Crop Water Requirements

Lecture note for Soil and Water Management Course Prepared by Dr ND Nang

- The crop water need mainly depends on
 - The climate
 - The crop type
 - The growth stage of crop

• The crop water need (ET crop) is defined as the amount (or depth) of water needed to meet the water loss through evapotranspiration Calculation for crop water requirements

 $ET_{c} = K_{c} \times ET_{o}$

- ET_c : crop evaporation or crop water need (mm/day)
- K_c : Crop factor
- ET_o : Reference evapotranspiration (mm/day)

Calculation for crop water requirements

- K_c : mainly depends on
 - The type of crop
 - The growth stage of the crop
 - The climate
- ET_o : measure/predict by
 - Using evaporation pan
 - Using Penman-Monteith Equation
 - The Blaney-Criddle Equation

- Determination of crop factor Kc, it is necessary to
 - Determine of the total growing period of each crop
 - Determine of the various growth stages of each crop
 - Determine of the K_c values for each crop for each of the growth stages

The total growing period of some crops

Сгор	Total growing period (days)	Сгор	Total growing period (days)
Alfalfa	100-365	Millet	105-140
Banana	300-365	Onion green	70-95
Barley/Oats/Wheat	120-150	Onion dry	150-210
Bean green	75-90	Peanut/Groundnut	130-140
Bean dry	95-110	Pea	90-100
Cabbage	120-140	Pepper	120-210
Carrot	1 00-150	Potato	105-145
Citrus	240-365	Radish	35-45
Cotton	180-195	Rice	90-150

FAO, 1995

Approximate duration of growth stages for various field crops

	Total	Initial stage	Crop Development stage	Mid season stage	Late season stage
Barley/Oats	120	15	25	50	30
/Wheat	150	15	30	65	40
Bean/green	75	15	25	25	10
	90	20	30	30	10
Bean/dry	95	15	25	35	20
	110	20	30	40	20
Cabbage	120	20	25	60	15
	140	25	30	65	20
Carrot	100	20	30	30	20
	150	25	35	70	20
Cotton/Flax	180	30	50	55	45
	195	30	50	65	50

FAO, 1995

Values of the crop factor (K_c) for various crops and growth stages

Initial stage	Crop dev. stage	Mid-season stage	Late season stage
0.35	0.75	1.15	0.45
0.35	0.70	1.10	0.90
0.35	0.70	1.10	0.30
0.45	0.75	1.05	0.90
0.45	0.75	1.15	0.75
0.45	0.70	0.90	0.75
0.45	0.75	1.15	0.80
0.35	0.75	1.10	0.65
0.45	0.75	1.10	0.50
0.45	0.60	1.00	0.90
0.40	0.80	1.15	1.00
	Initial stage 0.35 0.35 0.35 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	Initial stageCrop dev. stage0.350.750.350.700.350.700.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.750.450.600.400.80	Initial stageCrop dev. stageMid-season stage0.350.751.150.350.701.100.350.701.100.350.751.050.450.751.150.450.751.150.450.751.150.450.751.100.450.751.100.450.751.100.450.751.100.450.751.100.450.751.100.450.601.000.400.801.15

FAO, 1995

Reference evapotranspiration, ET_o

• Using evaporation pan

$\mathbf{ET_o} = \mathbf{K}_p \mathbf{x} \mathbf{ET}_{pan}$

- Kp : pan cofficient
- ET_{pan} : Evaporation of the pan

Reference evapotranspiration, ET_o

• Using Penman-Monteith Equation

$$ET_o = \frac{0.408\Delta(R_n - G) + \gamma \frac{900}{T + 273}u_2(e_s - e_a)}{\Delta + \gamma(1 + 0.34u_2)}$$

ET reference evapotranspiration [mm/day], net radiation at the crop surface [MJ/m²/day], R_n soil heat flux density [MJ/m²/day], G air temperature at 2 m height [°C], Т wind speed at 2 m height [m/s], \mathbf{u}_2 saturation vapour pressure [kPa], e_s actual vapour pressure [kPa], e_a $e_s - e_a$ saturation vapour pressure deficit [kPa], slope vapour pressure curve [kPa/°C], Δ psychrometric constant [kPa /°C]. γ

Reference evapotranspiration, ET_o

• Using Blaney-Criddle Equation

$ET_{o} = p (0.46T_{mean} + 8)$

ET_o reference evapotranspiration (mm/day),
p mean daily percentage of annual daytime hours
Tmean mean daily temperature (°C)

Example for calculating the water requirement of crops

- Crop: potato
 - Growth stage: Initial growth
 - K_c for initial stage: 0.45
 - $ET_o: 9 \text{ mm/day}$
 - $\circ => ETc = Kc*ET_0 = 0.45 X 9 = 4.05 mm/day$
- Tomato crops

• Given data:

•	Month	Jan	Feb Mar	Apr	May	June	July
	ETo (mm/day)	4.0	5.0 5.8	6.3	6.8	7.1	6.5
	Humidity	medium	(60%)				
	Windspeed	medium	(3 m/sec)				
	Duration of growing period (from sowing): 150 days						ys
	Planting date: 1 February (direct sowing)						

• Step 1: Estimating the duration of the various growth stages

Сгор	Total growing period	Initial	Crop dev.	Mid-season	Late season
	(days)	stage	stage	stage	stage
Tomatoes	150	35	40	50	25

Planting date	1 Feb
Initial stage, 35 days	1 Feb-5 Mar
Crop development stage, 40 days	6 Mar-15 Apr
Mid season stage, 50 days	16 Apr-5 Jun
Late season stage, 25 days	6 Jun-30 Jun
Last day of the harvest	30 Jun

- Step 1: Estimating the duration of the various growth stages
- Step 2: Estimating the Kc factor for each of the 4 growth stages
- Step 3: Calculating the crop water need on a monthly basis
- Step 4: Calculate the monthly and seasonal crop water needs

- Step 2: Estimating the Kc factor for each of the 4 growth stages
 - K_c initial stage = 0.45
 - K_c crop development stage = 0.75
 - K_c mid season stage = 1.15
 - K_c late season stage = 0.8
- February K_c Feb = 0.45
- March 5 days $K_c = 0.45$

25 days
$$K_c = 0.75$$

KcMarch: Kc = $\frac{5}{30} \times 0.45 + \frac{25}{30} \times 0.75 = 0.07 + 0.62 = 0.69 = approx 0.70$

• April 15 days $K_c = 0.75$ 15 days $K_c = 1.15$ $=> K_c April = 0.95$ • May K_c May = 1.15 • June 5 days $K_c = 1.15$ 25 days $K_c = 0.8$ $= K_{c} Jun = 0.85$

• Step 3: Calculating the crop water need on a monthly basis

 $ET_{crop} = ET_o \times K_c$ (mm/day)

February:ET crop = $5.0 \times 0.45 = 2.3$ mm/dayMarch:ET crop = $5.8 \times 0.70 = 4.1$ mm/dayApril:ET crop = $6.3 \times 0.95 = 6.0$ mm/dayMay:ET crop = $6.8 \times 1.15 = 7.8$ mm/dayJune:ET crop = $7.1 \times 0.85 = 6.0$ mm/day

• Step 4: Calculate the monthly and seasonal crop water needs. Note: all months are assumed to have 30 days ET crop = $30 \times 2.3 = 69$ mm/month February March ET crop = $30 \times 4.1 = 123$ mm/month April ET crop = $30 \times 6.0 = 180$ mm/month ET crop = $30 \times 7.8 = 234$ mm/month May June ET crop = $30 \times 6.0 = 180$ mm/month

The crop water need for the whole growing season of tomatoes is 786 mm

IRRIGATION CYCLE Determination of soil water content

a/ Gravimetric water content (θ_m , %):

 $\theta_{\rm m}(\%) = \frac{({\rm Mass}_{\rm wet \ soil} - {\rm Mass}_{\rm oven-dry \ soil})}{{\rm Mass}_{\rm oven-dry \ soil}} * 100$

b/ Volumetric water content (θ_v ,%): θ_v (%) =[(Volume_{water})/Volume_{total}]*100

IRRIGATION CYCLE c/ Depth of water (h) $h = \theta_v^*$ depth of soil (cm) d/ Relationship between $\theta_{\rm m}$ và $\theta_{\rm v}$ $\theta_{\rm v} = \theta_{\rm m} * \rho_{\rm h}$ e/ Soil porosity (f) $f = Volume_{void} / Volume_{total} = 1 - \rho_b / \rho_p$ ρ_{b} : bulk density = Mass_{oven-dry soil}/Volume_{total} ρ_{p} particle density = Mass_{solid}/Volume_{solid} = Mass_{oven-dry soil}/Volume_{oven-dry soil}

IRRIGATION CYCLE

- Given soil conditions
 - Soil bulk density (ρb) = 1.5 g/cm3
 - Soil water content at FC = 25%
 - Soil water content at PWP = 11%
 - Depth of roots = 40 cm

Determine depth of water and irrigation cycle ?

- Available water = 25% 11% = 14%
- MAD for shallow root 25 40%
- Minimum water content = 25 14*0.4 = 19.4%

IRRIGATION CYCLE

• Depth of water need $h = (25 - 19.4)*\rho_{h}*40(cm)*10$ $= (5.6/100) * 1.5 \text{ g/cm}^{3} * 40 * 10 = 33.6 \text{ mm}$ February: n = 33.6 / 2.3 = 14 days March: n = 33.6 / 4.1 = 8 days April: n = 33.6 / 6.0 = 5 daysn = 33.6 / 7.8 = 4 daysMay: June: n = 33.6 / 6.0 = 5 days

<u>Assumption: Evaporation for soil surface = 0 and no</u> <u>rainfall</u> Yield Response To Water

$$\left(1 - \frac{Y_a}{Y_x}\right) = K_y \left(1 - \frac{ET_a}{ET_x}\right)$$

- Y_x and Y_a are the maximum and actual yields,
- ET_x and ET_a are the maximum and actual evapotranspiration
- K_y is a yield response factor (K_y is representing the effect of a reduction in evapotranspiration on yield losses)
 - $K_y > 1$: crop response is very sensitive to water defic
 - $K_v < 1$: crop is more tolerant to water deficit
 - $K_y = 1$: yield reduction is directly proportional to reduced water use

Yield Response To Water

Seasonal Ky values from FAO Irrigation and Drainage Paper No.33

Сгор	K _y	Сгор	κ _y
Alfalfa	1.1	Safflower	0.8
Banana	1.2-1.35	Sorghum	0.9
Beans	1.15	Soybean	0.85
Cabbage	0.95	Spring wheat	1.15
Cotton	0.85	Sugarbeet	1.0
Groundnuts	0.70	Sugarcane	1.2
Maize	1.25	Sunflower	0.95
Onion	1.1	Tomato	1.05
Peas	1,15	Watermelon	1.1
Pepper	1.1	Winter wheat	1.05
Potato	1.1		