82713 69487
 
46545 23074 80'08 52685 95334 12428 50970 47019 21993 43350
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Appendix B Cumulative Normal Frequency Distribution. 
(Area under the standard normal curve from 0 to Z) 

Z 0.00 0.01 0.02 0.03 0.04 0.05 0.06 007 0.08 0.09 

0.0 0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 00239 0.0279 0.0319 00359 
0.1 .0398 .0438 .0478 .0517 .0557 0596 .0636 0675 .0714 .0753 
0.2 .0793 .0832 .0871 .0910 0948 0987 .1026 .1064 .1103 .1141 
0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 1443 .1480 .1517 
0.4 .1554 .1591 .1628 .1664 1700 .1736 .1772 .1808 1844 1879 

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2180 .2224 
0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 2517 .2549 
0.7 .2580 .2611 .2642 .2673 .2704 2734 .2764 .2794 .2823 .2852 
0.8 .2881 .2910 .2939 2967 2995 3023 .3051 3087 .3106 3133 
0.9 .3169 .3186 .3212 .3238 .3264 3289 .3315 3340 3365 3389 

1.0 .3413 .3438 .3461 .3485 .3508 3531 .3554 3577 3599 .3621 
1.1 .3643 .3665 .3686 .3708 .3729 3749 .3770 3790 3810 .3830 
1.2 .3849 .3869 .3888 3907 3925 .3944 .3962 3980 3997 .4015 
1.3 .4032 .4049 .4066 .4082 4099 4115 .4131 4147 .4162 .4177 
1.4 .4192 .4207 .4222 .4236 4251 4265 .4279 4292 4306 .4319 

1.5 .4332 .4345 4357 .4370 4382 .4394 4406 4418 4429 .4441 
1.6 .4452 .4463 4474 4484 4495 4505 4515 .4525 4535 4545 
1.7 .4554 .4564 .4573 4582 4591 4599 4608 4616 4625 4633 
1.8 .4641 .4649 .4656 .4664 4671 4678 4686 4693 4699 .4706 
1.9 .4713 4719 .4726 4732 .4738 .4744 4750 4756 .4761 .4767 

2.0 .4772 4778 .4783 4788 4793 4798 4803 4808 4812 .4817 
2.1 .4821 4826 .4830 4834 4838 .4842 4846 .4850 4854 .4857 
2.2 .4861 .4864 .4868 4871 .4875 4878 4881 4884 .4887 4890 
2.3 .4893 .4896 4898 A901 4904 .4906 4909 4911 4913 4916 
2.4 .4918 .4920 .4922 4925 4927 .4929 4931 4932 4934 4936 

2.5 .4938 .4940 .4941 4943 4945 4946 4948 .4949 .4951 4952 
2.6 .4953 .4955 4956 .4957 4959 4960 4961 4962 4963 4964 
2.7 .4965 .4966 4967 4968 .4969 4970 4971 4972 4973 4974 
2.8 .4974 .4975 .4976 .4977 .4977 4978 4979 .4979 4980 4981 
2.9 .4981 .4982 .4982 4983 .4984 .4984 4985 4985 .4986 4986 

3.0 .4987 .4987 .4987 .4988 .4988 4989 4989 4989 4990 4990 
3.1 .4990 .4991 .4991 .4991 .4992 .4992 4992 4992 4993 4993 
3.2 .4993 .4993 .4994 .4994 .4994 4994 4994 4995 4995 .4995 
3.3 .4995 .4995 .4995 .4996 .4996 .4996 4996 4996 4996 4997 
3.4 .4997 .4997 .4997 .4997 .4997 .4997 4997 4997 4997 4998 

3.6 .4998 .4998 .4999 .4999 .491 .4999 .4999 .4999 .4999 .4999 
3.9 .5000 

Reprinted by permission from STATISTICAL METHODS by George W. Snedecor and William G. Cochran, 
sixth edition @ 1967 by Iowa State University Press, Ames, Iowa. 
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15 
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Appendix C Distribution oft Probability 

n 9 8 7 6 5 4 3 2 1 05 02 "i1 001 

1 
2 
3 
4 

158 
142 
137 
134 
132 

325 
289 
277 
271 
267 

510 
445 
424 
414 
408 

727 
617 
584 
569 
559 

1 000 
816 
765 
741 
727 

1 376 
1061 

978 
941 
920 

1 963 
1 386 
1 250 
1 190 
1 156 

3078 
1 886 
1 638 
1 533 
1 476 

6314 
2920 
2353 
2132 
2015 

12706 
4303 
3182 
2776 
2571 

31 821 
6965 
4541 
3747 
3365 

63657 
9925 
5,841 
4604 
4032 

636.619 
31.598 
12.924 

8.610 
6869 

6 
7 
8 
9 

131 
130 
130 
129 
129 

265 
263 
262 
261 
260 

404 
402 
399 
398 
397 

553 
549 
.546 
543 
.542 

718 
.711 
706 
703 
700 

906 
896 
889 
683 
879 

1 134 
1 119 
1.108 
1 100 
1 093 

1440 
1415 
1 397 
1 383 
1 372 

1 943 
1 895 
1860 
1833 
1 812 

2447 
2365 
2306 
2262 
2228 

3143 
2998 
2896 
2821 
2 764 

3707 
3499 
3355 
3250 
3169 

5959 
5.408 
5.041 
4.781 
4.587 

11 
12 
13 
14 

129 
128 
128 
128 
128 

260 
259 
259 
258 
258 

396 
395 
394 
393 
393 

540 
539 
.538 
.537 
536 

.697 
695 
694 
.692 
691 

876 
873 
870 
868 
866 

1088 
1083 
1079 
1 076 
1 074 

1 363 
1356 
1350 
1345 
1 341 

1 796 
1782 
1 771 
1761 
1 153 

2201 
2179 
2160 
2145 
2131 

2718 
2681 
2650 
2624 
2602 

3.106 
3055 
3012 
2977 
2947 

4.437 
4.318 
4221 
4.140 
4.073 

16 
17 
18 
19 

128 
128 
127 
127 
127 

258 
257 
257 
257 
257 

392 
392 
392 
391 
391 

535 
534 
534 
533 
533 

690 
689 
688 
.688 
687 

865 
863 
862 
861 
860 

1071 
1 069 
1 067 
1 066 
1064 

1 337 
1 333 
1 330 
1328 
1 325 

1746 
1740 
1734 
1 729 
1 725 

2120 
2110 
2101 
2093 
2086 

2583 
2567 
2552 
2539 
2528 

2921 
2898 
2878 
2861 
2845 

4.015 
3.965 
3.922 
3.883 
3850 

21 
22 
23 
24 

127 
127 
127 

.127 
127 

257 
256 
256 
256 
256 

391 
390 
390 
390 
390 

532 
532 
532 
.531 
.531 

.686 
686 
685 
685 
6E4 

859 
858 
858 
857 
856 

1 063 
1 061 
1 060 
1 059 
1 058 

1 323 
1 321 
1 319 
1 318 
1 316 

1 721 
1 717 
1 714 
1711 
1 708 

2080 
2074 
2069 
2064 
2060 

2518 
2508 
2500 
2492 
2485 

2831 
2819 
2807 
2797 
2787 

3819 
3792 
3.767 
3745 
3725 

26 
27 
28 
29 

127 
127 
127 
127 
127 

256 
256 
256 
256 
256 

390 
389 
389 
389 
389 

531 
531 
530 
530 
53, 

684 
684 
683 
683 
683 

856 
855 
855 
854 
854 

1058 
1057 
1056 
1055 
1055 

1 315 
1 314 
1 313 
1 311 
1.310 

1 706 
1 703 
1.701 
1.699 
1697 

2056 
2052 
2048 
2045 
2042 

2479 
2473 
2467 
2462 
2457 

2779 
2.771 
2763 
2756 
2.750 

3.707 
3.690 
3674 
3659 
3.646 

a, 

40 
60 

120 
0c 

126 
126 
126 
126 

255 
254 
254 
253 

388 
387 
386 
385 

529 
527 
526 
524 

681 
679 
677 
674 

851 
848 
845 
.842 

1050 
1.046 
1 041 
1 036 

1.303 
1296 
1 289 
1 282 

1.684 
1.671 
1.658 
1645 

2021 
2000 
1.980 
1.960 

2423 
2.390 
2358 
2.326 

2704 
2.660 
2617 
2576 

3.551 
3.460 
3373 
3291 

Reproduced fron, STATISTICAL TABLES FOR BIOLOGICAL AGRICULTURAL. AND MEDICAL RESEARCH by R.A Fisher and F. Yates. sixth edition 1963 
Reprinted by permission of Longman Group Limited. Essex. England 
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Appendix D Percentage Points of the Chi-Square Distribution 

Degrees Probadiity of a larger value of x2 

of 
freedom 099 095 090 075 050 0.25 0.10 0.05 0.01 

1 0000 0000 0016 0102 0455 1.32 2.71 3.84 6.63 
2 
3 

0020 
0115 

0103 
0352 

0211 
0584 

0575 
1 213 

1.386 
2.366 

2.77 
4.11 

4.60 
6.25 

5.99 
7.81 

9.21 
11.34 

4 
5 

0297 
0554 

0711 
1 145 

1 064 
1 610 

1 923 
2675 

3357 
4351 

538 
6.63 

7.78 
9.24 

9.49 
11.07 

13.28 
15.09 

6 
7 

0872 
1 239 

1 635 
2167 

2204 
2833 

3455 
4255 

5.348 
6346 

7.84 
904 

1064 
12.02 

12.59 
14.07 

1681 
18.47 

8 
9 

10 
11 

1646 
2088 
2568 
3053 

2733 
3325 
3940 
4575 

3490 
4168 
4865 
5578 

5017 
5899 
6737 
7584 

7344 
8343 
9342 

10341 

1022 
11 39 
1255 
13.70 

13.36 
14.68 
15.99 
17.27 

1551 
16.92 
18.31 
19.67 

2009 
21.67 
23.21 
24.72 

12 3571 5226 6304 8438 11340 1484 1855 21.03 26.22 
13 4107 5892 7042 9299 12340 1598 1981 2236 27.69 
14 4660 6571 7790 10165 13339 1712 2106 2368 29.14 
15 5229 7261 8547 11036 14339 1825 22.31 25.00 30.58 
16 
17 

5812 
6408 

7962 
8672 

9312 
10085 

11 912 
12792 

15338 
16338 

1937 
2049 

2354 
2477 

26.30 
27.59 

32.00 
3341 

18 
19 

7015 
7633 

9390 
10117 

10865 
11 65' 

13675 
14562 

17338 
18338 

2160 
2272 

2599 
27.20 

28.87 
30.14 

3480 
3619 

20 8260 10851 12443 15452 19337 2383 2841 31.41 3757 
22 9542 12338 14041 17 24 21337 2604 3081 3392 4029 
24 
26 

10856 
12198 

13848 
15379 

15659 
17292 

19037 
20843 

23337 
25336 

2824 
3043 

3320 
3565 

3641 
3888 

4298 
4564 

28 13565 16928 18939 22657 27336 3262 37.92 41.34 4828 
30 14.953 18.493 20599 24478 29336 3480 4026 437? 5089 
40 22.164 26 509 29051 33660 39335 4562 5180 55 7E 6369 
50 27.707 34.764 37689 42942 49335 5633 6317 6750 7615 
60 37485 43188 46459 52294 59335 6698 7440 7908 8838 



Appendix E Points for the Distribution of F [5% (light type) and 1%(bold face type)] 

f, Degrees of freedom (for greater mean square) 
ID I -

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 600 o 

1 161 200 216 225 230 234 237 239 241 242 243 244 245 246 248 249 250 251 252 253 253 254 254 254 1 
4.062 4.93 5.403 5.625 5.74 5.859 5.128 5.981 6.022 6.064 6.092 6.106 8.142 6.169 6,206 6.234 6.261 6.26 6.302 6.323 G.334 6.22 621 6.366 

2 1851 1900 1916 1925 1930 1933 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1947 1948 1949 1949 1950 1950 2 
9.49 31.00 W.17 1.25 99.30 89.33 31.39 31.37 1.33 1.40 9.41 9.42 33.43 9-44 M.b 31.46 31.47 39.41.48 31.49 31.49 33.48 1.50 38.60 

3 1013 955 928 912 901 694 888 884 881 878 876 874 871 869 866 864 862 860 858 857 856 854 854 853 3 
34.12 30.32 29.48 28.71 25.24 27.91 27.67 27.49 27.34 27.23 27.13 27.06 26.12 26.63 26.63 20.60 26.50 26.41 M.35 26.27 26.23 26.14 26.14 26L12 

4 771 694 659 639 626 616 609 604 600 596 593 591 587 584 580 577 574 571 570 568 563 565 664 563 4 
21.20 18.00 16.63 15.36 16.62 16.21 14.96 14.80 14.16 14.54 14.45 14.37 14.24 14.15 14.02 13.33 13.83 13.74 13.69 13.61 13.57 13.62 13.48 13.4 

5 661 573 541 519 505 495 488 482 478 4 74 470 463 464 460 456 453 450 446 44 442 440 438 437 436 5 
16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96 9.89 9.1r' 9.68 9.65 9.47 9.38 9.29 9.24 9.17 9.13 9.07 904 9.02 

6 599 514 476 453 439 428 421 415 410 406 403 400 3 :6 392 387 384 381 377 375 372 371 369 368 367 6 
13.74 10.92 9.76 9.15 3.75 3.47 3.26 8.10 7.36 7.37 7.79 7.72 7.60 7.52 7.3" 7.31 7.23 7.14 7.09 7.02 6."1 6.34 6.90 6.33 

7 559 474 435 412 397 87 379 373 368 363 360 357 352 349 344 341 338 334 332 329 228 325 324 323 7 
12.25 9.55 6.45 7.85 7.46 7.13 7.00 6.64 6.71 6.62 6.54 6.47 6.36 6.27 6.15 6.07 5.1 5.90 5.85 5.71 5.75 5.70 S.67 .6 

8 532 446 407 384 369 358 350 344 333 334 331 328 323 320 315 312 308 305 303 300 298 296 294 293 8 
11.26 3.65 7.59 7.01 6.63 6.37 6.19 6.03 5.91 5.62 6.74 5.67 6.58 5.48 5.36 45.21 5.20 6.11 5.36 6.00 4.96 4.91 4M 4.8 

9 512 426 386 363 348 337 329 323 318 313 .10 307 302 298 293 290 2A6 282 280 277 276 273 272 2.71 9 
10.56 3.02 6.31 6.42 6.06 5.30 6.62 E.47 5.35 5.26 6.18 5.11 5.00 4.12 4.30 4.73 4.64 4.56 4.51 4.46 4.41 4.36 4.33 4.31 

10 496 410 371 348 333 322 314 307 302 297 294 291 286 282 277 274 270 267 264 261 259 256 255 254 10 
10.04 7.56 6.565 5.99 5.64 5.39 5.21 6.06 4.96 4.35 4.78 4.71 4.60 4.62 4.41 4.33 4.25 4.17 4.12 4.06 4.01 3.96 3.3 3.91 

11 484 398 359 336 32C 30 301 295 290 286 282 279 274 270 265 261 257 253 250 247 245 242 241 240 11 
3.6r 7.20 6.22 5.67 5.32 5.07 4.8 4.74 4.43 4.64 4.46 4.40 4.29 4.21 4.10 4.02 3.94 3.36 3.30 3.74 3.70 3.68 3.62 3.00 

1 475 388 3 49 326 3 11 300 292 285 260 2 76 272 269 264 260 254 250 246 242 240 236 235 232 231 230 12 
3.33 6.93 6.96 5.41 5.06 4.62 4.6S 4.60 4.39 4.30 4.22 4.16 4.06 3.14 3M 3.78 3.70 3.61 3.68 3.48 3.44 3.41 3.3 3.36 

13 467 380 341 318 302 292 284 277 272 267 263 260 255 251 246 242 238 234 232 228 226 224 222 221 13 
3.07 6.70 6.74 6.20 4.36 4.62 4.44 4.30 4.19 4.10 4.02 3.36 3.85 3.78 3.67 3.6 3.61 3.42 3.37 3.30 327 3.21 3.13 3.16 

conhtnueid next page 
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Appendix E (Continued) 

., Degrees of freedom (for greater mean square) 

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 o. 

14 46d"374 
8.86 6.51 

334 
5.56 

311 
5.03 

296 
4.69 

285 
4.46 

277 
4.28 

270 
4.14 

265 
4.03 

260 
3.94 

256 
3.86 

253 
3.80 

248 
3.70 

244 
3.62 

239 
3.51 

235 
3.43 

231 
3.34 

227 
3.26 

224 
3.21 

2.21 
3.14 

2.19 
3.11 

2.16 
3.06 

2.14 
3.02 

2.13 
3.00 

14 

15 454 368 329 306 290 279 270 264 259 255 251 248 243 239 233 229 225 221 218 2.15 212 2.10 208 207 15 
8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.56 3.48 3.36 3.29 3.20 3.12 3.07 3.00 2.97 2.92 2.89 2.87 

16 449 363 324 301 285 274 266 259 254 249 245 242 237 233 228 224 220 216 213 209 207 204 202 201 16 
8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.61 3.55 3.45 3.37 3.25 3.18 3.10 3.01 2.96 2.98 2.86 2.80 2.77 2.76 

17 445 359 320 296 281 270 262 255 250 245 241 238 233 229 223 219 215 211 208 204 202 199 1.97 1.96 17 
8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.45 3.35 3.27 3.16 3.08 3.00 2.92 2.86 2.79 2.76 2.70 2.67 2.65 

18 441 355 316 293 277 366 258 251 246 241 237 234 229 225 219 215 211 207 204 200 198 195 193 1.92 18 
8.28 6.01 5.09 4.58 4.25 4.01 3.85 3.71 3.60 3.51 3.44 3.37 3.27 3.19 3.07 3.00 2.91 2.83 2.78 2.71 2.68 2.62 2.59 2.57 

19 438 352 313 290 274 263 255 248 243 238 234 231 226 221 215 211 207 202 200 196 194 191 190 1.88 19 
8.18 6.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.19 3.12 3.00 2.92 2.84 2.76 2.70 2.63 2.60 2.54 2.51 2.49 

20 435 349 310 287 271 260 252 245 240 235 231 228 223 218 212 208 204 199 196 192 190 187 185 184 20 
8.10 5.85 4.94 4.43 4.10 3.87 3.71 3.56 3.45 3.37 3.30 3.23 3.13 3.ME 2.94 2.86 2.77 2.69 2.63 2.56 2.53 2.47 2.44 2.42 

21 432 347 307 284 268 257 249 242 237 232 228 225 220 215 209 205 200 196 193 189 187 184 182 181 21 
8.02 5.78 4.87 4.37 4.04 3.81 3.65 3.51 3.40 3.31 -. 24 3 17 3.07 2.99 2.88 2.80 2.72 2.63 2.58 2.51 2.47 2.42 2.38 2.36 

22 430 344 305 282 266 255 247 240 235 230 226 223 218 213 207 203 198 193 191 187 184 181 18 1.78 22 
7.94 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.02 2.94 2.83 2.75 2.67 2.58 2.53 2.46 242 2.37 2.33 2.31 

23 428 342 303 280 264 253 245 238 232 228 224 220 214 210 204 200 196 191 188 1.4 182 1.79 1.77 176 23 
7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 2.97 2.89 2.78 2.70 2.62 2.53 2.48 2.41 2.37 2.32 2.28 2.26 

24 426 340 301 278 262 251 243 236 230 226 222 213 213 209 202 198 194 189 186 182 180 176 174 173 24 
7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.25 3.17 3.09 3.03 2.93 2.85 2.74 2.66 2.58 2.49 2.44 2.36 2.33 2.27 2.23 2.21 

25 424 338 299 276 260 249 241 234 228 224 220 216 211 206 200 196 192 187 184 180 177 174 172 1.71 25 
7.77 5.57 4.68 4.18 3.86 3.63 3.46 3.32 3.21 3.13 3.05 2.99 2.89 2.81 2.70 2.62 2.54 2.45 2.40 2.32 2.29 2.23 2.19 2.17 

26 422 337 298 274 259 247 239 232 227 222 218 215 210 205 199 195 190 185 182 178 176 172 1.70 1.69 26 
7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.17 3.09 3.02 2.96 2.86 2.77 2.66 2.58 2.50 2.41 2.36 2.28 2.25 2.19 2.15 2.13 



Appendix E (Continued) 

I f, Degrees of freedom (for greater mean square) 

1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 co 

27 421 335 296 273 257 246 237 230 225 220 216 213 208 203 1.97 193 188 184 1.80 1.76 1.74 1.71 1.68 1.67 27 
768 5.49 4.60 4.11 3.79 3.56 3.39 3.26 3.14 3.06 2.98 2.93 2.83 2.74 2.63 2.55 2.47 2.38 2.33 2.25 2.21 2.16 2.12 2.10 

28 420 334 295 271 256 244 236 229 224 219 215 212 206 202 1.96 191 187 181 1.78 1.75 1.72 1.69 1.67 1.65 28 
7.64 5.45 4.57 4.07 3.76 3.53 3.36 3.23 3.11 3.03 2.95 2.90 2.80 2.71 2.60 2.52 2.44 2.35 2.30 2.22 2.18 2.13 2-09 2.06 

29 418 333 293 270 254 243 235 228 222 218 214 210 205 200 194 190 185 1.80 1.77 1.73 1.71 1.68 1.65 1.64 29 
7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.08 3.00 2.92 2.87 2.77 2.68 2.57 2.49 2.41 2.32 2.27 2.19 2.15 2.10 2.06 2.03 

30 417 
7.56 

332 
5.39 

292 
4.51 

269 
4.02 

253 
3.70 

242 
3.47 

234 
3.30 

227 
3.17 

221 
3.06 

216 
2.98 

212 
2.90 

209 
2.84 

204 
2.74 

199 
2.68 

193 
2.55 

1.89 
2.47 

184 
2-38 

1.79 
2.29 

1.76 
2.24 

1.72 
2.16 

1.69 
2-13 

1.66 
2.07 

1.64 
2.03 

1.62 
2.01 

30 

32 415 330 290 267 251 240 232 225 219 214 210 207 202 197 191 186 182 1.76 1.74 1.69 1.67 164 1.61 1.59 32 
7.50 5.34 4.46 3.97 3.68 3.42 3.25 3.12 3.01 2.94 2.86 2.80 2.70 2.62 2.51 2-42 2.34 2.25 2.20 2.12 2.08 2.02 1.98 1.96 

34 413 32P 288 265 249 238 230 223 217 212 208 205 200 195 189 184 180 1.74 1.71 167 1.64 1.61 1.59 1.57 34 
7.44 5.29 4.42 3.93 3.61 3.38 3.21 3.08 2.97 2.89 2.82 2.76 2.66 2.58 2.47 2.38 2.30 2.21 2.15 2.08 2.04 1.98 1.94 1.91 

36 411 326 286 263 248 236 228 221 215 210 206 203 198 193 187 182 1:78 1.72 1.69 1.65 1.62 1.59 1.56 1.55 36 
7.39 5.25 4.38 3.89 3.58 3.35 3.18 3.04 2.94 2.86 2.78 2.72 2.62 2.54 2.43 2.35 2.26 2.17 2.12 2.04 2.00 1.94 1.90 1.87 

38 410 325 285 262 246 235 226 2.19 214 209 205 202 196 1.92 185 1.80 1.76 171 1.67 1.63 1.60 157 1.54 1.53 38 
7.35 5.21 4.34 3.86 3.54 3.32 3.15 3.02 2.91 2.82 2.75 2.69 2.59 2.51 2.40 2.32 2.22 2.14 2.08 2.00 1.97 1.90 1.86 1.84 

40 408 323 284 261 245 234 225 2.18 212 207 204 200 195 190 184 1.79 1.74 1.69 1.66 1.61 159 1.55 1.53 1.51 40 
7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.88 2.80 2.73 2.68 2.56 2.49 2.37 2.29 2.20 2.11 2.05 1.97 1.94 1.88 1.84 1.81 

42 407 322 283 259 244 232 224 217 211 2.06 202 199 1.94 189 182 1.78 173 1.68 1.64 1.60 1.57 1.54 1.51 1.49 42 
7.27 5.15 4.29 3.80 3.49 3.26 3.10 2.96 2.86 2.77 2.70 2.4 2.54 2.46 2.35 2.26 2.17 2.08 2-02 1.94 1.91 1.85 1.80 1.78 

44 406 321 282 258 2.43 231 223 216 210 205 201 198 1.92 188 1.81 1.76 1.72 166 1.63 1.58 1.56 1.52 1.50 1.48 44 
7.24 5.12 4.26 3.78 3.46 3.24 3.07 2.94 2.84 2.75 2.68 2.62 2.52 2.44 2.32 2.24 2.15 2.06 2.00 1.92 1.88 1.82 1.78 1.75 

46 405 320 281 257 2.42 2.30 222 214 209 204 200 1.97 1.91 187 1.80 1.75 1.71 1.65 1.62 1.57 1.54 1.51 1.48 1.46 46 
7.21 5.10 4.24 3.76 3.44 3.22 3.05 2.92 2.82 2.73 2.66 2.60 2.50 2.42 2.30 2.22 2.13 2.04 1.98 1.90 1.86 1.80 1.76 1.72 

48 404 319 280 2.56 2.41 2.30 2.21 2.14 2.06 203 1.99 1.96 1.90 1.86 1.79 1.74 1.70 1.64 1.61 1.56 1.53 1.50 1.47 1.45 48 
7.19 5.08 4.22 3.74 3.42 3.20 -3.04 2.90 2.80 2.71 2.64 2.58 2.48 2.40 2.28 2.20 2.11 2.02 1.96 1.88 1.84 1.78 1.73 1.70 

• continued next page 
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Appendix E (Continued) 

1, Degrees of freedom (for greater mean square) 
1 2 3 4 5 6 7 8 9 10 11 12 14 16 20 24 30 40 50 75 100 200 500 0 J 

50 403 318 279 256 240 229 220 2.13 207 2.02 196 195 1.90 185 178 174 169 163 1.60 1.55 1.52 1.48 1.46 1.44 50 
7.17 5.06 4.20 3.72 3.41 3.18 3.02 2.88 2.78 2.70 2.62 2.56 2.48 2.39 2.26 2.18 2.10 2.00 1.)4 1.86 1.32 1.76 1.71 1.66 

55 402 317 2.78 254 238 2.27 2.18 2.11 205 200 197 193 188 1.83 176 1.72 167 1.61 1.58 1.52 1.50 1.46 1.43 1.41 55 
7.12 5.01 4.16 3.68 3.37 3.15 2.968 2.85 2.75 2.66 2.59 2.53 2.43 2.35 2.23 2.15 2.06 1.96 1.10 1.82 1.78 1.71 1.6 1.64 

60 400 315 276 252 237 225 2.17 210 204 199 195 192 186 181 175 1.70 1.65 1.59 1.56 1.50 1.48 144 1.41 1.39 60 
7.068 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.40 2.32 2.20 2.12 2.03 1.93 1.87 1.79 1.74 1.68 1.63 1.60 

65 399 314 275 251 236 224 215 208 202 198 194 190 185 180 173 168 163 1.57 154 1.49 1.46 1.42 1.39 1.37 65 
7.04 4.95 4.10 S.62 3.31 3.09 2.93 2.79 2.70 2.61 2.4 2.47 2.37 2.30 2.18 2.09 2.00 1.90 1.84 1.76 1.71 1.64 1.60 1.6 

70 398 313 274 250 235 223 214 207 201 197 193 189 184 179 172 167 162 156 1.53 1.47 145 140 1.37 1.35 70 
7.01 4.92 4.08 3.60 3.29 3.07 2.91 2.77 2.67 2.59 2.51 2.45 2.35 2.28 2.15 2.07 1.98 1.88 1.82 1.74 1.69 1.62 1.56 1.53 

80 396 311 272 248 233 221 212 205 199 195 191 188 182 177 1.70 165 160 154 151 145 142 1.38 1.35 1.32 80 
6.96 4.88 4.04 3.56 3.25 3.04 2.87 2.74 2.64 2.55 2.48 2.41 2.32 2.24 2.11 2.03 1.94 1.84 1.78 1.70 1.65 1.57 1.52 1.49 

100 394 309 270 246 -30 219 210 203 197 192 188 185 1.79 175 168 163 157 151 148 142 139 134 130 1.28 100 
6.90 4.82 3.98 3.61 3.20 2.99 2.82 2.69 2.59 2.51 2.43 2.36 2.26 2.19 2.06 1.968 1.88 1.78 1.73 1.64 1.59 1.51 1.46 1.43 

125 392 307 268 244 229 217 208 201 195 190 186 183 177 172 165 160 155 149 145 139 1.36 1.31 1.27 1.25 125 
6.84 4.78 3.94 3.47 3.17 2.95 2.79 2.65 2.56 2.47 2.40 2.33 2.23 2.15 2.03 1.94 1.85 1.75 1.68 1.59 1.54 1.46 1.40 1.37 

150 391 306 267 243 227 216 207 200 194 189 185 182 176 171 164 159 154 147 144 137 134 1.29 1.25 1.22 150 
6.81 4.75 3.91 3.44 3.14 2.92 2.76 2.62 2.53 2.44 2.37 2.30 2.20 2.12 2.00 1.91 1.83 1.72 1.66 1.56 1.51 1.43 1.37 1.33 

200 389 304 265 241 226 214 205 198 192 187 183 180 174 169 162 157 152 145 142 135 1.32 126 1.22 1.19 200 
6.76 4.71 3.88 3.41 3.11 2.90 2.73 2.60 2.50 2.41 2.34 2.28 2.17 2.09 1.97 1.88 1.79 1.69 1.62 1.53 1.48 1.39 1.33 1.28 

400 386 302 262 239 223 212 ,?03 196 190 185 181 178 172 167 160 154 149 142 138 132 128 1.22 1.16 1.13 400 
6.70 4.66 3.83 3.36 3.06 2.86 2.69 2.55 2.46 2.37 2.29 2.23 2.12 2.04 1.92 1.84 1.74 1.64 1.57 1.47 1.42 1.32 1.24 1.19 

1000 385 300 261 238 222 210 202 195 189 184 180 176 170 165 158 153 147 141 136 130 126 1.19 1.13 1.08 1000 
6.68 4.62 3.80 3.34 3.04 2.82 2.66 2.53 2.43 2.34 2.26 2.20 2.09 2.01 1.89 1.81 1.71 1.61 1.54 1.44 1.38 1.28 1.19 1.11 

oz 384 299 260 237 221 209 201 1 94 1 88 183 179 175 169 164 157 152 146 140 1.35 128 124 1.17 1.11 1.00 cc 
6.64 4.60 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.24 2.18 2.07 1.99 1.87 1.79 1.69 1.59 1.52 1.41 1.36 1.25 1.15 1.00 

Reprinted by permission from STATISTICAL METHODS by George W Snedecot and William G Cochran sixth edition (c) 1967 by Iowa State University Press.
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Appendix F Significant Studentized Ranges for 5% and 1% Level New Multiple Range Test 

Error Protection p = number of means for range being tested 
df level 

2 3 4 5 6 7 8 9 10 12 14 16 18 20 

05 180 180 180 180 180 180 180 180 180 180 18.0 18.0 180 18.0 
.01 900 900 900 900 900 900 900 900 900 90.0 90.0 900 90.0 90.0 
.05 609 609 609 '6 09 609 609 609 6.09 6.09 6.09 6.09 6.09 6.09 6.09 
.01 140 140 140 140 140 140 140 14.0 14.0 140 14.0 140 14.0 14.0 
.05 4.50 4.50 4.50 4 50 450 450 4.50 4.50 4.50 4.50 4.50 4.50 4.50 4.50 
.01 8.26 8.5 8.6 8.7 88 89 8.9 9.0 9.0 9.0 9.1 9.2 9.3 9.3 
.05 3.93 4.01 402 402 402 4.02 4.02 4.02 4.02 4.02 4.02 402 4.02 4.02 
.01 6.51 68 69 70 7.1 7.1 7.2 7.2 7.3 7.3 7.4 7.4 7.5 7.5 
.05 3.64 3.74 379 383 383 383 383 3.83 3.83 3.83 3.83 3.83 3.83 383 
.01 5.70 5.96 6.11 618 6.26 6.33 6.40 6.44 6.5 6.6 6.6 6.7 6.7 6.8 
.05 3.46 3.58 364 368 368 3.68 3.68 3.68 3.68 3.68 3.68 368 3.68 3.68 
.01 5.24 5.51 565 573 581 588 5.95 6.00 6.0 6.1 6.2 6.2 6.3 6.3 
.05 3.35 3.47 3.54 3.58 360 361 3.61 3.61 3.61 3.61 3.61 3.61 3.61 3.61 

-. 01 4.95 5.22 537 5.45 5.53 5.61 5.69 5.73 5.8 5.8 5.9 5.9 6.0 6.0 
.05 3.26 3.39 3.47 352 3.55 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 3.56 

- .01 4.74 5.00 5.14 5.23 5.32 5.40 5.47 5.51 5.5 5.6 5.7 5.7 5.8 5.8 
.05 3.20 3.34 3.41 3.47 3.50 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 3.52 
.01 4.60 4.86 4.99 5.08 5.17 5.25 5.32 5.36 5.4 5.5 5.5 5.6 5.7 5.7 
.05 3.15 3.30 3.37 3.43 3.46 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.47 3.48 
.01 4.48 4.73 4.88 4.96 506 5.13 5.20 5.24 5.28 5.36 5.42 5.48 5.54 5.55 
.05 3.11 3.27 3.35 3.39 3.43 3.44 3.45 3.46 4.46 3.46 3.46 3.46 3.47 3.48 
.01- 4.39 4.63 4.77 4.86 4.94 5.01 5.06 5.12 5.15 5.24 5.28 5.34 5.38 5.39 
.05 3.08 3.23 3.33 3.36 3.40 3.42 3.44 3.44 3.46 3.46 3.46 3.46 3.47 3.48 
.01 4.32 4.55 4.68 4.76 4.81 4.92 4.96 5.02 5.07 5.13 5.17 5.22 5.24 5.26 
.05 3.05 3.21 3.30 3.35 3.38 3.41 3.42 3.44 3.45 3.45 3.46 3.46 3.47 3.47 
.01 4.26 4.48 4.62 4.69 4.74 4.84 4.88 4.94 4.98 5.04 5.08 5.13 5.14 5.15 
.05 3.03 3.18 3.27 3.33 3.37 3.39 3.41 3.42 3.44 3.45 3.46 3.46 3.47 3.47 
.01 4.21 4.42 4.55 4.63 4.70 4.78 4.83 3.87 4.91 4.96 5.00 5.04 5.05 5.07 
.05 3.01 3.16 3.25 3.31 3.36 3.38 3.40 3.42 3.43 3.44 3.45 3.46 3.47 3.47 
.01 4.17 4.37 4.50 4.58 4.64 4.72 4.77 4.81 4.84 4.90 4.94 4.97 4.99 5.00 

continued next page 



Appendix F (Continued) 

Error Protection 	 p , number of means for range being tested 
df level 

2 3 4 5 6 7 8 9 10 12 14 16 18 20 

16 	 .05 3.00 3.15 323 3.30 334 3.37 3.39 3.41 3.43 3.44 3.45 3.46 3.47 3.47.01 4.13 4.34 445 4.54 4.60 4.67 4.72 4.76 4.79 4.84 	 4.88 4.91 4.93 4.94 
17 	 .05 2.98 3.13 3.22 3.28 333 336 3.38 3.40 3.42 3.44 3.45 3.46 3.47 3.47.01 4.10 4.30 4.41 4.50 4.56 463 4.68 4.72 4.75 	 4.80 4.83 4.86 4.88 4.89 
18 	 .05 2.97 3.12 3.21 3.27 332 3.35 3.37 3.39 3.41 3.43 3.45 3.46 347 	 3.47.01 4.07 4.27 4.38 4.46 453 4.59 4.64 4.68 4.71 4.76 4.79 4.82 4.84 4.85 
19 	 .05 2.96 3.11 3.19 3.26 331 3.35 3.37 3.39 3.41 3.43 	 3.44 3.46 3.47 3.47.01 	 4.05 4.24 4.35 4.43 4.50 4.56 4.61 4.64 4.67 4.72 4.76 4.79 4.81 4.82 
20 	 .05 2.95 3.10 3.18 325 330 3.34 3.36 3.38 3.40 3.43 	 3.44 3.46 3.46 3.47.01 	 4.02 4.22 4.33 4.40 447 4.53 4.68 4.61 	 4.65 4.69 4.73 3.76 4.78 4.79 
22 	 .05 2.93 3.08 3.17 3.24 3.29 332 3.35 3.37 3.39 3.42 3.44 3.45 3.46 3.47.01 3.99 4.17 4.28 436 442 4.48 4.53 4.57 4.60 4.65 4.68 4.71 4.74 4.75 
24 	 .05 2.92 3.07 3.15 322 3.28 3.31 3.34 3.37 3.38 3.41 3.44 3.45 3.46 3.47.01 3.96 4.14 4.24 433 4.39 4.44 4.49 4.53 4.57 4.62 4.64 4.67 4.70 	 4.72 
26 	 .05 2.91 3.06 3.14 321 327 3.30 3.34 3.36 3.38 	 3.41 3.43 3.45 3.46 3.47.01 3.93 4.11 4.21 430 4.36 441 4.46 4.50 4.53 4.58 4.62 4.65 4.67 4.69 
28 05 2.90 3.04 3.13 3.20 3.26 330 3.33 3.35 3.37 3.40 3.43 3.45 3.46 3.47.01 3.91 4.08 4.18 4.28 4.34 4.39 443 	 4.47 4.51 4.56 4.60 4.62 4.65 4.67 
30 	 .05 2.89 3.04 3.12 3.20 325 329 3.32 	 3.35 3.37 3.40 3.43 3.44 3.46 3.47.01 3.89 4.06 4.16 4.22 4.32 436 4.41 4.45 	 4.48 4.54 4.58 4.61 4.63 4.65 
40 	 .05 286 3.01 3.10 3.17 322 327 3.30 3.33 	 3.35 3.39 3.42 3.44 3.46 3.47.01 382 3.99 4.10 4.17 421 4.30 4.34 4.37 4.41 	 4.46 4.51 4.54 4.57 4.59 
60 	 .05 2.83 2.98 3.08 3.14 320 3.24 3.28 3.31 3.33 3.37 3.40 3.43 3.45 3.47.01 3.76 3.92 4.03 4.12 4.17 4.23 4.27 4.31 	 4.34 4.39 4.44 4.47 4.50 4.53 

100 	 .05 2.80 2.95 305 3.12 3.18 3.22 3.26 3.29 3.32 3.36 3.40 3.42 3.45 3.47.01 3.71 386 3.98 4.06 4.11 4.17 4.21 4.25 4.29 4.35 4.38 4.42 4.45 4.48 
3 	 .05 277 2.92 302 3.09 315 319 323 326 3.29 3.34 3.38 3.41 3.44 3.47.01 364 380 390 398 404 4.09 4.14 4.17 4.20 4.26 431 4.34 4.38 4.41 

Source Reproduced from Principles and Procedures of Statistics by R G D Steel and J H Tome. 1960. McGraw Hill Book Co. Inc.. New York Printed with the
permission of the publisher. Biometric Society. North Carolina 
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Appendix G Orthogonal Polynomial Coefficients for Comparison between 
Three to Six Equally Spaced Treatments 

Treatments Degree T, T, T, T, T, T, Sum of 
(no.) of squares 

polynomials of the 
coefficients 

3 	 Linear -1 0 +1 2 
Quadratic +1 -2 +1 6 

4 	 Linear -3 -1 +1 +3 20 
Quadratic +1 -1 -1 +1 4 
Cubic -1 +3 -3 +1 20 

5 	 Linear -2 -1 0 +1 +2 10, 
Quadratic +2 -1 -2 -1 +2 14 
Cubic -1 +2 0 -2 +1 10, 
Quartic +1 -4 +6 -4 +1 70 

6 	 Linear -5 -3 -1 +1 +3 +5 70 
Quadratic +5 -1 -4 -4' -1 +5 84 
Cubic -5 +7 +4 -4 -7 +5 180 
Quartic +1 -3 +2 +2 -3 +1 28 
Ouintic -1 +5 -10 +10 -5 *+1 252 

Appendix H Simple Linear Correlation Coefficients, r, at the 5% and 1%Levels 
of Significance 

df' 5% 1% d.f. 6% 1% 

1 .997 1.000 26 .5/4 .478 
2 950 990 27 .367 .470 
3 .878 .959 28 .361 .463 
4 .811 .:,.7 29 .355 .456 
5 .754 .874 30 .349 .449 
6 .707 .834 32 .339 .437 
7 .666 .798 34 .329 .424 
8 .632 .765 36 .321 .413 
9 .602 .735 38 .312 .403 

10 .57C .708 40 .304 .393 
11 .553 .684 45 .288 .372 
12 .532 .661 50 .273 .354 
13 .514 .641 55 .262 .340 
14 .497 .623 60 .250 .325 
15 .482 .606 70 .232 .302 
16 .468 .590 80 .217 .283 
17 .456 .575 90 .205 .267 
18 .444 .561 100 .195 .254 
19 .433 .549 125 .174 .228 
20 .423 .537 150 .169 .208 
21 .413 .526 176 .148 .194 
22 .404 .515 200 .138 .181 
23 .396 .505 300 .113 .148 
24 .388 .496 400 .098 .128 
25 .381 487 500 .088 .115 

'd I n - 2, where n is the sample size 
Reprinted by permission from STATISTICAL METHODS by George W. Snedecor and William G. Cochran, 
sixth edition (c) 1967 by Iowa Slate University Press, Ames, Iowa. 
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Appendix I Table of Corresponding Values of r3 and z1 

z r z r z r Z r 

J,00 
0.20 

0.000 
0.020 

0.70 
0.72 

0.607 
0617 

1 40 
1.42 

0885 
0.890 

2.10 
2.12 

0.970 
0.972 

0.04 0.040 0.74 0.629 1.44 0.894 2.14 0,973 
0.06 0.060 0.76 0.841 1.46 0.898 2.16 0.974 
0.08 0.080 0.78 0.653 1.48 0.902 2.18 0975 
0.10 
0.12 

0.100 
0.119 

0.80 
0.82 

0.664 
0.675 

1.50 
1.52 

0905 
0.909 

2.20 
2.22 

0976 
0977 

0.14 0.139 0.84 0.686 1.54 0.912 2.24 0978 
0.16 0.159 0.86 0.696 1.56 0.915 2.26 0 97L. 
0.18 0.178 0.88 0.706 1.58 0.919 2.28 0979 
0.20 0.197 0.90 0.716 1.60 0.922 2.30 0.980 
0.22 0.216 0.92 0.726 1.62 0.925 2.32 0.981 
0.24 0.236 0.94 0.735 1.64 0.928 2.34 0982 
0.26 0.254 0.96 0.744 1.66 0.93r, 2.36 0982 
0.28 0.273 0.98 0.753 1 68 0 °33 2.38 0983 
0.30 0.291 1.00 0.762 1.70 0 935 2.40 0984 
0.32 0.310 1.02 0.770 1.72 0938 2.42 0984 
0.34 0.327 1.04 0.778 1.74 0940 2.44 0985 
0.36 0.345 1.06 0.786 1.76 0942 2.46 0986 
0.38 0.363 1.08 0.793 1 78 0.945 2.48 0,986 
0,40 
0.42 

0.380 
0.397 

1.10 
1.12 

0.800 
0.808 

1 80 
1 82 

0947 
0.949 

2.50 
2.52 

0987 
0.987 

0.44 0.414 1.14 0814 1 84 0951 2.54 0988 
0.46 0.430 1.16 0.821 1.86 0953 2.56 0988 
0.48 0.446 1.18 0.828 1 88 0954 258 0989 
0.50 0.462 1.20 0834 1 90 0956 262 0989 
052 0.478 1.22 0,840 1 92 0 958 2 66 0990 
0.54 0.493 1.24 0846 1 94 0 960 2.70 0991 
0.66 0.508 1.26 0851 1 96 0961 274 0992 
0.58 0.523 1.28 0 856 1 98 0 963 2 78 0992 
0.60 0.537 1.30 0.862 200 0964 282 0993 
0.62 0.551 1.32 0867 2 02 0 965 2 86 0 993 
0.64 0565 1.34 0872 204 0967 290 0994 
0.66 0.578 1.36 0876 206 0968 2 94 0994 
0.68 0.592 1 38 C881 208 0969 298 0995 

If= (@31- 1)/(e@2 + 1)or Z - In (1 + t)/ (I-r) 

Reprinted by permission from STATISTICAL METHODS by William G Cochran. fourth edition 1946 by 
Iowa Slate University Press, Ames, Iowa 
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Appendix J The Arc Sine VPercentage Transformation. 
(Transformation of binomial percentages, In the margins, to angles of equal 
Information In degrees. The + or - signs following angles ending In 5 are for 
guidance In rounding to one decimal.) 

% 0 1 2 3 4 5 6 7 8 9 

00 0 057 081 099 1.15- 1.28 140 1.52 1.62 1.72 
0.1 1.81 1.90 1.99 207 2.14 2.22 2.29 2.36 2.43 2.50 
0.2 2.56 2.63 2 69 2.75- 2.81 2.87 2.92 2.98 3.03 3.09 
0.3 3.14 3.19 324 3.29 3.34 3.39 3.44 3.49 3.53 3.58 
0.4 3.63 3 67 3.72 3.76 3.80 3,85- 3.89 3.93 3.97 4.01 
0.5 4.05+ 4.09 4.13 4.17 4.21 4.25+ 4.29 4.33 4.37 4.40 
06 4.44 4.48 4.52 4.55+ 4.59 4.62 4.66 4.69 4.73 4.76 
0.7 480 4.83 4.87 4.90 4.93 4.97 5.00 5.03 5.07 5.10 
08 5.13 5.16 5.20 5.23 5.26 5.29 5.32 5.35+ 5.38 5.41 
0.9 5 4 5.47 5.50 5.53 5.56 5.59 5.62 5.65+ 5.68 5.71 

1 5 74 6.02 6.29 6.55- 6.80 7.04 7.27 7.49 7.71 7.92 
2 8 13 8.33 8.53 8.72 8.91 9.10 9.28 9.46 9.63 9.81 
3 9.98 10.14 10.31 10.47 10.63 10.78 10.94 11.09 11.24 11.39 
4 11 54 11.68 11.83 11.97 12.11 12.25- 12.39 12.52 12.66 12.79 
5 1292 13.05+ 13.18 13.31 13.44 13.56 13.69 13.81 13.94 14.06 
6 14.18 14.30 14.42 1454 1465+ 14.77 14.89 15.00 15.12 15.23 
7 1534 15.45+ 1556 1568 15.79 15.89 16.00 1611 16.22 16.32 
8 1643 16.54 16.64 16.74 1685- 16.95+ 17.05+ 17.16 17.26 17.36 
9 1746 17.56 1766 1776 1785+ 17.95+ 18.05- 1815- 1824 18.34 

10 1844 1853 1863 18.72 1881 1891 19.00 1909 19.19 19.28 
11 1937 1946 1955+ 1964 19.73 1982 1991 20.00 20.09 20.18 
12 2027 2036 2044 2053 2062 20.70 20.79 2088 2096 21.05­
13 21 13 21 22 21 30 21.39 21 47 21 56 21 64 21.72 21.81 21.89 
14 21 97 2206 22 14 22 22 2230 2238 2246 2255- 22.63 22.71 

15 22.79 2287 2295- 2303 2311 2319 2326 2334 2342 23.50 
16 2358 2366 2373 2381 2389 2397 2404 2412 2420 24.27 
17 2435+ 2443 2450 2458 2465+ 2473 2480 2488 24.95+ 25.03 
18 2510 2518 2525+ 2533 2540 2548 2555- 2562 25.70 25.77 
19 2584 2592 2599 2606 2613 2621 2628 2635- 2642 2649 

20 2656 2664 2671 2678 2685+ 2692 2699 2706 27.13 27.20 
21 2728 2735- 2742 2749 2756 2763 2769 2776 2783 27.90 
22 2797 2804 2811 2818 2825- 2832 2838 2845+ 2852 28.59 
23 2866 2873 "879 2886 2893 2900 2906 2913 2920 29.27 
24 2933 2940 2947 2953 2960 2967 2973 2980 2987 29.93 

25 3000 3007 3013 3020 3026 3033 3040 3046 30.53 30.59 
26 3066 3072 3079 3085+ 3092 3098 31 05- 31 11 31 18 31.24 
27 31 31 31 37 31 44 31 50 31 56 31 63 31.69 31 76 3182 31.88 
28 31 95- 3201 3208 3214 3220 3227 3233 3239 3246 32.52 
29 3258 3265- 3271 3277 3283 3290 3296 3302 3309 33.15­

30 3321 3327 3334 3340 3346 3352 3358 3365- 33.71 33.77 
31 3383 3389 3396 3402 3408 3414 3420 34.27 3433 34.39 
32 3445- 3451 3457 3463 3470 3476 3482 3488 34.94 35.00 
33 3506 3512 3518 3524 3530 3537 3543 3549 3555- 35.61 
34 3567 3573 3579 3585- 3591 3597 3603 3609 3615+ 36.21 
35 3627 3633 3639 3645+ 3651 3657 3663 3669 3675+ 3681 
36 3687 3693 3699 3705- 3711 3717 3723 3729 3735- 37.41 
37 37 47 37 52 37 58 37 64 3770 37 76 37 82 37.88 37.94 38.00 
38 3806 3812 3817 3823 3829 3835+ 3841 3847 3853 38.59 
39 3865- 3870 3876 3882 3888 3894 3900 3906 39 11 3917 
40 3923 3929 3935- 3941 3947 3952 3958 3964 3970 39.76 
41 3982 3987 3993 3999 4005- 4011 4016 4022 40.28 40.34 
42 4040 4046 4051 4057 4063 4069 4074 4080 4086 40.92 
43 40.98 41 03 41 09 41 15- 41.21 41.27 41.32 41 38 41 44 41.50 
44 41 55+ 41 61 41 67 41 73 41.78 41.84 41.90 41.96 4202 42.07 
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Appendix J (Continued) 

% 0 1 2 3 4 5 6 7 8 9 

45 
46 
47 

42.13 
42.71 
4328 

42.19 
42.76 
4334 

42 25-
4282 
43 39 

42.30 
42.88 
43.45+ 

42.36 
42.94 
4351 

42.42 
42.99 
43.57 

42.48 
43.05-
43.62 

42.53 
43.11 
43.68 

42.59 
43.17 
4374 

42.65­
43.22 
4380 

48 
49 

43,85+ 
4443 

4391 
4446 

43 97 
4454 

4403 
4460 

4408 
44.66 

44.14 
4471 

44.20 
4477 

44.25+ 
4483 

4451 
4489 

44 37 
4494 

60 
51 
52 

45.00 
45.57 
46.15-

4506 
45.63 
4620 

4511 
4569 
4626 

4517 
4575-
46.32 

4523 
4580 
4638 

4529 
4586 
4643 

4534 
4592 
4649 

4540 
4597 
4655-

4546 
4603 
46.61 

4552 
4609 
4666 

53 
54 

46.72 
4729 

4678 
4735+ 

4683 
4741 

4689 
4747 

4695+ 
4752 

4701 
4758 

4706 
4764 

4712 
4770 

4718 
4775+ 

4724 
4781 

55 4787 4793 4798 4804 48.10 4816 4822 4827 4833 4839 
56 
57 
58 
59 

48.45-
49.02 
49.60 
50.18 

48.50 
49.08 
4966 
50.24 

4856 
49 14 
49.72 
5030 

4862 
4920 
4978 
5036 

4868 
49.26 
49.84 
5042 

4873 
49 31 
4989 
5048 

4879 
4937 
4995+ 
5053 

4885+ 
4943 
5001 
5059 

4891 
4949 
5007 
5065+ 

4897 
49 54 
5013 
5071 

60 5077 5083 5089 5094 51.00 51 06 51 12 51 18 51 24 51 30 
61 
62 

51.35+ 
51.94 

51.41 
5200 

51 47 
5206 

51 53 
5212 

51 59 
52.18 

51 65-
5224 

51 71 
5230 

51 77 
5236 

51 83 
5242 

51.88 
5248 

63 
64 

52.53 
53.13 

5259 
5319 

5265+ 
5325-

5271 
5331 

5277 
5337 

5283 
5343 

5289 
5349 

5295+ 
5355-

5301 
5361 

5307 
5367 

65 5373 5379 5385- 5391 5397 5403 5409 5415+ 54 21 5427 
66 
67 

5433 
5494 

5439 
5500 

5445+ 
5506 

5451 
5512 

5457 
5518 

5463 
5524 

5470 
5530 

5476 
5537 

5482 
5543 

5488 
5549 

68 5555+ 5561 5567 5573 5580 5586 5592 5598 5604 5611 
69 5617 5623 5629 5635+ 5642 5648 5654 5660 5666 5673 

70 56.79 5685+ 56.91 5698 5704 5710 57 17 5723 5729 5735+ 
71 5742 5748 5754 5761 5767 5773 5780 5786 5792 5799 
72 5805+ 5812 5818 5824 5831 5837 5844 5850 5856 5863 
73 5869 5876 5882 5889 5895+ 5902 5908 5915- 5921 5928 
74 5934 5941 5947 5954 5960 5967 5974 5980 5987 5993 

75 
76 

6000 
60.67 

6007 
6073 

60.13 
6080 

6020 
6087 

6027 
6094 

6033 
6100 

6040 
61 07 

6047 
61 14 

6053 
61 21 

6060 
61 27 

77 61.34 61 41 61 48 61 55- 61 62 61 68 61.75+ 61 82 61 89 61 96 
78 6203 6210 6217 6224 6231 6237 6244 6251 6258 6265+ 
79 6272 6280 6287 6294 6301 6308 6315- 6322 6329 6336 

80 6344 6351 6358 6365+ 6372 6379 6387 6394 6401 6408 
81 64.16 6423 6430 6438 6445+ 6452 6460 6467 6475- 6482 
82 6490 6497 6505- 6512 6520 6527 6535- 6542 6550 6557 
83 65.65- 6573 6580 6588 6596 6603 6611 6619 6627 6634 
84 6642 6650 6658 6666 6674 6681 6689 6697 6705+ 6713 

85 67.21 67.29 67.37 5745+ 67 54 67 62 67 70 67 78 67 86 67 94 
86 68.03 6811 6819 68.28 6836 6844 6853 6861 6870 6878 
87 68.87 68.95+ 6904 6912 6921 6930 6938 6947 6956 6964 
88 69.73 6982 69.91 7000 7u 09 7018 7027 7036 7045- 7054 
89 70.63 70.72 7081 7091 7100 71 09 71 19 71 23 71 37 71 47 

90 71.56 71.66 71.76 71.85+ 71 95+ 7205- 7215- 7224 7234 7244 
91 72.54 72.64 7274 7284 7295- 7305- 7315+ 7326 7336 7346 
92 73.57 73.68 73.78 7389 7400 74 11 74,21 7432 7444 74 55­
93 74.66 74.77 74 88 7500 75.11 75.23 7535- 7546 75.58 7570 
94 75.82 75.94 7606 7619 7631 7644 7656 7669 7682 7695­

95 77.08 77.21 77.34 7748 77 61 77 75+ 7789 7803 78.17 78 32 
96 78.46 7861 78.76 78,91 7906 79.22 7937 7953 7969 7986 
97 80.02 80.19 8037 8054 80.72 8090 81 09 81 28 81 47 81.67 
98 8187 8208 8229 82.51 8273 8296 8320 8345+ 8371 8398 
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Appendix J (Continued) 

% 0 1 2 3 4 5 6 7 8 9 

99.0 84.26 84.29 84.32 84.35- 84.38 84.41 84.44 84.47 84.50 84.63 
99.1 84.56 84.59 84.62 84.65- 8468 84.71 84.74 84.77 84.80 84.84 
992 84.87 84.90 84.93 84.97 85.00 85.03 85.07 85.10 85.13 85.17 
99 3 85 20 85.24 85.27 85.31 85.34 85,38 85.41 85.45- 85.48 85.52 
994 85 56 85 60 85 63 8567 85.71 85.75- 85.79 85.83 85.87 85.91 
99.5 8595- 85.99 8603 86.07 86.11 86.15- 86.20 86.24 86.28 86.33 
99 6 86.37 86.42 8647 86 51 86.56 86.61 86.66 86.71 86.76 86.81 
997 8686 8691 86.97 8702 87.08 87.13 87.19 87.25+ 87.31 87.37 
99.8 8744 87.50 87.57 87.64 87.71 87.78 87.86 87.93 88.01 88.10 
99.9 8819 8828 8838 8848 8860 88.72 88.85+ 89.01 89.19 89.43 

1000 9000 

Reproduced from Principles and Procedures of Stat/stic by R. G. D.Steel and J. H. Torde. 1960. 
Printed with the permission of C. I.Blis, pp. 448-449. 

645 



Appendix K Selected Latin Squares 

4 43x3 


1 2 3 4 
A B C D A B C D A B C'D A 8 C DA B C 


B C A B A O C B C D A O D A C B A D C 

C A B C O B A C D A B C A D S' C D A B 
D C A DD A B C D C B A D C B A 

5x5 6x6 	 7z7
 

C D E F A B C D E F G 

B A E C DB F D C A E B C D E F G A 
C D A E B C O E F B A 

A B C D E A B 


C O E F G A B 
D E B A C D A F E C B D E F G A B C 
E C D B A E C A B F D E F G A B C D 

F E B A D C F G A B C D E 
G A B C D E F 

9x9
8X8 


G H A B C D E F G HI 

B C D E F G H A B C D E F G H I A 

C D E F G H A B 

A B C D E F 

C D E F G H I A B 

D E F G H A B C D E F G H I A B C 
E F G H A B C D E F G H I A B C D 
F G H A B C D E F G H i A B C D E 
G H A B C O E F G H I A B C D E F 

H A B C D E F G H I A B C D E F G 
IA B C D E F G H 

11 -1110 X 10 

A B C D E F G H I J K 
C D E F G H I J A B C D E F G H I J K A 

A B C D E F G H I J 
B 
C D E F G H I J A B C D E F G H I J K A B 
D E F G H I J A B C D E F G H I J K A B C 
E F G H I J A B C D E F G H / J K A B C D 

F G H I J K A B C D E
F G H I J A B C D E 

G H I J A B C D E F G H / J K A B C D E F
 

H I J A B C D E F G H I J K A B C D E F G 
I J A B C D E F G H I J K A B C D E F G H 

J A B C D E F G HI 	 J K A B C D E F G H I
 
K A B C D E F G H I J
 

Reproduced from EXPERIMENTAL DESIGNS by William G Cochran and Gertrude M Cox, second 
edition 1957. Copyright 1950. g) 1957 by John Wiley and Sons. Inc Reprinted by permission of John 
Wiley and Sons, Inc 
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AppendIx L Basic Plans for Balanced and Partially Balanced Lattice Designs 

4 " 4 BALANCED LATTICE 

Block Rep I Rep II Rep III 

(1) 
(2) 
(3) 
,4) 

1 2 
567 

910 
13-14 

3 

11 
15 

4 
8 

12 
16 

(5) 
(6) 
(7) 
(8) 

1 
e 
3 
4 

5 
6 
7 
8 

9 13 
10 14 

-15 
12 16 

(9) 
(10) 
(11) 
(12) 

1 
5 

9 
13 

6 
2 

14 
10 

11 
15 
3 
7 

16 
12 

8 
4 

(13) 
(14) 
(15) 
(16) 

1 
13 

5 
9 

Rep IV 

14 7 
2 11 

10 3 
6 15 

12 
8 

16 
4 

(17) 
(18) 
(19) 
(20) 

1 
9 

13 
5 

Rep V 

10 15 
2 7 
6 3 

14 11 

8 
16 
12 

4 

5,5 BALANCED LATTICE 

Block 

1) 

(2) 
(3) 
(4) 
(5) 

Rep 

12 3 

678910 
11 12 13 
1617- 18 
2i 22 23 

I 

4 5 

14 15 
19-26 
24 25 

(6) 
(7) 
(8) 
(9) 

(10) 

1 

2 
3 
4 
5 

Rep II 

6 11 1621 

7 12 17 22 
8 13 18 23 
9 141924 

10 15 20 25 

(11) 
(12) 
(13) 
(14) 
(15) 

1 
21 
16 
11 

6 

Rep III 

7 13 19 
2 8 14 

22 3 9 
17 23 4 
12 18 24 

25 
20 
15 
10 

5 

Rep IV Rep V Rep VI 

(16) 
(17) 
(18) 
(19) 
(20) 

1 -- 1-2 --23 - 20 
16 2 13 24 10 

6 1-7- 3 14 -25 
21 - 7 -1-8 4 -­15 
11 22 8 19 

(21) 
(22) 
123) 
124) 
(525) 

1 
11 
21 

6 
16 

17 
2 

12 
22 

7 

8 
18 

3 
13 
23 

24 
9 

19 
4 

14 

15 
25 
10 
20 

5 

(26) 
(27) 
(28) 
(29) 
(30) 

1 
6 

11 
16 
21 

22 
2 
7 

12 
17 

18 
23 

3 
8 

13 

14 
19 
24 

4 
9 

10 
15 
20 
25 

5 

continuednext page 
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Appendix L (Continued) 

6 6 TRIPLE LATTICE 

Block Rep I Rep II hap III 

(1) 1 2 3 4 5 6 (7) 1 7 13 19 25 31 (13) 1 8 15 22 29 36 
(2) 7 8 9 10 11 12 (8) 2 8 14 20 26 32 (14) 31 2 9 16 23 30 
(3) 13 14 15 16 17 1q (9) 3 9 15 21 27 33 (15) 25 32 3 10 17 24 
(4) 19 20 2', 22 23 24 (10) 4 10 16 22 28 34 (16) 19 26 33 4 11 18 
(5) 25 26 27 28 29 30 (11) 5 11 17 23 29 35 (17) 13 20 27 34 5 12 
(6) 31 32 33 34 35 36 (12) 6 12 18 24 30 36 (18) 7 14 21 28 35 6 

7- 7 BALANCED LATTiCE 

Block Rep I Rep II 

(1) 1 2 3 4 5 6 7 (8) 1 8 15 22 29 36 43 
(2) 8 9 10 11 12 13 14 (9) 2 9 16 23 30 37 44
 
(3) 15 16 17 18 19 20 21 (10) 3 10 17 24 31 38 45 
(4) 22 23 24 25 26 27 28 (11) 4 11 18 25 32 39 46
 
(5) 29 30 31 32 33 34 35 (12) 5 12 19 26 33 40 47
 
(6) 36 37 38 39 40 41 42 (13) 6 13 20 27 34 41 48 
(7) 43 44 45 46 47 48 49 (14) 7 14 21 28 35 42 49 

Rep III Rep IV 
(15) 1 9 17 25 33 41 49 (22) 1 37 24 11 47 34 21
 

(16) 43 2 10 18 26 34 42 (23) 15 2 38 25 12 48 35 
(17) 36 44 3 11 19 27 35 (24) 29 16 3 39 26 13 49 
(18) 29 37 45 4 12 20 28 (25) 43 30 17 4 40 27 14 
(19) 22 30 38 46 5 13 21 (26) 8 44 31 18 5 41 28
 
(20) 15 23 31 39 47 6 14 (27) 22 9 45 32 19 6 42 
(21) 8 16 24 32 40 48 7 (28) 36 23 10 4r 33 20 7 

Rep V Rep VI
 

(29) 1 30 10 39 19 48 28 (36) 1 23 45 18 40 13 35
 
(30) 22 2 31 11 40 20 49 (37) 29 2 24 46 19 41 14 
(31) 43 23 3 32 12 41 21 (38) 8 30 3 25 47 20 42 
(32) 15 4 24 4 33 13 42 (39) 36 9 31 4 26 48 21 
(33) 36 16 45 25 5 34 14 (40) 15 37 10 32 5 27 49 
(34) 8 37 17 46 26 6 35 (41) 43 16 38 11 33 6 2," 
(35) 29 9 38 18 47 27 7 (42) 22 44 17 39 12 34 

Rep VII Rep VIII 

(43) 1 16 31 46 12 27 42 (50) 1 44 38 32 26 20 14 
(44) 36 2 1/ 32 47 13 28 (51) 8 2 45 39 33 27 21 
(45) 22 37 3 18 33 48 14 (52) 15 9 3 46 40 34 28
 
(46) 23 3 4 19344 (53) -2--1TT 10 4 47 41 35 
(47) 43 9 24 39 5 20 35 (54) 29 23 17 11 5 48 42 
(48) 29 44 10 25 40 6 21 (55) 36 30 24 18 12 6 49 
(49) 15 30 45 11 26 41 7 (56) 43 37 31 25 19 13 7 
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AN ,,ndlx L (Continued) 

85 8 SEXTUPLE LATTICE 

Block Rep. I Rep II 

(1) 1 2 3 4 5 6 7 8 (9) 1 9 17 25 33 41 49 57 
(2) 9 10 11 12 13 14 15 16 (10) 2 10 18 26 34 42 50 58 
(3) 17 18 19 20 21 22 23 24 (11) 3 11 19 27 35 43 51 59 
(4) 25 26 27 28 29 30 31 32 (12) 4 12 20 28 36 44 52 60 
(5) 33 34 35 36 37 38 39 40 (13) 5 13 21 29 37 45 53 61 
(6) 41 42 43 44 45 46 47 48 (14) 6 14 22 30 38 46 54 62 
(7) 49 50 51 52 53 54 55 56 (15) 7 15 23 31 39 47 55 63 
(8) 57 58 59 60 61 62 63 64 (16) 8 16 24 32 40 48 56 64 

Rep III Rep IV 

(17) 1 10 19 28 37 46 55 64 (25) 1 18 27 44 13 62 39 56 
(18) 9 2 51 44 61 30 23 40 (26) 17 2 35 60 53 46 31 16 
(19) 17 50 3 36 29 62 15 48 (27) 25 34 3 12 45 54 23 64 
(20) 25 42 35 4 21 14 63 56 (28) 41 58 11 4 29 22 55 40 
(21) 33 58 27 20 5 54 47 16 (29) 9 50 43 28 5 38 63 24 
(22) 41 26 59 12 53 6 39 24 (30) 57 42 51 20 of 6 15 32 
(23) 49 18 11 60 45 38 7 32 (31) 33 26 19 52 61 14 7 48 
(24) 57 34 43 52 13 22 31 8 (32) 49 10 59 36 21 30 47 8 

Rep. V Rep VI 

(33) 1 26 43 60 21 54 15 40 (41) 1 34 11 20 53 30 63 48 
(34) 
(35) 

25 
41 

2 
10 

11 
3 

52 
20 

37 
61 

62 
38 

4? 
31 

24 
56 

(42) 
(43) 

33 
9 

2 
58 

59 
3 

28 
52 

45 
21 

22 
46 

15 
39 

56 
32 

(36) 57 50 19 4 45 30 39 16 (44) 17 26 51 4 13 38 47 64 
(37) 17 34 59 44 5 14 55 32 (45) 49 42 19 12 5 62 31 40 
(38) 49 58 35 28 13 6 23 48 (46) 25 18 43 36 61 6 55 16 
(39) 9 42 27 36 53 22 7 64 (47) 57 10 35 44 29 54 7 24 
(40) 33 18 51 12 29 46 63 8 (48) 41 50 27 60 37 14 23 

continued next page 
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Appendix L (Continued) 
9' 9 SEXTUPLE LATTICE 

Block Rep. I Rep. II 

(1) 1 2 3 4 5 6 7 8 9 (10) 1 10 19 28 37 46 55 64 73 
(2) 10 11 12 13 14 15 16 17 18 (11) 2 11 20 29 38 47 56 65 74 
(3) 19 20 21 22 23 24 25 28 27 (12) 3 12 21 30 39 48 57 66 75 
(4) 28 29 30 31 32 33 34 35 36 (13) 4 13 22 31 40 49 58 67 76 
(5) 37 38 39 40 41 42 43 44 45 (14) 5 14 23 32 41 50 59 68 77
 

(6) 46 47 48 49 50 51 52 53 54 (15) 6 15 24 33 42 51 60 69 78
 

(7) 55 56 57 58 59 -0 61 62 63 (16) 7 16 25 34 43 52 61 70 79
 

(8) 64 65 66 67 68 6.N 70 71 72 (17) 8 17 26 35 44 53 62 71 80
 

(9) 73 74 75 76 77 78 79 80 81 (18) 9 18 27 36 45 54 63 72 81
 

Rep III Rep IV 

(19) 1 20 12 58 77 F,9 34 53 45 (28) 1 11 21 31 41 51 61 71 81
 

(20) 10 2 21 67 59 78 43 35 54 (29) 19 2 12 49 32 42 79 62 72
 

(21) 19 11 3 76 68 60 52 44 36 (30) 10 20 3 40 50 33 70 80 63
 

(22) 28 47 39 4 23 15 61 80 72 (31) 55 65 75 4 14 24 34 44 54
 

(23) 37 29 48 13 5 24 70 62 81 (32) 73 56 66 22 5 15 52 35 45
 

(24) 46 38 30 22 14 6 79 71 63 (33) 64 74 57 13 23 6 43 53 36 
(25) 55 74 66 31 50 42 7 26 18 (34) 28 38 48 58 68 78 7 17 27 
(26) 64 56 75 40 32 51 16 8 27 (35) 46 29 39 76 59 69 25 8 18
 

(27) 73 65 57 49 41 33 25 17 9 (36) 37 47 30 67 77 60 16 26 9
 

Rep V Rep VI
 

(37) 1 29 57 22 50 78 16 44 72 (46) 1 56 30 13 68 42 25 80 54
 

(38) 55 2 30 76 23 51 70 17 45 (47) 28 2 57 40 14 69 52 26 81
 

(39) 28 56 3 49 77 24 43 71 18 (48) 55 29 3 67 41 15 79 53 27
 

(40) 10 38 66 4 32 60 25 53 81 (49) 19 74 48 4 59 33 16 71 45
 

(41) 64 11 39 58 5 33 79 26 54 (50) 46 20 75 31 5 60 43 17 72
 

(42) 37 65 12 31 59 6 52 80 27 (51) 73 47 21 58 32 6 70 44 18
 
(43) 19 47 75 13 41 69 7 35 63 (52) 10 65 39 22 77 51 7 62 36 
(44) 73 20 48 67 14 42 61 8 36 (53) 37 11 66 49 23 78 34 8 63 
(45) 46 74 21 40 68 15 34 62 9 (54) 64 38 12 76 50 24 61 35 9
 

10 - 10 TRIPLE LATTICE 

Block Rep I Rep II 

7 8 9 10 (11) 1 11 21 31 4 51 61 71 81 91(1) 1 2 3 4 5 6 

(2) 11 12 13 14 15 16 17 18 19 20 (12) 2 12 22 32 42 5272T 292 
(3) 21 22 23 24 25 26 27 28 29 30 (13) 3 13 23 33 43 53 63 73 83 93
 
(4) 31 32 33 34 35 36 37 38 39 40 (14) 4 14 24 34 44 54 04 7-FY4l89
 
(5) 41 42 43 44 45 46 47 48 49 (15) 5 15 25 35 45 55 65 75 85 
(6) 51 52 53 54 55 56 57 58 59 60 (10) 6 16 26 36 46 56 66 76 86 
(7) 61 62 63 64 65 66 67 68 69 ,5" (17) 7 17 27 37 47 57 67 77 8797 
(8) 71 72 73 74 75 76 77 78 79 80 (18) 8 18 28 38 48 5868 78 88 98 
(9) WFEF-3 84 85 86 87 88 89 90 (19) 9 19 29 39 49 59 69 79 89 99 

(10) 9T 9 94 95 96 97 98 99"100 (20) 10 20 30 40 50 60 70 800 0 

IKep III 

(21) 1 12 23 34 45 56 67 78 89 100
 
(22) 91 2 13 24 35 46 57 68 79 90 
(23) 1F92 3 14 25 36 47 58 69 80
 
(24) 71 82 93 4 15 26 37 48 59 70
 
125) 61 72 83 94 5 16 27 38 49 60
 
(26) 51 62 73 84 95 6 1728 350
 
(27) 41 52 63 74 85 96 7 '192W
 
(28) 3T 4 3 75 86 97 8 19 30 
(29) 21 32 43 54 65 76 87 98 9 0
 
(30) -11 22 33 44 55 66 77 88 99 10
 



Appendix L (Continued) 

12 x 12 TRIPLE LATTICE 

Block Rep. I 

(1) 1 2 3 4 5 6 7 8 9 10 11 12 
(2) 13 14 15 16 17 18 19 20 21 22 23 24 
(3) 25 26 27 28 29 30 31 32 33 34 35 36 
(4) 37T38 39 40 41 42 4) 4- I 4- --­
(5) 49 50 51 52 53 54 55 56 57 58 69 60 
(6) 61 62 63 64 65 66 67 68 69 70 71 72 
(7) 73 74 75 76 77 78 79 l78 1 82 83 84 
(8) 85 86 87 88 - - -93 94 95 96 
(9) wT 98 99 100 101 1021T w10-10--6-T T0 

(10) ;G4 110 111 112 113 114 115 1 1 - - 8 --­
(11) TY"1122 123 124 125 126 127 12T 130 131 T 

136 138 140 "14T- -T4(12) 133 134 135 137 139 - -2-I 4 

Rep II 

(13) TF 13 25 37 49 61-73-9-- 07 1-21T3­
(14) - -4-16-6-98 -- 110-11342 ­

(15) 3 15 27 39 51 63758 9 111 123 T3; 
(16) - - 4- -- - 88 100 -- 2 -24---f 
(17) T 17 29 41 53-695 I77---9- 1 O 3f 1--5--T37 
(18) 6 18 30 42 54 6-6-I-----0g- -1-62 - 4T---1---13S 

-T-6--1-­(19) 7 19 31 43-55-67--9- -91-- 103 
(20) "--8 70 4-0-2--10- - T3- -TO84 
(21) 9 21 33 45 57 - l 3 -0-1,TT 9-­
(22) 10 -22 3F46 58 70 82 94 106 118 i-"-T-14­
(23) 1 4759-,8-9 11935 93 7 
(24) 1 24348 60728-96 108120 132 144 

Rep III 

(25) 1 14 27 40 57 70 83 96 101 114 '1-TI4 
(26) 2 13 28 39 58 69 8495 10-95 11 '18- 3 
(27) 3 16 25 38 59 72 81 94 103 116125 13 
(28) 4 15 2637 6 1 -T0A_115 -'- 1 
(29) 5 18 31 44 49 62 75 T 105 118--3Y-1-4 

61 i13(30) 6 17 32 4 50 -- 70-6-- 132 
(31) 7 20 29 4T 51 ----- 6 107 129--4 
(32) 8 19 30 41--7 -4--d--1-1 30T 14 
(33) 9 3-- - 5- o 7 - 2 -- 13 
(34) 10 21 36 4 - - - - - ­
(35) 11 24 33 46 55 68 9-0-9- 121--3A 
(36) 12 23 34 45 56 67 T --- 1 -2-T3 

Reproduced from EXPERIMENTAL DESIGNS by William G Cochran and 
Gertrude M. Cox. second edition 1957 Copyright 1950, , 1957 by John 
Wiley and Sons, Inc Reprinted by permission of John Wiley and Sons, Inc. 
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Appendix M Selected Plans of I Fractional Factorial Design for 25, 26 , and 27 

Factorial Experiments 

PLAN 1. 1/2 of 25 factorial in a single block of 16 units 

Treatments: 

Treatment no. 1 2 3 4 5 6 7 8 

9 10 11 12 13 14 15 16 

(1) ab ac ad ae bc bd be 

cd ce de abcd abce abde acde bcde 

Conditions: 

" All five main effects are estimable. 

" All 10 two-factor interactions are estimable. 
" No higher-order interactions are estimable. 
" Must have at least two replications. 

Defining contrast. ABCDE 

ANOV with r repfications: 

SV d.f. 

Replication r- 1 
Main effect 5 

Two-factor interaction 10 
Error 15(r - 1) 

Total 16r - 1 

PLAN 2. 1/2 of 26 factorial in four blocks of eight units each 

Treatments: 

Treatment no. 1 2 3 4 5 6 7 8 

Block I: (1) ab ef abef acde acdf bcde bcdf 

Block I: ac bc de df abde abdf acef bcef 

Block III: ae af be bf cd abcd cdef abcdef 

Block IV: ad bd ce cf abce abcf adef bdef 
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Appendix M (Coninued) 

Conditions: 

" All six main effects are estimable.
 
" All two-factor interactions except CD are estimable.
 
" Eight higher-order interactions are estimable.
 
" CD, ABC, and ABD are confounded with blocks.
 

Defining contrast. ABCDEF 

ANOV without replication and 
error: 

Sv 

Block 
Main effect 
Two-factor interaction 
Error 

Total 

ANOV with r replications: 

SV 

Replication 
Block 
Block X replication 
Main effect 
Two-factor interaction 
Higher-order interaction 
Error 

Total 

with the higher-order interactions used as 

d.f. 

3 
6 

14' 
8 

31' 

d.f. 

r-	 1 
3 

3(r - 1) 
6 

14 
8 

28(r - 1) 

32r.- 1 

PLAN 3. 1/2 of 26 factorial in two blocks of 16 units each 

Treatments 

Treatment no. 

Block I 

Block II 

continued next page 

1 2 3 4 5 6 7 8 
9 10 11 12 13 14 15 16 

(1) ab ef abef acde acdf bcde bcdf 
ac bc de df abde abdf acef bcef 
ae af be bf cd abcd cdef abcdef 
ad bd ce cf abce abcf adef bdef 
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Appendix M (Continued) 

Conditions: 
" 	 All six main effects are estimable. 
" 	 All 15 two-factor interactions are estimable. 
" 	 ABC is confounded with blocks. 
" 	Of the total of 20 three-factor interactions, two are not estimable (ABC and 

DEF) and the rest are estimable in alias pairs as follows: 

ABD = CEF ABE = CDF ABF - CDE 
ACD = BEF ACE = BDF ACF = BDE 
ADE = BCF ADF = BCE AEF = BCD 

Defing contnst. ABCDEF 

ANOV without replication and with the three-factor interactions used as error: 

SV 	 d.f. 

Block 1 
Main effect 6 
Two-factor interaction 15 
Error 9 

Total 31 

ANOV with r replications: 

Sv 	 d.f. 

Replication r -1
 
Block 1
 
Block x replication r - 1
 
Main effect 6
 
Two-factor interaction 15
 
Three-factor interaction 9
 
Error 30(r,- 1)
 

Total 	 32r- 1 
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Appendix M (Continued) 

PLAN 4. 1/2 of 2"factorial in four blocks of 16 units each 

Treatments: 

Block 1: (1) by de fg abdf abdg abef abeg 
acdf acdg acef aceg bcde bcfg defg bcdefg 

Block II: ab ac df dg ef eg abde abfg 
acde acfg bcdf bcdg bcef bceg abdefg acdefg 

Block III: af ag bd be cd ce abcf abcg 
adef adeg bdfg befg cdfg cefg abcdef abcdeg 

Block IV: ad ae bf bg cf cg abcd abce 
adfg aefg bdef bdeg cdef cdeg abcdfg abcefg 

Conditions: 

" All seven main effects are estimable.
 
" All 21 two-factor interactions are estimable.
 
" ABC, ADE, and AFG are confounded with blocks.
 
" Only 32 higher-order interactions are estimable.
 

Defining contrast, ABCDEFG 

ANOV without replication and with the higher-order interactions used as 
error: 

SV d.f. 

Block 3 
Main effect 7 
Two-factor interaction 21 
Error 32 

Total 63 

ANOV with r replications: 

SV d.f. 

Replication r - 1 
Block 3 
Block X replication 3(r - 1) 
Main effect 7" 
Two-factoi interaction 21 
Higher-order interaction 32 
Error 60(r - 1) 

Tc~al 64r - 1 
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Index
 

a, see Intercept 
Absolute values: 


in chi-square test, 461 

of computed r value, 369-371, 412 

of computed t value, 365, 375, 409 

of mean difference, 189 


Accuracy, 418, 419. 576. See also Precision 

Adaptability: 


geographical, 316 

of new production technologies, 332-333, 


336, 339 

Additive effects, 294, 299 

Additivity, 295. 466 

Adequacy of fit, see Chi-square test, goodness 


of fit 

Adjacent plots: 


competition effects from. 506, 510, 513, 515, 

521 


correlation between, 489, 494 

difference between, 3. 478 

insecticide treatments in, 532 

in systematic design, 296 

water movement between, 98 


Adjustment factor: 

in analysis of lattice designs, 60-61, 72 

computation of relative efficiency, 30, 39 


Adoption of technology, 462-464. 572, 577 

Alias. 176 

Alleys, nonplanted, see Nonplanted, alleys 

Alphabet notation, see Duncan's multiple range 


test, notation, alphabet 

Analysis of covariance, see Covariance analysis 

Analysis of variance: 


combined: 

over crop seasons, 317-327, 351-354 

across farms, '67-582 

across sites, 335-350 

over time, 328-332 


computational procedures, see Experimental 

designs 


for data with heterogeneous variance: 

data transformation: 


arc sine, see Arc sine transformation 
choice of, 299
 
logarithmic, see Logarithmic,
 

transformation 
square root. see Square-root
 

transformation
 
error partitioning, 311-314
 

for data from plot sampling, 241-255, 548­
549
 

for estimating between-plot variances, 494
 
with factorial components, 93, 97
 
limitations of, 358. 429
 
with missing data:
 

latin square, 279-281
 
more than one missing observation, 287­

292
 
RCB, 276-279
 
split-plot, 281-284
 
split-split-plot, 286-287
 
strip-plot, 284-286
 

for nested classification, 551-553, 558-561
 
pooled:
 

with heterogeneous variance, 258, 264,
 
265, 268
 

for measurement over time, 257, 259, 260,
 
264
 

with plot sampling, 268, 270
 
in regression analysis, 398, 401-405
 
for specifying functional form, 398
 
underlying assumptions, 272, 294-298, 467
 
valid, 294, 467
 

Anderson, R.L., 384
 
Angular, transformation, see Arc sine
 

transformation
 
ANOV, see Analysis of variance
 
AOV. see Analysis of .4nance
 
Antilog, 392
 
Arc sine transformation:
 

analysis of variance with, 304-308, 311
 
data suitable for. 306
 

Arithmetic mean, 375, 381, 591
 
Assignment of treatments, see Randomization
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Association: 

degree of, 359, 360, 421, 422-423 

linear, 367, 371, 379 

between response and environment, 358 

between response and treatment, 358, 369-


370, 372, 422 

between response variables, 357-358, 370-


372 

see also Correlation 


Asterisk notation, 16. 595 

Attribute data, 458-459, 462, 464 

Augmented data set, see Missing data formula 


technique 

g'=-e,see Mean 


Average effect, 332. 333 

Average effective error mean square, 74, 198 

Average error mean square, see Error mean 


square 


13,366, 372, 373. See also Simple linear 

regression, coefficient 


t alanced lattice design: 

analysis of variance, 45-52 

basic features of, 41 

blocking technique, 41 

layout, 45, 647-651 

mean comparison, 194-195 

randomization, 41-45 


Bancroft, T.A., 384 

Bar chart: 


appropriateness of, 593, 597, 605 

comparison of means, 598, 621 

description of test conditions, 591
 
improper use of, 599, 600 

measurement over time, 621, 623 

multicharacter data, 624-625, 627 

rules for use of, 599-600 

sequencing of bars, 600-601, 61 1-615 

vs. tabular form, 611 


Barr, A.J., 384 

Bartlett's test, see Chi-square test, homogeneity 


of, variance 

Basic units, in uniformity trials, 427, 480, 487, 


489, 493,504 

Bias: 


from missing data, see under Correction 

factor, for bias in missing data 


in sampling, 545 

Binomial distribution, 297 

Biological responses, 230, 601 

Biological yield, 562. 571. See also Crop yield 

Block: 


configuration, 198 

definition, 4. 7 


effects:
 
in fractional factorial design, 176
 
F test for, 29, 179, 184-185
 
and treatment effects, 295, 296, 299
 

efficiency, 29
 
incomplete, 41, 43, 45
 
maximizing variability among, 21, 425
 
orientation of, 21, 487, 500, 503
 
reduction in size of, 40, 168. See also
 

Fractional factorial design; Lattice design
 
sampling, see Plot sampling
 
size and shape, 21, 503
 

Blocking:
 
purpose of, 4, 20-21, 425
 
vs. stratification, 541
 
technique, 4, 21-22
 
two-way, 21, 30. See also Latin square design
 

Border:
 
areas. 501, 502, 524
 
effects, see Competition effects
 
nonplanted, 505, 507, 517
 
plants. 429, 505, 510, 511, 520-521
 
rows, 518, 519
 

Bordered plots, 502, 525
 
Brandt, S., 407
 
Brown planthoppers:
 

damage on rice plants, 431, 442, 454
 
incidence:
 

as cause of missing data, 274
 
as covadiate, 430
 

survival of, 625
 
Bunds, 575
 

Cause and effect, 367, 369, 37t, 422, 423
 
Character of primary interest:
 

in covariance analysis, 5. 424, 426, 429, 430,
 
431
 

in plot sampling, 532, 533
 
and presentation of multicharacter data, 623
 

Chaudhary, B.D., 407
 
Check variety, 429, 437-438
 
Chi-square test:
 

analysis of attribute data, 458-467
 
fixed-ratio hypothesis, 459-461, 464, 465
 
goodness of fit, 458, 471-477
 
homogeneity of:
 

ratio, 459, 464-467
 
simple linear correlation coefficient, 381
 
variance:
 

computational procedures, 467-471
 
for data from series of experiments, 322,
 

330, 335
 
for measurement over time, 258, 262­

264, 268
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to study plot-shape effect, 491 Competition effects: 
uses of, 467 control by: 

independence, in acontingency table, 459, experimental design, 76, 521 
462-464 removal of border plants, 520 

Lasses in a frequency table, 472-475 stand correction, 521-522 
Classification: definition, 505 

multiway, 459, 460 ingreenhouse trials. 429 
nested, see Nested classification measurement of, 505, 506-520 
one-way, 458-460 vs. mechanical error, 523 

C-matrix, 407 from off-types, 529 
Cobb-Douglas equation, 397 as source of variation, 5 
Cochran. W.G., 188. 454 type of, 506 
Coefficient of determination: Complete block designs, 7, 39-40, 91-97, 190­

definition. 385-386 194,607 
formula. 385 Completely randomized design: 
for multiple regressicta, 405, 406, 409, 411 advantage of, 13 
for nonlinear regression, 493. 499 analysis of variance: 
presentation of results. 421 for data from plot sampling, 243 

Coefficient of variation: with data transformation, 308 
of experimental error: equal replication, 13-17 

acceptable values. 17 unequal replication, 17-20 
in covariance analysis, 435, 450 covariance analysis, 431-437 
more than one error term, 83, 97. 106. definition. 8 

107. 115, 127. 152, 153, 166 mean comparison: 
one error term, 17, 28, 36, 50, 62, 73 Duncan's multiple range test, 208-215 

of sampling error, 247 least significant difference test, 191, 192­
of treatment mean, 548, 549 194 

Column and row factors, indata presentation, standard error of the mean difference, 209, 
607-609,611! 436,437 

Column blocking. 30, 31, 37-39 randomization, 8-13, 24, 25 
Combined analysis of variance, see Analysis of sample layout, 8 

variance, combined Components of error, 312-314 
Combining: Component technologies, 572 

data, 465, 467, 567, 620. See also Analysis Confidence interval, for a regression coefficient, 
of variance, combined; Analysis of 366 
variance, pooled Confounding: 

test results, 465-466 in fractional factorial design, 176 
Comparison of means: in regression analysis, 422 

adjusted means, 61 Contamination of seeds, 523, 528-529 
between-group, 215, 217-223, 234, 262 Continuous factor, see Quantitative factor 
choice of, 187-188 Continuous variable, see Variables, continuous 
different tyres of means, 188, 190, 204 Contour map, see Soil productivity contour map 
factorial, see Factorial comparison Contrast: 
group, see Group comparison choice of, 336-338 
pAir. see Pair comparison coefficients, 216, 226, 229-230 
presentation of results: defining, see Defining contrast 

factorial experiments, 605-618 multiple d.f., see Multiple d f. contrast. 
more than one set of data, 618-627 mutually orthogonal, 234 
single-factor experiments, 594-601 orthogonal, 216-217, 220, 223, 231 

in rcgr.tssion, 372 single d.f., see Single d.f. contrast 
trerd, see Trend comparison sum of squares, 216, 217, 220-221, 222, 
with unequal variance, 314 223, 224, 226-227 
valid, 299, 302 Contribution of test factors, see Test factors, in 
within-group, 215. 222-225 technology-verification experiments 
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Controlled experiments, 5, 361, 372, 405, 419 

Control treatment, 187, 191-195, 302-303, 


333,571,595 

Corrected plot yield: 


error in plot area, 524-525 

missing hills, 521-522 

off-types, 529 


Correction factor: 

for bias in missing data, 278, 280 

in computation of sum of squares: 


analysis of variance, 14, 26, 34, 48, 58, 

94, 143 


data from plot sampling, 243, 249 

combined analysis of variance, 320, 342-


343 

covariance analysis, 431 


for missing hills, 522 

Correlation: 


linear, see Simple linear correlation 

multiple, see Multiple correlation coefficient 

perfect, 420 

vs. regression, 367 

serial, see Serial correlation 

types of, 359 


Correlation and regression technique
 
vs. analysis of variance, 417 

misuses of, 416-423 

presentation of results, 370. 421. See also 


Line graph 
see also Correlation; Regression 


Cost and return analysis, 585-590 

Costs of experimental operations, 501-502 

Covariance analysis: 


vs. analysis of variance, 424, 430 

and bidirectional gradient, 21 

vs. blocking technique, 425-426 

computational procedures, see Experimental 


designs 
multiple, 454 

relative efficiency, 435, 453-454 

requirements of, 430-431 

uses for: 


adjustment of means, 424, 425-429, 454 

control of error, 5, 424, 425-429, 430, 


431-454 

interpretation of results, 424, 428, 429-430 

missing data, 276, 424, 429, 454-457 


Covariates: 
data collected before application of treatment, 

426. 427 

definition, 5, 424, 425 

examples of, 426-431, 435, 438, 454 

for missing data, 455 

uniformity trial data, 426 


Cox, C.M., 169
 
CRD, see Completely randomized design
 
Created variable, see Linearization technique
 
Crop-cuts, 418, 419
 
Crop performance:
 

data on, 427
 
determinants of, 356
 
factors affecting, 316, 357, 479
 
index of, 354
 
prediction of, 355
 

Cropping pattern, 350, 564, 572, 578, 586
 
Crop productivity index, 350-351
 
Crop season, 6, 316, 328, 355
 
Crop yield:
 

as crop response, 357
 
data, 225, 358, 417, 418, 430, 508, 532
 
as dependent variable, in regression analysis,
 

398
 
as productivity index, limitation of, 351
 

Cross products, see Sum of cross products
 
Curve fitting, see Regression, analysis
 
Curvilinear regression, see Nonlinear regression
 
Cut-off bar, 599, 600
 
CV, see Coefficient of variation
 

Damaged plots, 273-274, 427-428
 
Dash notation, see Duncan's multiple range tvst,
 

notation, dash
 
Data: 

attribute, see Attribute data 
combined, from aseries of experiments, see 

Combining, data
 
count, 297, 307
 
in decimal fractions, 306
 
development-rate, 620
 
discrete, see Variables, discrete
 
growth-stage, 620
 
illogical, 275
 
incomplete set of, 276, see also Missing data
 
measured over time, see Measurement over
 

time
 
missing, see Missing data
 
multichara.ter, see Multicharacter data
 
occurrence-date, 620
 
percentage, see Percentage data
 
from plot sampling, see Multiobservation
 

data, from plot sampling
 
randomness of, 485
 
rechecking of, 530
 
secondary, 397, 418
 
social and economic, 577
 
source, 417-418
 
spurious, 422
 
before treatment application, 427
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transcription of. see Transcription of data probability, 471, 474, 475, 477 
transformed, 258, 301-302. See also spatial, 471
 

Transformation of data Dixon, W.J., 387
 
uniformity trial, see Uniformity trials DMRT. see Duncan's multiple range test
 

Data collection: Draper, N.R., 403 
with block sampling, 545 Droughl, 274, 428 
and blocking technique, 22 Dry matter production, 241, 256 
errors in, 523 Dummy: 
for on-farm tnals, 566-567 factors, in fractional factorial design, 173, 
speed and uniformity in, 543 175 

Data presentation, see Presentation of research variables, in regression, 403 
results Duncan's multiple range test: 

Data transformation, see Transformation of data computational procedure, 208-215 
Defining contrast, 176, 652-655 with data transformation, 302, 303-304, 306, 
Degrees of freedom: 308, 309 

in analysis of variance, see Experimental in factorial experimciats, 607-6! 1 
designs vs. least significan. difference test, 18S, 207­

in chi-square test, 381, 461, 463-464, 466, 208 
467,468-471,477 with missing i'la, 279 

in correlation analysis, 369, 370, 371, 381, notation: 
386 alph.-.it, 213-215, 595, 599, 607-609 

in covariance analysis, 434, 440-441, 448, dash, 595 
449 line. 210, 213-215, 595 

ofF test, see F test presentation of results, 594, 595-597, 627 
pooled, 228, 312 
in regression analysis ; error mean square, 51, 63, 194, 196, 

! test, 379, 386, 411 198 
j ;-st, 366, 367, 375, 408 Effects: 

Dependent variable, see Variables, dependent additive, sre Additive effects 
Design, see Experimental designs average, si r Average effect 
Determination, coefficient of, see Coefficient of block, s~e Block effects 

determination border, see Competition effects 
Deviate. see Deviation, from mean competition, see Competition effects 
Deviation: differential, 517. See also Interaction effect 

from hypotliesized ratio, 459-461 environmental, 294. See also Environmental 
from mean, 363, 371, 380 factors 
from normal distribution, 471-472 estimable, 167-168, 175. 176, 545, 652-655 

DF, see Degrees of freedom factorial, see Factorial effects 
Digits, significant, see Significant digits indirect, 358 
Direct-seeded crop, 524, 525, 527 interaction, see Interaction effect 
Discontinuous variable, see Variables, discrete long-term. 354 
Discrete factors. 348, 403, 593, 605, 615-616, main, see Main effects 

619, 623 multiplicative, see Multiplicative effects 
Discrete treatments, 593, 594-600. See also nonadditive, see Nonadditive effects 

Discrete factors residual, see Residual effects 
Dispersion, see Variance simple, 84-89 
Distribution: site, 346 

binomial, 297 treatment, see Treatment effects
 
chi-square, see Chi-square test Efficiency, see Relative efficiency
 
F, see F test Enumeration data, see Attribute data 
frequency, 458, 459, 464, 593 Enumeratois, 530-531. See also Observers 
normal, 294, 297, 472, 475 Environmental conditions, presentation of, 593 
poisson. 297, 471 Environmental factors:
 
of population, 458 change over time, 350, 351
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Environmental factors (Continued' 

and crop performance, 316, 355 

in on-farm trials, 567. 570, 572, 577 

as source of variation, 5, 8. 369 

uncontrollable. 316, 357 
uniformity of, 5 
as variables in regression analysis, 357 

Environments, 317, 333, 372, 566-567 

Equality of variance, see Variance, test for 


homogeneity 
Equation, see Functional forms; Relationships 
Error degrees of freedom: 

inadequate, 84, 14, 115, 127, 128, 167, 
238, 281, 286, 314, 327 

in mean comparison. 189, 191, 207, 209 
with missing data, 277. 280, 286, 291 
unequal, 315, 469 

Error mean square: 
in analysis of variance: 

for data from plot sampling. 245. 250, 252 
factorial experiments, 106, 114, 150, 151, 

163-165, 179, 184 
single-factor experiments, 15, 28, 36, 63-

64,74,81 
in covanance analysis, 434, 441, 449 
effective, see Average effective error mean 

square; Effective error mean square 
intrablock, 49, 60, 71 
for least significant difference test, 190, 192, 

198, 199. 200, 203, 205 

with missin- data, 281-283, 284 

pooled, 235. 329, 332 


Error putitioning, 298, 309-315 
Error sum of squares-

in analysis of variance, see Error mean 
square, in analysis of variance 

in covanance analysis, 433, 440, 447, 456 
intrablock, 49. 60, 71 
partitioning of, 312-314, 332, 347 
pooled, 319, 320, 325, 327, 332, 335, 338, 

341, 347 
Error term: 

in combined analysis of variance, 329, 332 
in covariance analysis, 446, 450 
high-order interactions as, 186 
for mean comparison, 190, 199, 202 
more than one, 63, 115 

Error variance, 15. 264, 309. 338, 467 
Errors: 

control of, see Experimental error, control of 
experimental, see Experimental error 
independence of, 294, 296, 297 
of measurement, see Measurement errors 
mechanical, see Mechanical errors 

nonindependence of, 296-297 
in plot measurement, 523-525 
sampling, see Sampling error 
transcription, see Transcription of data 

Expected frequency, 474, 476, 477
 
Expected values. 461-463. 466
 
Experimental designs:
 

and block size, 503 
complete block, see Complete block designs 
CRD, see Completely randomized designs 
efficiency of, see Relative efficiency 
for experiments in farmers' fields, 565 
for factorial experiments, see Factorial 

experiments 
feature of, 5 
fractional factorial, see Fractional factorial 

design 
group balanced block, see Group balanced 

block design 
group balanced block in split-plot, see Group 

balanced block in split-plot design 
incomplete block design, see Incomplete 

block designs
latin square, see Latin square design 
and LSD test, 190
 
and number of replications, 503-504
 
partially balanced lattice, see Partially
 

balanced lattice design 
principles of, 2 
RCB, see Randomized complete block design
for single-factor experiments, see Single­

factor experiments 
split-plot, see Split-plot design 
split-split-plot, see Split-split-plot design 
strip-plot, see Strip-plot design 
strip-split-plot, see Stnp-split-plot design 
for technology adaptation experiments, 333 
valid. 2-6 

Experimental error: 
of adjacent plots, 296 
components of, 312-314 
control of, 4-5 

by blocking, 20-22, 29, 38 
by control of competition effects, 505, 520 
by covariance analysis, 425-429 
by expenmental design, 521 
by plot size and shape, 500 

definition, 3, 8
 
vs. deviation from regression, 422
 
homogeneity of, see Homogeneity, of
 

experimental error 
independence of, see Independence 
measurement of, 3, 5. See also Error mean 

square 
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in on-farm trials, 563, 565 verification experiments 
size of, 16 see also Trials 
soil heterogeneity as source of, 500. See also Experiment stations, 6, 565 

Soil heterogeneity Exploratory trials, 168 
Experimental material: Exponential function, 397, 400 

classification of, 459 ExtnpLolation, 364, 420, 421 
destruction of, 273-274 Extreme values, 308-311, 367 
uniformity of, 523 
variability in, 40, 503 Factorial comparison, 215, 233-240. See also 

Experimental objectives Comparison of means 
vs. data used in regression analysis, 417-418 Factorial effects: 
satisfying, 317, 428 identification of, 175-176 
see-' n Experiments, types of sum of squares, 176-179, 181-184 

Experimental plots Factorial experiments: 
grouping of, 75 analysis of variance, 91. See also specific 
homogeneity of, 40 Experimental design entries 
variation between, 5, 427 caution in the use of, 90, 91 
see also Experimental units; Plot definit'on, 89-90 

Experimental procedures difficulties encountered in, 90-91 
for on-farm trials, 564-590 experimental designs, 91, 97, 108, 116, 133­
phases of, 2 139, 154, 167-169 
for simultaneous evatuation of factors, 382 functional relationship identification of, 401 
see also Statistical procedures need for, 84, 87, 382 

Experimental results, see Research results pair comparison: 
Experimental sites, see Test sites Duncan's multiple range test, 607-611 
Experimental size, see Experiments, size of least significant difference test, 199-207 
Expenmental units: presentation of results, 605-618, 623, 625­

grouping of, see Blocking 627 
homogeneity of, 8, 40, 134, 168 randomization and layout, see specific 
loss of, 18. See also Missing data Experimental design entries 
responses of, 357 reduction of size, 572-574 
types of, 418, 508 regression analysis in, 372, 382 
as unit of observation, 382 vs. single-factor experiments, 91 
variability between, 422, 425, 429 treatments in, see Factorial treatments 

Experiments: 2", 89-90, 168-179, 572-f74 
controlled, 5, 361, 372, 405, 419 types of means in, 190 
in farmers' fields, 562-590. See also Factorial treatments: 

Farmers' fields complete, 8), 134-138, 139, 167, 169, 573,
with more than one factor, see Factorial 585 

experiments group comparison of, 215. See also 
with one factor, see Single-factor experiments Comparison of means 
reliability of, 17 incomplete, 5Q.139, 167 
for .ampling studies, 557-561 Factor level: 
series of, 316, 372, 467 and experimental design, 168-169, 572-573 
size of, 90-91, 565 and factor effects, 84-89, 130-133 
types of: and number of treatments, 90 

field, see Field experiments and presentation of results, 607-609, 611-618 
long-term, 316, 350-354 and regression analysis, 372, 396 
preliminary evaluation, 316, 317-332 Factors: 
response prediction, 317, 355-356 controllable, 316, 356 
technology adaptation, 316, 332-350 discrete, 348, 403, 591, 605, 614, 623 
technology generation, see Technology- dummy, see Dummy, factors, in fractional 

generation experiments factorial design 
technology verification, see Technology- environmen!al, see Environmental factors 
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Factors (Continued) 

noncontrollable, 316, 357, 358, 418, 419 

number of, see Test factors 

quantitative, see Quantitative factor 

real, 173 

test, see Test faLtors 

variable, 199, 419 


Fallow, 427 

Farmers' fields: 


environmental data, 564-565 

research in, 6, 418, 562-590 

as test sites, see Test sites, farmers' fields as 


Farmer's practice. 6, 332-333, 562, 563, 571, 

572, 575-577 


Farm size, as stratification criterion, 572 

F distribution, 635-638. See also F test 

Fertility contour map, see Soil productivity 


contour map 

Fertility gradient, see Soil fertility, gradient 

Fertility pattern, see Soil fertility, pattern 

Fertilizer application, 98, 215, 225, 350, 356 

Fertilizer competitio eftects, 506-507, 513-


515,520-521 

Fertilizer spreaders, mechanical, 528 

Fertilizer trials: 


inbalanced lattice dcsign, 45 

competition effects in, 521 

covariance analysis, 441-442 

grouping of treatments, 262 

nonuniform application of fertilizer, 297 

regression analysis, 358, 361, 362, 422 

series of, 317, 333, 339-350 

trend comparison applied to, 225 


Field book, 531 

Field experiments: 


coefficient of variation for, 17 

for estimating index of soil heterogeneity, 


494-499 

vs. greenhouse trals, 429 

nappropriateness of CRD for, 8 


mechanical errors in, 523 

missing data in, 272 

plot size of, 532 

and RCB design, 20 

use of regression and correlation analysis, 


418-419 

and soil heterogeneity, 478. See also Soil 


heterogeneity 

source of variatio:n in, 427 


Field layout, see Layout 

Field plot technique, 429, 563, 574, 576 

First-stage sampling, 540 

Fisher, R.A., ix 


Fixed-ratio hypothesis, see Chi-square test, fixed
 
ratio hypothesis
 

Four-factor experiment:
 
experimental design for, 138-139
 
presentation of results, 605, 618
 

Fractional factorial design:
 
analysis of variance, 179-186
 
for experiments in farmers' fields, 565
 
features of, 139, 167-169
 
randomization, 169-170
 
selecte1 plans, 652-655
 
Yates' method of analysis, 170, 174, 183
 

Frequency:
 
distribution, see Distribution, frequency
 
expected, 474, 476-477
 
histograms, 471
 
observed, 472-473, 477
 
table, construction of, 472-474, 632
 

F test:
 
in analysis of variance, See specific
 

Experimental design entries
 
in combined analysis of variance, 322, 329,
 

331,338,346-347
 
in covariance analysis, 434, 441, 449-450
 
for homogeneity:
 

of regression coefficient, 378-379
 
of variance, 268, 271, 314. 331-332, 338,
 

467, 491
 
for multiple d.f. contrast, 227-228, 229
 
in regression analysis, 386-387, 395, 411
 
sensitivity of, 295
 
significance of, 15-17, 594
 
for single d.f. contrast, 221, 224, 227-228
 
tabular values, 635-638
 

Functional forms, see Functional relationships
 
Functional relationships:
 

choosing the best, 359
 
incovariance analysis, 424
 
estimation of, 261. See also Regression,
 

analysis
 
identification of, 398-400
 
linear, 359, 362
 
nonlinear, 388
 
between response and environment, 317, 355
 
specification of:
 

by analysis of variance technique, 398,
 
401-405
 

by biological implication, 397-398
 
by scatter diagram technique, 398-400
 
by stepwise regression technique, 398,
 

411-416
 
by test of significance technique, 398, 405­

411
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and trend comparison, 215, 225, 601 computational procedure, 216-240
 
between variance and mean, 297, 299 illustration of, 187-188
 

types of, 215
 
Generalization of results, 5. 89 see also Comparison of means 
Generalized interaction, 176 Grouping: 
Genetic ratio, 458 of experimental units, see Blocking 
Genetic variability. 297 of homogeneous test sites, 333 
Genotypes, 316, 467 of treatments: 
Geographic area. representativeness of, 333 with homogeneous variance, 311 
Goodness of fit, see Chi-square test, goodness with similar attributes, 75, 521. See also 

of fit Group balanced block design 
Gradient, see Soil fertility, gradient Gro-th: 
Grading, 479 curve, 256, 388 
Grain yield, see Crop yield duration, 76, 116 
Graphical methad: rate of, 361 

for detecting relationship between variance stages, as time of measurement, 256, 258,
 
and mean, 298 261-262, 545-546, 618-621
 

for estimating soil heterogeneity index, 499- Guard rows, 437
 
500 

for examining interaction effects, 238-239, Harvested samples, loss of, 275 
336-337, 355, 568 Heterogeneity: 

for identifying functional relationships, 398- of soils, see Soil heterogeneity 
400 of variance, see Variance, heterogeneity of 

for presenting research results, see Heteroseedasticity, see Variance, 
Presentation of research results heterogeneity of 

for representing estimated linear regression. Hierarchical classification, see Nested 
363-365, 374. 377 classification 

for representing estimated nonlinear Histograms, 471 
regression. 392 Homogeneity: 

Graphs: of correlation coelficient, 379-381 
bar chart, see Bar chart of expenmental error: 
linegraph, see Line graph across seasons, 322 
multidimcnsional, 605 across sites, 335, 338, 346-347 
pie chart, 593 over slages of observations, 268 

Greenhouse tnals: over years, 330-332 
competition effects in,429 as underlying assumption of ANOV, 
experimental error of. 429 294 
illustration of, 401 of experimental unit, 8, 40, 134. 168 
relative to field expenments, 429 of regression coefficient. 373-379 
use of covariance analysis in, 429, 431 of sampling variance, 469 
use of regression and correlation analysis in, of variance, see Variance, test for 

418-419 homogeneity 
using latin square design, 30-31 Honestly significant difference test, 188 

Gross errors, 309-311 Horizontal factor, 108, 115, 154, 166, 203 
Group balanced block design: Horizontal-strip plot, 108, 154 

analysis of variance, 76-83 HSD, see Honestly significant difference test
 
grouping of treatments, 75, 521 Hu, Teh-Wei, 403
 
randomization, 76, 77 Hypothesis:
 
trials using, 75-76 development of, 1-2
 

Group balanced block in split-plot design: fixed-ratio, see under Chi-square test 
analysis of variance, 118-129 of independence, see Chi-square test, fixed 
randomization, 116-118 ratio hypothesis 

Group comparison: testing, see Test of significance 
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Hypothesis (Continued) 

types of, 458 

verification of, 2 


Illogical data. see under Data 

Incomplete block designs, see also Lattice 


design 

block size, 40 

vs. complete block design, 40 

guidelines in use of, 40-41, 503 

least significant difference test, 196-198 

precision of, 40 


Incomplete blocks, 41, 43, 45, 52, 196-198 

Incomplete factorial experiment, 89. See also 


Fractional factorial design 

Independence: 


in contingency table, 462. See also Chi-square 

test 


of errors, 294, 296-297 

Independent variable, see Variables, independent 

Index of soil heterogeneity: 


for determining optimum plot size, 501 

measurement of, 479-499 

Smith's, 488-494, 504 


Initial values, 288-290 

Insect control, 76. See also Insecticides 

Insecticides, 14, 22, 191, 209, 297 

Insecticide trials: 


blocking in, 21, 541 

choice of .,variate, 428 

coefficiert of variation, 17 

in latin square design, 30 

plot sampling in, 541 


Insect incidence, 296, 357, 425, 459 

Insects: 


count data, 304 

damage, 3 

migration of, direction, 21, 30, 425, 532, 541
 
peicent survival, 297, 307 


Interaction effect: 

absence of, 97, 372, 579, 584 

cause of, 570 

and comparison of means, 204, 606- A09 

definition, 84-89, 130-133
 
examples of, 200, 450. 508, 51 I, 515 

and exploratory trial, 168
 
and factorial experiment, 91, 233 

and fractional factorial design, 185 

generalized, 176 

between genotype and environment, 316 

high-order, 168, 605 

in on-farm trials, 579-581, 584 

precision relative to main effects, 108, 115-


116, 134, 166 


and regression analysis, 372, 396-398, 401­
403, 411
 

size relative to main effects, 332
 
between treatment and:
 

competition effects, 517
 
crop season, 317, 322-323, 328
 
stage of observation, 260, 262, 265, 266,
 

268
 
test site, 333, 337-339, 347, 348, 567
 

Interaction mean square, 150-151, 164, 165,
 
179, 184, 253
 

Interaction sum of squares:
 
adjusted, 447-448
 
between treatment and:
 

crop, 352. See also Long-term experiments
 
farm, 567
 
season, 320-321
 
stage of observation, 251
 
test site, 336, 342-345
 
year, 330
 

partitioning of:
 
in combined analysis of variance, 323, 348,
 

353-354,568
 
factorial comparison, 234-238
 
in pooled analysis of variance, 261-262,
 

266
 
Intercept. 225, 359, 360, 361, 372, 385, 409
 
Interdependence between factors, 382
 
Interpolation, see Linear interpolation
 
Interpretation of research results, 5-6, .117-419,
 

465-467
 
Intersection plot, 108, 139, 154
 
Interval class, see Classes in a frequency table
 
Intrablock error, 49, 60, 71
 
Invalid observation, 273
 
Inverse matrix, 407
 
Iterative procedure, 287-291
 

Johnston, J., 403
 
Joint contribution of test factors, see Test
 

factors, in techniology-verification
 
experiments, contribution to yield
 
gap of
 

Koutsoyiannis, A., 403
 

Laboratory experiments, 8, 31
 
Latin squ re design:
 

analysis of variance, 33-37
 
basic plr . 646
 
blocking 0, 31
 
least signi. unt difference test, 190-194
 
limitation of, 31
 
missing data, 279-281
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need for, 21, 30 creation of new variable, 392-395 
randomization, 31-33 examples, 391-392. 394-395, 404-406, 
relative efficiency, 37-39 492 
trials suited to, 30-31 transformation of variable, 389-392 

.attice design, 7, 39-41, 91. See also Balanced Linear regression: 
lattice design; Partially balanced lattice definition, 359-360 
design homogeneity of coefficient, see Homogeneity, 

.ayout: of correlation coefficient 
of balanced lattice, 45. 647-651 multiple, see Multiple regression, linear 
and competition effects, 505 simple, see Simple linear regression 
of completely randomized, 8, 25 Linear relationship: 
of fractional factorial, 170, 171 absence of, 368 
of group balanced block, 77 established from high r value, 370 
of group balanced block in split-plot, 117, fitting, to data, see Linear regression, analysis 

118, 119 functional form, 359 
and labeling of plots, 529-530 paramete. -of, 360 
of latin square, 32-33, 646 between range and mean, 301 
for on-farm trials, 565, 575 strength of, 369 
of partially balanced lattice design, 53, 54 Linear trend, of a long-term effect, 354 
of randomized complete block, 24, 508 Line graph: 
of split-plot, 99-101 appropriateness of, 593, 601, 605, 614 
of split-split-plot, 140-141, 142 vs. bar chart, 600, 602 
of strip-plot, 108-109 for comparison of means, 603, 616-619 
of strip-split-plot, 154, 156 multicharactcr data, 623, 627 
for study of comptition effects, 507-508, regression between response and treatment: 

510-511, 513 factorial experiments, 324, 616, 617, 619 
of systematic design, 296-297 series of experiments, 349 

eaf area, 275, 390, 397, 420, 532 single-factor expenments, 602, 604 
east significant difference test: rules for use of, 602-604, 614-618 
for balanced' lattice: 194-195 scale of Y- and X-axis, 60" 

caution inuse of, 189, 207 vs. tabular form, 602 
for completely randomized design, 191-194 Local control, see Expc mecntal error, control of 
computation of, 189-190 Log, 264. See also Lof irthm 
in covariance analysis, 436-437 Logarithm, 299, 380, ,9, 468, 499 
with data tranformation. 302-303, 595 Logarithmic: 
vs Duncan's multiple range test, 207-208 relationship, 400 
fer partially balanced lattice, 195-199 transformation: 
presentation of results, 594-595, 599, 608. analysis of variance with, 264-265, 302 

See also Presentation of research comparison of means, 302-304 
results data suitable for, 264, 299, 301 

for split-plot, 199-202 Long-term experiments, see Experiments, types 
for split-split-plot, 204-207 of, long-term 
for strip-plot, 202-204 LSD, see Least significant difference test 
for treatments with missing data, 279 
and type of pair comparison, 199, 202 Main effects: 

etter notation, see Duncan's multiple range adjusted SS of, 447 
test, notation component of, in treatment SS, 233, 401 

evcxs, 575 computation of, 86 
.£velof a factor, see Fzctors definition, 84 
.evel of significance. 15-16 examples, 107, 348, 581 
inear correlation, see Simple linear correlation relative precision, and choice of design, 134 
inear interpolation, 475, 476 significance of, and inclusion of regression 
Anearization technique: terms, 403-404 

advantages, 388-389 vs. simple effects, 87, 89 
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Main-plot analysis: 

in analysis of variance, 101, 103, 143 

coefficient of variation associated with, 106, 


450 

in covariance analysis, 445, 453 


Main-plot factor 

definition. 98 

precision of, 107, 127 


Main plots: 

assignment :f factors to, 98, 138 

feature of, 98 

randomization of treatments to, 99-100, 


116 

size, relative to subplots, 101, 499 

variance between, 495 


Main-plot treatments: 

in competition effect studies, 511, 513, 518 

in measurement over time, 257, 259 

relative precision, 101 

testing of, 101 


Maize trials, I, 5, 33, 223, 224, 317, 379, 420, 

459-460. 527, 536 


Management practices, 5, 93, 139, 141, 247, 

355, 356, 358, 419, 532 


Marginal benefit-cost ratio, 589-590 

Marginal mean, 288-289 

Marginal totals, 464 

Margin of error: 


and determination of sample size, 534 

of plot mean, 534-535 

of treatment mean, 04, 535-536 

vs. variance estimates '49 


Matrix, 407 

Mean: 


arithmetic, 375. 381 

difference, 189, 192, 195-196 

of frequency distribution, 473-474 

marginal, 289. See also Marginal mcaa 

true, 549 

weighted, 380 


Mean comparison, see Comparison of means 

Mean square: 


definition, 15 

error, see Error mean square 

interaction, see Interaction mean square 

pooled, 314 

residual, 229, 365, 366. 374, 376 

between strips, 487-488 

treatment, see Treatment mean square 


Measurement data, 458, 459 

Measurement errors, 399, 523, 530-531 

Measurement over time: 


analysis of, see Analysis of variance, pooled 

definition, 241 


objective, 256
 
see also Multiobservation data
 

Measurement unit, 507, 540, 625, 627
 
Mechanical errors:
 

as acause of stand irregularities, 427
 
features of, 523
 
as asource of error in field experiments, 5,
 

523
 
Mensing, R.W., 407
 
Midpoint, of class interval, 472
 
Misinterpretation of correlation, see Simple
 

linear correlation, coefficient,
 
misinterpretation of
 

Missing data:
 
correction factor for bias, 278, 280
 
causes of, 272-275
 
estimation of, see Covariance analysis;
 

Missing data formula technique
 
guidelines in declaring, 273-275
 
more than one. 287-294
 
treatment mean with, 279
 
vs. zero yield, 273-274
 

Missing data formula technique:
 
caution in use of, 287-288
 
computational procedures:
 

latin square design, 279-281
 
more than one missing observation, 287­

291
 
randomized complete block design, 276­

279
 
split-plot design, 281-284
 
split-split-plot design, 286-287
 
strip-plot design, 284-286
 

description of, 276
 
Missing hills, 506. 515, 521, 529
 
Missing plots, see Missing data
 
Missing values, see Missing data
 
Mixture, see Seed mixture
 
Moisture. 3, 90
 
Moving averages, 480-482
 
Multicharacter data, 591, 618, 623-627
 
Multidimensional graph, 605
 
Multidimensional table, 605
 
Multifactor experiments, see Factorial
 

experiments
 
Multiobservation data:
 

measurement over time, 241, 257, 262, 543,
 
591, 618-623
 

from plot sampling, 241, 242, 246, 247, 266,
 
268
 

Multiple correlation coefficient, 386, 414, 415,
 
416
 

Multiple covariance, 454
 
Multiple cropping, 574
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4ultiple d.f. contrast: width of, 507-510, 515, 519, 520 
between-&roup comparison, 221-222 area, 517 
definition, 217 border, see Border, nonplanted 
within-group comparison, 222, 224 Nonrandom selection, 333 

dultiple range test, see Duncan's multiple range Nonuniformity: 
test of chemical application, 297 

4ultiple regression: in fertilizer application, 528 
definition, 359, 382 of pest and disease incidence, 425, 428 
linear: of seedling number per hill, 527 

computational procedures, 383-387, 409- of seedling size, 525 
411 Normal distribution, 294, 471, 475 

limitations of, 382 Normal equations, 384. See also C-matrix 
pointers in application, 387 n, 16, 595 

nonlinear, 359, 395-397 
4ultiplicative effects, 295, 296, 299 Observations: 
,ultistage random sampling, see Sampling number of, 406, 472 

designs, multistage random sampling paired, 375, 380, 431 
4ultiway classification, see Classification, time of, 257, 261, 268, 623 

multiway units of, 382 
4utually crthogonal contrast, see Single d.f. Observed points. 363 370, 604 

contrast, orthogonality of Observed valiie, 280, 461, 462, 466 
Observers, 22. See also Enumerators 

Jested classification, 551-553, 558-561 Off-types, 528-529 
kw technologies: One-way classification, of attribute data, 459 

desirable features of, 350 On-farm trials, see Experiments, in farmers' 
generation of, 564-571 fields 
long-term effect on productivity of, 316 Optimum plot size, see Plots, optimum size and 
profitabiliy of, 571 shape of 
range of adaptability of, 316, 332-333 Orthogonal contrast, see Single d.f. contrast, 
selection of, 562 orthogonality of 
verification of, 571-590 Orthogonality, see Contrast, orthogonal 
see also Superior technologies Orthogr nal polynomials: 

lie, N.H., 384 computational procedures: 
4itrogen response function. 225, 324, 603, combined analysis of variance, 323-327, 

615-616 348 
4onadditive effects, 295-296. See also factorial experiments, 234-237 

Multiplicative effects in long-term experiments, 354 
4oncontrolled factors, see Factors, single-factor experiments, 225-229 

noncontrollable for equally spaced treatments, 226, 234, 641 
4onindependence of en-ors, 296-297 for identification of regression terms, 403­
4onlincar forms, see Nonlinear relationship 404 
4onlinear regression: and trend comparison, 225 

definition, 359 for unequally spaced treatments, 230-233 
multiple, see Multiple regression, nonlinear Ostle, B., 407 
simple, see Simple nonlinear regression Outliers, 398-399 

4onlinear relationship, 359, 368, 388-397, 400, 
423. See also Linearization technique Pair comparison: 

4onnormality, 297 ,vith covariance analysis, 436, 451 
4onplanted: with data transformation, 302, 306 

alleys: and discrete treatments, 593, 594 
competition effects from 507, 517, 519, with niissing data, 276, 279, 281, 283-284, 

520 292-294
 
in production plots, 519 planned, 87, 188, 191, 192, 194, 196, 302, 
as source of soil heterogeneity, 479 595 
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Pair comparison (Continued) 
test of significance: 

DMRT. see Duncan's multiple range test 
LSD. see Least significant difference test 
standard error of the difference, see 


Standard error, of mean difference 

unplanned, 188 


Paired observations, 375, 380, 431 

Parameters of regression, see Regression, 


parameters 

Partially balanced lattice design: 


adjustment of LSD test, 195-196 

vs. balanced lattice design, 52 

quadruple lattice: 


adjusted treatment mean, 72 

analysis of variance, 64-75 

choice of basic plan, 52-53 

layout, 53-54 


relative efficiency, 64, 75 

simple lattice, 52 

triple lattice: 


adjusted treatment mean, 61 

analysis of variance, 54-6 

LSD test, 196-199 

randomization, 52 


Partial regression coefficients, 225, 360 

Partial replacement sampling, see Plot sampling, 


technique 

Paititioning of sum of squares: 


for between-group comparison, 217-222, 

509-510, 513-514 


definition, 216 

for examination of interaction effects, 261. 


353 

for factor comparison, 233-240, 509-510, 


513-514 

by multiple d.f. contrast. 216, 217, 221-222, 


224 

by orthogonal polynomials, 225-233 

by single d.f. contrast, 216-217, 218-221, 


223-224 

for trend comparison, 225-233 

for within-group comparison, 222-224, 509-


510, 513-514 

Percentage data: 


presentation of, 593 

transformation of: 


arc sine, 306-308 

square-root, 304 


Permanent structures in experimental field, 479 

Pest incidence, 5, 428 

Pests, 274, 350 

Physical factors of environment, 350 

Pie chart, see Graphs, pie chart 


Planned pair comparison, see Pair comparison, 
planned 

Plant age, 361
 
Plant density, 90, 225, 356, 357, 372, 427
 
Plant growth, see Growth
 
Plant height:
 

as attribute data, 459
 
before application of treatment, 427
 
coefficient of variation, 17
 
criterion for grouping varieties, 75
 
data from plot sampling, 247
 
declaration of missing data, 274
 
heterogeneity of error variance, 264, 467
 
measured over time, 262
 
plot sampling technique, 241, 533-534, 536,
 

545
 
rechecking of. 275, 530
 

Planting methods, 154
 
Planting season, see Crop season
 
Plant population, 5, 7, 316, 361
 
Plant spacing, 215, 515, 520-521, 526
 
Plot:
 

adjacent, see Adjacent plots
 
bordered, 502, 525
 
bonded, 575
 
damage, see Damaged plots
 
data, 268
 
destruction of, 274
 
dimensions, 529-530
 
layout, see Layout
 
main, see Main plots
 
mean, 535
 
missing, see Missing data
 
nonbordered, 501, 525
 
optimum size and shape of, 500-501, 503
 
orientation, 487, 491. 500
 
sampling, see Plot sampling
 
shape, 21, 489, 491, 503, 565
 
size:
 

and competition effects, 507, 517, 521
 
choice of, 532
 
correcting errors in, 523-525
 
and experimental designs, 98, 108, 136,
 

139, 154
 
vs. plot variance, 489-503
 

technique, 4-5. See also Field plot technique
 
value, 533
 
variances, 297, 298, 426, 427. 494-495, 498
 

Plot sampling:
 
definition, 533
 
designs, see Sampling designs
 
need for, 532
 
techniq .:
 

block sampling, 543-545
 



Index 671 

components of, 533-545 regression between response and treatment, 
development of, 247, 255,546-561 see Line graph, regression between 
partial replacement, 545-546 response and treatment 
for repeated measurements, 545-546 Primary factor. 234, 238 
for tiller count, 557 Primary sampling units, see Sampling units, 

Plotting, see Graphs; Scatter diagram primary 
Poisson distnbution, 297, 471 Probability distribution, 474, 475. 477 
Polynomials: Productivity gradient, 20. See also Soil fertility, 

definition, 225 gradient 
degree of, 225-226 Productivity map, see Soil productivity contour 
first-degree, see Linear relationship map 
high-degree, 400 Productivity, 2. 350 
linearization technique applied to, 393 
second-degree. 225, 230, 234, 324, 326, 368, Quadratic relationship, see Polynomials, second­

393-397, 406, 410, 411 degree 
third-degree, 230. 403 Quadruple lattice design: 
see also Orthogonal polynomials analysis of variance, 53-75 

Pooled analysis of variance, see Analysis of basic plan, 53, 65 
variance, pooled definition, 52 

Pooled correlation coefficient, 381 field layout, 53, 54 
Pooled errors, 319, 320, 327, 332, 335. 338, Quantitative factor: 

341, 342, 346-347 as independent variable in regression, 403, 
Pooled estimate of variance, 468, 470 404 
Pooled residual mean square. 375 time of observation as, 261, 354, 623 
Population, 533, 534 and trend comparison. 402, 403, 615 
Precision: Quantitative treatments: 

in covariance analysis. 435, 454 inappropriateness of pair comparison, 204, 
from sampling, 532, 533-5.34, 535, 541, 542, 225 

546. 549, 557 presentation of results, 591, 601-604 
gain in, due to: and trend comparison, 215, 225 

blocking, 30 Quantitative variables, 358 
incomplete block design, 40 
latin square design, 38. 39 r, see Simple linear correlation, coefficient 
partially balanced lattce design, 63 R,see Multiple correlation coefficient 
randomized complete bock design, 30. 37 Rainfall. 357, 358, 591 

of interaction effect, see Interaction effect Random assignment, see Randomization 
measurement of, 139, 154, 546 Random fluctuation, 350, 354 
and number of replications, 504 Randomization: 
and plot size, 501 for assignment of treatments, see specific 
and presentation of results, 599, 609 Experimental design entries 

Preliminary evaluation expenment: in block sampling, 543-544 
analysis of data, 317-327. 328-332 by drawing cards, 11-12 
objectives, 316-317, 365 by drawing lots, 12-13 

Preliminary studies, 9C. 419 and independence of error, 296-297 
Presentation of research results: in long-term experiments, 350 

comparison of means, see Bar chart, by random-number technique, 536-537 
comparison of means; Line graph, for by random-pair technique. 537-539 
comparison of means; Tabular form as a requirement for valid experimental 

description of test conditions, 591-592 design, 3-4 
frequency distribution, 593 by table of random numbers, see Table-of­
modes, 593 random-numbers technique 
objectives, 591 Randomized complete block design: 
proportion data, 593 analysis of variance: 
regression and correlation analysis, 370, 421 computational procedure, 25-28 

http:533-5.34
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Randomized complete block design (Continued) 

data from plot sampling, 243-247, 547, 


548 

measurement over time, 257-262. 317-


327, 328-332 

measurement over time with plot sampling, 

268-270 

of transfon jed data, 299, 304-306, 311 


covariance raalysis, 437-441. 455-457 

etimiaon of missing data, 276-278, 291-


292, 299-301, 304-305 

for factorial experiment, 91, 134, 558 

features of, 20 

vs. latin square design, 39 

least significant difference test, 190-194 

for on-farm trials, 333, 567 

randomization, 23-25, 543-544 


Random-number technique, 536-537 

Random-pair technique, 537-539 

Random sample, 538, 540, 542 

Random sampling, 536. See also Sampling 


designs 

Random vanables, 328, 329 

Random variation, 480 

Range value: 


for detecting gross errors, 311 

as a measure of variance, 298 

relationship with mean, 301 

of variables in regression analysis, 388, 421 


Rare events, 304, 471 

Ratio: 


di-hybrid, 459 

F, see F test 

genetic segregation, 458 

hypothesi;.ed, 460, 466 


RCB, see Randomized complete block design 

Regression: 


analysis, 358-359 

linear, see Linear regression 

matrix, see C-matrix 

misuses of, 361, 416-423 

multiple, see Multiple regression 

nonlinear, see Nonlinear regression 

parameters, 360-361, 362, 421 

results, presentation of, see Presentation of 


research results 

simple, see Simple regression 

stepwise, see Stepwise regression technique 

terms, 405, 406, 409-411 

test of significance, see specific types of 


Regression 

Relationships: 


cause and effect, see Cause and effect 

exponential, 397, 400 


functional, see Functional relationships
 
hypothesized, 399
 
lack of, 399
 
linear, see Linear relationship
 
logarithmic, 400
 
nonlinear, see Nonlinear relationship
 
prescribed, 359
 
quadratic, see Quadratic relationship
 
search for best, 397-398
 
sigmoid, 400
 
between variance and mean, 297, 298, 299,
 

308
 
between variance and plot size, 489, 500
 
visual examination of, 298, 324
 
see also Functional forms; Regression
 

Relative efficiency:
 
adjusted value, 30, 39
 
of balanced lattice, 51
 
of blocking, 29
 
of latin square, 38-39
 
of partially balanced lattice, 64, 75
 
of randomized complete block, 29-30
 
of sampling units, 556, 557, 560
 

Replication data, for regression and correlation
 
analysis, 421-422
 

Replication effect, 295-296, 299
 
Replications:
 

inbalanced lattice design, 41
 
determination of, 504
 
effective, 292, 500, 503-504
 
in experiments measuring competition effects,
 

507
 
in fractional factorial design, 168
 
increase in, vs. sample size, 549
 
in latin square design, 31
 
need for, 3
 
inon-farm trials, 565
 
inpartially balanced lattice design, 52-53
 
in technology-verification trials, 574
 
unequal, 13, 17. 192-194
 

Representativeness of geographical area, 333
 
Re-randomization, 52, 543
 
Research in farmers' fields, see Farmers' fields,
 

research in
 
Research results:
 

generalization of, 5, 89
 
interpretation, see Interpretation of research
 

results
 
presentation, see Presentation of research
 

results
 
Research stations, see Experiment stations
 
Residual effects:
 

absence of, 565
 
of previous trials, 30, 427
 

http:hypothesi;.ed
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Residual mean square, see Mean square, number of, see Sample size 
residual primary, 540, 542, 572 

Residual sum of squares, 228, 376, 385, 410, relative efficiency, 550-557 
422 secondary, 540, 542, 572 

Response curves, 623 selection of, see Sampling designs 
Response prediction experiment, 355-356 subunit, 542 
Responses: tertiary, 540 

crop, 357. 358. 403 as unit of observation, in regression analysis, 
noncrop, 357 382 

Rounding errors, 224, 595 variation in, see Sampling variance 
Rounding off of means, 321 Sampling variance: 
Row and column factor, vee Column and row definition, 534 

factors and determination of sample size, 535 
Row blocking, in latin square design, 30, 31, estimates, 548, 555, 556, 558 

37, 39 homogeneity of, 467, 469 
Row spacing, correcting errors in, 524, 525 size of, 534, 549, 551 

Scale: 
Sample estimate, 533, 534, 542, 546. 549 in graphs, see Line graph, scale of Y-and X-
Sample, random, see Random sample axis 
Sample size: original. 302, 303 

inon-farm trials, 572 transformed, 299, 302. 393. See also
 
in plot sampling, 534-535, 546-549 Transformation of data
 
in regression and correlation analysis, 370, 421 Scatter diagna:
 

Sample value, 532 in data transformation, 298, 299 
Sampling: to detect spurious data, 422 

inexperimental plots, see Plot sampling technique, 398-400
 
for on-farm trials, 564-565, 572 Screening trial, 541
 
stages, see Sampling designs, multistage Searle, S.R., 403
 

random sampling Seasonal effects: 
Sampling designs: on precision of data, 419 

definition, 536 on treatments, see Interaction effect, between 
multistage random sampling, 536, 540 treatment and, crop season 
simple random sampling, 536-539, 543, 547, Second-degree polynomial, see Polynomials, 

550 second degree 
stratified multistage random sampling, 536, Second-stage sampling, 540. Se, /to Sampling 

541-542 designs, multistage random sampling 
stratified random sampling, 536, 540-541, Scojr ary sampling unit, see Sampling units, 

572 secondary 
subsampling with an auxiliary variable, 536, Seeding rates, 25, 220, 226, 525 

542-543 Seedling selection, 525 
Sampling error: Seed mixture, 523, 528-529 

and competition effects, 505 Serial correlation, 485-487 
definition, 53' Series of experiments:
 
estimate, 241, 245, 252, 253, 255, 271 analysis of vanance, see Analysis of variance,
 
pooled, 271 combined
 

Sampling techniques: homogeneity of error variances, 467 
in field experiments, see Plot sampling regression analysis. 372 
for selecting test farms, see Sampling, for on- see also Experiments. series of 

farm tnals Shortest significint ranges. 209 
Sampling units: Sigma, 1, 14 

choice of, 551, 556, 558 Significance, level of, see Level of significance 
definition, 533 Significant difference between treatments, see 
desirable features of, 533-534 Comparison of rcans; F test, in
 
main, 542 analysis of variance
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Significant digits, 595, 597 

Significant studentized ranges, 209, 639-640 

Simmons, H.A., 384 

Simple effects, see Effects, simple 

Simple lattice, see Partially balanced lattice 


design, simple lattice 

Simple linear correlation: 


analysis, 367. 371 

coefficient: 


definition. 367-368 

estimate of, 368 

homogeneity of, 379-381 

misinterpretation of, 422-423 

pooled, 381 

and sample size, 370 

in stepwise regression technique, 412 

test of significance, 369 


Simple linear regression: 

choice of data, 417-419, 421-422 

coefficient: 


definition, 359 

estimate of, 363 

homogeneity of, 372-379 

test of significance, 365-366 


computational procedure, 362-367 

data from controlled experiment, 361 

functional form, 359-360 

intercept, 359, 367 

misinterpretation of, 422-423 


Simple nonlinear regression, 359, 388-395 

Simple random sampling, see Sampling Oesigns, 


simple random sampling 

Simultaneous equations, 384. See also Normal 


equations 

Singh, R.K., 407 

Single d.f. contrast: 


definition, 216 

method: 


as alternative to Yates' method, 171 

for between-group comparison, 218-221 

to examine interaction effect, 323, 353-354 

for factorial comparison, 234-240 

for trend comparison: 


equal interval, 226-229 

unequal interval, 229-233 


for within-group comparison. 223-224 

orthogonality of, 216-217 

representing orthogonal polynomials, 226 

sum of squares, 216-217, 220-223 


Single-factor experiments: 

definition, 7 

examples, 7 

experimental designs, 7, 8, 20, 30, 39-41. 


52, 75 


vs. factorial experiments, 84, 87-91
 
limitations of, 84, 89
 
presentation of results, 594, 623
 

Size of experiment, see Experiments, size of
 
Size of sample, see Sample size
 
Slope:
 

of a field, 21, 478, 479
 
of a line, 359, 364, 372. See also Simple
 

linear regression, coefficient
 
Smith, H., 403
 
Smith's index of soil heterogeneity, 488-494,
 

504
 
Snedecor, G.W., 188, 454
 
Soil data, for on-farm trials, 563, 566, 577
 
Soil fertility:
 

change in, 494
 
gradient:
 

bi-directional, 30
 
as blocking criterion, 478
 
characterization of, 484, 485, 487
 
and plot shape, 503
 
predictable, 478
 
unidirectional, 3, 485, 487, 488
 

pattern:
 
characterization of, 484, 500
 
spotty, 425, 426, 503
 
as stratification criterion, in plot sampling,
 

541
 
unknown, 426
 

Soil heterogeneity:
 
causes of, 478-479
 
control of:
 

by blocking technique, 425
 
by covariance analysis, 426
 
by lattice design, 75
 

as criterion for selection of test sites, 478,
 
565
 

for determining number of replications, 503
 
for determining optimum plot size, 488, 494
 
measurement procedure, 479
 
presentation of, 480, 484
 
spotty, 425
 

Soil movement, 479
 
Soil nutrients, 350, 357, 478, 505
 
Soil productivity contour map, 480-486, 494
 
Soil properties:
 

description of, 592
 
effect on crop performance, 316
 
as productivity index, in long-term
 

experiments, 351
 
Soil texture, 356
 
Soil variability, see Soil heterogeneity
 
Soluble protein nitrogen, 370-371, 379-380
 
Spacing, see Plant spacing
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Split-plot design: with missing data, 279, 281, 283, 292, 
analysis of variance, 101-107 293 
assignment of factors in, 98-99 partially balanced lattice design. 196 
combined analysis of variance. 339-35P pooled analysis of variance, 260, 265 
covanance analysis, 441-454 split-split-plot design, 205, 206, 207 
with data from plot sampling. 242, 247-255 strip-plot design, 202, 203 
with data measured over time, 262-266 with unequal variance, 314-315 
for estimating Smith's index of soil of treatment mean, 548. 591 

heterogeneity, 494-499 Standardized normal curve, 475 
least significant difference test, 199-202 Standardized normal variate, 534, 535 
for measuring competition effects, 508, 511, Standardized Z values, 474-476 

513, 517-518 Statistical procedures: 
for minimizing competition effects, 521 choosing the best, vii, 359 
with missing data, 281-284 for on-farm trials, 562 
plot sizes, 101, 494 for studying several variables simultaneously, 
pooled analysis of variance, 257, 264-265 358, 382 
precision levels, 98, 107, 138 Statisticians, vii, 2, 107, 153, 356, 422, 430 
randomization, 99-101 Steel, R.G.D., 188, 407, 454 
for technology adaptation experiments, 333 Stepwise regression technique. 398, 411-416 
for three-or-more factor experiments, 138-139 Straight line, 359, 361. See also Linear 
for two-factor expenments, 97-107 relationship 

Split-split-plot design: Strata, 540-542 
analysis of variance, 141-153 Stratification, 541, 542, 572 
least significant difference test. 204-207 Stratified multistage random sampling, see 
with missing data, 286-288 Sampling designs, stratified multistage 
plot sizes, 139, 494 random .lampling 
precision levels, 139. 153 Stratified randon sampling, see Sampling 
randomization, 140-141 designs, stratified random sampling 
vs. split-plot design, 138-139 Stress: 

Split-split-split-plot design, 138 level of, 541 
Spray drift, 532 nonuniformity in, 428-429 
Spurious data, 422 Strip-plot design: 
Square-root transformation: analysis of variance, 109-116 

zrnalysis of vanance with, 304-305 least significant difference test, 202-204 
:ompanson of m-:ans, 306 with missing data, 284-286 
dzta suitable for, 304 plot sizes, 108 

SS. see Sum of squares precision levels, 108, 115 
Stage of observation, 256, 264. 266, 268. See randomization, 108-109 

also Growth, stages for thre-or-more factor experiments, 138, 
Stand. 139 

correction, 427, 521, 522 for two-fa4.tor experiments, 108, 116 
irregularity, 427-428 Strip-split-plot design: 
perfect, 273, 506 analysis of variance, 157-167 

Standard deviation, 299 plot sizes, 154 
Standard error. precision levels, 154, 166 

of estimated regression coefficient, 407, 408 randomization, 154-156 
of mean difference: Strip-split-split-plot design, 139 

choice of, 189-190, 208 Strips: 
computation of: hoizontal, 108, 154, 487-489 

balanced lattice design, 194 vertical, 108. 154, 487-489 
complete block designs, 190 Studentized ranges, see Significant studentized 
covariance analysis, 436-437, 451-453 ranges 
for data from plot sampling, 246, 253, Student's t, see : test 

255 Subdivided bar chart, 624, 627 
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Subdivision of sum of squares, see Partitioning 

of sum of squares 


Subplot analysis: 

in analysis of variance, 104-105. 145-147, 


161-163 

in covariance analysis. 446 

cv, corresponding to, 106-107, 450 


Subplot factor: 

definition, 98 

row position as, 508, 513 

time of observation as, 257 


Subplots: 

in split-plot design. 98 

in split-split-plot design, 138 

in strip-split-plot design, 154 


Subsampling with an auxiliary variable, see 

Sampling designs, subsampling with 

an auxiliary variable 


Substitute measurement, 420-421 

Sub-subplot analysis, 147-149 

Sub-subplot factor, 139 

Sub-subplots, 138 

Sub-sub-subplots, 138 

Sum of cross products: 


of contrast coefficients. 216, 223 

corrected: 


computation of, 368, 370, 371, 378 

definition, 36? 

in normal equations, 383-384, 407 


uncorrected: 

in covariance analysis, 432-433, 439, 445-


446, 456-457 

in regression analysis. 391, 394 


Sum of squares: 

ad "...ed, 433-434, 439-440, 446-448 

L..sed on means. 320-321, 343, 350 

based on totals, 320, 342-343, 345 

corrected, 362, 368, 370, 371, 378, 383 

of factorial treatments. 235-238, 240 

of multiple d.f. contrast, 217 

in nested classification, 553-555 

of orthogonal polynomials. 226-229 

partitioring (f, see Partitioning of sum of 


squares 

pooled, 312 

),'single d f. contrast, 216 

Yjes's method of computation, 170 


Sunshine, 357, 358, 505, 506 

Superior technologies, 316, 317, 328, 333. See 


also New technologies 

Systematic design, 296, 297 


Table: 

dimension of, 605 


of means, see Table of means
 
multidimensional, 605
 
of totals, see Table of totals
 
see also Tabular form
 

Table of means:
 
with mean comparison, see Presentation of
 

research results, comparison of means
 
measurement over time, 620
 
multicharacter data. 592, 621, 622, 626
 
one-way. 191, 193, 195, 197, 594
 
three-way, 606, 607, 612
 
two-way, 201, 204, 208, 606-610
 

Table-of-random-numbers technique:
 
for assignment of treatments, 8-13, 23-24,
 

31-33
 
for sampling, 536-537, 540
 

Table of totals:
 
for covariance analysis, 444
 
data from plot sampling, 247
 
group balanced block in split-plot design, 122
 
RCB design, 94
 
split-plot design, 101
 
split-split-plot design, 143, 145, 14"
 
strip-plot design, 109
 
strip-split-plot design, 158-159, 161
 

Tabular form:
 
for description of test site, 591-592
 
for presentation of means, see also Table of
 

means
 
discrete treatments, 594, 595
 
factorial expenments, 605-611
 
measurement over time, 620, 623
 
more-than-one set of data, 618
 
multicharacier data, 621, 622
 

readabiliiy of. 620
 
vs. graphic form, 605
 

labular F values, vee F test
 
Tabular t values, vee LSD; t tes'
 
Target area, 563 572, 586
 
Taste-panel study, 460
 
Techniques, field plot, see Field plot technique
 
Technology adaptation experiments, 316, 333,
 

335-350, 356
 
Technology-generation experiments:
 

definition, 562
 
in farmers' field:
 

data analysis, 567
 
data collection, 566
 
experimental error. 565
 
farmer's practices, 571
 
lack of information, 563
 
nuwber of replications, 565
 
objective, 566, 567
 
plot layout, 565
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procedures. 562-564 Test of significance: 
size of, 563 in analysis of variance, iee F test, in analysis 
test farms, 564. 567 of variance 

in research stations, 5(2 for attribute data, see Chi-square test, analysis 
vs. technology-vcrification experiments, 562 of attribute data 

Tcchnology-venfication experiments: in contingency tabh, see Chi-square lest, 
data analysis, 577 independence, inacontingency table 
dati collection, 577 in correlation analysis, 369-371, 381, 386­
definition, 562 387 
experimental designs, 572-574 incovariance analysis,. 436-437, 451-453 
expenmental error. 563 for homogeneity of vriance, see Chli-square 
farmer's practices: test homogeneity of, variance; F test 

as basis of comparison, 563, 571 for mean difference, see Comparison of 
determination and implementation, 574-576 means 
venfication and simulation, 576 in regression analysis, 30). 365-367, 373­

field plot techniques, 563, 574 379, 386, 405 -411 
number of replications, 563, 574 technique: 
number of treatments, 563. 572-574 individual testing. 405-4W9 
objective, 562, 571 joint testing, 4W9-411 
performance index, 571 use of, 398 
precision of, 574 Test sites' 
procedures. 563 effect of, 346 
vs. terhnology-gcneration experiments, 571 farmers' fields as: 
size of, 563, 572-573 distinctive features, 563 
target area, 572 experimental designs, 565 
tctt condition, 574, 576 number of replications, 565, 574 
test factors, see Test factors technology adaptation experiments, 333 
test farms, 572, 574 technology-generation experiments, 564 

Tertiary sampling unit, 540 technology-verification experiment%. 571 
Test area, see Test site% plot layout%, 565 
Test criterion, 466, 607, 627 ideal, 478 
Test factor,: research stations d%,333 

in faclonal experiments, 403, 05-606, 00) soil heterogi:neity in, 478. 5X 
in technology-vcrilkation cxpenments: Thinning, 273, 525- 527, 529 

added cost of, 586 Three-stage samplig, 540 
added returns of, 586 -587 Three-way classitication, 459 
contribution to yield gap of: Tillers. 

average, 581-584 barren, 307 
individual, 584-585 coefficient of variation, 17 
joint, 584-585 data on, 45, 46. 241, 243, 268, 357, 386, 

data collection, as affected by, 577 423,427,431 
definition. 571 plot sampling technique, 532, 534, 545, 550 
cperimental design, as affected by, 572- Time of observation, 257, 259, 261. See also 

574 Stage of observation 
interaction between, 579 Topsoil, 479 
and test condition, 576 Torrie, J A., 188, 407. 454 

see also Factors Trancription of data, 311, 399, 531 
Test farms. 567. 572, 574, 583 Transformation of data 
Test material, 2, 3.See also Experimental analysis of vriance with, 264-265, 302, 

material 34- 308. 311 
Test of gxlness of fit, see Chi-square lest. arc sine, ice Arc sine transformation 

gxxlness of fit choice of, 299 
Test of independence, ice Chi-square test, and heterogeneity of variance, 258, 264, 298 

independence, in a contingency table and least significant difference test, 595 
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Transfcrmation of data (Continued) 

logarithmic, see Logarithmic, transformation 

and multiplicative effects, 299 

percentage data, 304-308 

square-root, see Square-root transformation 


Transformed means, 302-304, 306, 308 

Treatment comparison, see Comparison of 


means 

Treatment difference: 


real, 13 

significance of, 15-16 

test of significance, see Comparison of means; 


F test, in analysis of variance 

Treatment effects: 


characterization of, 355, 429 

vs. competition effects, 507 

nonsignificant, and presentation of results, 


627 

see also Treatment difference 


Treatment means: 

comparison of, see Comparison of means 

computation of, with data transformation, 


302-304 

in covariance analysis, 425-426, 435-437, 


450-541,454 

in factorial experiments, 190 

inflation of, 273 

in lattice designs, 50, 61, 194, 195 

margin of error of, 534, 535 

variance of, 504, 548 


Treatment mean square, see Treatment sum of 

squares 


Treatments: 

assignment of, see Randomization, for 


assignment of treatments 

discrete, 591, 594-601 

effect of. see Treatment effects 

factorial, see Factorial treatments 

grouping of: 


homogeneous, 521 

with homogeneous variance, 311 

in group balanced block design, 75 

in group balanced block in split-plot design, 


116 

improper, 273 

indirect effect of, 358 

number of: 


in balanced lattice design, 41 

and block size, 503 

and experimental design, 7. 31, 40 

in factorial experiments, 90-91, 130 

in fractional factorial design, 139, 167, 168 

and least significant difference test, 189, 


207 


and number of replications, 503
 
in partially balanced lattice design, 52
 
and size of experiments, 565
 
in technology-generation experin..nts, 563
 
in technology-verification experiments,
 

572-573
 
quantitative, 200, 204, 215, 255, 358, 601­

604
 
as variable in regression analysis, 357, 358
 

Treatment sum of square':
 
in covariance analysis, 434, 440, 456
 
computation of, see Analysis of variance
 
lattice designs:
 

adjusted, 61, 62, 72, 73
 
unadjusted, 48, 58, 68, 72
 

with missing data, 278
 
for multiobservation data, 244
 

Trend comparison:
 
analysis of variance with, 229, 238, 240, 402
 
combined analysis of variance with, 323, 348
 
computational procedure, 225-233. See also
 

Orthogonal polynomials
 
dfinition, 215
 
and line graph, 601
 
for measuremet over time, 261
 
for quantitative treatments, 594, 601
 

Trials:
 
animal feeding, 5, 17
 
entomological, 357
 
exploratory, 168
 
factorial, see Factorial experiments
 
fertilizer, see Fertilier trials
 
field, see Field experiments
 
greenhouse. 30, 401. 418, 419, 429, 431
 
herbicide, 17
 
insecticide, see Insecticide trials
 
long-term fertility, 350-354
 
nitrogen-response, 625
 
on-farm, see Experiments, in farmers' fields
 
plant population, 7
 
research-station, 562
 
screening, 541
 
technology-generation, see Technology­

generation experiments
 
technology-verification, see Technology­

verification experiments
 
uniformity, see Uniformity trials
 
variety, see Variety trials
 
weed control, 350, 567
 
see also Experiments
 

Triple lattice dcsign, see Partially balanced
 
lattice design, triple lattice
 

True mean. 549
 
True value, 534, 535
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t test crop response as, 369, 398, 403, 421, 422 
for mean comparison, 199, 202, 206, 207, definition, 358, 367 

314-315 in multiple linear regression, 382 
in regression analysis, 366, 367, 375, 407, transformation of, 397. See also 

408-409 Linearization technique
Two-factor expenments: discrete, 591, 593, 600, 605 

group balanced block in split-plot design, dummy, 403 
116-129 fixed, 317, 328-330 

randomized complete block design, 91-97 independent: 
regression analysis, 372 creation of, 396. See also Linearization 
split-plot design, 97-107 technique 
strip-plot design, 108-116 definition, 358, 367 
types of effects in, 84-89 interaction between, 396, 398 

Two-stage sampling design, 540, 541, 542 quantitative factors tested as, 401, 403, 405 
Two-way classification, 459 range of values, 421 

primary, 356, 417, 425, 426. See also 
Unequal degree of freedom, in test for Character of primary interest 

homogeneity of variance, 469-471 ranidom, 328, 329-330 
Unequal replication, see Replications, unequhl response, 357 
Uneven distribution of data points, 422 transformation of, 389-393. See also 
Uniformity trials: Linearizaion technique 

for assessing soil heterogeneity pattern, 479, Variance: 
480-494 analysis of, see Analysis of variance 

data collection, 426-427 between-plot, 489-491, 494, 495, 500-501, 
data used as covariate, 426-427 504 
limitations of, 426-427 comparable, 497, 499 
for measuring competition effects, 519-520 components of, 255 

Jnplanned pair companson, see Pair computation of, front frequency table, 472­
comparison, unplanned 474 

Jnplanted alleys, see Alleys, nonplanted estimates, 255 
heterogeneity of: 

lacant spaces, in the row, 526 due to gross errors, 308-311 
/ariablity: and pooled analysis of variance, 258-259, 

of environmental factors, 356 264, 268 
inexperimental materials, 40 remedial measures for, 297-298, 308-315 
between experimental units, 5, 31, 425, 500 types, 297-299, 308 
between farms, 563, 572 vs. range, 298, 299-301 
in field experiments, 427, 478 ratio, see F test 
known sources of, 425 sampling, 469, 532-535, 547-548, 551, 555, 
from noncontrolled factors, 418 558 
in regression and c:wrelation ana!ysis, 417 test for homogeneity: 
between sampling units, 534, 541, 548 by chi-square test, 258, 262-264, 467-471 
soil, 503. See also Soil heterogeneity by F test, 268, 271, 314, 322 
in stress levels, 428-429 of treatment mean, 504, 548 
within-plant, 541 per unit area, 491, 492 

fanables: Variation, see Variability 
auxiliary, 542-543 Varietal competition effects, 506, 507, 510-513, 
conconitint, see Covanates 515, 517-518, 520 
continuous, 593, 600 Varietal difference, 2-3, 424. 521, 612 
creation of, 392-393 Varietal tolerance, 297 
in crop experiments, 357 Variety trials: 
dependent: blocking in, 21 

contribution to variation in, 387, 405, 421. causes of missing data in, 274 
See also Coefficient of determination check variety, see Check variety 
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Variety trials (Coitinued) 

coefficient of variation, 17 

in group balanced block design, 75, 76, 


521
 
heterogeneity of variance in, 297 

insect incidence as covariate, 430 

for measurement of competition effects, 515, 


517 

multicharacter data in, 625 

nonuniformity of insect incidence in, 428 

in randomized complete block design, 335-


339 

as technology adap,,ation experiments, 333, 


335-339 

in triple lattice design, 196 

weed incidence as covariate, 424 


Vertical-factor analysis, 109, 157, 159 

Vertical factors, 108. 115, 166, 203 

Vcrtical-str~p plot, 108, 154 

Visual obstrviions of data, 238, 324 


Walkways, 51.5. See also Alleys, nonplantcd 

Weed contrAl trials, .see Trials, weed control 

Weeds:
 

control of, 134, 187, 361 

incidence of, as covariate, 424 

sampling for, 543 


Weighted mean, 380 


Whole numbers, and data transformation, 299,
 
304
 

Whole plot, see Main plot
 

X as, 337, 602
 
Yaxis, 336, 364, 602
 

Yates, F., ix
 
Yates's method. 170-178, 183
 
Yield:
 

compensation, 522
 
compon%:nts, 274, 357, 625
 
corrected, 524
 
determination of. 521-522
 
economic, 532
 
see also Crop yield
 

Yield gup:
 
analysis, 585
 
contribution of lest factors to, see Test
 

factors, in technology-verification 
experiments, contribution to yield gap 

of 
Yield trial, see Variety trials
 
Younger, M.S., 407
 

Z, see Standardized normal variate; Standardized 
Z values
 

Zero value, and data transformation, 304, 307
 
Zero yield vs. missing data, 273-275
 


