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3.1 MECHANICS OF SOLIDS
by Robert F. Steidel, Jr.
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PHYSICAL MECHANICS

Definitions

Force is the action of one body on another which will cause acceleration
of the second body unless acted on by an equal and opposite action
counteracting the effect of the first body. It is a vector quantity.

Time is a measure of the sequence of events. In newtonian mechanics
it is an absolute quantity. In relativistic mechanics it is relative to the
frames of reference in which the sequence of events is observed. The
common unit of time is the second.

Inertia is that property of matter which causes a resistance to any
change in the motion of a body.

Mass is a quantitative measure of inertia.
Acceleration of Gravity Every object which falls in a vacuum at a

given position on the earth’s surface will have the same acceleration g.
Accurate values of the acceleration of gravity as measured relative to
the earth’s surface include the effect of the earth’s rotation and flatten-
ing at the poles. The international gravity formula for the acceleration of
gravity at the earth’s surface is g 5 32.0881(1 1 0.005288 sin2 f 2
0.0000059 sin2 2f) ft /s2, where f is latitude in degrees. For extreme
accuracy, the local acceleration of gravity must also be corrected for the
presence of large water or land masses and for height above sea level.
The absolute acceleration of gravity for a nonrotating earth discounts
the effect of the earth’s rotation and is rarely used, except outside the
earth’s atmosphere. If g0 represents the absolute acceleration at sea
level, the absolute value at an altitude h is g 5 g0R2/(R 1 h)2, where R is
the radius of the earth, approximately 3,960 mi (6,373 km).

Weight is the resultant force of attraction on the mass of a body due to
a gravitational field. On the earth, units of weight are based upon an
acceleration of gravity of 32.1740 ft /s2 (9.80665 m/s2).

Linear momentum is the product of mass and the linear velocity of a
particle and is a vector. The moment of the linear-momentum vector
about a fixed axis is the angular momentum of the particle about that
fixed axis. For a rigid body rotating about a fixed axis, angular momen-
tum is defined as the product of moment of inertia and angular velocity,
each measured about the fixed axis.

An increment of work is defined as the product of an incremental
displacement and the component of the force vector in the direction of
the displacement or the component of the displacement vector in the
direction of the force. The increment of work done by a couple acting on
a body during a rotation of du in the plane of the couple is dU 5 M du.

Energy is defined as the capacity of a body to do work by reason of its
motion or configuration (see Work and Energy).

A vector is a directed line segment that has both magnitude and direc-
tion. In script or text , a vector is distinguished from a scalar V by a
boldface-type V. The magnitude of the scalar is the magnitude of the
vector, V 5 |V|.

A frame of reference is a specified set of geometric conditions to
which other locations, motion, and time are referred. In newtonian me-
chanics, the fixed stars are referred to as the primary (inertial) frame of
reference. Relativistic mechanics denies the existence of a primary ref-
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sidered fundamental qualities, and all other units including that of mass
are derived.

In the SI system of units, the unit of mass is the kilogram (kg) and the
unit of length is the metre (m). A force of one newton (N) is derived as
the force that will give 1 kilogram an acceleration of 1 m/s2.

In the English engineering system of units, the unit of mass is the
pound mass (lbm) and the unit of length is the foot (ft). A force of one
pound (1 lbf ) is the force that gives a pound mass (1 lbm) an accelera-
tion equal to the standard acceleration of gravity on the earth, 32.1740
ft /s2 (9.80665 m/s2). A slug is the mass that will be accelerated 1 ft /s2

by a force of 1 lbf. Therefore, 1 slug 5 32.1740 lbm. When described in
the gravitational system, mass is a derived unit , being the constant of
proportionality between force and acceleration, as determined by New-
ton’s second law.

General Laws

NEWTON’S LAWS

I. If a balanced force system acts on a particle at rest , it will remain
at rest . If a balanced force system acts on a particle in motion, it will
remain in motion in a straight line without acceleration.

II. If an unbalanced force system acts on a particle, it will acceler-
ate in proportion to the magnitude and in the direction of the resultant
force.

III. When two particles exert forces on each other, these forces are
equal in magnitude, opposite in direction, and collinear.

Fundamental Equation The basic relation between mass, accelera-
tion, and force is contained in Newton’s second law of motion. As
applied to a particle of mass, F 5 ma, force 5 mass 3 acceleration.
This equation is a vector equation, since the direction of F must be the
direction of a, as well as having F equal in magnitude to ma. An alter-
native form of Newton’s second law states that the resultant force is
equal to the time rate of change of momentum, F 5 d(mv)/dt.

Law of the Conservation of Mass The mass of a body remains
unchanged by any ordinary physical or chemical change to which it may
be subjected.

Law of the Conservation of Energy The principle of conservation
of energy requires that the total mechanical energy of a system remain
unchanged if it is subjected only to forces which depend on position or
configuration.

Law of the Conservation of Momentum The linear momentum of a
system of bodies is unchanged if there is no resultant external force on
the system. The angular momentum of a system of bodies about a fixed
axis is unchanged if there is no resultant external moment about this
axis.

Law of Mutual Attraction (Gravitation) Two particles attract each
other with a force F proportional to their masses m1 and m2 and in-
versely proportional to the square of the distance r between them, or
F 5 km1m2/r2, in which k is the gravitational constant . The value of the
gravitational constant is k 5 6.673 3 10211 m3/kg ? s2 in SI or absolute
units, or k 5 3.44 3 1028 ft4 lb21 s24 in engineering gravitational units.
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It should be pointed out that the unit of force F in the SI system is the
newton and is derived, while the unit force in the gravitational system is
the pound-force and is a fundamental quantity.

EXAMPLE. Each of two solid steel spheres 6 in in diam will weigh 32.0 lb on
the earth’s surface. This is the force of attraction between the earth and the steel
sphere. The force of mutual attraction between the spheres if they are just touching
is 0.000000136 lb.

STATICS OF RIGID BODIES

Resultant of Any Number of Forces Applied to a Rigid Body at the
Same Point Resolve each of the given forces F into components along
three rectangular coordinate axes. If A, B, and C are the angles made
with XX, YY, and ZZ, respectively, by any force F, the components
will be F cos A along XX, F cos B along YY, F cos C along ZZ; add
the components of all the forces along each axis algebraically and ob-
tain oF cos A 5 oX along XX, oF cos B 5 oY along YY, and oF
cos C 5 oZ along ZZ.

The resultant R 5 √(oX)2 1 (oY)2 1 (oZ)2. The angles made by the
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General Considerations

If the forces acting on a rigid body do not produce any acceleration, they
must neutralize each other, i.e., form a system of forces in equilibrium.
Equilibrium is said to be stable when the body with the forces acting
upon it returns to its original position after being displaced a very small
amount from that position; unstable when the body tends to move still
farther from its original position than the very small displacement; and
neutral when the forces retain their equilibrium when the body is in its
new position.

External and Internal Forces The forces by which the individual
particles of a body act on each other are known as internal forces. All
other forces are called external forces. If a body is supported by other
bodies while subject to the action of forces, deformations and forces
will be produced at the points of support or contact and these internal
forces will be distributed throughout the body until equilibrium exists
and the body is said to be in a state of tension, compression, or shear.
The forces exerted by the body on the supports are known as reactions.
They are equal in magnitude and opposite in direction to the forces with
which the supports act on the body, known as supporting forces. The
supporting forces are external forces applied to the body.

In considering a body at a definite section, it will be found that all the
internal forces act in pairs, the two forces being equal and opposite. The
external forces act singly.

General Law When a body is at rest , the forces acting externally to
it must form an equilibrium system. This law will hold for any part of
the body, in which case the forces acting at any section of the body
become external forces when the part on either side of the section is
considered alone. In the case of a rigid body, any two forces of the same
magnitude, but acting in opposite directions in any straight line, may be
added or removed without change in the action of the forces acting on
the body, provided the strength of the body is not affected.

Composition, Resolution, and Equilibrium of
Forces

The resultant of several forces acting at a point is a force which will
produce the same effect as all the individual forces acting together.

Forces Acting on a Body at the Same Point The resultant R of two
forces F1 and F2 applied to a rigid body at the same point is represented
in magnitude and direction by the diagonal of the parallelogram formed
by F1 and F2 (see Figs. 3.1.1 and 3.1.2).

R 5 √F2
1 1 F2

2 1 2 F1F2 cos a

sin a1 5 (F2 sin a)/R sin a2 5 (F1 sin a)/R

When a 5 90°, R 5 √F2
1 1 F2

2 , sin a1 5 F2/R, and sin a2 5 F1/R.

When a 5 0°, R 5 F1 1 F2 Forces act in same
When a 5 180°, R 5 F1 2 F2

J straight line.

A force R may be resolved into two component forces intersecting any-
where on R and acting in the same plane as R, by the reverse of the
operation shown by Figs. 3.1.1 and 3.1.2; and by repeating the operation
with the components, R may be resolved into any number of component
forces intersecting R at the same point and in the same plane.

Fig. 3.1.1 Fig. 3.1.2
resultant with the three axes are Ar with XX, Br with YY, Cr with ZZ,
where

cos Ar 5 oX/R cos Br 5 oY/R cos Cr 5 oZ/R

The direction of the resultant can be determined by plotting the algebraic
sums of the components.

If the forces are all in the same plane, the components of each of the
forces along one of the three axes (say ZZ) will be 0; i.e., angle Cr 5

90° and R 5 √(oX)2 1 (oY)2, cos Ar 5 oX/R, and cos Br 5 oY/R.
For equilibrium, it is necessary that R 5 0; i.e., oX, oY, and oZ must

each be equal to zero.
General Law In order that a number of forces acting at the same

point shall be in equilibrium, the algebraic sum of their components
along any three coordinate axes must each be equal to zero. When the
forces all act in the same plane, the algebraic sum of their components
along any two coordinate axes must each equal zero.

When the Forces Form a System in Equilibrium Three unknown
forces can be determined if the lines of action of the forces are all
known and are in different planes. If the forces are all in the same plane,
the lines of action being known, only two unknown forces can be deter-
mined. If the lines of action of the unknown forces are not known, only
one unknown force can be determined in either case.

Couples and Moments

Couple Two parallel forces of equal magnitude (Fig. 3.1.3) which
act in opposite directions and are not collinear form a couple. A couple
cannot be reduced to a single force.

Fig. 3.1.3

Displacement and Change of a Couple The forces forming a cou-
ple may be moved about and their magnitude and direction changed,
provided they always remain parallel to each other and remain in either
the original plane or one parallel to it , and provided the product of one
of the forces and the perpendicular distance between the two is constant
and the direction of rotation remains the same.

Moment of a Couple The moment of a couple is the product of the
magnitude of one of the forces and the perpendicular distance between
the lines of action of the forces. Fa 5 moment of couple; a 5 arm of
couple. If the forces are measured in pounds and the distance a in feet ,
the unit of rotation moment is the foot-pound. If the force is measured in
kilograms and the distance in metres, the unit is the metre-kilogram. In
the cgs system the unit of rotation moment is 1 cm-dyne.

Rotation moments of couples acting in the same plane are convention-
ally considered to be positive for counterclockwise moments and nega-
tive for clockwise moments, although it is only necessary to be consis-
tent within a given problem. The magnitude, direction, and sense of
rotation of a couple are completely determined by its moment axis, or
moment vector, which is a line drawn perpendicular to the plane in
which the couple acts, with an arrow indicating the direction from
which the couple will appear to have right-handed rotation; the length
of the line represents the magnitude of the moment of the couple. See
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Fig. 3.1.4, in which AB represents the magnitude of the moment of the
couple. Looking along the line in the direction of the arrow, the couple
will have right-handed rotation in any plane perpendicular to the line.

Composition of Couples Couples may be combined by adding their
moment vectors geometrically, in accordance with the parallelogram
rule, in the same manner in which forces are combined.

Couples lying in the same or parallel planes are added algebraically. Let
1 28 lbf ? ft (1 38 N ? m), 2 42 lbf ? ft (2 57 N ? m), and 1 70 lbf ? ft
(95 N ? m) be the moments of three couples in the same or parallel

Ar 5 oX/R, cos Br 5 oY/R, and cos Cr 5 oZ/R; and there are three
couples which may be combined by their moment vectors into a single
resultant couple having the moment Mr 5 √(Mx)2 1 (My)2 1 (Mz)2,
whose moment vector makes angles of Am , Bm , and Cm with axes XX,
YY, and ZZ, such that cos Am 5 Mx /Mr , cos Bm 5 My /Mr , cos Cm 5
Mz /Mr . If this single resulting couple is in the same plane as the single
resulting force at the origin or a plane parallel to it , the system may be
reduced to a single force R acting at a distance from R equal to Mr /R. If
the couple and force are not in the same or parallel planes, it is impossi-
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planes; their resultant is a single couple lying in the same or in a parallel
plane, whose moment is oM 5 1 28 2 42 1 70 5 1 56 lbf ? ft (oM 5
1 38 2 57 1 95 5 76 N ? m).

Fig. 3.1.4 Fig. 3.1.5

If the polygon formed by the moment vectors of several couples closes
itself, the couples form an equilibrium system. Two couples will balance each
other when they lie in the same or parallel planes and have the same
moment in magnitude, but opposite in sign.

Combination of a Couple and a Single Force in the Same Plane (Fig.
3.1.5) Given a force F 5 18 lbf (80 N) acting as shown at distance x
from YY, and a couple whose moment is 2 180 lbf ? ft (244 N ? m) in
the same or parallel plane, to find the resultant . A couple may be
changed to any other couple in the same or a parallel plane having the
same moment and same sign. Let the couple consist of two forces of
18 lbf (80 N) each and let the arm be 10 ft (3.05 m). Place the couple in
such a manner that one of its forces is opposed to the given force at p.
This force of the couple and the given force being of the same magni-
tude and opposite in direction will neutralize each other, leaving the
other force of the couple acting at a distance of 10 ft (3.05 m) from p
and parallel and equal to the given force 18 lbf (80 N).

General Rule The resultant of a couple and a single force lying in
the same or parallel planes is a single force, equal in magnitude, in the
same direction and parallel to the single force, and acting at a distance
from the line of action of the single force equal to the moment of the
couple divided by the single force. The moment of the resultant force
about any point on the line of action of the given single force must be of
the same sense as that of the couple, positive if the moment of the
couple is positive, and negative if the moment of the couple is negative.
If the moment of the couple in Fig. 3.1.5 had been 1 instead of 2, the
resultant would have been a force of 18 lbf (80 N) acting in the same
direction and parallel to F, but at a distance of 10 ft (3.05 m) to the left
of it (shown dotted), making the moment of the resultant about any
point on F positive.

To effect a parallel displacement of a single force F over a distance a, a
couple whose moment is Fa must be added to the system. The sense of
the couple will depend upon which way it is desired to displace force F.

The moment of a force with respect to a point is the product of the force
F and the perpendicular distance from the point to the line of action of
the force.

The Moment of a Force with Respect to a Straight Line If the force
is resolved into components parallel and perpendicular to the given line,
the moment of the force with respect to the line is the product of the
magnitude of the perpendicular component and the distance from its
line of action to the given line.

Forces with Different Points of Application

Composition of Forces If each force F is resolved into components
parallel to three rectangular coordinate axes XX, YY, and ZZ, the magni-
tude of the resultant is R 5 √(oX)2 1 (oY)2 1 (oZ)2, and its line of
action makes angles Ar , Br , and Cr with axes XX, YY, and ZZ, where cos
ble to reduce the system to a single force. If R 5 0, i.e., if oX, oY, and
oZ all equal zero, the system will reduce to a single couple whose
moment is Mr . If Mr 5 0, i.e., if Mx , My , and Mz all equal zero, the
resultant will be a single force R.

When the forces are all in the same plane, the cosine of one of the
angles Ar , Br , or Cr 5 0, say, Cr 5 90°. Then R 5 √(oX)2 1 (oY)2,
Mr 5 √M2

x 1 M2
y, and the final resultant is a force equal and parallel to

R, acting at a distance from R equal to Mr /R.
A system of forces in the same plane can always be replaced by either

a couple or a single force. If R 5 0 and Mr ? 0, the resultant is a couple.
If Mr 5 0 and R . 0, the resultant is a single force.

A rigid body is in equilibrium when acted upon by a system of forces
whenever R 5 0 and Mr 5 0, i.e., when the following six conditions
hold true: oX 5 0, oY 5 0, oZ 5 0, Mx 5 0, My 5 0, and Mz 5 0.
When the system of forces is in the same plane, equilibrium prevails
when the following three conditions hold true: oX 5 0, oY 5 0,
oM 5 0.

Forces Applied to Support Rigid Bodies

The external forces in equilibrium acting upon a body may be statically
determinate or indeterminate according to the number of unknown
forces existing. When the forces are all in the same plane and act at a
common point , two unknown forces may be determined if their lines of
action are known, one if unknown.

When the forces are all in the same plane and are parallel, two un-
known forces may be determined if the lines of action are known, one if
unknown.

When the forces are anywhere in the same plane, three unknown
forces may be determined if their lines of action are known, if they are
not parallel or do not pass through a common point; if the lines of action
are unknown, only one unknown force can be determined.

If the forces all act at a common point but are in different planes,
three unknown forces can be determined if the lines of action are
known, one if unknown.

If the forces act in different planes but are parallel, three unknown
forces can be determined if their lines of action are known, one if
unknown.

The first step in the solution of problems in statics is the determina-
tion of the supporting forces. The following data are required for the
complete knowledge of supporting forces: magnitude, direction, and
point of application. According to the nature of the problem, none, one,
or two of these quantities are known.

One Fixed Support The point of application, direction, and magni-
tude of the load are known. See Fig. 3.1.6. As the body on which the
forces act is in equilibrium, the supporting force P must be equal in
magnitude and opposite in direction to the resultant of the loads L.

In the case of a rolling surface, the point of application of the support
is obtained from the center of the connecting bolt A (Fig. 3.1.7), both the
direction and magnitude being unknown. The point of application and

Fig. 3.1.6 Fig. 3.1.7
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line of action of the support at B are known, being determined by the
rollers.

When three forces acting in the same plane on the same rigid body are
in equilibrium, their lines of action must pass through the same point O.
The load L is known in magnitude and direction. The line of action of
the support at B is known on account of the rollers. The point of appli-
cation of the support at A is known. The three forces are in equilibrium
and are in the same plane; therefore, the lines of action must meet at the
point O.

nitude and direction. Its position is given by the point of application O.
By means of repeated use of the triangle of forces and by omitting the
closing sides of the individual triangles, the magnitude and direction of
the resultant R of any number of forces in the same plane and intersect-
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In the case of the rolling surfaces shown in Fig. 3.1.8, the direction of
the support at A is known, the magnitude and point of application un-
known. The line of action and point of application of the supporting

Fig. 3.1.8 Fig. 3.1.9

force at B are known, its magnitude unknown. The lines of action of the
three forces must meet in a point , and the supporting force at A must be
perpendicular to the plane XX. In the case shown in Fig. 3.1.9, the
directions and points of application of the supporting forces are known,
and the magnitudes unknown. The lines of action of resultant of sup-
ports A and B, the support at C and load L must meet at a point . Resolve
the resultant of supports at A and B into components at A and B, their
direction being determined by the rollers.

If a member of a truss or frame in equilibrium is pinned at two points
and loaded at these two points only, the line of action of the forces
exerted on the member or by the member at these two points must be
along a line connecting the pins.

If the external forces acting upon a rigid body in equilibrium are all in
the same plane, the equations oX 5 0, oY 5 0, and oM 5 0 must be
satisfied. When trusses, frames, and other structures are under discus-
sion, these equations are usually used as oV 5 0, oH 5 0, oM 5 0,
where V and H represent vertical and horizontal components, respec-
tively.

The supports are said to be statically determinate when the laws of
equilibrium are sufficient for their determination. When the conditions
are not sufficient for the determination of the supports or other forces,
the structure is said to be statically indeterminate; the unknown forces
can then be determined from considerations involving the deformation
of the material.

When several bodies are so connected to one another as to make up a
rigid structure, the forces at the points of connection must be considered
as internal forces and are not taken into consideration in the determina-
tion of the supporting forces for the structure as a whole.

The distortion of any practically rigid structure under its working
loads is so small as to be negligible when determining supporting
forces. When the forces acting at the different joints in a built-up struc-
ture cannot be determined by dividing the structure up into parts, the
structure is said to be statically indeterminate internally. A structure may
be statically indeterminate internally and still be statically determinate
externally.

Fundamental Problems in Graphical Statics

A force may be represented by a straight line in a determined position,
and its magnitude by the length of the straight line. The direction in
which it acts may be indicated by an arrow.

Polygon of Forces The parallelogram of two forces intersecting
each other (see Figs. 3.1.4 and 3.1.5) leads directly to the graphic com-
position by means of the triangle of forces. In Fig. 3.1.10, R is called the
closing side, and represents the resultant of the forces F1 and F2 in mag-
Fig. 3.1.10

ing at a single point can be found. In Fig. 3.1.11 the lines representing
the forces start from point O, and in the force polygon (Fig. 3.1.12) they
are joined in any order, the arrows showing their directions following
around the polygon in the same direction. The magnitude of the result-
ant at the point of application of the forces is represented by the closing
side R of the force polygon; its direction, as shown by the arrow, is
counter to that in the other sides of the polygon.

If the forces are in equilibrium, R must equal zero, i.e., the force polygon
must close.

Fig. 3.1.11 Fig. 3.1.12

If in a closed polygon one of the forces is reversed in direction, this
force becomes the resultant of all the others.

If the forces do not all lie in the same plane, the diagram becomes a
polygon in space. The resultant R of this system may be obtained by
adding the forces in space. The resultant is the vector which closes the
space polygon. The space polygon may be projected onto three coordi-
nate planes, giving three related plane polygons. Any two of these pro-
jections will involve all static equilibrium conditions and will be suffi-
cient for a full description of the force system (see Fig. 3.1.13).

Fig. 3.1.13

Determination of Stresses in Members of a
Statically Determinate Plane Structure with
Loads at Rest

It will be assumed that the loads are applied at the joints of the structure,
i.e., at the points where the different members are connected, and that
the connections are pins with no friction. The stresses in the members
must then be along lines connecting the pins, unless any member is
loaded at more than two points by pin connections. If the members are
straight , the forces exerted on them or by them must coincide with the
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axes of the members, In other words, there shall be no bending stresses
in any of the members of the structure.

Equilibrium In order that the whole structure should be in equilib-
rium, it is necessary that the external forces (loads and supports) shall
form a balanced system. Graphical and analytical methods are both of
service.

Supporting Forces When the supporting forces are to be deter-
mined, it is not necessary to pay any attention to the makeup of the
structure under consideration so long as it is practically rigid; the loads

gravity or center of mass. Whenever the density of the body is uniform, it
will be a constant factor and like geometric shapes of different densities
will have the same center of gravity. The term centroid is used in this
case since the location of the center of gravity is of geometric concern
only. If densities are nonuniform, like geometric shapes will have the
same centroid but different centers of gravity.
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may be taken as they occur, or the resultant of the loads may be used
instead. When the stresses in the members of the structure are being
determined, the loads must be distributed at the joints where they be-
long.

Method of Joints When all the external forces have been deter-
mined, any joint at which there are not more than two unknown forces
may be taken and these unknown forces determined by the methods of
the stress polygon, resolution or moments. In Fig. 3.1.14, let O be the
joint of a structure and F be the only known force; but let O1 and O2 be
two members of the structure joined at O. Then the lines of action of the
unknown forces are known and their magnitude may be determined (1)
by a stress polygon which, for equilibrium, must close; (2) by resolution
into H and V components, using the condition of equilibrium oH 5 0,
oV 5 0; or (3) by moments, using any convenient point on the line of
action of O1 and O2 and the condition of equilibrium oM 5 0. No more
than two unknown forces can be determined. In this manner, proceeding
from joint to joint , the stresses in all the members of the truss can
usually be determined if the structure is statically determinate inter-
nally.

Fig. 3.1.14 Fig. 3.1.15

Method of Sections The structure may be divided into parts by
passing a section through it cutting some of its members; one part may
then be treated as a rigid body and the external forces acting upon it
determined. Some of these forces will be the stresses in the members
themselves. For example, let xx (Fig. 3.1.15) be a section taken through
a truss loaded at P1 , P2 , and P3 , and supported on rollers at S. As the
whole truss is in equilibrium, any part of it must be also, and conse-
quently the part shown to the left of xx must be in equilibrium under the
action of the forces acting externally to it . Three of these forces are the
stresses in the members aa, bb, and bc, and are the unknown forces to be
determined. They can be determined by applying the condition of equi-
librium of forces acting in the same plane but not at the same point .
oH 5 0, oV 5 0, oM 5 0. The three unknown forces can be determined
only if they are not parallel or do not pass through the same point; if,
however, the forces are parallel or meet in a point , two unknown forces
only can be determined. Sections may be passed through a structure
cutting members in any convenient manner, as a rule, however, cutting
not more than three members, unless members are unloaded.

For the determination of stresses in framed structures, see Sec. 12.2.

CENTER OF GRAVITY

Consider a three-dimensional body of any size, shape, and weight . If it
is suspended as in Fig. 3.1.16 by a cord from any point A, it will be in
equilibrium under the action of the tension in the cord and the resultant
of the gravity or body forces W. If the experiment is repeated by sus-
pending the body from point B, it will again be in equilibrium. If the
lines of action of the resultant of the body forces were marked in each
case, they would be concurrent at a point G known as the center of
Fig. 3.1.16

Centroids of Technically Important Lines,
Areas, and Solids

CENTROIDS OF LINES

Straight Lines The centroid is at its middle point .
Circular Arc AB (Fig. 3.1.17a) x0 5 r sin c/rad c; y0 5 2r sin2 1⁄2c/rad

c. (rad c 5 angle c measured in radians.)
Circular Arc AC (Fig. 3.1.17b) x0 5 r sin c/rad c; y0 5 0.

Fig. 3.1.17

Quadrant, AB (Fig. 3.1.18) x0 5 y0 5 2r/p 5 0.6366r.
Semicircumference, AC (Fig. 3.1.18) y0 5 2r/p 5 0.6366r; x0 5 0.
Combination of Arcs and Straight Line (Fig. 3.1.19) AD and BC are

two quadrants of radius r. y0 5 {(AB)r 1 2[0.5pr(r 2 0.6366r)]} 4
{AB 1 2(0.5pr)].

Fig. 3.1.18 Fig. 3.1.19

CENTROIDS OF PLANE AREAS

Triangle Centroid lies at the intersection of the lines joining the
vertices with the midpoints of the sides, and at a distance from any side
equal to one-third of the corresponding altitude.

Parallelogram Centroid lies at the point of intersection of the diag-
onals.

Trapezoid (Fig. 3.1.20) Centroid lies on the line joining the middle
points m and n of the parallel sides. The distances ha and hb are

ha 5 h(a 1 2b)/3(a 1 b) hb 5 h(2a 1 b)/3(a 1 b)

Draw BE 5 a and CF 5 b; EF will then intersect mn at centroid.
Any Quadrilateral The centroid of any quadrilateral may be deter-

mined by the general rule for areas, or graphically by dividing it into
two sets of triangles by means of the diagonals. Find the centroid of
each of the four triangles and connect the centroids of the triangles
belonging to the same set . The intersection of these lines will be cen-
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troid of area. Thus, in Fig. 3.1.21, O, O1, O2, and O3 are, respectively,
the centroids of the triangles ABD, ABC, BDC, and ACD. The intersec-
tion of O1O3 with OO2 gives the centroids.

CENTROIDS OF SOLIDS

Prism or Cylinder with Parallel Bases The centroid lies in the
center of the line connecting the centers of gravity of the bases.

Oblique Frustum of a Right Circular Cylinder (Fig. 3.1.27) Let 1 2 3
4 be the plane of symmetry. The distance from the base to the centroid is
1⁄2h 1 (r2 tan2 c)/8h, where c is the angle of inclination of the oblique
section to the base. The distance of the centroid from the axis of the
cylinder is r2 tan c/4h.

Pyramid or Cone The centroid lies in the line connecting the cen-
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Fig. 3.1.20 Fig. 3.1.21

Segment of a Circle (Fig. 3.1.22) x0 5 2⁄3r sin3 c/(rad c 2 cos c
sin c). A segment may be considered to be a sector from which a triangle
is subtracted, and the general rule applied.

Sector of a Circle (Fig. 3.1.23) x0 5 2⁄3r sin c/rad c; y0 5 4⁄3r sin2

1⁄2c/rad c.
Semicircle x0 5 4⁄3r/p 5 0.4244r; y0 5 0.
Quadrant (90° sector) x0 5 y0 5 4⁄3r/p 5 0.4244r.

Fig. 3.1.22 Fig. 3.1.23

Parabolic Half Segment (Fig. 3.1.24) Area ABO: x0 5 3⁄5x1; y0 5
3⁄8y1.

Parabolic Spandrel (Fig. 3.1.24) Area AOC: x90 5 3⁄10x1; y90 5 3⁄4y1.

Fig. 3.1.24

Quadrant of an Ellipse (Fig. 3.1.25) Area OAB: x0 5 4⁄3(a/p); y0 5
4⁄3(b/p).

The centroid of a figure such as that shown in Fig. 3.1.26 may be
determined as follows: Divide the area OABC into a number of parts by
lines drawn perpendicular to the axis XX, e.g., 11, 22, 33, etc. These
parts will be approximately either triangles, rectangles, or trapezoids.
The area of each division may be obtained by taking the product of its

Fig. 3.1.25 Fig. 3.1.26

mean height and its base. The centroid of each area may be obtained as
previously shown. The sum of the moments of all the areas about XX
and YY, respectively, divided by the sum of the areas will give approxi-
mately the distances from the center of gravity of the whole area to the
axes XX and YY. The greater the number of areas taken, the more nearly
exact the result .
troid of the base with the vertex and at a distance of one-fourth of the
altitude above the base.

Truncated Pyramid If h is the height of the truncated pyramid and A
and B the areas of its bases, the distance of its centroid from the surface
of A is

h(A 1 2 √AB 1 3B)/4(A 1 √AB 1 B)

Truncated Circular Cone If h is the height of the frustum and R and
r the radii of the bases, the distance from the surface of the base whose
radius is R to the centroid is h(R2 1 2Rr 1 3r2)/4(R2 1 Rr 1 r2).

Fig. 3.1.27 Fig. 3.1.28

Segment of a Sphere (Fig. 3.1.28) Volume ABC: x0 5 3(2r 2 h)2/
4(3r 2 h).

Hemisphere x0 5 3r/8.
Hollow Hemisphere x0 5 3(R4 2 r4)/8(R3 2 r3), where R and r are,

respectively, the outer and inner radii.
Sector of a Sphere (Fig. 3.1.28) Volume OABCO: x90 5 3⁄8(2r 2 h).
Ellipsoid, with Semiaxes a, b, and c For each octant , distance from

center of gravity to each of the bounding planes 5 3⁄8 3 length of
semiaxis perpendicular to the plane considered.

The formulas given for the determination of the centroid of lines and
areas can be used to determine the areas and volumes of surfaces and
solids of revolution, respectively, by employing the theorems of
Pappus, Sec. 2.1.

Determination of Center of Gravity of a Body by Experiment The
center of gravity may be determined by hanging the body up from
different points and plumbing down; the point of intersection of the
plumb lines will give the center of gravity. It may also be determined as
shown in Fig. 3.1.29. The body is placed on knife-edges which rest
on platform scales. The sum of the weights registered on the two scales
(w1 1 w2) must equal the weight (w) of the body. Taking a moment axis
at either end (say, O), w2A/w 5 x0 5 distance from O to plane contain-
ing the center of gravity.

Fig. 3.1.29

Graphical Determination of the Centroids of Plane Areas See Fig.
3.1.40.
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MOMENT OF INERTIA

The moment of inertia of a solid body with respect to a given axis is the
limit of the sum of the products of the masses of each of the elementary
particles into which the body may be conceived to be divided and the
square of their distance from the given axis.

If dm 5 dw/g represents the mass of an elementary particle and y its
distance from an axis, the moment of inertia I of the body about this axis
will be I 5 ey2 dm 5 ey2 dw/g.

The moment of inertia may be expressed in weight units (Iw 5 ey2

X9X9 and Y9Y9, respectively. Also, let c be the angle between the respec-
tive pairs of axes, as shown. Then,

I9y 5 Iy cos2 c 1 Ix sin2 c 1 Ixy sin 2c
I9x 5 Ix cos2 c 1 Iy sin2 c 2 Ixy sin 2c

I9xy 5
Ix 2 Iy

2
sin 2c 1 Ixy cos 2c

Principal Moments of Inertia In every plane area, a given point
being taken as the origin, there is at least one pair of rectangular axes in
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dw), in which case the moment of inertia in weight units, Iw, is equal to
the moment of inertia in mass units, I, multiplied by g.

If I 5 k2m, the quantity k is called the radius of gyration or the radius of
inertia.

If a body is considered to be composed of a number of parts, its
moment of inertia about an axis is equal to the sum of the moments of
inertia of the several parts about the same axis, or I 5 I1 1 I2 1
I3 1 ? ? ? 1 In.

The moment of inertia of an area with respect to a given axis is the limit
of the sum of the products of the elementary areas into which the area
may be conceived to be divided and the square of their distance (y) from
the axis in question. I 5 ey2 dA 5 k2A, where k 5 radius of gyration.

The quantity ey2 dA is more properly referred to as the second mo-
ment of area since it is not a measure of inertia in a true sense.

Formulas for moments of inertia and radii of gyration of various areas
follow later in this section.

Relation between the Moments of Inertia of an Area and a
Solid The moment of inertia of a solid of elementary thickness about
an axis is equal to the moment of inertia of the area of one face of the
solid about the same axis multiplied by the mass per unit volume of the
solid times the elementary thickness of the solid.

Moments of Inertia about Parallel Axes The moment of inertia of
an area or solid about any given axis is equal to the moment of inertia
about a parallel axis through the center of gravity plus the square of the
distance between the two axes times the area or mass.

In Fig. 3.1.30a, the moment of inertia of the area ABCD about axis YY
is equal to I0 (or the moment of inertia about Y0Y0 through the center of
gravity of the area and parallel to YY ) plus x2

0A, where A 5 area of
ABCD. In Fig. 3.1.30b, the moment of inertia of the mass m about
YY 5 I0 1 x2

0m. Y0Y0 passes through the centroid of the mass and is
parallel to YY.

Fig. 3.1.30

Polar Moment of Inertia The polar moment of inertia (Fig. 3.1.31)
is taken about an axis perpendicular to the plane of the area. Referring to
Fig. 3.1.31, if Iy and Ix are the moments of inertia of the area A about YY
and XX, respectively, then the polar moment of inertia Ip 5 Ix 1 Iy, or
the polar moment of inertia is equal to the sum of the moments of inertia
about any two axes at right angles to each other in the plane of the area
and intersecting at the pole.

Product of Inertia This quantity will be represented by Ixy, and is
eexy dy dx, where x and y are the coordinates of any elementary part
into which the area may be conceived to be divided. Ixy may be positive
or negative, depending upon the position of the area with respect to the
coordinate axes XX and XY.

Relation between Moments of Inertia about Axes Inclined to Each
Other Referring to Fig. 3.1.32, let Iy and Ix be the moments of inertia
of the area A about YY and XX, respectively, I9y and I9x the moments about
Y9Y9 and X9X9, and Ixy and I9x y the products of inertia for XX and YY, and
Fig. 3.1.31 Fig. 3.1.32

the plane of the area about one of which the moment of inertia is a
maximum, and a minimum about the other. These moments of inertia
are called the principal moments of inertia, and the axes about which they
are taken are the principal axes of inertia. One of the conditions for
principal moments of inertia is that the product of inertia Ixy shall equal
zero. Axes of symmetry of an area are always principal axes of inertia.

Relation between Products of Inertia and Parallel Axes In Fig.
3.1.33, X0X0 and Y0Y0 pass through the center of gravity of the area
parallel to the given axes XX and YY. If Ixy is the product of inertia for
XX and YY, and Ix0y0

that for X0X0 and Y0Y0, then Ixy 5 Ix0y0
1 abA.

Fig. 3.1.33

Mohr’s Circle The principal moments of inertia and the location of
the principal axes of inertia for any point of a plane area may be estab-
lished graphically as follows.

Given at any point A of a plane area (Fig. 3.1.34), the moments of
inertia Ix and Iy about axes X and Y, and the product of inertia Ixy relative
to X and Y. The graph shown in Fig. 3.1.34b is plotted on rectangular
coordinates with moments of inertia as abscissas and products of inertia

Fig. 3.1.34

as ordinates. Lay out Oa 5 Ix and ab 5 Ixy (upward for positive products
of inertia, downward for negative). Lay out Oc 5 Iy and cd 5 negative
of Ixy. Draw a circle with bd as diameter. This is Mohr’s circle. The
maximum moment of inertia is I9x 5 Of; the minimum moment of inertia is
I9y 5 Og. The principal axes of inertia are located as follows. From axis
AX (Fig. 3.1.34a) lay out angular distance u 5 1⁄2 , bef. This locates
axis AX9, one principal axis (I9x 5 Of ). The other principal axis of inertia
is AY9, perpendicular to AX9 (I9x 5 Og).

The moment of inertia of any area may be considered to be made up of
the sum or difference of the known moments of inertia of simple fig-
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ures. For example, the dimensioned figure shown in Fig. 3.1.35 repre-
sents the section of a rolled shape with hole oprs and may be divided
into the semicircle abc, rectangle edkg, and triangles mfg and hkl, from
which the rectangle oprs is to be subtracted. Referring to axis XX,

Ixx 5 p44/8 for semicircle abc 5 (2 3 113)/3 for rectangle edkg
5 2[(5 3 33)/36 1 102(5 3 3)/2] for the two triangles mfg

and hkl

From the sum of these there is to be subtracted Ixx 5 [(2 3 32)/

Solid right circular cone about an axis through its apex and perpendic-
ular to its axis: I 5 3M[(r2/4) 1 h2]/5. (h 5 altitude of cone, r 5 radius
of base.)

Solid right circular cone about its axis of revolution: I 5 3Mr2/10.
Ellipsoid with semiaxes a, b, and c: I about diameter 2c (z axis) 5

4mpabc (a2 1 b2)/15. [Equation of ellipsoid: (x2/a2) 1 (y2/b2) 1
(z2/c2) 5 1.]

Ring with Circular Section (Fig. 3.1.36) Iyy 5 1⁄2mp2Ra2(4R2 1
3a2); Ixx 5 mp2Ra2[R2 1 (5a2/4)].
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12 1 42(2 3 3)] for the rectangle oprs.
If the moment of inertia of the

whole area is required about an axis
parallel to XX, but passing through
the center of gravity of the whole
area, I0 5 Ixx 2 x0

2A, where x0 5 dis-
tance from XX to center of gravity.
The moments of inertia of built-up sec-
tions used in structural work may be
found in the same manner, the mo-
ments of inertia of the different rolled
sections being given in Sec. 12.2.

Fig. 3.1.35

Moments of Inertia of Solids For moments of inertia of solids about
parallel axes, Ix 5 I0 1 x0

2m.
Moment of Inertia with Reference to Any Axis Let a mass particle

dm of a body have x, y, and z as coordinates, XX, YY, and ZZ being the
coordinate axes and O the origin. Let X9X9 be any axis passing through
the origin and making angles of A, B, and C with XX, YY, and ZZ,
respectively. The moment of inertia with respect to this axis then be-
comes equal to

I9x 5 cos2 Ae(y2 1 z2) dm 1 cos2 Be(z2 1 x2) dm
1 cos2 Ce(x2 1 y2) dm 2 2 cos B cos Ceyz dm

2 2 cos C cos Aezx dm 2 2 cos A cos Bexy dm

Let the moment of inertia about XX 5 Ix 5 e(y2 1 z2) dm, about
YY 5 Iy 5 e(z2 1 x2) dm, and about ZZ 5 Iz 5 e(x2 1 y2) dm. Let the
products of inertia about the three coordinate axes be

Iyz 5 eyz dm Izx 5 ezx dm Ixy 5 exy dm

Then the moment of inertia I9x becomes equal to

Ix cos2 A 1 Iy cos2 B 1 Iz cos2 C 2 2Iyz cos B cos C 2 2Izx

cos C cos A 2 2Ixy cos A cos B

The moment of inertia of any solid may be considered to be made up
of the sum or difference of the moments of inertia of simple solids of
which the moments of inertia are known.

Moments of Inertia of Important Solids
(Homogeneous)

m 5 w/g 5 mass per unit of volume of the body
M 5 W/g 5 total mass of body
r 5 radius
I 5 moment of inertia (mass units)

Iw 5 I 3 g 5 moment of inertia (weight units)

Solid circular cylinder about its axis: I 5 pr4ma/2 5 Mr2/2.
(a 5 length of axis of cylinder.)

Solid circular cylinder about an axis through the center of gravity and
perpendicular to axis of cylinder: I 5 M[r2 1 (a2/3)]/4.

Hollow circular cylinder about its axis: I 5 pma(r1
4 2 r2

4)/2. (r1 and
r2 5 outer and inner radii; a 5 length.)

Thin hollow circular cylinder about its axis: I 5 Mr2.
Solid sphere about a diameter: I 5 8mpr5/15 5 2Mr2/5.
Thin hollow sphere about a diameter: I 5 2Mr2/3.
Thick hollow sphere about a diameter: I 5 8mp(r1

5 2 r2
5)/15. (r1 and r2

are outer and inner radii.)
Rectangular prism about an axis through center of gravity and perpen-

dicular to a face whose dimensions are a and b: I 5 M(a2 1 b2)/12.
Fig. 3.1.36 Fig. 3.1.37

Approximate Moments of Inertia of Solids In order to determine
the moment of inertia of a solid, it is necessary to know all its dimen-
sions. In the case of a rod of mass M (Fig. 3.1.37) and length l, with
shape and size of the cross section unknown, making the approximation
that the weight is all concentrated along the axis of the rod, the moment

of inertia about YY will be Iyy 5 El

0

(M/l)x2 dx 5 Ml2/3.

A thin plate may be treated in the same way (Fig. 3.1.38): Iyy 5

El

0

(M/l)x2 dx. Here the mass of the plate is assumed concentrated at its

middle layer.
Thin Ring, or Cylinder (Fig. 3.1.39) Assume the mass M of the ring or

cylinder to be concentrated at a distance r from O. The moment of
inertia about an axis through O perpendicular to plane of ring or along
the axis of the cylinder will be I 5 Mr2; this will be greater than the
exact moment of inertia, and r is sometimes taken as the distance from
O to the center of gravity of the cross section of the rim.

Fig. 3.1.38 Fig. 3.1.39

Flywheel Effect The moment of inertia of a solid is often called
flywheel effect in the solution of problems dealing with rotating bodies,
and is usually expressed in lb ? ft2 (Iw).

Graphical Determination of the Centroids and Moments of Inertia
of Plane Areas Required to find the center of gravity of the area MNP
(Fig. 3.1.40) and its moment of inertia about any axis XX.

Draw any line SS parallel to XX and at a distance d from it . Draw a
number of lines such as AB and EF across the figure parallel to XX.
From E and F draw ER and FT perpendicular to SS. Select as a pole any

Fig. 3.1.40
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point on XX, preferably the point nearest the area, and draw OR and OT,
cutting EF at E9 and F9. If the same construction is repeated, using other
lines parallel to XX, a number of points will be obtained, which, if
connected by a smooth curve, will give the area M9N9P9. Project E9 and
F9 onto SS by lines E9R9 and F9T9. Join F9 and T9 with O, obtaining E99
and F99; connect the points obtained using other lines parallel to XX and
obtain an area M99N99P99. The area M9N9P9 3 d 5 moment of area MNP
about the line XX, and the distance from XX to the centroid MNP 5 area
M9N9P9 3 d/area MNP. Also, area M99N99P99 3 d 2 5 moment of inertia

A velocity-time curve offers a convenient means for the study of accel-
eration. The slope of the curve at any point will represent the acceleration
at that time. In Fig. 3.1.43a the slope is constant; so the acceleration
must be constant . In the case represented by the full line, the accelera-
tion is positive; so the velocity is increasing. The dotted line shows a
negative acceleration and therefore a decreasing velocity. In Fig.
3.1.43b the slope of the curve varies from point to point; so the acceler-
ation must also vary. At p and q the slope is zero; therefore, the acceler-
ation of the point at the corresponding times must also be zero. The area
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of MNP about XX. The areas M9N9P9 and M99N99P99 can best be obtained
by use of a planimeter.

KINEMATICS

Kinematics is the study of the motion of bodies without reference to the
forces causing that motion or the mass of the bodies.

The displacement of a point is the directed distance that a point has
moved on a geometric path from a convenient origin. It is a vector,
having both magnitude and direction, and is subject to all the laws and
characteristics attributed to vectors. In Fig. 3.1.41, the displacement of
the point A from the origin O is the directed distance O to A, symbolized
by the vector s.

The velocity of a point is the time rate of change of displacement , or
v 5 ds/dt.

The acceleration of a point is the time rate of change of velocity, or
a 5 dv/dt.

Fig. 3.1.41

The kinematic definitions of velocity and acceleration involve the
four variables, displacement, velocity, acceleration, and time. If we
eliminate the variable of time, a third equation of motion is obtained,
ds/v 5 dt 5 dv/a. This differential equation, together with the defini-
tions of velocity and acceleration, make up the three kinematic equa-
tions of motion, v 5 ds/dt, a 5 dv/dt, and a ds 5 v dv. These differential
equations are usually limited to the scalar form when expressed to-
gether, since the last can only be properly expressed in terms of the
scalar dt. The first two, since they are definitions for velocity and accel-
eration, are vector equations.

A space-time curve offers a convenient means for the study of the
motion of a point . The slope of the curve at any point will represent the
velocity at that time. In Fig. 3.1.42a the slope is constant , as the graph is
a straight line; the velocity is therefore uniform. In Fig. 3.1.42b the
slope of the curve varies from point to point , and the velocity must also
vary. At p and q the slope is zero; therefore, the velocity of the point at
the corresponding times must also be zero.

Fig. 3.1.42
under the velocity-time curve between any two ordinates such as NL
and HT will represent the distance moved in time interval LT. In the case
of the uniformly accelerated motion shown by the full line in Fig.
3.1.43a, the area LNHT is 1⁄2(NL 1 HT) 3 (OT 2 OL) 5 mean velocity
multiplied by the time interval 5 space passed over during this time
interval. In Fig. 3.1.43b the mean velocity can be obtained from the
equation of the curve by means of the calculus, or graphically by ap-
proximation of the area.

Fig. 3.1.43

An acceleration-time curve (Fig. 3.1.44) may be constructed by plot-
ting accelerations as ordinates, and times as abscissas. The area under
this curve between any two ordinates will represent the total increase in
velocity during the time interval. The area ABCD represents the total
increase in velocity between time t1 and time t2.

General Expressions Showing the Relations
between Space, Time, Velocity, and
Acceleration for Rectilinear Motion

SPECIAL MOTIONS

Uniform Motion If the velocity is constant, the acceleration must be
zero, and the point has uniform motion. The space-time curve becomes a
straight line inclined toward the time axis (Fig. 3.1.42a). The velocity-
time curve becomes a straight line parallel to the time axis. For this
motion a 5 0, v 5 constant , and s 5 s0 1 vt.

Uniformly Accelerated or Retarded Motion If the velocity is not
uniform but the acceleration is constant, the point has uniformly acceler-
ated motion; the acceleration may be either positive or negative. The
space-time curve becomes a parabola and the velocity-time curve be-
comes a straight line inclined toward the time axis (Fig. 3.1.43a). The
acceleration-time curve becomes a straight line parallel to the time axis.
For this motion a 5 constant , v 5 v0 1 at, s 5 s0 1 v0t 1 1⁄2at 2.

If the point starts from rest, v0 5 0. Care should be taken concerning
the sign 1 or 2 for acceleration.

Composition and Resolution of Velocities
and Acceleration

Resultant Velocity A velocity is said to be the resultant of two other
velocities when it is represented by a vector that is the geometric sum of
the vectors representing the other two velocities. This is the parallelo-
gram of motion. In Fig. 3.1.45, v is the resultant of v1 and v2 and is

Fig. 3.1.44 Fig. 3.1.45
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represented by the diagonal of a parallelogram of which v1 and v2 are
the sides; or it is the third side of a triangle of which v1 and v2 are the
other two sides.

Polygon of Motion The parallelogram of motion may be extended
to the polygon of motion. Let v1, v2, v3, v4 (Fig. 3.1.46a) show the
directions of four velocities imparted in the same plane to point O. If the
lines v1, v2, v3, v4 (Fig. 3.1.46b) are drawn parallel to and proportional
to the velocities imparted to point O, v will represent the resultant
velocity imparted to O. It will make no difference in what order the

path is resolved by means of a parallelogram into components tangent
and normal to the path, the normal acceleration an 5 v2/r, where
r 5 radius of curvature of the path at the point in question, and the
tangential acceleration at 5 dv/dt, where v 5 velocity tangent to the
path at the same point . a 5 √a2

n 1 a2
t. The normal acceleration is con-

stantly directed toward the center of the path.
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velocities are taken in constructing the motion polygon. As long as the
arrows showing the direction of the motion follow each other in order
about the polygon, the resultant velocity of the point will be represented
in magnitude by the closing side of the polygon, but opposite in direc-
tion.

Fig. 3.1.46

Resolution of Velocities Velocities may be resolved into component
velocities in the same plane, as shown by Fig. 3.1.47. Let the velocity of
point O be vr. In Fig. 3.1.47a this velocity is resolved into two compo-
nents in the same plane as vr and at right angles to each other.

vr 5 √(v1)2 1 (v2)2

In Fig. 3.1.47b the components are in the same plane as vr, but are not at
right angles to each other. In this case,

vr 5 √(v1)2 1 (v2)2 1 2v1v2 cos B

If the components v1 and v2 and angle B are known, the direction of vr

can be determined. sin bOc 5 (v1/vr) sin B. sin cOa 5 (v2/vr) sin B.
Where v1 and v2 are at right angles to each other, sin B 5 1.

Fig. 3.1.47

Resultant Acceleration Accelerations may be combined and re-
solved in the same manner as velocities, but in this case the lines or
vectors represent accelerations instead of velocities. If the acceleration
had components of magnitude a1 and a2, the magnitude of the resultant
acceleration would be a 5 √(a1)2 1 (a2)2 1 2a1a2 cos B, where B is
the angle between the vectors a1 and a2.

Curvilinear Motion in a Plane

The linear velocity v 5 ds/dt of a point in curvilinear motion is the same
as for rectilinear motion. Its direction is tangent to the path of the point .
In Fig. 3.1.48a, let P1P2P3 be the path of a moving point and V1, V2, V3

represent its velocity at points P1, P2, P3, respectively. If O is taken as a
pole (Fig. 3.1.48b) and vectors V1, V2, V3 representing the velocities of
the point at P1, P2, and P3 are drawn, the curve connecting the terminal
points of these vectors is known as the hodograph of the motion. This
velocity diagram is applicable only to motions all in the same plane.

Acceleration Tangents to the curve (Fig. 3.1.48b) indicate the di-
rections of the instantaneous velocities. The direction of the tangents does
not , as a rule, coincide with the direction of the accelerations as repre-
sented by tangents to the path. If the acceleration a at some point in the
Fig. 3.1.48

EXAMPLE. Figure 3.1.49 shows a point moving in a curvilinear path. At p1

the velocity is v1 ; at p2 the velocity is v2. If these velocities are drawn from pole O
(Fig. 3.1.49b), Dv will be the difference between v2 and v1 . The acceleration
during travel p1p2 will be Dv /Dt, where Dt is the time interval. The approximation
becomes closer to instantaneous acceleration as shorter intervals Dt are employed.

Fig. 3.1.49

The acceleration Dv /Dt can be resolved into normal and tangential components
leading to an 5 Dvn /Dt, normal to the path, and ar 5 Dvp /Dt, tangential to the path.

Velocity and acceleration may be expressed in polar coordinates such
that v 5 √v2

r 1 v2
u and a 5 √a2

r 1 a2
u. Figure 3.1.50 may be used to

explain the r and u coordinates.

EXAMPLE. At P1 the velocity is v1, with components v1r in the r direction and
v1u in the u direction. At P2 the velocity is v2 , with components v2r in the r
direction and v2u in the u direction. It is evident that the difference in velocities v2 2
v1 5 Dv will have components Dvr and Dvu , giving rise to accelerations ar and au

in a time interval Dt.

In polar coordinates, vr 5 dr/dt, ar 5 d 2r/dt 2 2 r(du/dt)2, vu 5
r(du/dt), and au 5 r(d 2u/dt 2) 1 2(dr/dt)(du/dt).

If a point P moves on a circular path of radius r with an angular
velocity of v and an angular acceleration of a, the linear velocity of the
point P is v 5 vr and the two components of the linear acceleration are
an 5 v2/r 5 v2r 5 vv and at 5 ar.

If the angular velocity is constant , the point P travels equal circular
paths in equal intervals of time. The projected displacement , velocity,
and acceleration of the point P on the x and y axes are sinusoidal func-
tions of time, and the motion is said to be harmonic motion. Angular
velocity is usually expressed in radians per second, and when the num-
ber (N) of revolutions traversed per minute (r/min) by the point P is
known, the angular velocity of the radius r is v 5 2pN/60 5 0.10472N.
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Fig. 3.1.50 Fig. 3.1.51

In Fig. 3.1.51, let the angular velocity of the line OP be a constant v. Let
the point P start at X9 and move to P in time t. Then the angle u 5 vt. If
OP 5 r, X9A 5 r 2 OA 5 r 2 r cos vt 5 s. The velocity V of the point A
on the x axis will equal ds/dt 5 vr sin vt, and the acceleration a 5 dv/dt
5 2 v2r cos vt. The period t is the time necessary for the point P to
complete one cycle of motion t 5 2p/v, and it is also equal to the time
necessary for A to complete a full cycle on the x axis from X9 to X and
return.

Curvilinear Motion in Space

line and relating the motion of all other parts of the rigid body to these
motions. If a rigid body moves so that a straight line connecting any two
of its particles remains parallel to its original position at all times, it is
said to have translation. In rectilinear translation, all points move in
straight lines. In curvilinear translation, all points move on congruent
curves but without rotation. Rotation is defined as angular motion about
an axis, which may or may not be fixed. Rigid body motion in which the
paths of all particles lie on parallel planes is called plane motion.
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If three dimensions are used, velocities and accelerations may be
resolved into components not in the same plane by what is known
as the parallelepiped of motion. Three coordinate systems are widely
used, cartesian, cylindrical, and spherical. In cartesian coordinates, v 5

√v2
x 1 v2

y 1 v2
z and a 5 √a2

x 1 a2
y 1 a2

z. In cylindrical coordinates, the
radius vector R of displacement lies in the rz plane, which is at an angle
with the xz plane. Referring to (a) of Fig. 3.1.52, the u coordinate is
perpendicular to the rz plane. In this system v 5 √v2

r 1 v2
u 1 v2

z and
a 5 √a2

r 1 a2
u 1 a2

z where vr 5 dr/dt, ar 5 d 2r/dt 2 2 r(du/dt)2, vu 5
r(du/dt), and au 5 r(d 2u/dt 2) 1 2(dr/dt)(du/dt). In spherical coordinates,
the three coordinates are the R coordinate, the u coordinate, and the f
coordinate as in (b) of Fig. 3.1.52. The velocity and acceleration are
v 5 √v2

R 1 v2
u 1 v2

f and a 5 √a2
R 1 a2

u 1 a2
f , where vR 5 dR/dt,

vf 5 R(df/dt), vu 5 R cos f(du/dt), aR 5 d 2R/dt 2 2 R(df/dt)2 2
R cos2 f(du/dt)2, af 5 R(d 2f/dt 2) 1 R cos f sin f (du/dt)2 1
2(dR/dt)(df/dt), and au 5 R cos f (d 2u/dt 2) 1 2[(dR/dt) cos f 2
R sin f (df/dt)] du/dt.

Fig. 3.1.52

Motion of Rigid Bodies

A body is said to be rigid when the distances between all its particles are
invariable. Theoretically, rigid bodies do not exist , but materials used in
engineering are rigid under most practical working conditions. The mo-
tion of a rigid body can be completely described by knowing the angular
motion of a line on the rigid body and the linear motion of a point on this
Angular Motion

Angular displacement is the change in angular position of a given line as
measured from a convenient reference line. In Fig. 3.1.53, consider the
motion of the line AB as it moves from its original position A9B9. The
angle between lines AB and A9B9 is the angular displacement of line AB,
symbolized as u. It is a directed quantity and is a vector. The usual
notation used to designate angular displacement is a vector normal to

Fig. 3.1.53

the plane in which the angular displacement occurs. The length of the
vector is proportional to the magnitude of the angular displacement . For
a rigid body moving in three dimensions, the line AB may have angular
motion about any three orthogonal axes. For example, the angular
displacement can be described in cartesian coordinates as u 5

ux 1 uy 1 uz , where u 5 √u2
x 1 u2

y 1 u2
z .

Angular velocity is defined as the time rate of change of angular
displacement , v 5 du/dt. Angular velocity may also have components
about any three orthogonal axes.

Angular acceleration is defined as the time rate of change of angular
velocity, a 5 dv/dt 5 d 2udt 2. Angular acceleration may also have
components about any three orthogonal axes.

The kinematic equations of angular motion of a line are analogous to
those for the motion of a point . In referring to Table 3.1.1, v 5 du/dt
a 5 dv/dt, and a du 5 v dv. Substitute u for s, v for v, and a for a.

Motion of a Rigid Body in a Plane

Plane motion is the motion of a rigid body such that the paths of all
particles of that rigid body lie on parallel planes.
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Table 3.1.1

Variables s 5 f (t) v 5 f (t) a 5 f (t) a 5 f (s,v)

Displacement s 5 s0 1 Et

t0

v dt s 5 s0 1 Et

t0

Et

t0

a dt dt s 5 s0 1 Ev

v0

(v/a) dv

v 5 v0 1 Et

t0

a dt Ev

v0

v dv 5 Es0

s

a ds
Velocity v 5 ds/dt
Acceleration a 5 d 2s/dt 2 a 5 dv/dt a 5 v dv/ds

Instantaneous Axis When the axis about which any body may be
considered to rotate changes its position, any one position is known as
an instantaneous axis, and the line through all positions of the instanta-
neous axis as the centrode.

When the velocity of two points in the same plane of a rigid body
having plane motion is known, the instantaneous axis for the body will
be at the intersection of the lines drawn from each point and perpendic-
ular to its velocity. See Fig. 3.1.54, in which A and B are two points on
the rod AB, v1 and v2 representing their velocities. O is the instantaneous
axis for AB; therefore point C will have velocity shown in a line perpen-
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dicular to OC.
Linear velocities of points in a body rotating about an instantaneous

axis are proportional to their distances from this axis. In Fig. 3.1.54,
v1 : v2 : v3 5 AO : OB : OC. If the velocities of A and B were parallel, the
lines OA and OB would also be parallel and there would be no instanta-
neous axis. The motion of the rod would be translation, and all points
would be moving with the same velocity in parallel straight lines.

If a body has plane motion, the components of the velocities of any two
points in the body along the straight line joining them must be equal. Ax
must be equal to By and Cz in Fig. 3.1.54.

EXAMPLE. In Fig. 3.1.55a, the velocities of points A and B are known—they
are v1 and v2 , respectively. To find the instantaneous axis of the body, perpendic-
ulars AO and BO are drawn. O, at the intersection of the perpendiculars, is the
instantaneous axis of the body. To find the velocity of any other point , like C,
line OC is drawn and v3 erected perpendicular to OC with magnitude equal to v1

(CO/AO). The angular velocity of the body will be v 5 v1/AO or v2/BO or v3/CO.
The instantaneous axis of a wheel rolling on a rack without slipping (Fig. 3.1.55b)
lies at the point of contact O, which has zero linear velocity. All points of the
wheel will have velocities perpendicular to radii to O and proportional in magni-
tudes to their respective distances from O.

Another way to describe the plane motion of a rigid body is with the
use of relative motion. In Fig. 3.1.56 the velocity of point A is v1 . The
angular velocity of the line AB is v1/rAB . The velocity of B relative to A
is vAB 3 rAB . Point B is considered to be moving on a circular path
around A as a center. The direction of relative velocity of B to A would
be tangent to the circular path in the direction that vAB would make B
move. The velocity of B is the vector sum of the velocity A added to the
velocity of B relative to A, vB 5 vA 1 vB/A .

The acceleration of B is the vector sum of the acceleration of A added
to the acceleration of B relative to A, aB 5 aA 1 aB/A . Care must be taken
0to include the complete relative acceleration of B to A. If B is consid-
ered to move on a circular path about A, with a velocity relative to A, it
will have an acceleration relative to A that has both normal and tangen-
tial components: aB/A 5 (aB/A)n 1 (aB/A)t .

Fig. 3.1.54 Fig. 3.1.55
Fig. 3.1.56

If B is a point on a path which lies on the same rigid body as the line
AB, a particle P traveling on the path will have a velocity vP at the instant
P passes over point B such that vP 5 vA 1 vB/A 1 vP/B , where the
velocity vP/B is the velocity of P relative to path B.

The particle P will have an acceleration aP at the instant P passes over
the point B such that aP 5 aA 1 aB/A 1 aP/B 1 2vAB 3 vP/ B . The term
aP/ B is the acceleration of P relative to the path at point B. The last term
2vAB vP/ B is frequently referred to as the coriolis acceleration. The direc-
tion is always normal to the path in a sense which would rotate the head
of the vector vP/B about its tail in the direction of the angular velocity of
the rigid body vAB .

EXAMPLE. In Fig. 3.1.57, arm AB is rotating counterclockwise about A with a
constant angular velocity of 38 r/min or 4 rad/s, and the slider moves outward
with a velocity of 10 ft /s (3.05 m/s). At an instant when the slider P is 30 in
(0.76 m) from the center A, the acceleration of the slider will have two compo-
nents. One component is the normal acceleration directed toward the center A. Its
magnitude is v2r 5 42 (30/12) 5 40 ft /s2 [v2r 5 42 (0.76) 5 12.2 m/s2]. The
second is the coriolis acceleration directed normal to the arm AB, upward and to
the left. Its magnitude is 2vv 5 2(4)(10) 5 80 ft/s2 [2vv 5 2(4)(3.05) 5 24.4 m/s2].

Fig. 3.1.57

General Motion of a Rigid Body

The general motion of a point moving in a coordinate system which is
itself in motion is complicated and can best be summarized by using
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vector notation. Referring to Fig. 3.1.58, let the point P be displaced a
vector distance R from the origin O of a moving reference frame x, y, z
which has a velocity vo and an acceleration ao . If point P has a velocity
and an acceleration relative to the moving reference plane, let these be
vr and ar . The angular velocity of the moving reference fame is v, and

plane is (3/5)(90) 2 (4/5)(36) 2 9.36 5 15.84 lbf (70.46 N) downward.
F 5 (W/9) a 5 (90/g) a; therefore, a 5 0.176 g 5 56.6 ft /s2 (1.725 m/s2). In SI
units, F 5 ma 5 70.46 5 40.8a; and a 5 1.725 m/s2. The body is acted upon by

constant forces and starts from rest; therefore, v 5 E5

0

a dt, and at the end of 5 s,

the velocity would be 28.35 ft /s (8.91 m/s).

EXAMPLE 2. The force with which a rope acts on a body is equal and opposite
to the force with which the body acts on the rope, and each is equal to the tension
in the rope. In Fig. 3.1.60a, neglecting the weight of the pulley and the rope, the
tension in the cord must be the force of 27 lbf. For the 18-lb mass, the unbalanced
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Fig. 3.1.58

the origin of the moving reference frame is displaced a vector distance
R1 from the origin of a primary (fixed) reference frame X, Y, Z. The
velocity and acceleration of P are vP 5 vo 1 v 3 R 1 vr and aP 5 ao 1
(dv/dt) 3 R 1 v 3 (v 3 R) 1 2v 3 vr 1 a r .

DYNAMICS OF PARTICLES

Consider a particle of mass m subjected to the action of forces F1, F2,
F3 , . . . , whose vector resultant is R 5 oF. According to Newton’s
first law of motion, if R 5 0, the body is acted on by a balanced force
system, and it will either remain at rest or move uniformly in a straight
line. If R Þ 0, Newton’s second law of motion states that the body will
accelerate in the direction of and proportional to the magnitude of the
resultant R. This may be expressed as oF 5 ma. If the resultant of the
force system has components in the x, y, and z directions, the resultant
acceleration will have proportional components in the x, y, and z direc-
tion so that Fx 5 max , Fy 5 may , and Fz 5 maz . If the resultant of the
force system varies with time, the acceleration will also vary with time.

In rectilinear motion, the acceleration and the direction of the unbal-
anced force must be in the direction of motion. Forces must be in balance
and the acceleration equal to zero in any direction other than the direction of
motion.

EXAMPLE 1. The body in Fig. 3.1.59 has a mass of 90 lbm (40.8 kg) and is
subjected to an external horizontal force of 36 lbf (160 N) applied in the direction
shown. The coefficient of friction between the body and the inclined plane is 0.1.
Required, the velocity of the body at the end of 5 s, if it starts from rest .

Fig. 3.1.59

First determine all the forces acting externally on the body. These are the ap-
plied force F 5 36 lbf (106 N), the weight W 5 90 lbf (400 N), and the force with
which the plane reacts on the body. The latter force can be resolved into compo-
nent forces, one normal and one parallel to the surface of the plane. Motion will be
downward along the plane since a static analysis will show that the body will slide
downward unless the static coefficient of friction is greater than 0.269. In the
direction normal to the surface of the plane, the forces must be balanced. The
normal force is (3/5)(36) 1 (4/5)(90) 5 93.6 lbf (416 N). The frictional force is
93.6 3 0.1 5 9.36 lbf (41.6 N). The unbalanced force acting on the body along the
force is 27 2 18 5 9 lbf in the upward direction, i.e., 27 2 18 5 (18/g)a, and
a 5 16.1 ft /s2 upward. In Fig. 3.1.60b the 27-lb force is replaced by a 27-lb mass.
The unbalanced force is still 27 2 18 5 9 lbf, but it now acts on two masses so that
27 2 18 5 (45/g) and a 5 6.44 ft /s2. The 18-lb mass is accelerated upward, and
the 27-lb mass is accelerated downward. The tension in the rope is equal to 18 lbf
plus the unbalanced force necessary to give it an upward acceleration of g/5 or T
5 18 1 (18/g)(g/5) 5 21.6 lbf. The tension is also equal to 27 lbf less the unbal-
anced force necessary to give it a downward acceleration of g/5 or T 5
27 2 (27/g) 3 (g/5) 5 21.6 lbf.

Fig. 3.1.60

In SI units, in Fig. 3.1.60a, the unbalanced force is 120 2 80 5 40 N, in the
upward direction, i.e., 120 2 80 5 8.16a, and a 5 4.9 m/s2 (16.1 ft /s2). In Fig.
3.1.60b the unbalanced force is still 40 N, but it now acts on the two masses so that
120 2 80 5 20.4a and a 5 1.96 m/s2 (6.44 ft /s2). The tension in the rope is the
weight of the 8.16-kg mass in newtons plus the unbalanced force necessary to give
it an upward acceleration of 1.96 m/s2, T 5 9.807(8.16) 1 (8.16)(1.96) 5 96 N
(21.6 lbf ).

General Formulas for the Motion of a Body
under the Action of a Constant Unbalanced
Force

Let s 5 space, ft; a 5 acceleration, ft /s2; v 5 velocity, ft /s; v0 5 initial
velocity, ft /s; h 5 height , ft; F 5 force; m 5 mass; w 5 weight;
g 5 acceleration due to gravity.

Initial velocity 5 0
F 5 ma 5 (w/g)a
v 5 at
s 5 1⁄2at 2 5 1⁄2vt

v 5 √2as

5 √2gh (falling freely from rest)

Initial velocity 5 v
F 5 ma 5 (w/g)a
v 5 v0 1 at
s 5 v0t 1 1⁄2at 2 5 1⁄2v0t 1 1⁄2vt

If a body is to be moved in a straight line by a force, the line of action
of this force must pass through its center of gravity.

General Rule for the Solution of Problems
When the Forces Are Constant in Magnitude
and Direction

Resolve all the forces acting on the body into two components, one in
the direction of the body’s motion and one at right angles to it . Add the
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components in the direction of the body’s motion algebraically and find
the unbalanced force, if any exists.

In curvilinear motion, a particle moves along a curved path, and the
resultant of the unbalanced force system may have components in di-
rections other than the direction of motion. The acceleration in any given
direction is proportional to the component of the resultant in that direction.
It is common to utilize orthogonal coordinate systems such as cartesian
coordinates, polar coordinates, and normal and tangential coordinates in
analyzing forces and accelerations.

the body to constantly deviate it toward the axis. This deviating force is
known as centripetal force. The equal and opposite resistance offered
by the body to the connection is called the centrifugal force. The accel-
eration toward the axis necessary to keep a particle moving in a circle
about that axis is v2/r; therefore, the force necessary is ma 5 mv2/r 5
wv2/gr 5 wp2N2r/900g, where N 5 r/min. This force is constantly
directed toward the axis.

The centrifugal force of a solid body revolving about an axis is the same as
if the whole mass of the body were concentrated at its center of gravity.

2 2 2
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EXAMPLE. A conical pendulum consists of a weight suspended from a cord
or light rod and made to rotate in a horizontal circle about a vertical axis with a
constant angular velocity of N r/min. For any given constant speed of rotation, the
angle u, the radius r, and the height h will have fixed values. Looking at Fig.
3.1.61, we see that the forces in the vertical direction must be balanced, T cos
u 5 w. The forces in the direction normal to the circular path of rotation are
unbalanced such that T sin u 5 (w/g)an 5 (w/g)v2r. Substituting r 5 l sin u in this
last equation gives the value of the tension in the cord T 5 (w/g)lv2. Dividing the
second equation by the first and substituting tan u 5 r/h yields the additional
relation that h 5 g/v2.

Fig. 3.1.61

An unresisted projectile has a motion compounded of the vertical
motion of a falling body, and of the horizontal motion due to the hori-
zontal component of the velocity of projection. In Fig. 3.1.62 the only
force acting after the projectile starts is gravity, which causes an accel-
erating downward. The horizontal component of the original velocity v0

is not changed by gravity. The projectile will rise until the velocity

Fig. 3.1.62

given to it by gravity is equal to the vertical component of the starting
velocity v0 , and the equation v0 sin u 5 gt gives the time t required to
reach the highest point in the curve. The same time will be taken in
falling if the surface XX is level, and the projectile will therefore be in
flight 2t s. The distance s 5 v0 cos u 3 2t, and the maximum height of
ascent h 5 (v0 sin u)2/2g. The expressions for the coordinates of
any point on the path of the projectile are: x 5 (v0 cos u)t, and y 5
(v0 sin u)t 2 1⁄2gt 2, giving y 5 x tan u 2 (gx2/2v0

2 cos2 u) as the equation
for the curve of the path. The radius of curvature of the highest point
may be found by using the general expression v2 5 gr and solving for r,
v being taken equal to v0 cos u.

Simple Pendulum The period of oscillation 5 t 5 2p √l /g, where l
is the length of the pendulum and the length of the swing is not great
compared to l.

Centrifugal and Centripetal Forces When a body revolves about an
axis, some connection must exist capable of applying force enough to
Centrifugal force 5 wv /gr 5 mv /r 5 wv r/g, where w and m are the
weight and mass of the whole body, r is the distance from the axis about
which the body is rotating to the center of gravity of the body, v the
angular velocity of the body about the axis in radians, and v the linear
velocity of the center of gravity of the body.

Balancing

A rotating body is said to be in standing balance when its center of
gravity coincides with the axis upon which it revolves. Standing balance
may be obtained by resting the axis carrying the body upon two hori-
zontal plane surfaces, as in Fig. 3.1.63. If the center of gravity of the
wheel A coincides with the center of the shaft B, there will be no move-
ment , but if the center of gravity does not coincide with the center of the
shaft , the shaft will roll until the center of gravity of the wheel comes

Fig. 3.1.63

directly under the center of the shaft . The center of gravity may be
brought to the center of the shaft by adding or taking away weight at
proper points on the diameter passing through the center of gravity and
the center of the shaft . Weights may be added to or subtracted from any
part of the wheel so long as its center of gravity is brought to the center
of the shaft .

A rotating body may be in standing balance and not in dynamic bal-
ance. In Fig. 3.1.64, AA and BB are two disks whose centers of gravity
are at o and p, respectively. The shaft and the disks are in standing
balance if the disks are of the same weight and the distances of o and p
from the center of the shaft are equal, and o and p lie in the same axial
plane but on opposite sides of the shaft . Let the weight of each disk be w
and the distances of o and p from the center of the shaft each be equal to

Fig. 3.1.64

r. The force exerted on the shaft by AA is equal to wv2r/g, where v
is the angular velocity of the shaft . Also, the force exerted on the shaft by
BB 5 wv2r/g. These two equal and opposite parallel forces act at a
distance x apart and constitute a couple with a moment tending to rotate
the shaft , as shown by the arrows, of (wv2r/g)x. A couple cannot be
balanced by a single force; so two forces at least must be added to or
subtracted from the system to get dynamic balance.

Systems of Particles The principles of motion for a single particle
can be extended to cover a system of particles. In this case, the vector
resultant of all external forces acting on the system of particles must equal the
total mass of the system times the acceleration of the mass center, and the
direction of the resultant must be the direction of the acceleration of the mass
center. This is the principle of motion of the mass center.
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Rotation of Solid Bodies in a Plane about
Fixed Axes

For a rigid body revolving in a plane about a fixed axis, the resultant
moment about that axis must be equal to the product of the moment of inertia
(about that axis) and the angular acceleration, oM0 5 I0a. This is a general
statement which includes the particular case of rotation about an axis
that passes through the center of gravity.

Rotation about an Axis Passing through the Center of Gravity The
rotation of a body about its center of gravity can only be caused or

body may be struck without causing any force on the axis passing
through the point of suspension.

Center of Percussion The distance from the axis of suspension to
the center of percussion is q0 5 I/mx0 , where I 5 moment of inertia
of the body about its axis of suspension to the center of gravity of the
body.

EXAMPLES. 1. Find the center of percussion of the homogeneous rod (Fig.
3.1.67) of length L and mass m, suspended at XX.

I
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changed by a couple. See Fig. 3.1.65. If a single force F is applied to the
wheel, the axis immediately acts on the wheel with an equal force to
prevent translation, and the result is a couple (moment Fr) acting on the
body and causing rotation about its center of gravity.

Fig. 3.1.65

General formulas for rotation of a body about a fixed axis through the
center of gravity, if a constant unbalanced moment is applied (Fig.
3.1.65).

Let u 5 angular displacement , rad; v 5 angular velocity, rad/s;
a 5 angular acceleration, rad/s2; M 5 unbalanced moment , ft ? lb;
I 5 moment of inertia (mass); g 5 acceleration due to gravity; t 5 time
of application of M.

Initial angular velocity 5 0 Initial angular velocity 5 v0

M 5 Ia M 5 Ia
u 5 1⁄2at 2 u 5 v0t 1 1⁄2at 2

v 5 √2au v 5 √v2
0 1 2au

General Rule for Rotating Bodies Determine all the external forces
acting and their moments about the axis of rotation. If these moments
are balanced, there will be no change of motion. If the moments are
unbalanced, this unbalanced moment , or torque, will cause an angular
acceleration about the axis.

Rotation about an Axis Not Passing through the Center of Gravity
The resultant force acting on the body must be proportional to the accelera-
tion of the center of gravity and directed along its line of action. If the axis of
rotation does not pass through the center of gravity, the center of gravity
will have a resultant acceleration with a component an 5 v2r directed
toward the axis of rotation and a component at 5 ar tangential to its
circular path. The resultant force acting on the body must also have two
components, one directed normal and one directed tangential to the path
of the center of gravity. The line of action of this resultant does not pass
through the center of gravity because of the unbalanced moment M0 5
I0a but at a point Q, as in Fig. 3.1.66. The point of application of this
resultant is known as the center of percussion and may be defined as the
point of application of the resultant of all the forces tending to cause a
body to rotate about a certain axis. It is the point at which a suspended

xo

Fig. 3.1.66
q0 5
mx0

I (approx) 5
m

L EL

0

x2 dx x0 5
L

2
.
.
. q0 5

2

L2 EL

0

x2 dx 5 2L/3

2. Find the center of percussion of a solid cylinder, of mass m, resting on a
horizontal plane. In Fig. 3.1.68, the instantaneous center of the cylinder is at A.
The center of percussion will therefore be a height above the plane equal to
q0 5 I/mx0 . Since I 5 (mr2/2) 1 mr2 and x0 5 r, q0 5 3r/2.

Fig. 3.1.67 Fig. 3.1.68

Wheel or Cylinder Rolling down a Plane In this case the component
of the weight along the plane tends to make it roll down and is treated as
a force causing rotation. The forces acting on the body should be re-
solved into components along the line of motion and perpendicular to it .
If the forces are all known, their resultant is at the center of percussion.
If one force is to be determined (the exact conditions as regards slipping
or not slipping must be known), the center of percussion can be deter-
mined and the unknown force found.

Relation between the Center of Percussion and Radius of Gyra-
tion q0 5 I/mx0 5 k2/x0 . . . k2 5 x0q0 where k 5 radius of gyration.
Therefore, the radius of gyration is a mean proportional between the
distance from the axis of oscillation to the center of percussion and the
distance from the same axis to the center of gravity.

Interchangeability of Center of Percussion and Axis of Oscilla-
tion If a body is suspended from an axis, the center of percussion for
that axis can be found. If the body is suspended from this center of
percussion as an axis, the original axis of suspension will then become
the center of percussion. The center of percussion is sometimes known
as the center of oscillation.

Period of Oscillation of a Compound Pendulum The length of an
equivalent simple pendulum is the distance from the axis of suspension
to the center of percussion of the body in question. To find the period of
oscillation of a body about a given axis, find the distance q0 5 I/mx0

from that axis to the center of percussion of the swinging body. The
length of the simple pendulum that will oscillate in the same time is this
distance q0 . The period of oscillation for the equivalent single pen-
dulum is t 5 2p √q0/g.

Determination of Moment of Inertia by Experiment To find the
moment of inertia of a body, suspend it from some axis not passing
through the center of gravity and, by swinging it , determine the period
of one complete oscillation in seconds. The known values will then be
t 5 time of one complete oscillation, x0 5 distance from axis to center
of gravity, and m 5 mass of body. The length of the equivalent simple
pendulum is q0 5 I/mx0 . Substituting this value of q0 in t 5 2p √q0/g
gives t 5 2p √I/mx0g, from which t2 5 4p2I/mx0g, or I 5 mx0gt2/
4p2.
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Fig. 3.1.69

Plane Motion of a Rigid Body

Plane motion may be considered to be a combination of translation and
rotation (see ‘‘Kinematics’’). For translation, Newton’s second law of
motion must always be satisfied, and the resultant of the external force
system must be equal to the product of the mass times the acceleration
of the center of gravity in any system of coordinates. In rotation, the
body moving in plane motion will not have a fixed axis. When the
methods of relative motion are being used, any point on the body may
be used as a reference axis to which the motion of all other points is

vector in the direction of the displacement or the product of the compo-
nent of the incremental displacement and the force in the direction of the
force. dU 5 F ? ds cos a, where a is the angle between the vector
displacement and the vector force. The increment of work done by a
couple M acting in a body during an increment of angular rotation du in
the plane of the couple is dU 5 M du. In a force-displacement or mo-
ment-angle diagram, called a work diagram (Fig. 3.1.70), force is plotted
as a function of displacement . The area under the curve represents the

work done, which is equal to Es2

F ds cos a or Eu2

M du.
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referred.
The sum of the moments of all external forces about the reference axis

must be equal to the vector sum of the centroidal moment of inertia times the
angular acceleration and the amount of the resultant force about the refer-
ence axis.

EXAMPLE. Determine the forces acting on the piston pin A and the crankpin
B of the connecting rod of a reciprocating engine shown in Fig. 3.1.69 for a
position of 30° from TDC. The crankshaft speed is constant at 2,000 r/min. As-
sume that the pressure of expanding gases on the 4-lbm (1.81-kg) piston at this
point is 145 lb/in2 (106 N/m2). The connecting rod has a mass of 5 lbm (2.27 kg)
and has a centroidal radius of gyration of 3 in (0.076 m).

The kinematics of the problem are such that the angular velocity of the crank
is vOB 5 209.4 rad/s clockwise, the angular velocity of the connecting rod is
vAB 5 45.7 rad/s counterclockwise, and the angular acceleration is aAB 5
5,263 rad/s2 clockwise. The linear acceleration of the piston is 7,274 ft /s2 in the
direction of the crank. From the free-body diagram of the piston, the horizontal
component of the piston-pin force is 145 3 (p/4)(52) 2 P 5 (4/32.2)(7,274),
P 5 1,943 lbf. The acceleration of the center of gravity G is the vector sum of the
component accelerations aG 5 aB 1 an

G/B 1 a1
G/B where an

G/B 5 v2
GB ? rGB 5

3/12(45.7)2 5 522 ft /s2 and a1
G /B 5 aGB ? rGB 5 3/12(5.263) 5 1,316 ft /s2. The

resultant acceleration of the center of gravity is 6,685 ft /s2 in the x direction and
2,284 ft /s2 in the negative y direction. The resultant of the external force system
will have corresponding components such that maGx 5 (5/32.2)(6,685) 5 1,039
lbf and maGy 5 (5/32.2)(2,284) 5 355 lbf. The three remaining unknown forces
can be found from the three equations of motion for the connecting rod.

Taking the sum of the forces in the x direction, eF 5 maGx ; P 2 Rx 5 maGx , and
Rx 5 905.4 lbf. In the y direction, oF 5 maGy ; Ry 2 N 5 magy ; this has
two unknowns, Ry and N. Taking the sum of the moments of the external
forces about the center of mass g, oMG 5 IGaAB; (N )(5) cos (7.18°) 2 (P)(5) sin
(7.18°) 1 (Ry)(3) cos (7.18°) 2 Rx (3) sin (7.18°) 2 (5/386.4)(3)2(5,263). Solving
for Ry and N simultaneously, Ry 5 494.7 lbf and N 5 140 lbf. We could have
avoided the solution of two simultaneous algebraic equations by taking the mo-
ment summation about end A, which would determine Ry independently, or about
end B, which would determine N independently.

In SI units, the kinematics would be identical, the linear acceleration of the
piston being 2,217 m/s2 (7,274 ft /s2). From the free-body diagram of the piston,
the horizontal component of the piston-pin force is (106) 3 (p/4)(0.127)2 2
P 5 (1.81)(2,217), and P 5 8,640 N. The components of the acceleration of the
center of gravity G are aN

G/B 5 522 ft /s2 and aT
G/B 5 1,315 ft /s2. The resultant

acceleration of the center of gravity is 2,037.5 m/s2 (6,685 ft /s2) in the x direc-
tion and 696.3 m/s2 (2,284 ft /s2) in the negative y direction. The resultant of the
external force system will have the corresponding components; maGx 5 (2.27)
(2,037.5) 5 4,620 N; maGy 5 (2.27)(696.3) 5 1,579 N. Rx 5 4,027 N, Ry 5
2,201 N, force N 5 623 newtons.

WORK AND ENERGY

Work When a body is displaced against resistance or accelerated,
work must be done upon it . An increment of work is defined as the
product of an incremental displacement and the component of the force
s1 u1

Fig. 3.1.70

Units of Work When the force of 1 lb acts through the distance of
1 ft , 1 lb ? ft of work is done. In SI units, a force of 1 newton acting
through 1 metre is 1 joule of work. 1.356 N ? m 5 1 lb ? ft .

Energy A body is said to possess energy when it can do work. A
body may possess this capacity through its position or condition. When a
body is so held that it can do work, if released, it is said to possess
energy of position or potential energy. When a body is moving with some
velocity, it is said to possess energy of motion or kinetic energy. An
example of potential energy is a body held suspended by a rope; the
position of the body is such that if the rope is removed work can be done
by the body.

Energy is expressed in the same units as work. The kinetic energy of
a particle is expressed by the formula E 5 1⁄2mv2 5 1⁄2(w/g)v2. The
kinetic energy of a rigid body in translation is also expressed as
E 5 1⁄2mv2. Since all particles of the rigid body have the same identical
velocity v, the velocity v is the velocity of the center of gravity. The
kinetic energy of a rigid body, rotating about a fixed axis is E 5 1⁄2 I0v2,
where I0 is the mass moment of inertia about the axis of rotation. In
plane motion, a rigid body has both translation and rotation. The kinetic
energy is the algebraic sum of the translating kinetic energy of the
center of gravity and the rotating kinetic energy about the center of
gravity, E 5 1⁄2mv2 1 1⁄2 Iv2. Here the velocity v is the velocity of the
center of gravity, and the moment of inertia I is the centroidal moment
of inertia.

If a force which varies acts through a space on a body of mass m, the

work done isEs

s1

F ds, and if the work is all used in giving kinetic energy

to the body it is equal to 1⁄2m(v2
2 2 v2

1) 5 change in kinetic energy, where
v2 and v1 are the velocities at distances s2 and s1 , respectively. This is a
specific statement of the law of conservation of energy. The principle of
conservation of energy requires that the mechanical energy of a system re-
main unchanged if it is subjected only to forces which depend on position or
configuration.
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Certain problems in which the velocity of a body at any point in its
straight-line path when acted upon by varying forces is required can be
easily solved by the use of a work diagram.

In Fig. 3.1.70, let a body start from rest at A and be acted upon by a
force that varies in accordance with the diagram AFGBA. Let the resis-
tance to motion be a constant force 5 x. Find the velocity of the body at
point B. The area AFGBA represents the work done upon the body and
the area AEDBA (5 force x 3 distance AB) represents the work that
must be done to overcome resistance. The difference of these areas, or

moment of a force. The linear impulse is represented by a directed line
segment , and the moment of the impulse is the product of the magnitude
of the impulse and the perpendicular distance from the line segment to
the point about which the moment is taken. Angular impulse over a time
interval t2 2 t1 is a product of the sum of applied moments on a rigid
body about a reference axis and time. The dimensions for angular im-
pulse are (force) 3 (time) 3 (displacement) in foot-pound-seconds or
newton-metre-seconds. Angular impulse and linear impulse cannot be
added.
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EFGDE, will represent work done in excess of that required to over-
come resistance, and consequently is equal to the increase in kinetic
energy. Equating the work represented by the area EFGDE to 1⁄2wv2/g
and solving for v will give the required velocity at B. If the body did not
start from rest , this area would represent the change in kinetic energy,
and the velocity could be obtained by the formula: Work 5 1⁄2(w/g)
(v2

1 2 v2
0), v1 being the required velocity.

General Rule for Rectilinear Motion Resolve each force acting on
the body into components, one of which acts along the line of motion of
the body and the other at right angles to the line of motion. Take the sum
of all the components acting in the direction of the motion and multiply
this sum by the distance moved through for constant forces. (Take the
average force times distance for forces that vary.) This product will be
the total work done upon the body. If there is no unbalanced compo-
nent , there will be no change in kinetic energy and consequently no
change in velocity. If there is an unbalanced component , the change in
kinetic energy will be this unbalanced component multiplied by the
distance moved through.

The work done by a system of forces acting on a body is equal to the
algebraic sum of the work done by each force taken separately.

Power is the rate at which work is performed, or the number of units
of work performed in unit time. In the English engineering system, the
units of power are the horsepower, or 33,000 lb ? ft /min 5 550 lb ? ft /s,
and the kilowatt 5 1.341 hp 5 737.55 lb ? ft /s. In SI units, the unit of
power is the watt , which is 1 newton-metre per second or 1 joule per
second.

Friction Brake In Fig. 3.1.71 a pulley revolves under the band and
in the direction of the arrow, exerting a pull of T on the spring. The
friction of the band on the rim of the pulley is (T 2 w), where w is the
weight attached to one end of the band. Let the pulley make N r/min;
then the work done per minute against friction by the rim of the pul-
ley is 2pRN(T 2 w), and the horsepower absorbed by brake 5
2pRN(T 2 w)/33,000.

Fig. 3.1.71

IMPULSE AND MOMENTUM

The product of force and time is defined as linear impulse. The impulse of a
constant force over a time interval t2 2 t1 is F(t2 2 t1). If the force is not
constant in magnitude but is constant in direction, the impulse is

Et2

t1

F dt. The dimensions of linear impulse are (force) 3 (time) in

pound-seconds, or newton-seconds.
Impulse is a vector quantity which has the direction of the resultant

force. Impulses may be added vectorially by means of a vector polygon,
or they may be resolved into components by means of a parallelogram.
The moment of a linear impulse may be found in the same manner as the
Momentum is also a vector quantity and can be added and resolved in
the same manner as force and impulse. The dimensions of linear mo-
mentum are (force) 3 (time) in pound-seconds or newton-seconds, and
are identical to linear impulse. An alternate statement of Newton’s sec-
ond law of motion is that the resultant of an unbalanced force system
must be equal to the time rate of change of linear momentum,
oF 5 d(mv)/dt.

If a variable force acts for a certain time on a body of mass m, the

quantityEt2

t1

F dt 5 m(v1 2 v2) 5 the change of momentum of the body.

The moment of momentum can be determined by the same methods as
those used for the moment of a force or moment of an impulse. The
dimensions of the moment of momentum are (force) 3 (time) 3 (dis-
placement) in foot-pound-seconds, or newton-metre-seconds.

In plane motion the angular momentum of a rigid body about a refer-
ence axis perpendicular to the plane of motion is the sum of the mo-
ments of linear momenta of all particles in the body about the reference
axes. Specifically, the angular momentum of a rigid body in plane motion is
the vector sum of the angular momentum about the reference axis and the
moment of the linear momentum of the center of gravity about the reference
axis, H0 5 I0v 1 d 3 mv.

In three-dimensional rotation about a fixed axis, the angular momen-
tum of a rigid body has components along three coordinate axes, which
involve both the moments of inertia about the x, y, and z axes, I0xx

, I0yy
,

and I0zz
, and the products of inertia, I0xy

, I0zz
, and I0yz

; H0x
2 I0xx

? vx 2
I0xy

? vy 2 I0xy
? vz , H0y

5 2 I0xy
? vx 1 I0yy

? vy 2 I0yz
? vz , and H0z

5
I0xz

? vx 2 I0zy
? vy 1 I0zz

? vz where H0 5 H0x
1 H0y

1 H0z
.

Impact

The collision between two bodies, where relatively large forces result
over a comparatively short interval of time, is called impact. A straight
line perpendicular to the plane of contact of two colliding bodies is
called the line of impact. If the centers of gravity of the two bodies lie on
the line of contact , the impact is called central impact, in any other case,
eccentric impact. If the linear momenta of the centers of gravity are also
directed along the line of impact , the impact is collinear or direct central
impact. In any other case impact is said to be oblique.

Collinear Impact When two masses m1 and m2 , having respective
velocities u1 and u2 , move in the same line, they will collide if u2 . u1

(Fig. 3.1.72a). During collision (Fig. 3.1.72b), kinetic energy is ab-

Fig. 3.1.72
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sorbed in the deformation of the bodies. There follows a period of
restoration which may or may not be complete. If complete restoration
of the energy of deformation occurs, the impact is elastic. If the restora-
tion of energy is incomplete, the impact is referred to as inelastic. After
collision (Fig. 3.1.72c), the bodies continue to move with changed ve-
locities of v1 and v2 . Since the contact forces on one body are equal to
and opposite the contact forces on the other, the sum of the linear
momenta of the two bodies is conserved; m1u1 1 m2u2 5 m1v1 1 m2v2 .

The law of conservation of momentum states that the linear momentum of

axis O, which is either a fixed axis of the center of gravity, M0x
5

(dH0x
/dt) 2 H0y

? vz 1 H0z
? vy , M0y

5 (dH0y
/dt) 2 H0z

? vx 1 H0x
? vz ,

and M0z
5 (dH0z

/dt) 2 H0x
vy 1 H0y

vx . If the coordinate axes are ori-
ented to coincide with the principal axes of inertia, I0xx

, I0yy
, and I0zz

, a
similar set of three differential equations results, involving moments,
angular velocity, and angular acceleration; M0x

5 I0xx
(dvx/dt) 1 (I0zz

2
I0yy

)vy ? vz , M0y
5 I0yy

(dvy/dt) 1 (I0xx
2 I0zz

)vz ? vx , and M0z
5 I0zz

(dvz/
dt) 1 (I0yy

2 I0xx
)vxvy . These equations are known as Euler’s equations of

motion and may apply to any rigid body.
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a system of bodies is unchanged if there is no resultant external force on the
system.

Coefficient of Restitution The ratio of the velocity of separation
v1 2 v2 to the velocity of approach u2 2 u1 is called the coefficient of
restitution e, e 5 (v1 2 v2)/(u2 2 u1).

The value of e will depend on the shape and material properties of the
colliding bodies. In elastic impact , the coefficient of restitution is unity
and there is no energy loss. A coefficient of restitution of zero indicates
perfectly inelastic or plastic impact , where there is no separation of the
bodies after collision and the energy loss is a maximum. In oblique
impact, the coefficient of restitution applies only to those components of
velocity along the line of impact or normal to the plane of impact . The
coefficient of restitution between two materials can be measured by
making one body many times larger than the other so that m2 is infi-
nitely large in comparison to m1 . The velocity of m2 is unchanged for all
practical purposes during impact and e 5 v1/u1 . For a small ball
dropped from a height H upon an extensive horizontal surface and re-
bounding to a height h, e 5 √h/H.

Impact of Jet Water on Flat Plate When a jet of water strikes a flat
plate perpendicularly to its surface, the force exerted by the water on the
plate is wv/g, where w is the weight of water striking the plate in a unit
of time and v is the velocity. When the jet is inclined to the surface by an
angle, A, the pressure is (wv/g) cos A.

Variable Mass

If the mass of a body is variable such that mass is being either added or
ejected, an alternate form of Newton’s second law of motion must be
used which accounts for changes in mass:

F 5 m
dv
dt

1
dm

dt
u

The mass m is the instantaneous mass of the body, and dv/dt is the time
rate of change of the absolute of velocity of mass m. The velocity u is
the velocity of the mass m relative to the added or ejected mass, and
dm/dt is the time rate of change of mass. In this case, care must be
exercised in the choice of coordinates and expressions of sign. If mass is
being added, dm/dt is plus, and if mass is ejected, dm/dt is minus.

Fields of Force—Attraction

The space within which the action of a physical force comes into play
on bodies lying within its boundaries is called the field of the force.

The strength or intensity of the field at any given point is the relation
between a force F acting on a mass m at that point and the mass.
Intensity of field 5 i 5 F/m; F 5 mi.

The unit of field intensity is the same as the unit of acceleration, i.e.,
1 ft /s2 or 1 m/s2. The intensity of a field of force may be represented by
a line (or vector).

A field of force is said to be homogeneous when the intensity of all
points is uniform and in the same direction.

A field of force is called a central field of force with a center O, if the
direction of the force acting on the mass particle m in every point of the
field passes through O and its magnitude is a function only of the
distance r from O to m. A line so drawn through the field of force that its
direction coincides at every point with that of the force prevailing at that
point is called a line of force.

Rotation of Solid Bodies about Any Axis

The general moment equations for three-dimensional motion are usu-
ally expressed in terms of the angular momentum. For a reference
GYROSCOPIC MOTION AND THE GYROSCOPE

Gyroscopic motion can be explained in terms of Euler’s equations. Let I1 ,
I2 , and I3 represent the principal moments of inertia of a gyroscope
spinning with a constant angular velocity v, about axis 1, the subscripts
1, 2, and 3 representing a right-hand set of reference axes (Figs. 3.1.73
and 3.1.74). If the gyroscope is precessed about the third axis, a vector
moment results along the second axis such that

M2 5 I2 (dv2/dt) 1 (I1 2 I3)v3v1

Where the precession and spin axes are at right angles, the term (dv2/dt)
equals the component of v3 3 v1 along axis 2. Because of this, in the
simple case of a body of symmetry, where I2 5 I3 , the gyroscopic

Fig. 3.1.73

moment can be reduced to the common expression M 5 IvV, where V
is the rate of precession, v the rate of spin, and I the moment of inertia
about the spin axis. It is important to realize that these are equations of
motion and relate the applied or resulting gyroscopic moment due to
forces which act on the rotor, as disclosed by a free-body diagram, to the
resulting motion of the rotor.

Physical insight into the behavior of a steady precessing gyro with
mutually perpendicular moment , spin, and precession axes is gained by
recognizing from Fig. 3.1.74 that the change dH in angular momentum
H is equal to the angular impulse M dt. In time dt, the angular-momen-

Fig. 3.1.74
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tum vector swings from H to H9, owing to the velocity of precession v3 .
The vector change dH in angular momentum is in the direction of the
applied moment M. This fact is inherent in the basic moment-momen-
tum equation and can always be used to establish the correct spatial
relationships between the moment , precessional, and spin vectors. It is
seen, therefore, from Fig. 3.1.74 that the spin axis always turns toward
the moment axis. Just as the change in direction of the mass-center
velocity is in the same direction as the resultant force, so does the
change in angular momentum follow the direction of the applied mo-

vers of a fighting airplane. No magnetic compass will indicate correctly
during such maneuvers. After the plane is back on an even keel in steady
flight , the magnetic compass once more reads the true magnetic north,
and the gyro compass has to be reset to point north again.

An example of a device operating on the second principle is the
automatic pilot for keeping a vehicle on a given course. This device has
been installed on torpedoes, ships, airplanes. When the ship or plane
turns from the chosen course, a couple is exerted on the gyro axis, which
makes it precess and this operates electric contacts or hydraulic or

I
Ri

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
ment.
For example, suppose an airplane is driven by a right-handed pro-

peller (turning like a right-handed screw when moving forward). If a
gust of wind or other force turns the machine to the left, the gyroscopic
action of the propeller will make the forward end of the shaft strive to
rise; if the wing surface is large, this motion will be practically pre-
vented by the resistance of the air, and the gyroscopic forces become
effective merely as internal stresses, whose maximum value can be
computed by the formula above. Similarly, if the airplane is dipped
downward, the gyroscopic action will make the forward end of the shaft
strive to turn to the left.

Modern applications of the gyroscope are based on one of the follow-
ing properties: (1) a gyroscope mounted in three gimbal rings so as to be
entirely free angularly in all directions will retain its direction in space
in the absence of outside couples; (2) if the axis of rotation of a gyro-
scope turns or precesses in space, a couple or torque acts on the gyro-
scope (and conversely on its frame).

Devices operating on the first principle are satisfactory only for short
durations, say less than half an hour, because no gyroscope is entirely
without outside couple. The friction couples at the various gimbal bear-
ings, although small, will precess the axis of rotation so that after a
while the axis of rotation will have changed its direction in space. The
chief device based on the first principle is the airplane compass, which is
a freely mounted gyro, keeping its direction in space during fast maneu-
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Friction is the resistance that is encountered when two
slide or tend to slide over each other. The surfaces may be
lubricated. In the first case, when the surfaces are free from
pneumatic valves. These again operate on the rudders, through relays,
and bring the ship back to its course.

Another application is the ship antirolling gyroscope. This very large
gyroscope spins about a vertical axis and is mounted in a ship so that the
axis can be tipped fore and aft by means of an electric motor, the
precession motor. The gyro can exert a large torque on the ship about
the fore-and-aft axis, which is along the ‘‘rolling’’ axis. The sign of the
torque is determined by the direction of rotation of the precession
motor, which in turn is controlled by electric contacts operated by a
small pilot gyroscope on the ship, which feels which way the ship rolls
and gives the signals to apply a countertorque.

The turn indicator for airplanes is a gyro, the frame of which is held
by springs. When the airplane turns, it makes the gyro axis turn with it ,
and the resultant couple is delivered by the springs. Thus the elongation
of the springs is a measure of the rate of turn, which is suitably indicated
by a pointer.

The most complicated and ingenious application of the gyroscope is
the marine compass. This is a pendulously suspended gyroscope which is
affected by gravity and also by the earth’s rotation so that the gyro axis
is in equilibrium only when it points north, i.e., when it lies in the plane
formed by the local vertical and by the earth’s north-south axis. If the
compass is disturbed so that it points away from north, the action of the
earth’s rotation will restore it to the correct north position in a few
hours.
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no) Castelli
that of complete (or viscous) lubrication. In this case, the frictional losses
are due solely to the internal fluid friction in the film. Oil ring bearings,
bearings with forced feed of oil, pivoted shoe-type thrust and journal
bearings, bearings operating in an oil bath, hydrostatic oil pads, oil lifts,
and step bearings are instances of complete lubrication.

Incomplete lubrication or mixed lubrication takes place when the load
g surfaces is carried partly by a fluid viscous film and
s of boundary lubrication. The friction is intermediate
f fluid and boundary lubrication. Incomplete lubrication
solid surfaces
either dry or
contaminat-

on the rubbin
partly by area
between that o

exists in bearings with drop-feed, waste-packed, or wick-fed lubrica-
ing fluids, or films, the resistance is called dry friction. The friction of

brake shoes on the rim of a railroad wheel is an example of dry friction.
When the rubbing surfaces are separated from each other by a very

thin film of lubricant , the friction is that of boundary (or greasy) lubrica-
tion. The lubrication depends in this case on the strong adhesion of the
lubricant to the material of the rubbing surfaces; the layers of lubricant
slip over each other instead of the dry surfaces. A journal when starting,
reversing, or turning at very low speed under a heavy load is an example
of the condition that will cause boundary lubrication. Other examples
are gear teeth (especially hypoid gears), cutting tools, wire-drawing
dies, power screws, bridge trunnions, and the running-in process of
most lubricated surfaces.

When the lubrication is arranged so that the rubbing surfaces are
separated by a fluid film, and the load on the surfaces is carried entirely
by the hydrostatic or hydrodynamic pressure in the film, the friction is
tion, or on parallel-surface bearings.

STATIC AND KINETIC COEFFICIENTS
OF FRICTION

In the absence of friction, the resultant of the forces between the sur-
faces of two bodies pressing upon each other is normal to the surface of
contact . With friction, the resultant deviates from the normal.

If one body is pressed against another by a force P, as in Fig. 3.2.1,
the first body will not move, provided the angle a included between the
line of action of the force and a normal to the surfaces in contact does
not exceed a certain value which depends upon the nature of the sur-
faces. The reaction force R has the same magnitude and line of action as
the force P. In Fig. 3.2.1, R is resolved into two components: a force N
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normal to the surfaces in contact and a force Fr parallel to the surfaces in
contact . From the above statement it follows that , for motion not to
occur,

Fr 5 N tan a0 5 Nf0

where f0 5 tan a0 is called the coefficient of friction of rest (or of static
friction) and a0 is the angle of friction at rest.

If the normal force N between the sur-
faces is kept constant , and the tangential

factor is equal to the slope of the friction curve and thus is termed
negative damping. When the slope of the friction force versus sliding
velocity is positive (positive damping) this type of instability is not pos-
sible. This is typical of fluid damping, squeeze films, dash pots, and
fluid film bearings in general.

Dry frictionm

x

,
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Fig. 3.2.1

force Fr is gradually increased, there will
be no motion while Fr , Nf0 . A state of
impending motion is reached when Fr

nears the value of Nf0 . If sliding motion
occurs, a frictional force F resisting the
motion must be overcome. The force F is
commonly expressed as F 5 fN, where f
is the coefficient of sliding friction, or ki-
netic friction. Normally, the coefficients
of sliding friction are smaller than the co-

efficients of static friction. With small velocities of sliding and very
clean surfaces, the two coefficients do not differ appreciably.

Table 3.2.4 demonstrates the typical reduction of sliding coefficients
of friction below corresponding static values. Figure 3.2.2 indicates
results of tests on lubricated machine tool ways showing a reduction of
friction coefficient with increasing sliding velocity.

Fig. 3.2.2 Typical relationship between kinetic friction and sliding velocity for
lubricated cast iron on cast iron slideways (load, 20 lb/in2; upper slider, scraped;
lower slideway, scraped). (From Birchall, Kearny, and Moss, Intl. J. Machine
Tool Design Research, 1962.)

This behavior is normal with dry friction, some conditions of bound-
ary friction, and with the break-away friction in ball and roller bearings.
This condition is depicted in Fig. 3.2.3, where the friction force de-
creases with relative velocity. This negative slope leads to locally un-
stable equilibrium and self-excited vibrations in systems such as the one
of Fig. 3.2.4. This phenomenon takes place because, for small ampli-
tudes, the oscillatory system displays damping in which the damping
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Fig. 3.2.3 Friction force decreases as velocity increases.
1
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Fig. 3.2.4 Belt friction apparatus with possible self-excited vibrations.

It is interesting to note that these self-excited systems vibrate at close
to their natural frequency over a large range of frictional levels and
speeds. This symptom is a helpful means of identification. Another
characteristic is that the moving body comes periodically to momentary
relative rest , that is, zero sliding velocity. For this reason, this phenom-
enon is also called stick-slip vibration. Common examples are violin
strings, chalk on blackboard, water-lubricated rubber stern tube ship
bearings at low speed, squeaky hinges, and oscillating rolling element
bearings, especially if they are supporting large flexible structures such
as radar antennas. Control requires the introduction of fluid film bear-
ings, viscous seals, or viscous dampers into the system with sufficient
positive damping to override the effects of negative damping.

Under moderate pressures, the frictional force is proportional to the
normal load on the rubbing surfaces. It is independent of the pressure
per unit area of the surfaces. The direction of the friction force opposing
the sliding motion is locally exactly opposite to the local relative veloc-
ity. Therefore, it takes very little effort to displace transversally two
bodies which have a major direction of relative sliding. This behavior,
compound sliding, is exploited when easing the extraction of a nail by
simultaneously rotating it about its axis, and accounts for the ease with
which an automobile may skid on the road or with which a plug gage
can be inserted into a hole if it is rotated while being pushed in.

The coefficients of friction for dry surfaces (dry friction) depend on
the materials sliding over each other and on the finished condition of the
surfaces. With greasy (boundary) lubrication, the coefficients depend
both on the materials and conditions of the surfaces and on the lubri-
cants employed.

Coefficients of friction are sensitive to atmospheric dust and humid-
ity, oxide films, surface finish, velocity of sliding, temperature, vibra-
tion, and the extent of contamination. In many instances the degree of
contamination is perhaps the most important single variable. For exam-
ple, in Table 3.2.1, values for the static coefficient of friction of steel on
steel are listed, and, depending upon the degree of contamination of the
specimens, the coefficient of friction varies effectively from ` (infinity)
to 0.013.

The most effective boundary lubricants are generally those which
react chemically with the solid surface and form an adhering film that is
attached to the surface with a chemical bond. This action depends upon

Table 3.2.1 Coefficients of Static Friction for Steel on Steel

Test condition f0 Ref.

Degassed at elevated temp in high
vacuum

` (weld on contact) 1

Grease-free in vacuum 0.78 2
Grease-free in air 0.39 3
Clean and coated with oleic acid 0.11 2
Clean and coated with solution of
stearic acid

0.013 4

SOURCES: (1) Bowden and Young, Proc. Roy. Soc., 1951. (2) Campbell, Trans. ASME
1939. (3) Tomlinson, Phil. Mag., 1929. (4) Hardy and Doubleday, Proc. Roy. Soc., 1923.
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the nature of the lubricant and upon the reactivity of the solid surface.
Table 3.2.2 indicates that a fatty acid, such as found in animal, vegeta-
ble, and marine oils, reduces the coefficient of friction markedly only if
it can react effectively with the solid surface. Paraffin oil is almost
completely nonreactive.

Table 3.2.2 Coefficients of Static Friction at Room Temperature

Paraffin oil Degree of
Paraffin plus 1% reactivity

cients of friction f for hard steel on hard steel as follows: powdered
mica, 0.305; powdered soapstone, 0.306; lead iodide, 0.071; silver sul-
fate, 0.054; graphite, 0.058; molybdenum disulfide, 0.033; tungsten di-
sulfide, 0.037; stearic acid, 0.029 (Trans. ASME, 1945; see footnotes to
Table 3.2.4).

Coefficients of Static Friction for Special Cases

Masonry and Earth Dry masonry on brickwork, 0.6–0.7; timber on
polished stone, 0.40; iron on stone, 0.3 to 0.7; masonry on dry clay,

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Surfaces Clean oil lauric acid of solid

Nickel
Chromium
Platinum
Silver
Glass
Copper
Cadmium
Zinc
Magnesium
Iron
Aluminum

0.7
0.4
1.2
1.4
0.9
1.4
0.5
0.6
0.6
1.0
1.4

0.3
0.3
0.28
0.8

0.3
0.45
0.2
0.5
0.3
0.7

0.28
0.3
0.25
0.7
0.4
0.08
0.05
0.04
0.08
0.2
0.3

Low
Low
Low
Low
Low
High
High
High
High
Mild
Mild

SOURCE: From Bowden and Tabor, ‘‘The Friction and Lubrication of Solids,’’ Oxford.

Values in Table 3.2.4 of sliding and static coefficients have been
selected largely from investigations where these variables have been
very carefully controlled. They are representative values for smooth
surfaces. It has been generally observed that sliding friction between
hard materials is smaller than that between softer surfaces.

Effect of Surface Films Campbell observed a lowering of the coef-
ficient of friction when oxide or sulfide films were present on metal
surfaces (Trans. ASME, 1939; footnotes to Table 3.2.4). The reductions
listed in Table 3.2.3 were obtained with oxide films formed by heating
in air at temperatures from 100 to 500° C, and sulfide films produced by
immersion in a 0.02 percent sodium sulfide solution.

Table 3.2.3 Static Coefficient of Friction f0

Clean and dry Oxide film Sulfide film

Steel-steel 0.78 0.27 0.39
Brass-brass 0.88 0.57
Copper-copper 1.21 0.76 0.74

Effect of Sliding Velocity It has generally been observed that coeffi-
cients of friction reduce on dry surfaces as sliding velocity increases.
(See results of railway brake-shoe tests below.) Dokos measured this
reduction in friction for mild steel on medium steel. Values are for the
average of four tests with high contact pressures (Trans. ASME, 1946;
see footnotes to Table 3.2.4).

Sliding velocity,
in/s 0.0001 0.001 0.01 0.1 1 10 100
f 0.53 0.48 0.39 0.31 0.23 0.19 0.18

Effect of Surface Finish The degree of surface roughness has been
found to influence the coefficient of friction. Burwell evaluated this
effect for conditions of boundary or greasy friction (Jour. SAE, 1942;
see footnotes to Table 3.2.4). The values listed in Table 3.2.5 are for
sliding coefficients of friction, hard steel on hard steel. The friction
coefficient and wear rates of polymers against metals are often lowered
by decreasing the surface roughness. This is particularly true of com-
posites such as those with polytetrafluoroethylene (PTFE) which func-
tion through transfer to the counterface.

Solid Lubricants In certain applications solid lubricants are used
successfully. Boyd and Robertson with pressures ranging from 50,000
to 400,000 lb/in2 (344,700 to 2,757,000 kN/m2) found sliding coeffi-
0.51; masonry on moist clay, 0.33.
Earth on Earth Dry sand, clay, mixed earth, 0.4 to 0.7; damp clay,

1.0; wet clay, 0.31; shingle and gravel, 0.8 to 1.1.
Natural Cork On cork, 0.59; on pine with grain, 0.49; on glass,

0.52; on dry steel, 0.45; on wet steel, 0.69; on hot steel, 0.64; on oiled
steel, 0.45; water-soaked cork on steel, 0.56; oil-soaked cork on steel,
0.42.

Coefficients of Sliding Friction for
Special Cases

Soapy Wood Lesley gives for wood on wood, copiously lubricated
with tallow, stearine, and soft soap (as used in launching practice), a
starting coefficient of friction equal to 0.036, diminishing to an average
value of 0.019 for the first 50 ft of motion of the ship. Rennie gives
0.0385 for wood on wood, lubricated with soft soap, under a load of
56 lb/in2.

Asbestos-Fabric Brake Material The coefficient of sliding friction
f of asbestos fabric against a cast-iron brake drum, according to Taylor
and Holt (NBS, 1940) is 0.35 to 0.40 when at normal temperature. It
drops somewhat with rise in brake temperature up to 300°F (149°C).
With a further increase in brake temperature from 300 to 500°F (149 to
260°C) the value of f may show an increase caused by disruption of the
brake surface.

Steel Tires on Steel Rails (Galton)

Speed, mi/h Start 6.8 13.5 27.3 40.9 54.4 60
Values of f 0.242 0.088 0.072 0.07 0.057 0.038 0.027

Railway Brake Shoes on Steel Tires Galton and Westinghouse
give, for cast-iron brakes, the following values for f, which decrease
rapidly with the speed of the rim; the coefficient f decreases also with
time, as the temperature of the shoe increases.

Speed, mi/h 10 20 30 40 50 60
f, when brakes were applied 0.32 0.21 0.18 0.13 0.10 0.06
f, after 5 s 0.21 0.17 0.11 0.10 0.07 0.05
f, after 12 s 0.13 0.10 0.08 0.06 0.05

Schmidt and Schrader confirm the marked decrease in the coefficient
of friction with the increase of rim speed. They also show an irregular
slight decrease in the value of f with higher shoe pressure on the wheel,
but they did not find the drop in friction after a prolonged application of
the brakes. Their observations are as follows:

Speed, mi/h 20 30 40 50 60
Coefficient of friction 0.25 0.23 0.19 0.17 0.16

Friction of Steel on Polymers A useful list of friction coefficients
between steel and various polymers is given in Table 3.2.6.

Grindstones The coefficient of friction between coarse-grained
sandstone and cast iron is f 5 0.21 to 0.24; for steel, 0.29; for wrought
iron, 0.41 to 0.46, according as the stone is freshly trued or dull; for
fine-grained sandstone (wet grinding) f 5 0.72 for cast iron, 0.94 for
steel, and 1.0 for wrought iron.

Honda and Yamada give f 5 0.28 to 0.50 for carbon steel on emery,
depending on the roughness of the wheel.
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Table 3.2.4 Coefficients of Static and Sliding Friction
(Reference letters indicate the lubricant used; numbers in parentheses give the sources. See footnote.)

Static Sliding

Materials Dry Greasy Dry Greasy

Hard steel on hard steel 0.78 (1) 0.11 (1, a)
0.23 (1, b)
0.15 (1, c)
0.11 (1, d )
0.0075 (18, p)
0.0052 (18, h)

0.42 (2) 0.029 (5, h)
0.081 (5, c)
0.080 (5, i)
0.058 (5, j)
0.084 (5, d )
0.105 (5, k)
0.096 (5, l)
0.108 (5, m)
0.12 (5, a)

Mild steel on mild steel 0.74 (19) 0.57 (3) 0.09 (3, a)
0.19 (3, u)

Hard steel on graphite 0.21 (1) 0.09 (1, a)
Hard steel on babbitt (ASTM No. 1) 0.70 (11) 0.23 (1, b)

0.15 (1, c)
0.08 (1, d )
0.085 (1, e)

0.33 (6) 0.16 (1, b)
0.06 (1, c)
0.11 (1, d )

Hard steel on babbitt (ASTM No. 8) 0.42 (11) 0.17 (1, b)
0.11 (1, c)
0.09 (1, d )
0.08 (1, e)

0.35 (11) 0.14 (1, b)
0.065 (1, c)
0.07 (1, d )
0.08 (11, h)

Hard steel on babbitt (ASTM No. 10) 0.25 (1, b)
0.12 (1, c)
0.10 (1, d )
0.11 (1, e)

0.13 (1, b)
0.06 (1, c)
0.055 (1, d )

Mild steel on cadmium silver 0.097 (2, f )
Mild steel on phosphor bronze 0.34 (3) 0.173 (2, f )
Mild steel on copper lead 0.145 (2, f )
Mild steel on cast iron 0.183 (15, c) 0.23 (6) 0.133 (2, f )
Mild steel on lead 0.95 (11) 0.5 (1, f ) 0.95 (11) 0.3 (11, f )
Nickel on mild steel 0.64 (3) 0.178 (3, x)
Aluminum on mild steel 0.61 (8) 0.47 93)
Magnesium on mild steel 0.42 (3)
Magnesium on magnesium 0.6 (22) 0.08 (22, y)
Teflon on Teflon 0.04 (22) 0.04 (22, f )
Teflon on steel 0.04 (22) 0.04 (22, f )
Tungsten carbide on tungsten carbide 0.2 (22) 0.12 (22, a)
Tungsten carbide on steel 0.5 (22) 0.08 (22, a)
Tungsten carbide on copper 0.35 (23)
Tungsten carbide on iron 0.8 (23)
Bonded carbide on copper 0.35 (23)
Bonded carbide on iron 0.8 (23)
Cadmium on mild steel 0.46 (3)
Copper on mild steel 0.53 (8) 0.36 (3) 0.18 (17, a)
Nickel on nickel 1.10 (16) 0.53 (3) 0.12 (3, w)
Brass on mild steel 0.51 (8) 0.44 (6)
Brass on cast iron 0.30 (6)
Zinc on cast iron 0.85 (16) 0.21 (7)
Magnesium on cast iron 0.25 (7)
Copper on cast iron 1.05 (16) 0.29 (7)
Tin on cast iron 0.32 (7)
Lead on cast iron 0.43 (7)
Aluminum on aluminum 1.05 (16) 1.4 (3)
Glass on glass 0.94 (8) 0.01 (10, p)

0.005 (10, q)
0.40 (3) 0.09 (3, a)

0.116 (3, v)
Carbon on glass 0.18 (3)
Garnet on mild steel 0.39 (3)
Glass on nickel 0.78 (8) 0.56 (3)

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor oil; (d ) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; ( f )
medium mineral oil; (g) medium mineral oil plus 1⁄2 percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); ( j) graphite; (k) turbine oil
plus 1 percent graphite; (l) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (n) olive oil; (p) palmitic acid; (q)
ricinoleic acid; (r) dry soap; (s) lard; (t) water; (u) rape oil; (v) 3-in-1 oil; (w) octyl alcohol; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

SOURCES: (1) Campbell, Trans. ASME, 1939; (2) Clarke, Lincoln, and Sterrett , Proc. API, 1935; (3) Beare and Bowden, Phil. Trans. Roy.
Soc., 1935; (4) Dokos, Trans. ASME, 1946; (5) Boyd and Robertson, Trans. ASME, 1945; (6) Sachs, Zeit f. angew. Math. und Mech., 1924;
(7) Honda and Yamaha, Jour. I of M, 1925; (8) Tomlinson, Phil. Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole,
Trans. ASME, 1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASME, 1937; (13) Brazier and
Holland-Bowyer, General Discussion on Lubrication, ASME, 1937; (14) Burwell, Jour. SAE., 1942; (15) Stanton, ‘‘Friction,’’ Longmans;
(16) Ernst and Merchant , Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish,
M.I.T., 1940; (18) Hardy and Bircumshaw, Proc. Roy. Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Young, Proc.
Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, ‘‘The Friction and Lubrication of Solids,’’
Oxford; (23) Shooter, Research, 4, 1951.
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Table 3.2.4 Coefficients of Static and Sliding Friction (Continued )
(Reference letters indicate the lubricant used; numbers in parentheses give the sources. See footnote.)

Static Sliding

Materials Dry Greasy Dry Greasy

Copper on glass 0.68 (8) 0.53 (3)
Cast iron on cast iron 1.10 (16) 0.15 (9) 0.070 (9, d )

0.064 (9, n)
Bronze on cast iron 0.22 (9) 0.077 (9, n)
Oak on oak (parallel to grain) 0.62 (9) 0.48 (9) 0.164 (9, r)

0.067 (9, s)
Oak on oak (perpendicular) 0.54 (9) 0.32 (9) 0.072 (9, s)
Leather on oak (parallel) 0.61 (9) 0.52 (9)
Cast iron on oak 0.49 (9) 0.075 (9, n)
Leather on cast iron 0.56 (9) 0.36 (9, t)

0.13 (9, n)
Laminated plastic on steel 0.35 (12) 0.05 (12, t)
Fluted rubber bearing on steel 0.05 (13, t)

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor oil; (d ) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; ( f )
medium mineral oil; (g) medium mineral oil plus 1⁄2 percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); ( j) graphite; (k) turbine oil
plus 1 percent graphite; (l) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (n) olive oil; (p) palmitic acid; (q)
ricinoleic acid; (r) dry soap; (s) lard; (t) water; (u) rape oil; (v) 3-in-1 oil; (w) octyl alcohol; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

SOURCES: (1) Campbell, Trans. ASME, 1939; (2) Clarke, Lincoln, and Sterrett , Proc. API, 1935; (3) Beare and Bowden, Phil. Trans. Roy.
Soc., 1935; (4) Dokos, Trans. ASME, 1946; (5) Boyd and Robertson, Trans. ASME, 1945; (6) Sachs, Zeit f. angew. Math. und Mech., 1924;
(7) Honda and Yamaha, Jour. I of M, 1925; (8) Tomlinson, Phil. Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole,
Trans. ASME, 1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASME, 1937; (13) Brazier and
Holland-Bowyer, General Discussion on Lubrication, ASME, 1937; (14) Burwell, Jour. SAE., 1942; (15) Stanton, ‘‘Friction,’’ Longmans;
(16) Ernst and Merchant , Conference on Friction and Surface Finish, M.I.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish,
M.I.T., 1940; (18) Hardy and Bircumshaw, Proc. Roy. Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Young, Proc.
Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, ‘‘The Friction and Lubrication of Solids,’’
Oxford; (23) Shooter, Research, 4, 1951.

Table 3.2.5 Coefficient of Friction of Hard Steel on Hard Steel

Surface

Superfinished Ground Ground Ground Ground Grit-blasted

Roughness, microinches
Mineral oil
Mineral oil 1 2% oleic acid
Oleic acid
Mineral oil 1 2% sulfonated sperm oil

2
0.128
0.116
0.099
0.095

7
0.189
0.170
0.163
0.137

20
0.360
0.249
0.195
0.175

50
0.372
0.261
0.222
0.251

65
0.378
0.230
0.238
0.197

55
0.212
0.164
0.195
0.165

Table 3.2.6 Coefficient of Friction of Steel on Polymers
Room temperature, low speeds.

Material Condition f

Nylon Dry 0.4
Nylon Wet with water 0.15
Plexiglas Dry 0.5
Polyvinyl chloride (PVC) Dry 0.5
Polystyrene Dry 0.5
Low-density (LD) polyethylene, no plas- Dry 0.4

Dry pavement Wet pavement

Inflation pressure, Static Sliding Static Sliding
lb/in2 f0 f f0 f

40 0.90 0.85 0.74 0.69
50 0.88 0.84 0.64 0.58
60 0.80 0.76 0.63 0.56

Tests of the Goodrich Company on wet brick pavement with tires of
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ticizer
LD polyethylene, no plasticizer Wet 0.1
High-density (HD) polyethylene, no plas-
ticizer

Dry or wet 0.15

Soft wood Natural 0.25
Lignum vitae Natural 0.1
PTFE, low speed Dry or wet 0.06
PTFE, high speed Dry or wet 0.3
Filled PTFE (15% glass fiber) Dry 0.12
Filled PTFE (15% graphite) Dry 0.09
Filled PTFE (60% bronze) Dry 0.09
Polyurethane rubber Dry 1.6
Isoprene rubber Dry 3–10
Isoprene rubber Wet (water and

alcohol)
2–4

Rubber Tires on Pavement Arnoux gives f 5 0.67 for dry mac-
adam, 0.71 for dry asphalt , and 0.17 to 0.06 for soft , slippery roads. For
a cord tire on a sand-filled brick surface in fair condition. Agg (Bull. 88,
Iowa State College Engineering Experiment Station, 1928) gives the
following values of f depending on the inflation of the tire:
different treads gave the following values of f :

Coefficients of friction

Static (before Sliding (after
slipping) slipping)

Speed, mi/h 5 30 5 30
Smooth tire 0.49 0.28 0.43 0.26
Circumferential grooves 0.58 0.42 0.52 0.36
Angular grooves at 60° 0.75 0.55 0.70 0.39
Angular grooves at 45° 0.77 0.55 0.68 0.44

Development continues using various manufacturing techniques
(bias ply, belted, radial, studs), tread patterns, and rubber compounds,
so that it is not possible to present average values applicable to present
conditions.

Sleds For unshod wooden runners on smooth wood or stone surfaces,
f 5 0.07 (0.15) when tallow (dry soap) is used as a lubricant ( 5 0.38
when not lubricated); on snow and ice, f 5 0.035. For runners with metal
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shoes on snow and ice, f 5 0.02. Rennie found for steel on ice, f 5 0.014.
However, as the temperature falls, the coefficient of friction will get
larger. Bowden cites the following data for brass on ice:

Temperature, °C f

0 0.025
2 20 0.085
2 40 0.115
2 60 0.14

surfaces well finished and clean, 0.0005 to 0.001; surfaces well oiled,
0.001 to 0.002; surfaces covered with silt , 0.003 to 0.005; surfaces
rusty, 0.005 to 0.01.

If a load L is moved on rollers (Fig. 3.2.5) and if k and k9 are the
respective coefficients of friction for the lower and upper surfaces, the
frictional force P 5 (k 1 k9)L/d.

McKibben and Davidson (Agri. Eng., 1939) give the data in Table
3.2.7 on the rolling resistance of various types of wheels for typical road
and field conditions. Note that the coefficient fr is the ratio of resistance

wit

ete

0
4
4
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ROLLING FRICTION

Rolling is substituted frequently for sliding friction, as in the case of
wheels under vehicles, balls or rollers in bearings, rollers under skids
when moving loads; frictional resistance to the rolling motion is sub-
stantially smaller than to sliding motion. The fact that a resistance arises
to rolling motion is due to several factors: (1) the contacting surfaces are
elastically deflected, so that , on the finite size of the contact , relative
sliding occurs, (2) the deflected surfaces dissipate energy due to internal
friction (hysteresis), (3) the surfaces are imperfect so that contact takes
place on asperities ahead of the line of centers, and (4) surface adhesion
phenomena. The coefficient of rolling friction fr 5 P/L where L is the
load and P is the frictional resistance.

The frictional resistance P to the rolling of a cylinder under a load L
applied at the center of the roller (Fig. 3.2.5) is inversely proportional to
the radius r of the roller; P 5 (k/r)L. Note that k has the dimensions of
length. Quite often k increases with load, particularly for cases involv-

Fig. 3.2.5

ing plastic deformations. Values of k, in inches, are as follows: hard-
wood on hardwood, 0.02; iron on iron, steel on steel, 0.002; hard pol-
ished steel on hard polished steel, 0.0002 to 0.0004.

Data on rolling friction are scarce. Noonan and Strange give, for steel
rollers on steel plates and for loads varying from light to those causing a
permanent set of the material, the following values of k, in inches:

Table 3.2.7 Coefficients of Rolling Friction fr for Wheels

Inflation
Wheel press, lb/in2 Load, lb Concr

2.5 3 36 steel
4 3 24 steel
4.00–18 4-ply 20

1,000
500
500

0.01
0.03
0.03
4 3 36 steel
4.00–30 4-ply
4.00–36 4-ply
5.00–16 4-ply
6 3 28 steel
6.00–16 4-ply
6.00–16 4-ply*
7.50–10 4-ply†
7.50–16 4-ply
7.50–28 4-ply
8 3 48 steel
7.50–36 4-ply
9.00–10 4-ply†
9.00–16 6-ply

36
36
32

20
30
20
20
16

16
20
16

1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,000
1,500
1,500
1,500
1,500
1,000
1,500

0.019
0.018
0.017
0.031
0.023
0.027
0.031
0.029
0.023
0.026
0.013
0.018
0.031
0.042

* Skid-ring tractor tire.
† Ribbed tread tractor tire.
All other pneumatic tires with implement-type tread.
force to load.
Moyer found the following average values of fr for pneumatic rubber

tires properly inflated and loaded: hard road, 0.008; dry, firm, and well-
packed gravel, 0.012; wet loose gravel, 0.06.

FRICTION OF MACHINE ELEMENTS

Work of Friction—Efficiency In a simple machine or assemblage of
two elements, the work done by an applied force P acting through the
distance s is measured by the product Ps. The useful work done is less
and is measured by the product Ll of the resistance L by the distance l
through which it acts. The efficiency e of the machine is the ratio of the
useful work performed to the total work received, or e 5 Ll/Ps. The
work expended in friction Wf is the difference between the total work
received and the useful work, or Wf 5 Ps 2 Ll. The lost-work ratio 5 V
5 Wf /Ll, and e 5 1/(1 1 V).

If a machine consists of a train of mechanisms having the respective
efficiencies e1, e2, e3 . . . en, the combined efficiency of the machine
is equal to the product of these efficiencies.

Efficiencies of Machines and Machine Elements The values for
machine elements in Table 3.2.8 are from ‘‘Elements of Machine De-
sign,’’ by Kimball and Barr. Those for machines are from Goodman’s
‘‘Mechanics Applied to Engineering.’’ The quantities given are per-
centage efficiencies.

N
2

N
2

Fig. 3.2.6

h Steel and Pneumatic Tires

Loose snow
Bluegrass Tilled Loose 10–14 in

sod loam sand deep

0.087
0.082
0.058

0.384
0.468
0.366

0.431
0.504
0.392

0.106
0.282
0.210
0.074
0.057
0.050
0.062
0.094
0.060
0.070
0.061
0.055
0.052
0.065
0.046
0.060
0.054

0.367
0.322
0.294
0.388
0.368
0.319
0.401
0.379
0.280
0.197
0.236
0.185
0.331
0.249

0.413
0.319
0.277
0.460
0.477
0.338
0.387
0.429
0.322
0.205
0.264
0.177
0.388
0.272

0.156
0.146

0.118
0.0753

0.099
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Wedges

Sliding in V Guides If a wedge-shaped slide having an angle 2b is
pressed into a V guide by a force P (Fig. 3.2.6), the total force normal to
the wedge faces will be N 5 P/sin b. A friction force F, opposing
motion along the longitudinal axis of the wedge, arises by virtue of the
coefficient of friction f between the contacting surface of the wedge and
guides: F 5 fN 5 fP/sin b. In these formulas, the fact that the elasticity
of the materials permits an advance of the wedge into the guide under
the load P has been neglected. The common efficiency for V guides is

of a single-threaded screw), both in inches; b 5 angle of inclination of
thread to a plane at right angles to the axis of screw (tan b 5 l/2pr); and
f 5 coefficient of sliding friction 5 tan a. Then for a screw in uniform

motion (friction of the root and outside
surfaces being neglected) there is re-
quired a force P acting at right angles to
the axis at the distance r. P 5
L tan (b 6 a) 5 L(l 6 2prf )/(2pr 6 f l),
where the upper signs are for motion in a
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e 5 0.88 to 0.90.
Taper Keys In Fig. 3.2.7 if the key is moved in the direction of the

force P, the force H must be overcome. The supporting reactions K1, K2,
and K3 together with the required force P may be obtained by drawing
the force polygon (Fig. 3.2.8). The friction angles of these faces are a1,
a2, and a3, respectively. In Fig. 3.2.8, draw AB parallel to H in Fig.
3.2.7, and lay it off to scale to represent H. From the point A, draw AC

Fig. 3.2.7 Fig. 3.2.8

parallel to K1, i.e., making the angle b 1 a1 with AB; from the other
extremity of AB, draw BC parallel to K2 in Fig. 3.2.7. AC and CB then
give the magnitudes of K1 and K2, respectively. Now through C draw
CD parallel to K3 to its intersection with AD which has been drawn
through A parallel to P. The magnitudes of K3 and P are then given by
the lengths of CD and DA.

By calculation,

K1/H 5 cos a2 /cos (b 1 a1 1 a2)
P/K1 5 sin (b 1 a1 1 a3)/cos a3

P/H 5 cos a2 sin (b 1 a1 1 a3)/cos a3 cos (b 1 a1 1 a2)

If a1 5 a2 5 a3 5 a, then P 5 H tan (b 1 2a), and efficiency e 5
tan b/tan (b 1 2a). Force required to loosen the key 5 P1 5 H tan
(2a 2 b). In order for the key not to slide out when force P is removed, it
is necessary that b , (a1 1 a3), or b , 2a.

The forces acting upon the taper key of Fig. 3.2.9 may be found in a
similar way (see Fig. 3.2.10).

P 5 2H cos a sin (b 1 a)/cos (b 1 2a)
5 2H tan (b 1 a)/[1 2 tan a tan (b 1 a)]
5 2H tan (b 1 a) approx

The force to loosen the key is P1 5 2H tan (a 2 b) approx, and the
efficiency e 5 tan b/tan (b 1 a). The key will be self-locking when
b , a, or, more generally, when 2b , (a1 1 a3).

Fig. 3.2.9 Fig. 3.2.10

Screws

Screws with Square Threads (Fig. 3.2.11) Let r 5 mean radius of
the thread 5 1⁄2 (radius at root 1 outside radius), and l 5 pitch (or lead
Fig. 3.2.11

direction opposed to that of L and the
lower for motion in the same direction as
that of L. When b # a, the screw will not
‘‘overhaul’’ (or move under the action of
the load L).

The efficiency for motion opposed to
direction in which L acts 5 e 5
tan b/tan (b 1 a); for motion in the same
direction in which L acts, e 5
tan (b 2 a)/tan b.

The value of e is a maximum when b 5
45° 2 1⁄2a; e.g., emax 5 0.81 for b 5 42° and f 5 0.1. Since e increases
rapidly for values of b up to 20°, this angle is generally not exceeded;
for b 5 20°, and f1 5 0.10, e 5 0.74. In presses, where the mechanical
advantage is required to be great , b is taken down to 3°, for which value
e 5 0.34 with f 5 0.10.

Kingsbury found for square-threaded screws running in loose-fitting
nuts, the following coefficients of friction: lard oil, 0.09 to 0.25; heavy
mineral oil, 0.11 to 0.19; heavy oil with graphite, 0.03 to 0.15.

Ham and Ryan give for screws the following values of coefficients of
friction, with medium mineral oil: high-grade materials and workman-
ship, 0.10; average quality materials and workmanship, 0.12; poor
workmanship, 0.15. The use of castor oil as a lubricant lowered f from
0.10 to 0.066. The coefficients of static friction (at starting) were 30
percent higher. Table 3.2.8 gives representative values of efficiency.

Screws with V Threads (Fig.3.2.12) Let c 5 half the angle between
the faces of a thread. Then, using the same notation as for square-
threaded screws, for a screw in motion (neglecting friction of root and
outside surfaces),

P 5 L(l 6 2prf sec d)/(2pr 6 lf sec d)

d is the angle between a plane normal to the axis of the screw through
the point of the resultant thread friction, and a plane which is tangent to

Table 3.2.8 Efficiencies of Machines and Machine Elements

Common bearing (singly) 96–98
Common bearing, long lines of shafting 95
Roller bearings 98
Ball bearings 99
Spur gear, including bearings

Cast teeth 93
Cut teeth 96

Bevel gear, including bearings
Cast teeth 92
Cut teeth 95

Worm gear
Thread angle, 30° 85–95
Thread angle, 15° 75–90

Belting 96–98
Pin-connected chains (bicycle) 95–97
High-grade transmission chains 97–99
Weston pulley block (1⁄2 ton) 30–47
Epicycloidal pulley block 40–45
1-ton steam hoist or windlass 50–70
Hydraulic windlass 60–80
Hydraulic jack 80–90
Cranes (steam) 60–70
Overhead traveling cranes 30–50
Locomotives (drawbar hp/ihp) 65–75
Hydraulic couplings, max 98
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the surface of the thread at the same point (see Groat , Proc. Engs. Soc.
West. Penn, 34). Sec d 5 sec c √1 2 (sin b sin c)2. For small values of
b this reduces practically to sec d 5 sec c, and, for all cases the approxi-
mation, P 5 L(l 6 2prf sec c)/(2pr 6 lf sec c) is within the limits of
probable error in estimating values to be used for f.

In the case of worm gearing when the shafts are normal to each other
(b 1 c 5 90), the efficiency is e 5 tan c/tan (c 1 a) 5 (1 2 pf/2pr)/(1
1 2prf/p), where c is the spiral angle of the worm wheel, or the lead
angle of the worm; p the lead, or pitch of the worm thread; and r the
mean radius of the worm. Typical values of f are shown in Table 3.2.9.

Journals and Bearings

Friction of Journal Bearings If P 5 total load on journal, l 5 jour-
nal length, and 2r 5 journal diameter, then p 5 P/2rl 5 mean normal

ars

200
(61)
.04

.05
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 C

Fig. 3.2.12

The efficiencies are: e 5 tan b(1 2 f tan b sec d)/(tan b 1 f sec d) for
motion opposed to L, and e 5 (tan b 2 f sec d)/tan b(1 1 f tan b sec d)
for motion with L. If we let tan d9 5 f sec d, these equations reduce,
respectively, to e 5 tan b/tan (b 1 d9) and e 5 tan (b 2 d9)/tan b.
Negative values in the latter case merely mean that the thread will not
overhaul. Subtract the values from unity for actual efficiency, consider-
ing the external moment and not the load L as being the driver. The
efficiency of a V thread is lower than that of a square thread of the same
helix angle, since d9 . a.

For a V-threaded screw and nut, let r1 5 outside radius of thread,
r2 5 radius at root of thread, r 5 (r1 1 r2)/2, tan d9 5 f sec d, r0 5 mean
radius of nut seat 5 1.5r (approx) and f 9 5 coefficient of friction
between nut and seat .

To tighten up the nut the turning moment required is M 5 Pr 1
Lr0 f 5 Lr[tan (d9 1 b) 1 1.5f 9]. To loosen M 5 Lr[tan (d9 2 b) 1 1.5f 9].

The total tension in a bolt due to tightening up with a moment M is
T 5 2pM/(l 1 f l sec b sec d cosec b 1 f 93pr). T 4 area at root gives
unit pure tensile stress induced, St . There is also a unit torsional stress:
Ss 5 2(M 2 1.5rf 9T)/pr3

2 . The equivalent combined stress is
S 5 0.35St 1 0.65 √S2

t 1 4S2
s .

Kingsbury, from tests on U.S. standard bolts, finds efficiencies for
tightening up nuts from 0.06 to 0.12, depending upon the roughness of
the contact surfaces and the character of the lubrication.

Toothed and Worm Gearing

The efficiency of spur and bevel gearing depends on the material and the
workmanship of the gears and on the lubricant employed. For high-
speed gears of good quality the efficiency of the gear transmission is 99
percent; with slow-speed gears of average workmanship the efficiency
of 96 percent is common. On the average, efficiencies of 97 to 98
percent can be considered normal.

In helical gears, where considerable transverse sliding of the meshing
teeth on each other takes place, the friction is much greater. If b and c
are, respectively, the spiral angles of the teeth of the driving and driven
helical gears (i.e., the angle between the teeth and the axis of rotation),
b 1 c is the shaft angle of the two gears, and f 5 tan a is the coefficient
of sliding friction of the teeth, the efficiency of the gear transmission is
e 5 [cos b cos (c 1 a)]/[cos c cos (b 2 a)].

Table 3.2.9 Coefficients of Friction for Worm Ge

Rubbing speed of worm, ft /min 100
(m/min) (30.5)

Phosphor-bronze wheel, pol-
ished-steel worm

0.054 0

Single-threaded cast-iron worm
and gear

0.060 0
pressure on the projected area of the journal. Also, if f1 is the coefficient
of journal friction, the moment of journal friction for a cylindrical journal
is M 5 f1Pr. The work expended in friction at angular velocity v is

Wf 5 vM 5 f1Prv

For the conical bearing (Fig. 3.2.13) the mean radius rm 5 (r 1 R)/2 is to
be used.

rm

Fig. 3.2.13

Values of Coefficient of Friction For very low velocities of rotation
(e.g., below 10 r/min), high loads, and with good lubrication, the coef-
ficient of friction approaches the value of greasy friction, 0.07 to 0.15
(see Table 3.2.4). This is also the ‘‘pullout’’ coefficient of friction on
starting the journal. With higher velocities, a fluid film is established
between the journal and bearing, and the values of the coefficient of
friction depend on the speed of rotation, the pressure on the bearing, and
the viscosity of the oil. For journals running in complete bearing bush-
ings, with a small clearance, i.e., with the diameter of the bushing
slightly larger than the diameter of the journal, the experimental data
of McKee give approximate values of the coefficient of friction as in
Fig. 3.2.14.

Fig. 3.2.14 Coefficient of friction of journal.

If d1 is the diameter of the bushing in inches, d the diameter of the
journal in inches, then (d1 2 d) is the diametral clearance and m 5
(d1 2 d)/d is the clearance ratio. The diagram of McKee (Fig. 3.2.14)
gives the coefficient of friction as a function of the characteristic num-

300 500 800 1200
(91.5) (152) (244) (366)

5 0.039 0.030 0.024 0.020

1 0.047 0.034 0.025
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ber ZN/p, where N is the speed of rotation in revolutions per minute,
p 5 P/(dl) is the average pressure in lb/in2 on the projected area of the
bearing, P is the load, l is the axial length of the bearing, and Z is the
absolute viscosity of the oil in centipoises. Approximate values of Z at
100 (130)°F are as follows: light machine oil, 30 (16); medium machine
oil, 60 (25); medium-heavy machine oil, 120 (40); heavy machine oil,
160 (60).

For purposes of design of ordinary machinery with bearing pressures
from 50 to 300 lb/in2 (344.7 to 2,068 kN/m2) and speeds of 100 to

d of the circle, called the friction circle, for each individual joint , is equal
to fD, where D is the diameter of the pin and f is the coefficient of
friction between the pin and the link. The choice of the proper disposi-
tion of the tangent AA with respect to the two friction circles is dictated
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3,000 rpm, values for the coefficient of journal friction can be taken
from 0.008 to 0.020.

Thrust Bearings

Frictional Resistance for Flat Ring Bearing Step bearings or pivots
may be used to resist the end thrust of shafts. Let L 5 total load in the
direction of the shaft axis and f 5 coefficient of sliding friction.

For a ring-shaped flat step bearing such as that shown in Fig. 3.2.15
(or a collar bearing), the moment of thrust friction M 5 1⁄3 fL(D3 2 d3)/
(D2 2 d 2). For a flat circular step bearing, d 5 0, and M 5 1⁄3 fLD.

Fig. 3.2.15

The value of the coefficient of sliding friction is 0.08 to 0.15 when the
speed of rotation is very slow. At higher velocities when a collar or step
bearing is used, f 5 0.04 to 0.06. If the design provides for the formation
of a load carrying oil film, as in the case of the Kingsbury thrust bearing,
the coefficient of friction has values f 5 0.001 to 0.0025.

Where oil is supplied from an external pump with such pressure as to
separate the surfaces and provide an oil film of thickness h (Fig. 3.2.15),
the frictional moment is

M 5
Zn(D4 2 d4)

67 3 107 h
5

pmv(D4 2 d4)

32 h

where D and d are in inches, m is the absolute viscosity, v is the angular
velocity, h is the film thickness, in, Z is viscosity of lubricant in centi-
poises, and n is rotation speed, r/min. With this kind of lubrication the
frictional moment depends upon the speed of rotation of the shaft and
actually approaches zero for zero shaft speeds. The thrust load will be
carried on a film of oil regardless of shaft rotation for as long as the
pump continues to supply the required volume and pressure (see also
Secs. 8 and 14).

EXAMPLE. A hydrostatic thrust bearing carries 101,000 lb, D is 16 in, d is
10 in, oil-film thickness h is 0.006 in, oil viscosity Z, 30 centipoises at operating
temperature, and n is 750 r/min. Substituting these values, the frictional torque M
is 310 in ? lb (358 cm ? kg). The oil supply pressure was 82.5 lb/in2 (569 kN/m2);
the oil flow, 12.2 gal /min (46.2 l /min).

Frictional Forces in Pin Joints of Mechanisms

In the absence of friction, or when the effect of friction is negligible, the
force transmitted by the link b from the driver a to the driven link c
(Figs. 3.2.16 and 3.2.17) acts through the centerline OO of the pins
connecting the link b with links a and c. With friction, this line of action
shifts to the line AA, tangent to small circles of diameter d. The diameter
Fig. 3.2.16 Fig. 3.2.17

by the consideration that friction always opposes the action of the link-
age. The force f opposes the motion of a; therefore, with friction it acts
on a longer lever than without friction (Figs. 3.2.16 and 3.2.17). On the
other hand, the force F drives the link c; friction hinders its action, and
the equivalent lever is shorter with friction than without friction; the
friction throws the line of action toward the center of rotation of link c.

EXAMPLE. An engine eccentric (Fig. 3.2.18) is a joint where the friction loss
may be large. For the dimensions shown and with a torque of 250 in ? lb applied to
the rotating shaft , the resultant horizontal force, with no friction, will act through
the center of the eccentric and be 250/(2.5 sin 60) or 115.5 lb. With friction
coefficient 0.1, the resultant force (which for a long rod remains approximately
horizontal) will be tangent to the friction circle of radius 0.1 3 5, or 0.5 in, and
have a magnitude of 250/(2.5 sin 60 1 0.5), or 93.8 lb (42.6 kg).

Fig. 3.2.18

Tension Elements

Frictional Resistance In Fig. 3.2.19, let T1 and T2 be the tensions
with which a rope, belt , chain, or brake band is strained over a drum,
pulley, or sheave, and let the rope or belt be on the point of slipping
from T2 toward T1 by reason of the difference of tension T1 2 T2 . Then
T1 2 T2 5 circumferential force P transferred by friction must be equal

Fig. 3.2.19

to the frictional resistance W of the belt , rope, or band on the drum or
pulley. Also, let a 5 angle subtending the arc of contact between the
drum and tension element . Then, disregarding centrifugal forces,

T1 5 T2e fa and P 5 (e fa 2 1)T1/e fa 5 (e fa 2 1)T2 5 W

where e 5 base of the napierian system of logarithms 5 2.1781.



MECHANICS OF FLUIDS 3-29

Table 3.2.10 Values of efa

fa°

360° 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1
0.2
0.3
0.4
0.425

1.06
1.13
1.21
1.29
1.31

1.1
1.21
1.32
1.46
1.49

1.13
1.29
1.45
1.65
1.70

1.17
1.37
1.60
1.87
1.95

1.21
1.46
1.76
2.12
2.23

1.25
1.55
1.93
2.41
2.55

1.29
1.65
2.13
2.73
2.91

1.33
1.76
2.34
3.10
3.33

1.37
1.87
2.57
3.51
3.80

0.45
0.475
0.5
0.525
0.55

1.33
1.35
1.37
1.39
1.41

1.53
1.56
1.60
1.64
1.68

1.76
1.82
1.87
1.93
2.00

2.03
2.11
2.19
2.28
2.37

2.34
2.45
2.57
2.69
2.82

2.69
2.84
3.00
3.17
3.35

3.10
3.30
3.51
3.74
3.98

3.57
3.83
4.11
4.41
4.74

4.11
4.45
4.81
5.20
5.63

0.6
0.7
0.8
0.9
1.0

1.46
1.55
1.65
1.76
1.87

1.76
1.93
2.13
2.34
2.57

2.13
2.41
2.73
3.10
3.51

2.57
3.00
3.51
4.11
4.81

3.10
3.74
4.52
5.45
6.59

3.74
4.66
5.81
7.24
9.02

4.52
5.81
7.47
9.60

12.35

5.45
7.24
9.60

12.74
16.90

6.59
9.02

12.35
16.90
23.14

1.5
2.0
2.5
3.0
3.5

2.57
3.51
4.81
6.59
9.02

4.11
6.59

10.55
16.90
27.08

6.59
12.35
23.14
43.38
81.31

10.55
23.14
50.75

111.32
244.15

16.90
43.38

111.32
285.68
733.14

27.08
81.31

244.15
733.14

2,199.90

43.38
152.40
535.49

1,881.5
6,610.7

69.49
285.68

1,174.5
4,828.5

19,851

111.32
535.49

2,575.9
12,391
59,608

4.0 12.35 43.38 152.40 535.49 1,881.5 6,610.7 23,227 81,610 286,744

NOTE: ep 5 23.1407, log ep 5 1.3643764.

f is the static coefficient of friction ( f0) when there is no slip of the
belt or band on the drum and the coefficient of kinetic friction ( f ) when
slip takes place. For ease of computation, the values of the quantity e fa

are tabulated on Table 3.2.10.
Average values of f0 for belts, ropes, and brake bands are as follows:

for leather belt on cast-iron pulley, very greasy, 0.12; slightly greasy,
0.28; moist , 0.38. For hemp rope on cast-iron drum, 0.25; on wooden
drum, 0.40; on rough wood, 0.50; on polished wood, 0.33. For iron
brake bands on cast-iron pulleys, 0.18. For wire ropes, Tichvinsky re-

and aB can be calculated from

aA 5 [ ln(T1/T2)]/fA aB 5 [ ln(T1/T2)]/fB
where fA and fB are the coefficients of friction on pulleys A and B,
respectively. To calculate the above values, it is necessary to know the
mean tension of the belt , T 5 (T1 1 T2)/2. Then, T1/T2 5 [T 1
M/(2R)]/[T 2 M/(2R)]. In this configuration, when the slip angles be-
come equal to p (180°), complete slip occurs.

It is interesting to note that torque is transmitted only over the slip

IC
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ports coefficients of static friction, f0 , for a 5⁄8 rope (8 3 19) on a
worn-in cast-iron groove: 0.113 (dry); for mylar on aluminum, 0.4 to
0.7.

Belt Transmissions; Effects of Belt Compliance

In the configuration of Fig. 3.2.20, pulley A drives a belt at angular
velocity vA . Pulley B, here assumed to be of the same radius R as A, is
driven at angular velocity vB . If the belt is extensible and the resistive
torque M 5 (T1 2 T2) R is applied at B, vB will be smaller than vA and
power will be dissipated at a rate W 5 M(vA 2 vB). Likewise, the
surface velocity V1 of the more stretched belt will be larger than V2 . No
slip will take place over the wraps AT -AS and BT -BS . The slip angles aA

3.3 MECHAN
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arcs aA and aB since there is no tension variation in the arcs AT -AS and
BT -BS where the belt is in a uniform state of stretch.
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Fig. 3.2.20 Pulley transmission with extensible belt.
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Notation

a 5 acceleration, area, exponent
A 5 area
c 5 velocity of sound
C 5 coefficient
C 5 Cauchy number

Cp 5 pressure coefficient
d 5 diameter, distance
E 5 bulk modulus of elasticity, modulus of elasticity (Young’s

p 5 3.14159 . . . , dimensionless ratio
r 5 density
s 5 surface tension
t 5 unit shear stress
v 5 rotational speed

FLUIDS AND OTHER SUBSTANCES

Substances may be classified by their response when at rest to the impo-
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modulus), velocity of approach factor, specific energy
E 5 Euler number
f 5 frequency, friction factor

F 5 dimension of force, force
F 5 Froude number
g 5 acceleration due to gravity

gc 5 proportionality constant 5 32.1740 lmb/(lbf ) (ft /s2)
G 5 mass velocity
h 5 head, vertical distance below a liquid surface
H 5 geopotential altitude
i 5 ideal
I 5 moment of inertia
J 5 mechanical equivalent of heat , 778.169 ft ? lbf
k 5 isentropic exponent , ratio of specific heats
K 5 constant , resistant coefficient , weir coefficient
K 5 flow coefficient
L 5 dimension of length, length
m 5 mass, lbm
~m 5 mass rate of flow, lbm/s

M 5 dimension of mass, mass (slugs)
~M 5 mass rate of flow, slugs/s

M 5 Mach number
n 5 exponent for a polytropic process, roughness factor
N 5 dimensionless number
p 5 pressure
P 5 perimeter, power
q 5 heat added
q 5 flow rate per unit width
Q 5 volumetric flow rate
r 5 pressure ratio, radius
R 5 gas constant , reactive force
R 5 Reynolds number
Rh 5 hydraulic radius

s 5 distance, second
sp. gr. 5 specific gravity

S 5 scale reading, slope of a channel
S 5 Strouhal number
t 5 time

T 5 dimension of time, absolute temperature
u 5 internal energy
U 5 stream-tube velocity
v 5 specific volume
V 5 one-dimensional velocity, volume
V 5 velocity ratio
W 5 work done by fluid
W 5 Weber number

x 5 abscissa
y 5 ordinate
Y 5 expansion factor
z 5 height above a datum
Z 5 compressibility factor, crest height
a 5 angle, kinetic energy correction factor
b 5 ratio of primary element diameter to pipe diameter
g 5 specific weight
d 5 boundary-layer thickness
« 5 absolute surface roughness
u 5 angle
m 5 dynamic viscosity
n 5 kinematic viscosity
sition of a shear force. Consider the two very large plates, one moving,
the other stationary, separated by a small distance y as shown in Fig.
3.3.1. The space between these plates is filled with a substance whose
surfaces adhere to these plates in such a manner that its upper surface
moves at the same velocity as the upper plate and the lower surface is
stationary. The upper surface of the substance attains a velocity of U as
the result of the application of shear force Fs. As y approaches dy, U
approaches dU, and the rate of deformation of the substance becomes
dU/dy. The unit shear stress is defined by t 5 Fs /As, where As is the shear
or surface area. The deformation characteristics of various substances
are shown in Fig. 3.3.2.

Fig. 3.3.1 Flow of a substance between parallel plates.

An ideal or elastic solid will resist the shear force, and its rate of
deformation will be zero regardless of loading and hence is coincident
with the ordinate of Fig. 3.3.2. A plastic will resist the shear until its
yield stress is attained, and the application of additional loading will
cause it to deform continuously, or flow. If the deformation rate is
directly proportional to the flow, it is called an ideal plastic.

1

Fig. 3.3.2 Deformation characteristics of substances.
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If the substance is unable to resist even the slightest amount of shear
without flowing, it is a fluid. An ideal fluid has no internal friction, and
hence its deformation rate coincides with the abscissa of Fig. 3.3.2. All
real fluids have internal friction so that their rate of deformation is
proportional to the applied shear stress. If it is directly proportional, it is
called a Newtonian fluid; if not , a non-Newtonian fluid.

Two kinds of fluids are considered in this section, incompressible and
compressible. A liquid except at very high pressures and/or temperatures
may be considered incompressible. Gases and vapors are compressible

The bulk modulus of elasticity E of a fluid is the ratio of the pressure
stress to the volumetric strain. Its dimensions are F/L2. The units are
lbf/in2 or lbf/ft2. E depends upon the thermodynamic process causing
the change of state so that Ex 5 2 v(­p/­v)x , where x is the process. For
ideal gases, ET 5 p for an isothermal process and Es 5 kp for an
isentropic process where k is the ratio of specific heats. Values of ET and
ES for liquids are given in Table 3.3.2. For liquids, a mean value is
used by integrating the equation over a finite interval, or Exm 5
2 v1(Dp/Dv)x 5 v1(p2 2 p1)/(v1 2 v2)x.

ss
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fluids, but only ideal gases (those that follow the ideal-gas laws) are
considered in this section. All others are covered in Secs. 4.1 and 4.2.

FLUID PROPERTIES

The density r of a fluid is its mass per unit volume. Its dimensions
are M/L3. In fluid mechanics, the units are slugs/ft3 and lbf ?s2/ft4)
(515.3788 kg/m3), but in thermodynamics (Sec. 4.1), the units are lbm/
ft3 (16.01846 kg/m3). Numerical values of densities for selected liquids
are shown in Table 3.3.1. The temperature change at 68°F (20°C) re-
quired to produce a 1 percent change in density varies from 12°F
(6.7°C) for kerosene to 99°F (55°C) for mercury.

The specific volume v of a fluid is its volume per unit mass. Its dimen-
sions are L3/M. The units are ft3/ lbm. Specific volume is related to
density by v 5 1 /rgc, where gc is the proportionality constant [32.1740
(lbm/lbf )(ft /s2)]. Specific volumes of ideal gases may be computed
from the equation of state: v 5 RT/p, where R is the gas constant in
ft ? lbf/(lbm)(°R) (see Sec. 4.1), T is the temperature in degrees Ran-
kine (°F 1 459.67), and p is the pressure in lbf/ft2 abs.

The specific weight g of a fluid is its weight per unit volume and has
dimensions of F/L3 or M/(L2)(T 2). The units are lbf/ft3 or slugs/(ft2)(s2)
(157.087 N/m3). Specific weight is related to density by g 5 rg, where
g is the acceleration of gravity.

The specific gravity (sp. gr.) of a substance is a dimensionless ratio of
the density of a fluid to that of a reference fluid. Water is used as the
reference fluid for solids and liquids, and air is used for gases. Since the
density of liquids changes with temperature for a precise definition of
specific gravity, the temperature of the fluid and the reference fluid
should be stated, for example, 60/60°F, where the upper temperature
pertains to the liquid and the lower to water. If no temperatures are
stated, reference is made to water at its maximum density, which occurs
at 3.98°C and atmospheric pressure. The maximum density of water is
1.9403 slugs/ft3 (999.973 kg/m3). See Sec. 1.2 for conversion factors
for API and Baumé hydrometers. For gases, it is common practice to use
the ratio of the molecular weight of the gas to that of air (28.9644), thus
eliminating the necessity of stating the pressure and temperature for
ideal gases.

Table 3.3.1 Density of Liquids at Atmospheric Pre

Temp:
°C 0 20
°F 32 68

Liquid

Alcohol, ethyl f

Benzenea,b

Carbon tetrachloridea,b

1.564
1.746
3.168

1.532
1.705
3.093
Gasoline,c sp. gr. 0.68
Glycerina,b

Kerosene,c sp. gr. 0.81
Mercuryb

Oil, machine,c sp. gr. 0.907
Water, freshd

Water, salt e

1.345
2.472
1.630

26.379
1.778
1.940
1.995

1.310
2.447
1.564

26.283
1.752
1.937
1.988

SOURCES: Computed from data given in:
a ‘‘Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber C
b ‘‘Smithsonian Physical Tables,’’ 9th rev. ed., 1954.
c ASTM-IP, ‘‘Petroleum Measurement Tables.’’
d ‘‘Steam Tables,’’ ASME, 1967.
e ‘‘American Institute of Physics Handbook,’’ 3d ed., McGraw-Hill, 1
f ‘‘International Critical Tables,’’ McGraw-Hill.
EXAMPLE. What pressure must be applied to ethyl alcohol at 68°F (20°C) to
produce a 1 percent decrease in volume at constant temperature?

Dp 5 2 ET(Dv/v) 5 2 (130,000)(2 0.01)
5 1,300 lbf/in2 (9 3 106 N/m2)

In a like manner, the pressure required to produce a 1 percent decrease in the
volume of mercury is found to be 35,900 lbf/in2 (248 3 106 N/m2). For most
engineering purposes, liquids may be considered as incompressible fluids.

The acoustic velocity, or velocity of sound in a fluid, is given by c 5 √Es /r. For
an ideal gas c 5 √kp/r 5 √kgcpv 5 √kgcRT. Values of the speed of sound in
liquids are given in Table 3.3.2.

EXAMPLE. Check the value of the velocity of sound in benzene at 68°F
(20°C) given in Table 3.3.2 using the isentropic bulk modulus. c 5 √Es /r 5

√144 3 223,000/1.705 5 4,340 ft /s (1,320 m/s). Additional information on the
velocity of sound is given in Secs. 4, 11, and 12.

Application of shear stress to a fluid results in the continual and
permanent distortion known as flow. Viscosity is the resistance of a fluid
to shear motion—its internal friction. This resistance is due to two
phenomena: (1) cohesion of the molecules and (2) molecular transfer
from one layer to another, setting up a tangential or shear stress. In
liquids, cohesion predominates, and since cohesion decreases with in-
creasing temperature, the viscosity of liquids does likewise. Cohesion is
relatively weak in gases; hence increased molecular activity with in-
creasing temperature causes an increase in molecular transfer with
corresponding increase in viscosity.

The dynamic viscosity m of a fluid is the ratio of the shearing stress to
the rate of deformation. From Fig. 3.3.1, m 5 t/(dU/dy). Its dimensions
are (F)(T)/L2 or M/(L)(T). The units are lbf ?s/ft2 or slugs/(ft)(s)
[47.88026(N ?s)/m2].

In the cgs system, the unit of dynamic viscosity is the poise,
2,089 3 1026 (lbf ?s)/ft2 [0.1 (N ?s)/m2], but for convenience the
centipoise (1/100 poise) is widely used. The dynamic viscosity of water
at 68°F (20°C) is approximately 1 centipoise.

Table 3.3.3 gives values of dynamic viscosity for selected liquids at
atmospheric pressure. Values of viscosity for fuels and lubricants are
given in Sec. 6. The effect of pressure on liquid viscosity is generally

ure

40 60 80 100
104 140 176 212

r, slugs/ft3 (515.4 kg/m3)

1.498
1.663
3.017

1.463
1.621
2.940

1.579
2.857
1.275
2.423
1.536

26.188
1.727
1.925
1.975

1.239
2.398
1.508

26.094
1.702
1.908

2.372
1.480

26.000
1.677
1.885

2.346

25.906
1.651
1.859

ompany, 1971–1972.

972.
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Table 3.3.2 Bulk Modulus of Elasticity, Ratio of Specific Heats of Liquids and Velocity of
Sound at One Atmosphere and 68°F (20°C)

E in lbf/in2 (6,895 N/m2)

Liquid Isothermal ET Isentropic Es

k 5
cp /cv

c in ft /s
(0.3048 m/s)

Alcohol, ethyla,e

Benzenea, f

Carbon tetrachloridea,b

Glycerin f

Kerosene,a,e sp. gr. 0.81
Mercurye

Oil, machine,f sp. gr. 0.907
Water, fresha

Water, salta,e

130,000
154,000
139,000
654,000
188,000

3,590,000
189,000
316,000
339,000

155,000
223,000
204,000
719,000
209,000

4,150,000
219,000
319,000
344,000

1.19
1.45
1.47
1.10
1.11
1.16
1.13
1.01
1.01

3,810
4,340
3,080
6,510
4,390
4,770
4,240
4,860
4,990

SOURCES: Computed from data given in:
a ‘‘Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber Company, 1971–1972.
b ‘‘Smithsonian Physical Tables,’’ 9th rev. ed., 1954.
c ASTM-IP, ‘‘Petroleum Measurement Tables.’’
d ‘‘Steam Tables,’’ ASME, 1967.
e ‘‘American Institute of Physics Handbook,’’ 3d ed., McGraw-Hill, 1972.
f ‘‘International Critical Tables,’’ McGraw-Hill.

Table 3.3.3 Dynamic Viscosity of Liquids at Atmospheric Pressure

Temp:
°C 0 20 40 60 80 100
°F 32 68 104 140 176 212

Liquid m, (lbf ? s)/(ft2 ) [47.88 (N ? s)/(m2)] 3 106

Alcohol, ethyla,e

Benzenea

Carbon tetrachloridee

Gasoline,b sp. gr. 0.68
Glycerind

Kerosene,b sp. gr. 0.81
Mercurya

Oil, machine,a sp. gr. 0.907
‘‘Light’’
‘‘Heavy’’
Water, freshc

Water, saltd

37.02
19.05
28.12
7.28

252,000
61.8
35.19

7,380
66,100
36.61
39.40

25.06
13.62
20.28
5.98

29,500
38.1
32.46

1.810
9,470
20.92
22.61

17.42
10.51
15.41
4.93

5,931
26.8
30.28

647
2,320
13.61
18.20

12.36
8.187
12.17
4.28

1,695
20.3
28.55

299
812

9.672

9.028
6.871
9.884

666.2
16.3
27.11

164
371

7.331

309.1

25.90

102
200

5.827

SOURCES: Computed from data given in:
a ‘‘Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber Company, 1971–1972.
b ‘‘Smithsonian Physical Tables,’’ 9th rev. ed., 1954.
c ‘‘Steam Tables,’’ ASME, 1967.
d ‘‘American Institute of Physics Handbook,’’ 3d ed., McGraw-Hill, 1972.
e ‘‘International Critical Tables,’’ McGraw-Hill.

Table 3.3.4 Viscosity of Gases at One Atmosphere

Temp:
°C 0 20 60 100 200 400 600 800 1000
°F 32 68 140 212 392 752 1112 1472 1832

Gas m, (lbf ? s)/(ft2) [47.88(N ? s)/(m2)] 3 108

Air*
Carbon dioxide*
Carbon monoxide†
Helium*
Hydrogen*,†
Methane*
Nitrogen*,†
Oxygen†
Steam‡

35.67
29.03
34.60
38.85
17.43
21.42
34.67
40.08

39.16
30.91
36.97
40.54
18.27
22.70
36.51
42.33
18.49

41.79
35.00
41.57
44.23
20.95
26.50
40.14
46.66
21.89

45.95
38.99
45.96
47.64
21.57
27.80
43.55
50.74
25.29

53.15
47.77
52.39
55.80
25.29
33.49
51.47
60.16
33.79

70.42
62.92
66.92
71.27
32.02
43.21
65.02
76.60
50.79

80.72
74.96
79.68
84.97
38.17

76.47
90.87
67.79

91.75
87.56
91.49
97.43
43.92

86.38
104.3
84.79

100.8
97.71

102.2

49.20

95.40
116.7

SOURCES: Computed from data given in:
* ‘‘Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber Company, 1971–1972.
† ‘‘Tables of Thermal Properties of Gases,’’ NBS Circular 564, 1955.
‡ ‘‘Steam Tables,’’ ASME, 1967.
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unimportant in fluid mechanics except in lubricants (Sec. 6). The vis-
cosity of water changes little at pressures up to 15,000 lbf/in2, but for
animal and vegetable oils it increases about 350 percent and for mineral
oils about 1,600 percent at 15,000 lbf/in2 pressure.

The dynamic viscosity of gases is primarily a temperature function
and essentially independent of pressure. Table 3.3.4 gives values of
dynamic viscosity of selected gases.

The kinematic viscosity n of a fluid is its dynamic viscosity divided by
its density, or n 5 m/r. Its dimensions are L2/T. The units are ft2/s

22 2

The vapor pressure pv of a fluid is the pressure at which its liquid and
vapor are in equilibrium at a given temperature. See Secs. 4.1 and 4.2
for further definitions and values.
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(9.290304 3 10 m /s).
In the cgs system, the unit of kinematic viscosity is the stoke

(1 3 1024 m2/s2), but for convenience, the centistoke (1/100 stoke) is
widely used. The kinematic viscosity of water at 68°F (20°C) is approx-
imately 1 centistoke.

The standard device for experimental determination of kinematic viscos-
ity in the United States is the Saybolt Universal viscometer. It consists
essentially of a metal tube and an orifice built to rigid specifications and
calibrated. The time required for a gravity flow of 60 cubic centimeters
is called the SSU (Saybolt seconds Universal). Approximate conver-
sions of SSU to stokes may be made as follows:

32 , SSU , 100 seconds, stokes 5 0.00226 (SSU) 2 1.95/(SSU)
SSU . 100 seconds, stokes 5 0.00220 (SSU) 2 1.35/(SSU)

For viscous oils, the Saybolt Furol viscometer is used. Approximate
conversions of SSF (saybolt seconds Furol) may be made as follows:

25 , SSF , 40 seconds, stokes 5 0.0224 (SSF) 2 1.84/(SSF)
SSF . 40 seconds, stokes 5 0.0216 (SSF) 2 0.60/(SSF)

For exact conversions of Saybolt viscosities, see ASTM D445-71 and
Sec. 6.11.

The surface tension s of a fluid is the work done in extending the
surface of a liquid one unit of area or work per unit area. Its dimensions
are F/L. The units are lbf/ft (14.5930 N/m).

Values of s for various interfaces are given in Table 3.3.5. Surface
tension decreases with increasing temperature. Surface tension is of
importance in the formation of bubbles and in problems involving atom-
ization.

Table 3.3.5 Surface Tension of Liquids at One
Atmosphere and 68°F (20°C)

d, lbf/ft (14.59 N/m) 3 103

Liquid In vapor In air In water

Alcohol, ethyl*
Benzene*
Carbon tetrachloride*
Gasoline,* sp. gr. 0.68
Glycerin*
Kerosene,* sp. gr. 0.81
Mercury*
Oil, machine,‡ sp. gr. 0.907
Water, fresh‡
Water, salt‡

1.56
2.00
1.85

4.30

32.6§
2.5

1.53
1.98
1.83

4.35

32.8
2.6
4.99
5.04

2.40
3.08

2.7–3.6

25.7
2.3–3.7

1.3–1.6

1.6–2.2

SOURCES: Computed from data given in:
* ‘‘International Critical Tables,’’ McGraw-Hill.
† ASTM-IP, ‘‘Petroleum Measurement Tables.’’
‡ ‘‘American Institute of Physics Handbook,’’ 3d ed., McGraw-Hill, 1972.
§ In vacuum.

Capillary action is due to surface tension, cohesion of the liquid mole-
cules, and the adhesion of the molecules on the surface of a solid. This
action is of importance in fluid mechanics because of the formation of a
meniscus (curved section) in a tube. When the adhesion is greater than
the cohesion, a liquid ‘‘wets’’ the solid surface, and the liquid will rise
in the tube and conversely will fall if the reverse. Figure 3.3.3 illustrates
this effect on manometer tubes. In the reading of a manometer, all data
should be taken at the center of the meniscus.
Fig. 3.3.3 Capillarity in circular glass tubes.

FLUID STATICS

Pressure p is the force per unit area exerted on or by a fluid and has
dimensions of F/L2. In fluid mechanics and in thermodynamic equa-
tions, the units are lbf/ft2 (47.88026 N/m2), but engineering practice is
to use units of lbf/in2 (6,894.757 N/m2).

The relationship between absolute pressure, gage pressure, and vacuum
is shown in Fig. 3.3.4. Most fluid-mechanics equations and all thermo-
dynamic equations require the use of absolute pressure, and unless other-
wise designated, a pressure should be understood to be absolute pressure.
Common practice is to denote absolute pressure as lbf/ft2 abs, or psfa,
lbf/in2 abs or psia; and in a like manner for gage pressure lbf/ft2 g,
lbf/in2 g, and psig.

Fig. 3.3.4 Pressure relations.

According to Pascal’s principle, the pressure in a static fluid is the
same in all directions.

The basic equation of fluid statics is obtained by consideration of a fluid
particle at rest with respect to other fluid particles, all being subjected to
body-force accelerations of ax , ay, and az opposite the directions of x, y,
and z, respectively, and the acceleration of gravity in the z direction,
resulting in the following:

dp 5 2 r[ax dx 1 ay dy 1 (az 1 g) dz]

Pressure-Height Relations For a fluid at rest and subject only to
the gravitational force, ax, ay, and az are zero and the basic equation for
fluid statics reduces to dp 5 2 rg dz 5 g dz.

Liquids (Incompressible Fluids) The pressure-height equation inte-
grates to (p1 2 p2) 5 rg(z2 2 z1) 5 g(z2 2 z1) 5 Dp 5 gh, where h is
measured from the liquid surface (Fig. 3.3.5).

EXAMPLE. A large closed tank is partly filled with 68°F (20°C) benzene. If
the pressure on the surface is 10 lb/in2, what is the pressure in the benzene at a
depth of 11 ft below the liquid surface?

p1 5 rgh 1 p2 5
1.705 3 32.17 3 11

144
1 10

5 14.19 lbf/in2 (9.784 3 104 N/m2)
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Ideal Gases (Compressible Fluids) For problems involving the
upper atmosphere, it is necessary to take into account the variation of
gravity with altitude. For this purpose, the geopotential altitude H is used,
defined by H 5 Z/(1 1 z/r), where r is the radius of the earth (' 21 3

where R is the distance along the inclined tube. Commercial inclined
manometers also have special scales so that p1 2 p2 5 (gm 2 gf)S,
where S 5 (A2/A1 1 sin u)R.
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Fig. 3.3.5 Pressure equivalence.

106 ft ' 6.4 3 106 m) and z is the height above sea level. The integra-
tion of the pressure-height equation depends upon the thermodynamic
process. For an isothermal process p2/p1 5 e2(H22H1)/RT and for a polytro-
pic process (n Þ 1)

p2

p1

5F1 2
(n 2 1)(H2 2 H1)

nRT1
Gn/(n21)

Temperature-height relations for a polytropic process (n Þ 1) are
given by

n

1 2 n
5

H2 2 H1

R(T2 2 T1)

Substituting in the pressure-altitude equation,

p2/p1 5 (T2/T1)(H2 2H1)4R(T1 2T2)

EXAMPLE. The U.S. Standard Atmosphere 1962 (Sec. 11) is defined as hav-
ing a sea-level temperature of 59°F (15°C) and a pressure of 2,116.22 lbf/ft2.
From sea level to a geopotential altitude of 36,089 ft (11,000 m) the temperature
decreases linearly with altitude to 2 69.70°F (2 56.5°C). Check the value of pres-
sure ratio at this altitude given in the standard table.

Noting that T1 5 59 1 459.67 5 518.67, T2 5 2 69.70 1 459.67 5 389.97,
and R 5 53.34 ft ? lbf/(lbm)(°R),

p2 /p1 5 (T2 /T1)(H2 2H1)/R(T1 2T2)

5 (389.97/518.67)(36,089-0)/53.34(518.672389.97)

5 0.2233 vs. tabulated value of 0.2234

Pressure-Sensing Devices The two principal devices using liquids
are the barometer and the manometer. The barometer senses absolute
pressure and the manometer senses pressure differential. For discussion
of the barometer and other pressure-sensing devices, refer to Sec. 16.

Manometers are a direct application of the basic equation of fluid
statics and serve as a pressure standard in the range of 1⁄10 in of water to
100 lbf/in2. The most familiar type of manometer is the U tube shown in
Fig. 3.3.6a. Because of the necessity of observing both legs simulta-
neously, the well or cistern type (Fig. 3.3.6b) is sometimes used. The
inclined manometer (Fig. 3.3.6c) is a special form of the well-type ma-
nometer designed to enhance the readability of small pressure differen-
tials. Application of the basic equation of fluid statics to each of the
types results in the following equations. For the U tube, p1 2 p2 5
(gm 2 gf)h, where gm and gf are the specific weights of the manometer
and sensed fluids, respectively, and h is the vertical distance between
the liquid interfaces. For the well type, p1 2 p2 5 (gm 2 gf)(z2)
3 (1 1 A2/A1), where A1 and A2 are as shown in Fig. 3.3.6b and z2 is the
vertical distance from the fill line to the upper interface. Commercial
manufacturers of well-type manometers correct for the area ratios so
that p1 2 p2 5 (gm 2 gf)S, where S is the scale reading and is equal to
z1(1 1 A2/A1). For this reason, scales should not be interchanged be-
tween U type or well type or between well types without consulting the
manufacturer. For inclined manometers,

p1 2 p2 5 (gm 2 gf)(A2/A1 1 sin u)R
Fig. 3.3.6 (a) U-tube manometer; (b) well or cistern-type manometer; (c) in-
clined manometer.

EXAMPLE. A U-tube manometer containing mercury is used to sense the
difference in water pressure. If the height between the interfaces is 10 in and the
temperature is 68°F (20°C), what is the pressure differential?

p1 2 p2 5 (gm 2 gf)h 5 g(rm 2 rf)h
5 32.17(26.283 2 1.937)(10/12)
5 652.7 lbf/ft2 (3.152 3 104 N/m2)

Liquid Forces The force exerted by a liquid on a plane submerged
surface (Fig. 3.3.7) is given by F 5 ep dA 5 geh ? dA 5 g h, A, where hc

is the distance from the liquid surface to the center of gravity of the
surface, and A is the area of the surface. The location of the center of this
force is given by

sF 5 sc 1 IG/scA

where sF is the inclined distance from the liquid surface to the center of
force, sc the inclined distance to the center of gravity of the surface, and
IG the moment of inertia around its center of gravity. Values of IG are
given in Sec. 5.2. See also Sec. 3.1. From Fig. 3.3.7, h 5 R sin u, so that
the vertical center of force becomes

hF 5 hc 1 IG(sin u)2/hcA
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EXAMPLE. Determine the force and its location acting on a rectangular gate
3 ft wide and 5 ft high at the bottom of a tank containing 68°F (20°C) water, 12 ft
deep, (1) if the gate is vertical, and (2) if it is inclined 30° from horizontal.

1. Vertical gate

F 5 gghcA 5 rghcA
5 1.937 3 32.17(12 2 5/2)(5 3 3)
5 8,800 lbf (3.914 3 104 N)

hF 5 hc 1 IG(sin u)2/hcA, from Sec. 5.2, IG for a rectangle 5 (width)(height)3/12
hF 5 (12 2 5/2) 1 (3 3 53/12)(sin 90°)2/(12 2 5/2)(3 3 5)
hF 5 9.719 ft (2.962 m)

For rotation of liquid masses with uniform rotational acceleration, the
basic equation integrates to

p2 2 p1 5 rFv2

2
(x2

2 2 x1
2) 2 g(z2 2 z1)G

where v is the rotational speed in rad/s and x is the radial distance from
the axis of rotation.
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2. Inclined gate
F 5 ghcA 5 rghcA

5 1.937 3 32.17(12 2 5/2 sin 30°)(5 3 3)
5 10,048 lbf (4.470 3 104 N)

hF 5 hc 1 IG(sin u)2/hcA
5 (12 2 5/2 sin 30°) 1 (3 3 53/12)(sin 30°)2/(12 2 5/2 sin 30°)(3 3 5)
5 10.80 ft (3.291 m)

Fig. 3.3.7 Notation for liquid force on submerged surfaces.

Forces on irregular surfaces may be obtained by considering their hori-
zontal and vertical components. The vertical component Fz equals the
weight of liquid above the surface and acts through the centroid of the
volume of the liquid above the surface. The horizontal component Fx

equals the force on a vertical projection of the irregular surface. This
force may be calculated by Fx 5 ghcxAx, where hcx is the distance from
the surface center of gravity of the horizontal projection, and Ax is the
projected area. The forces may be combined by F 5 √F2

z 1 F2
z.

When fluid masses are accelerated without relative motion between
fluid particles, the basic equation of fluid statics may be applied. For
translation of a liquid mass due to uniform acceleration, the basic equa-
tion integrates to

p2 2 p1 5 2 r[(x2 2 x1)ax 1 (y2 2 y1)ay 1 (z2 2 z1)(az 1 g)]

EXAMPLE. An open tank partly filled with a liquid is being accelerated up an
inclined plane as shown in Fig. 3.3.8. The uniform acceleration is 20 ft /s2 and the
angle of the incline is 30°. What is the angle of the free surface of the liquid?
Noting that on the free surface p2 5 p1 and that the acceleration in the y direction
is zero, the basic equation reduces to

(x2 2 x1)ax 1 (z2 2 z1)(az 1 g) 5 0

Solving for tan u,

tan u 5
z1 2 z2

x2 2 x1

5
ax

az 1 g
5

a cos a

a sin a 1 g

5 (20 cos 30°)/(20 sin 30° 1 32.17) 5 0.4107
u 5 22°209
Fig. 3.3.8 Notation for translation example.

EXAMPLE. The closed cylindrical tank shown in Fig. 3.3.9 is 4 ft in diameter
and 10 ft high and is filled with 104°F (40°C) benzene. The tank is rotated at
250 r/min about an axis 3 ft from its centerline. Compute the maximum pressure
differential in the tank. Analysis of the rotation equation indicates that the maxi-

Fig. 3.3.9 Notation for rotation example.

mum pressure will occur at the maximum rotational radius and the minimum
elevation and, conversely, the minimum at the minimum rotational radius and
maximum elevation. From Fig. 3.3.9, x1 5 3 2 4/2 5 1 ft , x2 5 1 1 4 5 5 ft ,
z2 2 z1 5 2 10 ft , and the rotational speed v 5 2pN/60 5 2p(250)/60 5
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26.18 rad/s. Substituting into the rotational equation,

p2 2 p1 5 rFv2

2
(x2

2 2 x1
2) 2 g(z2 2 z1)G

5
1.663

144 F(26.18)2

2
(52 2 12) 2 32.17(2 10)G

5 98.70 lbf/in2 (6.805 3 105 N/m2)

Buoyancy Archimedes’ principle states that a body immersed in a
fluid is buoyed up by a force equal to the weight of the fluid displaced.

the center of buoyancy B above and on the same vertical line as the
center of gravity G. Figure 3.3.11b shows the balloon displaced from its
normal position. In this position, there is a couple Fgx which tends to
restore the balloon and its basket to its original position. For floating
bodies, the center of gravity and the center of buoyancy must lie on the
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If an object immersed in a fluid is heavier than the fluid displaced, it will
sink to the bottom, and if lighter, it will rise. From the free-body dia-
gram of Fig. 3.3.10, it is seen that for vertical equilibrium,

oFz 5 0 5 FB 2 Fg 2 FD

where FB is the buoyant force, Fg the gravity force (weight of body), and
FD the force required to prevent the body from rising. The buoyant force

Fig. 3.3.10 Free body diagram of an immersed object.

being the weight of the displaced liquid, the equilibrium equation may
be written as

FD 5 FB 2 Fg 5 gfV 2 g0V 5 (gf 2 g0)V

where gf is the specific weight of the fluid, g0 is the specific weight of
the object , and V is the volume of the object .

EXAMPLE. An airship has a volume of 3,700,000 ft3 and is filled with hydro-
gen. What is its gross lift in air at 59°F (15°C) and 14.696 psia? Noting that
g 5 p/RT,

FD 5 (gf 2 g0)V 5S p

RaT
2

p

RH2
TD V

5
pV

T S 1

Ra

2
1

RH2

D
5

144 3 14.696 3 3,700,000

59 1 459.7 S 1

53.34
2

1

766.8D
5 263,300 lbf (1.171 3 106 N)

Flotation is a special case of buoyancy where FD 5 0, and hence
FB 5 Fg.

EXAMPLE. A crude hydrometer consists of a cylinder of 1⁄2 in diameter and
2 in length surmounted by a cylinder of 1⁄8 in diameter and 10 in long. Lead shot is
added to the hydrometer until its total weight is 0.32 oz. To what depth would this
hydrometer float in 104°F (40°C) glycerin? For flotation, FB 5 Fg 5 gfV 5 rfgV
or V 5 FB/rfg 5 (0.32/16)/(2.423 3 32.17) 5 2.566 3 1024 ft3. Volume of
cylindrical portion of hydrometer 5 Vc 5 pD2L/4 5 p (0.5/12)2(2/12)/4 5
2.273 3 1024 ft3. Volume of stem immersed 5 VS 5 V 2 VC 5 2.566 3 1024 2
2.273 3 1024 5 2.930 5 1025 ft3. Length of immersed stem 5 LS 5 4 VS/pD2 5
(4 3 2.930 3 1025)/p (0.125/12)2 5 0.3438 ft 5 0.3438 3 12 5 4.126 in. Total
immersion 5 L 1 LS 5 2 1 4.126 5 6.126 in (0.156 m).

Static Stability A body is in static equilibrium when the imposition
of a small displacement brings into action forces that tend to restore the
body to its original position. For completely submerged bodies, the center
of buoyancy and the center of gravity must lie on the same vertical line
and the center of buoyancy must be located above the center of gravity.
Figure 3.3.11a shows a balloon and its basket in its normal position with
Fig. 3.3.11 Stability of an immersed body.

same vertical line, but the center of buoyancy may be below the center
of gravity, as is common practice in surface-ship design. It is required
that when displaced, the line of action of the buoyant force intersect the
centerline above the center of gravity. Figure 3.3.12a shows a floating
body in its normal position with its center of gravity G on the same
vertical line and above the center of buoyancy B. Figure 3.3.12b shows
the object displaced. The intersection of the line of action of the buoyant
force with the centerline of the body at M is called the metacenter. As
shown, this above the center of buoyancy and sets up a restoring couple.
When the metacenter is below the center of gravity, the object will
capsize (see Sec. 11.3).

Fig. 3.3.12 Stability of a floating body.

FLUID KINEMATICS

Steady and Unsteady Flow If at every point in the fluid stream,
none of the local fluid properties changes with time, the flow is said to
be steady. The mathematical conditions for steady flow are met when
­(fluid properties)/­t 5 0. While flow is generally unsteady by nature,
many real cases of unsteady flow may be treated as steady flow by using
average properties or by changing the space reference. The amount of
error produced by the averaging technique depends upon the nature of
the unsteady flow, but the latter technique is error-free when it can be
applied.

Streamlines and Stream Tubes Velocity has both magnitude and
direction and hence is a vector. A streamline is a line which gives the
direction of the velocity of a fluid particle at each point in the flow
stream. When streamlines are connected by a closed curve in steady
flow, they will form a boundary through which the fluid particles cannot
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pass. The space between the streamlines becomes a stream tube. The
stream-tube concept broadens the application of fluid-flow principles;
for example, it allows treating the flow inside a pipe and the flow around
an object with the same laws. A stream tube of decreasing size ap-
proaches its own axis, a central streamline; thus equations developed for
a stream tube may also be applied to a streamline.

Velocity and Acceleration In the most general case of fluid motion,
the resultant velocity U along a streamline is a function of both distance s
and time t, or U 5 f(s, t). In differential form,

so that

~m 5
V1A1

v1

5
V2A2

v2

5 . . . 5
VnAn

vn

where ~m is the flow rate in lbm/s (0.4535924 kg/s).

EXAMPLE. Air discharges from a 12-in-diameter duct through a 4-in-
diameter nozzle into the atmosphere. The pressure in the duct is 20 lbf/in2, and
atmospheric pressure is 14.7 lbf/in2. The temperature of the air in the duct just
upstream of the nozzle is 150°F, and the temperature in the jet is 147°F. If the
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dU 5
­U

­s
ds 1

­U

­t
dt

An expression for acceleration may be obtained by dividing the velocity
equation by dt, resulting in

dU

dt
5

­U

­s

ds

dt
1

­U

­t

for steady flow ­U/­t 5 0.
Velocity Profile In the flow of real fluids, the individual streamlines

will have different velocities past a section. Figure 3.3.13 shows the
steady flow of a fluid past a section (A-A) of a circular pipe. The velocity
profile is obtained by plotting the velocity U of each streamline as it
passes A-A. The stream tube that is formed by the space between the
streamlines is the annulus whose area is dA, as shown in Fig. 3.3.13 for

Fig. 3.3.13 Velocity profile.

the stream tube whose velocity is U. The volumetric rate of flow Q for
the flow past section A-A is Q 5 eU dA. All flows take place between
boundaries that are three-dimensional. The terms one-dimensional, two-
dimensional, and three-dimensional flow refer to the number of dimen-
sions required to describe the velocity profile. For three-dimensional
flow, a volume (L3) is required; for example, the flow of a fluid in
a circular pipe. For two-dimensional flow, an area (L2) is necessary; for
example, the flow between two parallel plates. For one-dimensional flow,
a line (L) describes the profile. In cases of two- or three-dimensional
flow, eU dA can be integrated either mathematically if the equations are
known or graphically if velocity-measurement data are available. In
many engineering applications, the average velocity V may be used
where V 5 Q/A 5 (1/A)eU dA.

The continuity equation is a special case of the general physical law of
the conservation of mass. It may be simply stated for a control volume:

Mass rate entering 5 mass rate of storage 1 mass rate leaving

This may be expressed mathematically as

rU dA 5F ­

­t
( r dA ds)G 1FrU dA 1

­

­s
( rU dA) dsG

where ds is an incremental distance along the control volume. For
steady flow, ­/­t ( r dA ds) 5 0, the general equation reduces to
d( rU dA) 5 0. Integrating the steady-flow continuity equation for the
average velocity along a flow passage:

rVA 5 a constant 5 r1V1A1 5 r2V2A2 5 . . . 5 rnVnAn 5 ~M

where ~M is the mass flow rate in slugs/s (14.5939 kg/s). In many engi-
neering applications, the flow rate in pounds mass per second is desired,
velocity in the duct is 18 ft /s, compute (1) the mass flow rate in lbm/s and (2) the
velocity in the nozzle jet . From the equation of state

v 5 RT/p
vD 5 RTD/pD 5 53.34 (150 1 459.7)/(144 3 20)

5 11.29 ft3/ lbm
vJ 5 RTJ/pJ 5 53.34 (147 1 459.7)/(144 3 14.7)

5 15.29 ft3/ lbm
(1) ~m 5 VDAD/vD 5 18 [(p/4)(12/12)2]/11.29

~mJ 5 1.252 lbm/s (0.5680 kg/s)
(2) VJ 5 mvJ/Aj 5 (1.252)(15.29)/[(p/4)(4/12)2]

vJ 5 219.2 ft /s (66.82 m/s)

FLUID DYNAMICS

Equation of Motion For steady one-dimensional flow, considera-
tion of forces acting on a fluid element of length dL, flow area dA,
boundary perimeter in fluid contact dP, and change in elevation dz with
a unit shear stress t moving at a velocity of V results in

v dp 1
V dV

gc

1
g

gc

dz 1 vtSdP

dAD dL 5 0

Substituting v 5 g/gcg and simplifying,

dp

g
1

V dV

g
1 dz 1 dhf 5 0

where dhf 5 (t/g)(dP/dA) dL 5 t dL/gRh.
The expression 1/(dP/dA) is the hydraulic radius Rh and equals the

flow area divided by the perimeter of the solid boundary in contact with
the fluid. This perimeter is usually called the ‘‘wetted’’ perimeter. The
hydraulic radius of a pipe flowing full is (pD2/4)/pD 5 D/4. Values for
other configurations are given in Table 3.3.6. Integration of the equation
of motion for an incompressible fluid results in

p1

g
1

V1
2

2g
1 z1 5

p2

g
1

V2
2

2g
1 z2 1 h1 f 2

Each term of the equation is in feet and is equivalent to the height the
fluid would rise in a tube if its energy were converted into potential
energy. For this reason, in hydraulic practice, each type of energy is
referred to as a head. The static pressure head is p/g. The velocity head is
V2/2g, and the potential head is z. The energy loss between sections h1 f 2

is called the lost head or friction head. The energy grade line at any point
o(p/g 1 V2/2g 1 z), and the hydraulic grade line is o(p/g 1 z) as shown
in Fig. 3.3.14.

EXAMPLE. A 12-in pipe (11.938 in inside diameter) reduces to a 6-in pipe
(6.065 in inside diameter). Benzene at 68°F (20°C) flows steadily through this
system. At section 1, the 12-in pipe centerline is 10 ft above the datum, and at
section 2, the 6-in pipe centerline is 15 ft above the datum. The pressure at sec-
tion 1 is 20 lbf/in2 and the velocity is 4 ft /s. If the head loss due to friction is
0.05 V2

2/2g, compute the pressure at section 2. Assume g 5 gc, g 5 rg 5 1.705 3
32.17 5 54.85 lbf/ft3. From the continuity equation,

~M 5 r1A1V1 5 r2A2V2 (p1 5 p2)
V2 5 V1(A1/A2) 5 V1(pD1

2)/4)/(pD2
2/4) 5 V1(D1/D2)2

V2 5 4(11.938/6.065)2 5 15.50 ft /s

From the equation of motion,

p2

g
5

p1

g
1

V1
2

2g
1 z1 2SV2

2

2g
1 z2 1 h1 f 2D

p2

g
5

p1

g
1

V1
2 2 V2

2 2 0.05V2
2

2g
1 z1 2 z2
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Table 3.3.6 Values of Flow Area A and Hydraulic Radius Rh for Various Cross Sections

Cross section Condition Equations

Flowing full h/D 5 1 A 5 pD2/4 Rh 5 D/4

Upper half
partly full

0.5 , h/D , 1
cos (u/2) 5 (2h/D 2 1)
A 5 [p(360 2 u) 1 180 sin u](D2/1,440)
Rh 5 [1 1 (180 sin u)/(pu)] (D/4)

h/D 5 0.8128 A 5 0.6839 D2 Rh max 5 0.3043D

Lower half
partly full

h/D 5 0.5 A 5 pD2/8 Rh max 5 h/2

0 , h/D , 0.5
cos (u/2) 5 (1 2 2h/D)
A 5 (pu 2 180 sin u) (D2/1,440)
Rh 5 [1 2 (180 sin u)/(pu)](D/4)

Flowing full
h/D 5 1 A 5 bD Rh 5 bD/2(b 1 D)

Square b 5 D A 5 D2 Rh 5 D/4

Partly full
h/D , 1
h/b 5 0.5
b : `, h : 0

A 5 bh Rh 5 bh/(2h 1 b)
A 5 b2/2 Rh max 5 h/2
Rh : h (wide shallow stream)

a Þ b
Rh max 5 h/2
A 5 [b 1 1/2h(cot a 1 cot b)]h
Rh 5 A/[b 1 h(csc a 1 csc b)]

a 5 b

h

a
5

1

2
a 5 26°349

A 5 (b 1 2h)h
Rh 5 (b 1 2h)h/(b 1 4.472h)

h

a
5

√3

3
a 5 30°

A 5 (b 1 1.732h)h
Rh 5 (b 1 1.732h)h/(b 1 4h)

h

a
5

2

3
a 5 33°419

A 5 (b 1 1.5h)h
Rh 5 (b 1 1.5h)h/(b 1 3.606h)

h

a
5 1 a 5 45°

A 5 (b 1 h)h
Rh 5 (b 1 h)h/(b 1 2.828h)

h

a
5

3

2
a 5 56°199

A 5 (b 1 0.6667h)h
Rh 5 (b 1 0.6667h)h/(b 1 2.404h)

h

a
5 √3 a 5 60°

A 5 (b 1 0.5774h)h
Rh 5 (b 1 0.5774h)h/(b 1 2.309h)

u 5 any angle A 5 tan (u/2)h2 Rh 5 sin (u/2)h/2

u 5 30 A 5 0.2679h2 Rh 5 0.1294h

u 5 45 A 5 0.4142h2 Rh 5 0.1913h

u 5 60 A 5 0.5774h2 Rh 5 0.2500h

u 5 90 A 5 h2 Rh 5 0.3536h

p2

g
5

144 3 20

54.85
1

42 2 1.05(15.50)2

2 3 32.17
1 10 2 15

p2

g
5 43.83 ft

p2 5
54.88 3 43.83

144
5 16.70 lbf/in2 (1.151 3 105 N/m2)

Energy Equation Application of the principles of conservation of

done by the fluid; and u is the internal energy. Btu/ lbm (2,326 J/kg). If
the energy equation is integrated for an incompressible fluid,

J1q2 5 1W2 1
V2

2 2 V1
2

2gc

1
g

gc

(z2 2 z1) 1 J(u2 2 u1) 1 v(p2 2 p1)

The equation of motion does not consider thermal energy or steady-flow
work; the energy equation has no terms for friction. Subtracting the
differential equation of motion from the energy equation and solving for
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energy to a control volume for one-dimensional flow results in the
following for steady flow:

J dq 5 dW 1
V dV

gc

1
g

gc

dz 1 J du 1 d(pv)

where J is the mechanical equivalent of heat , 778.169 ft ? lbf/Btu; q is
the heat added, Btu/ lbm (2,326 J/kg); W is the steady-flow shaft work
friction results in

dhf 5 (dW 1 J du 1 p dv 2 J dq)(gc /g)

Integrating for an incompressible fluid (dv 5 0),

h1 f 2 5 [1W2 1 J(u2 2 u1) 2 J1q2](gc /g)

In the absence of steady-flow work in the system, the effect of friction is
to increase the internal energy and/or to transfer heat from the system.
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For steady frictionless, incompressible flow, both the equation of
motion and the energy equation reduce to

p1

g
1

V1
2

2g
1 z1 5

p2

g
1

V2
2

2g
1 z2

which is known as the Bernoulli equation.

1. Conservation of mass. As expressed by the continuity equation
M 5 r1A1V1 5 r2A2V2.

2. Conservation of energy. As expressed by the energy equation

V2

2gc

1 Ju 1 pv 5
V1

2

2gc

1 Ju1 1 p1v1 5
V2

2

2gc

1 Ju2 1 p2v2

3. Process relationship. For an ideal gas undergoing a frictionless
adiabatic (isentropic) process,

pvk 5 p vk 5 p vk
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Fig. 3.3.14 Energy relations.

Area-Velocity Relations The continuity equation may be written as
loge

~M 5 loge V 1 loge A 1 loge r, which when differentiated becomes

dA

A
5 2

dV

V
2

dr

r

For incompressible fluids, dr 5 0, so

dA

A
5 2

dV

V

Examination of this equation indicates
1. If the area increases, the velocity decreases.
2. If the area is constant , the velocity is constant .
3. There are no critical values.

For the frictionless flow of compressible fluids, it can be demonstrated
that

dA

A
5 2

dV

V F1 2SV

cD2G
Analysis of the above equation indicates:

1. Subsonic velocity V , c. If the area increases, the velocity de-
creases. Same as for incompressible flow.

2. Sonic velocity V 5 c. Sonic velocity can exist only where the
change in area is zero, i.e., at the end of a convergent passage or at the
exit of a constant-area duct .

3. Supersonic velocity V . c. If area increases, the velocity in-
creases, the reverse of incompressible flow. Also, supersonic velocity
can exist only in the expanding portion of a passage after a constriction
where sonic velocity existed.

Frictionless adiabatic compressible flow of an ideal gas in a horizontal
passage must satisfy the following requirements:
1 1 2 2

4. Ideal-gas law. The equation of state for an ideal gas

pv 5 RT

In an expanding supersonic flow, a compression shock wave will be
formed if the requirements for the conservation of mass and energy are
not satisfied. This type of wave is associated with large and sudden rises
in pressure, density, temperature, and entropy. The shock wave is so
thin that for computation purposes it may be considered as a single line.
For compressible flow of gases and vapors in passages, refer to Sec. 4.1;
for steam-turbine passages, Sec. 9.4; for compressible flow around im-
mersed objects, see Sec. 11.4.

The impulse-momentum equation is an application of the principle of
conservation of momentum and is derived from Newton’s second law.
It is used to calculate the forces exerted on a solid boundary by a moving
stream. Because velocity and force have both magnitude and direction,
they are vectors. The impulse-momentum equation may be written for
all three directions:

oFx 5 ~M(Vx2 2 Vx1)
oFy 5 ~M(Vy2 2 Vy1)
oFz 5 ~M(Vz2 2 Vz1)

Figure 3.3.15 shows a free-body diagram of a control volume. The
pressure forces shown are those imposed by the boundaries on the fluid
and on the atmosphere. The reactive force R is that imposed by the
downstream boundary on the fluid for equilibrium. Application of the
impulse-momentum equation yields

oF 5 (Fp1 1 Fa2) 2 (Fa1 1 Fp2 1 R) 5 ~M(V2 2 V1)

Solving for R,

R 5 ( p1 2 pa)A1 2 ( p2 2 pa)A2 5 ~M(V2 5 V1)

The impulse-momentum equation is often used in conjunction with the
continuity and energy equations to solve engineering problems. Be-
cause of the wide variety of possible applications, some examples are
given to illustrate the methods of attack.

Fig. 3.3.15 Notation for impulse momentum.

EXAMPLE. Compressible Fluid in a Duct. Nitrogen flows steadily through a 6-in
(5.761 in inside diameter) straight , horizontal pipe at a mass rate of 25 lbm/s. At
section 1, the pressure is 120 lbf/in2 and the temperature is 100°F. At section 2,
the pressure is 80 lbf/in2 and the temperature is 110°F. Find the friction force
opposing the motion. From the equation of state,

v 5 RT/p
v1 5 55.16 (459.7 1 100)/(144 3 120) 5 1.787 ft3/ lbm
v2 5 55.16 (459.7 1 110)/(144 3 80) 5 2.728 ft3/ lbm

Flow area of pipe 3 pD2/4 5 p (5.761/12)2/4 5 0.1810 ft2

From the continuity equation,

v 5 ~mV/A
V1 5 (25 3 1.787)/0.1810 5 246.8 ft /s
V2 5 (25 3 2.728)/0.1810 5 376.8 ft /s
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Applying the free-body equation for impulse momentum (A 5 A1 5 A2),

R 5 (p1 2 pa) A1 2 (p2 2 pa) A2 2 ~M(V2 2 V1)
5 (p1 2 p2) A 2 M(V2 2 V1) 5 144 (120 2 80) 0.1810

2 (25/32.17)(376.8 2 246.8) 5 941.5 lbf (4.188 3 103 N)

EXAMPLE. Water Flow through a Nozzle. Water at 68°F (20°C) flows through a
horizontal 12- by 6-in-diameter nozzle discharging into the atmosphere. The pres-
sure at the nozzle inlet is 65 lbf/in2 and barometric pressure is 14.7 lbf/in2. Deter-
mine the force exerted by the water on the nozzle.

A 5 pD2/4

EXAMPLE. In the nozzle-blade system of Fig. 3.3.17, water at 68°F (20°C)
enters a 3- by 11⁄2-in-diameter horizontal nozzle with a pressure 23 lbf/in2 and
discharges at 14.7 lbf/in2 (atmospheric pressure). The blade moves away from the
nozzle at a velocity of 10 ft /s and deflects the stream through an angle of 80°. For
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A1 5 p (12/12)2/4 5 0.7854 ft2

A2 5 p (6/12)2/4 5 0.1963 ft2

g 5 rg 5 1.937 3 32.17 5 62.31 lbf/ft3

From the continuity equation r1A1V1 5 r2A2V2 for r1 5 r2, V2 5 V1A1/A2 5
(0.7854/0.1963)V1 5 4V1. From Bernoulli’s equation (z1 5 z2).

p1/g 1 V1
2/2g 5 p2/g 1 V2

2/2g 5 p2/g 1 (4V1)2/2g

or V1 5 √2g(p1 2 p2)/15g

5 √2 3 32.17 3 144 (65 2 14.7)/15 3 62.31 5 22.33 ft /s
V2 5 4 3 22.33 5 89.32 ft /s

Again from the equation of continuity
~M 5 r1A1V1 5 1.937 3 0.7854 3 22.33 5 33.97 slugs/s

Applying the free-body equation for impulse momentum,

R 5 (p1 2 pa) A1 2 (p2 2 pa) A2 2 ~M(V2 2 V1)
5 144 (65 2 14.7) 0.7854 2 144 (14.7 2 14.7) 0.1963
5 (33.97) (89.32 2 22.33)
5 3,413 lbf (1.518 3 104 N)

EXAMPLE. Incompressible Flow through a Reducing Bend. Carbon tetrachloride
flows steadily without friction at 68°F (20°C) through a 90° horizontal reducing
bend. The mass flow rate is 4 slugs/s, the inlet diameter is 6 in, and the outlet is
3 in. The inlet pressure is 50 lbf/in2 and the barometric pressure is 14.7 lbf/in2.
Compute the magnitude and direction of the force required to ‘‘anchor’’ this bend.

A 5 pD2/4
A1 5 (p/4)(6/12)2 5 0.1963 ft2

A2 5 (p/4)(3/12)2 5 0.04909 ft2

From continuity,

V 5 M/rA
V1 5 4/(3.093)(0.1963) 5 6.588 ft /s
V2 5 4/(3.093)(0.04909) 5 26.35 ft /s

From the Bernoulli equation (z1 5 z2),

p2

g
5

p1

g
1

V1
2

2g
2

V2
2

2g
5

144 3 50

3.093 3 32.17
1

(6.588)2 2 (26.35)2

2 3 32.17
5 62.24 ft

p2 5
(3.093 3 32.17)(62.24)

144
5 43.01 lbf/in2

From Fig. 3.3.16,

oFx 5 (p1 2 pa)A1 2 (p2 2 pa)A2 cos a 2 Rx

5 M(V2 cos a 2 V1)
or Rx 5 (p1 2 pa)A1 2 (p2 2 pa)A2 cos a 2 ~M(V2 cos a 2 V1)

oFy 5 0 2 (p2 2 pa)A2 sin a 1 Ry 5 ~M(V2 sin a 2 0)
or Ry 5 (p2 2 pa)A2 sin a 1 MV2 sin a

Rx 5 144 (50 2 14.7) 0.1963 2 144 (43.01 2 14.7)(cos 90°)
2 4 (26.35 cos 90° 2 6.588)

5 1,024 lbf
Ry 5 144 (43.01 2 14.7)(0.04909) sin 90° 1 4(26.35)(sin 90°)

5 305.5 lbf

R 5 √Rx
2 1 Ry

2 5 √(1,024)2 1 (305.5)2

5 1,068 lbf f(4.753 3 103 N)
u 5 tan21 (Fy /Fx) 5 tan21 (305.5/1,024)

5 16°379

Forces on Blades and Deflectors The forces imposed on a fluid jet
whose velocity is VJ by a blade moving at a speed of Vb away from the
jet are shown in Fig. 3.3.17. The following equations were developed
from the application of the impulse-momentum equation for an open jet
(p2 5 p1) and for frictionless flow:

Fx 5 rAJ(VJ 2 Vb)2(1 2 cos a)
Fy 5 rAJ(VJ 2 Vb)2 sin a
F 5 2rAJ(VJ 2 Vb)2 sin (a/2)
Fig. 3.3.16 Forces on a bend.

frictionless flow, calculate the total force exerted by the jet on the blade. Assume
g 5 gc; then g 5 rg. From the continuity equation ( rI 5 rJ), rIAIVI 5 rJAJVJ, VI 5
(AJ/AI)VJ,

VJ 5
pDJ

2/4

pDI
2/4

VJ 5SDJ

DI
D2

VJ

VI 5 (1.5/3)2VJ 5 VJ/4

From the Bernoulli equation (z2 5 z1),

VJ
2

2g
5

VI
2

2g
1

pI 2 pJ

rg

VJ
2 2 (VJ/4)2

2g
5

(pI 2 pJ)

rg

VJ 5 √2(16/15)(pI 2 pJ)

r

5 √2 3 (16/15) 144 (23 2 14.7)

1.937
5 36.28 ft /s

The total force F 5 2rAJ(VJ 2 Vb)2 sin (a/2)

F 5 2 3 1.937 (p/4)(1.5/12)2(36.28 2 10)2 sin (80/2)
5 21.11 lbf (93.90 N)

Fig. 3.3.17 Notation for blade study.

Impulse Turbine In a turbine, the total of the separate forces acting
simultaneously on each blade equals that caused by the combined mass
flow rate ~M discharged by the nozzle or

oP 5 oFxVb 5 ~M(VJ 2 Vb)(1 2 cos a)Vb

The maximum value of power P is found by differentiating P with
respect to Vb and setting the result equal to zero. Solving for Vb yields
Vb 5 VJ /2, so that maximum power occurs when the velocity of the jet
is equal to twice the velocity of the blade. Examination of the power
equation also indicates that the angle a for a maximum power results
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when cos u 5 2 1 or a 5 180°. For theoretical maximum power of a
blade, 2Vb 5 VJ and a 5 180°. It should be noted that in any practical
impulse-turbine application, a cannot be 180° because the discharge
interferes with the next set of blades. Substituting Vb 5 VJ/2, a 5 180°
in the power equation,

oPmax 5 ~M(VJ 2 VJ /2)[1 2 (2 1)]VJ/2 5 MVJ
2/2 5 ~mVJ

2/2gc

or the maximum power per unit mass is equal to the total power of
the jet . Application of the Bernoulli equation between the surface of

tablishing the principles of model design and testing, (3) developing
equations, and (4) converting data from one system of units to another.
Dimensionless parameters may be generated from (1) physical equations,
(2) the principles of similarity, and (3) dimensional analysis. All physical
equations must be dimensionally correct so that a dimensionless param-
eter may be generated by simply dividing one side of the equation by the
other. A minimum of two dimensionless parameters will be formed, one
being the inverse of the other.

EXAMPLE. It is desired to generate a series of dimensionless parameters to
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a reservoir and the discharge of the turbine shows that oPmax 5
~M √2g(z2 2 z1). For design details, see Sec. 9.9.

Flow in a Curved Path When a fluid flows through a bend, it is also
rotated around an axis and the energy required to produce rotation must
be supplied from the energy already in the fluid mass. This fluid rotation
is called a free vortex because it is free of outside energy. Consider the
fluid mass r(ro 2 ri) dA of Fig. 3.3.18 being rotated as it flows through a
bend of outer radius ro, inner radius ri, with a velocity of V. Application
of Newton’s second law to this mass results in

dF 5 po dA 2 pi dA 5 [r(ro 2 ri) dA][V2/(ro 1 ri)/2]

which reduces to

po 2 pi 5 2(ro 2 ri)rV2/(ro 1 ri)

Because of the difference in fluid pressure between the inner and outer
walls of the bend, secondary flows are set up, and this is the primary
cause of friction loss of bends. These secondary flows set up turbulence
that require 50 or more straight pipe diameters downstream to dissipate.

Fig. 3.3.18 Notation for flow in a curved path.

Thus this loss does not take place in the bend, but in the downstream
system. These losses may be reduced by the use of splitter plates which
help minimize the secondary flows by reducing ro 2 ri and hence
po 2 pi.

EXAMPLE. 104°F (40°C) benzene flows at a rate of 8 ft3/s in a square hori-
zontal duct . This duct makes a 90° turn with an inner radius of 1 ft and an outer
radius of 2 ft . Calculate the difference between the walls of this bend. The area of
this duct is (ro 2 ri)2 5 (2 2 1)2 5 1 ft2. From the continuity equation V 5
Q/A 5 8/1 5 8 ft /s. The pressure difference

po 2 pi 5 2(ro 2 ri)rV2/(ro 1 ri)
5 2(2 2 1) 1.663 (8)2/(2 1 1) 5 70.95 lbf/ft2

5 70.95/144 5 0.4927 lbf/in2 (3.397 3 103 N/m2)

DIMENSIONLESS PARAMETERS

Modern engineering practice is based on a combination of theoretical
analysis and experimental data. Often the engineer is faced with the
necessity of obtaining practical results in situations where for various
reasons, physical phenomena cannot be described mathematically and
experimental data must be considered. The generation and use of dimen-
sionless parameters provides a powerful and useful tool in (1) reducing
the number of variables required for an experimental program, (2) es-
describe the ratios of static pressure head, velocity head, and potential head to total
head for frictionless incompressible flow. From the Bernoulli equation,

p

g
1

V2

2g
1 z 5 oh 5 total head

N1 5
p/g 1 V2/2g 1 z

oh
5

p/g

oh
1

V2/2g

oh
1

z

oh
5 Np 1 NV 1 Nz

or N2 5
oh

p2/g 1 V2/2g 1 z
5 N1

21

N1 and N2 are total energy ratios and Np , NV , and Nz are the ratios of the static
pressure head, velocity head, and potential head, respectively, to the total head.

Models versus Prototypes There are times when for economic or
other reasons it is desirable to determine the performance of a structure
or machine by testing another structure or machine. This type of testing
is called model testing. The equipment being tested is called a model,
and the equipment whose performance is to be predicted is called a
prototype. A model may be smaller than, the same size as, or larger than
the prototype. Model experiments on aircraft , rockets, missiles, pipes,
ships, canals, turbines, pumps, and other structures and machines have
resulted in savings that more than justified the expenditure of funds for
the design, construction, and testing of the model. In some situations,
the model and the prototype may be the same piece of equipment , for
example, the laboratory calibration of a flowmeter with water to predict
its performance with other fluids. Many manufacturers of fluid ma-
chinery have test facilities that are limited to one or two fluids and are
forced to test with what they have available in order to predict perfor-
mance with nonavailable fluids. For towing-tank testing of ship models
and for wind-tunnel testing of aircraft and aircraft-component models,
see Secs. 11.4 and 11.5.

Similarity Requirements For complete similarity between a model
and its prototype, it is necessary to have geometric, kinematic, and dy-
namic similarity. Geometric similarity exists between model and proto-
type when the ratios of all corresponding dimensions of the model and
prototype are equal. These ratios may be written as follows:

Length: Lmodel/Lprototype 5 Lratio

5 Lm/Lp 5 Lr

Area: L2
model/L2

prototype 5 L2
ratio

5 L2
m /L2

p 5 L2
r

Volume: L3
model/L3

prototype 5 L3
ratio

5 L3
m /L3

p 5 L3
r

Kinematic similarity exists between model and prototype when their
streamlines are geometrically similar. The kinematic ratios resulting
from this condition are

Acceleration: ar 5 am/ap 5 LmTm
22/LpTp

22

5 Lr /Tr
22

Velocity: Vr 5 Vm/Vp 5 LmTm
21/LpTp

21

5 Lr /Tr
21

Volume flow rate: Qr 5 Qm /Qp 5 L3
mTm

21/L3
pTp

21

5 L3
r /Tr

21

Dynamic similarity exists between model and prototype having geo-
metric and kinematic similarity when the ratios of all forces are the
same. Consider the model /prototype relations for the flow around
the object shown in Fig. 3.3.19. For geometric similarity Dm/Dp 5
Lm/Lp 5Lr and for kinematic similarity UAm/UAp 5 UBm/UBp 5 Vr 5
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LrTr
21. Next consider the three forces acting on point C of Fig. 3.3.19

without specifying their nature. From the geometric similarity of their
vector polygons and Newton’s law, for dynamic similarity F1m /F1p 5
F2m /F2p 5 F3m /F3p 5 MmaCm/MpaCp 5 Fr . For dynamic similarity,
these force ratios must be maintained on all corresponding fluid parti-

Viscous force Fm 5 (viscous shear stress)(shear area)
5 tL2 5 m(dU/dy)L2 5 m(V/L)L2

5 mLV
Gravity force Fg 5 (mass)(acceleration due to gravity)

5 (rL3)(g) 5 rL3g
Pressure force Fp 5 (pressure)(area) 5 pL2

Centrifugal force Fv 5 (mass)(acceleration)
5 (rL3)(L/T 2)
5 (rL3)(Lv2) 5 rL4v2
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Fig. 3.3.19 Notation for dynamic similarity.

cles throughout the flow pattern. From the force polygon of Fig. 3.3.19,
it is evident that F1 1 : F2 1 : F3 5 MaC . For total model /prototype
force ratio, comparisons of force polygons yield

Fr 5
F1m 1 : F2m 1 : F3m

F1p 1 : F2p 1 : F3p

5
MmaCm

MpaCp

Fluid Forces The fluid forces that are considered here are those
acting on a fluid element whose mass 5 rL3, area 5 L2, length 5 L, and
velocity 5 L/T.

Inertia force Fi 5 (mass)(acceleration)
5 (rL3)(L/T 2) 5 rL(L2/T 2)
5 rL2V2

Table 3.3.7 Standard Numbers

Force ratio Equations Result

Inertia

Viscous

Fi

Fm

5
rL2V2

mLV

rLV

m

Inertia

Gravity

Fi

Fg

5
rL2V2

rL3g

V2

Lg
Inertia

Pressure

Fi

Fp

5
rL2V2

rL2

rV2

p

Inertia

Centrifugal

Fi

Fv

5
rL2V2

rL4v2

V2

L2v2

Inertia

Elastic

Fi

FE

5
rL2V2

EL2

rV2

E

Inertia

Surface tension

Fi

Fs

5
rL2V2

sL

rLV 2

s

Inertia

Vibration

Fi

Ff

5
rL2V2

rL4f 2

V2

L2f 2

SOURCE: Computed from data given in Murdock, ‘‘Fluid M
Elastic force FE 5 (modulus of elasticity)(area)
5 EL2

Surface-tension force Fs 5 (surface tension)(length) 5 sL
Vibratory force Ff 5 (mass)(acceleration)

5 (rL3)(L/T 2)
5 (rL4)(T22) 5 rL4f 2

If all fluid forces were acting on a fluid element,

Fr 5
Fmm 1 : Fgm 1 : Fpm 1 : Fvm 1 : FEm 1 : Fsm 1 : Ffm

Fmp 1 : Fgp 1 : Fpp 1 : Fvp 1 : FEp 1 : Fsp 1 : Ffp

5
Fim

Fip

Examination of the above equation and the force polygon of Fig. 3.3.19
lead to the conclusion that dynamic similarity can be characterized by
an equality of force ratios one less than the total number involved. Any
force ratio may be eliminated, depending upon the quantities which are
desired. Fortunately, in most practical engineering problems, not all of
the eight forces are involved because some may not be acting, may be of
negligible magnitude, or may be in opposition to each other in such a
way as to compensate. In each application of similarity, a good under-
standing of the fluid phenomena involved is necessary to eliminate the
irrelevant , trivial, or compensating forces. When the flow phenomenon
is too complex to be readily analyzed, or is not known, only experimen-
tal verification with the prototype of results from a model test will
determine what forces should be considered in future model testing.

Standard Numbers With eight fluid forces that can act in flow situ-
ations, the number of dimensionless parameters that can be formed from

Conventional practice

Form Symbol Name

rLV

m
R Reynolds

V

√Lg
F Froude
rV2

p
E Euler

2Dp

rV2
Cp Pressure coefficient

V

DN
V Velocity ratio

rV2

E
C Cauchy

V

√E/r
M Mach

rLV2

s
W Weber

Lf

V
S Strouhal

echanics and Its Applications,’’ Houghton Mifflin, 1976.
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their ratios is 56. However, conventional practice is to ratio the inertia
force to the other fluid forces, usually by division because the inertia
force is the vector sum of all the other forces involved in a given flow
situation. Results obtained by dividing the inertia force by each of the
other forces are shown in Table 3.3.7 compared with the standard num-
bers that are used in conventional practice.

DYNAMIC SIMILARITY

P 5 FV 5S146,300

550 DS10 3 6,076

3,600 D
5 4,490 hp (3.35 3 106 W)

Compressible Flow Considered in this category are the flow of
compressible fluids under the conditions specified for incompressible
flow in the preceding paragraphs. In addition to the forces involved in
incompressible flow, the elastic force must be added. Conventional
practice is to use the square root of the inertia /elastic force ratio or Mach
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Vibration In the flow of fluids around objects and in the motion of
bodies immersed in fluids, vibration may occur because of the formation
of a wake caused by alternate shedding of eddies in a periodic fashion or
by the vibration of the object or the body. The Strouhal number S is the
ratio of the velocity of vibration Lf to the velocity of the fluid V. Since
the vibration may be fluid-induced or structure-induced, two frequen-
cies must be considered, the wake frequency fv and the natural fre-
quency of the structure fn . Fluid-induced forces are usually of small
magnitude, but as the wake frequency approaches the natural frequency
of the structure, the vibratory forces increase very rapidly. When
fv 5 fn , the structure will go into resonance and fail. This imposes on
the model designer the requirement of matching to scale the natural-fre-
quency characteristics of the prototype. This subject is treated later
under Wake Frequency. All further discussions of model /prototype re-
lations are made under the assumption that either vibratory forces are
absent or they are taken care of in the design of the model or in the test
program.

Incompressible Flow Considered in this category are the flow of
fluids around an object , motion of bodies immersed in incompressible
fluids, and the flow of incompressible fluids in conduits. It includes, for
example, a submarine traveling under water but not partly submerged,
and liquids flowing in pipes and passages when the liquid completely
fills them, but not when partly full as in open-channel flow. It also
includes aircraft moving in atmospheres that may be considered incom-
pressible. Incompressible flow in rotating machinery is considered sep-
arately.

In these situations the gravity force, although acting on all fluid parti-
cles, does not affect the flow pattern. Excluding rotating machinery,
centrifugal forces are absent . By definition of an incompressible fluid,
elastic forces are zero, and since there is no liquid-gas interface, sur-
face-tension forces are absent .

The only forces now remaining for consideration are the inertia,
viscous, and pressure. Using standard numbers, the parameters are
Reynolds number and pressure coefficient. The Reynolds number may be
converted into a kinematic ratio by noting that by definition v 5 m/r and
substituting in R 5 rLV/m 5 LV/v. In this form, Reynolds number is the
ratio of the fluid velocity V and the ‘‘shear velocity’’ v/L. For this
reason, Reynolds number is used to characterize the velocity profile.
Forces and pressure losses are then determined by the pressure coeffi-
cient .

EXAMPLE. A submarine is to move submerged through 32°F (0°C) seawater
at a speed of 10 knots. (1) At what speed should a 1 : 20 model be towed in 68°F
(20°C) fresh water? (2) If the thrust on the model is found to be 42,500 lbf, what
horsepower will be required to propel the submarine?

1. Speed of model for Reynolds-number similarity

Rm 5 Rp 5SrVL

m
D

m

5SrVL

m
D

p

Vm 5 Vp(rp /rm)(Lp/Lm)(mm /mp)
Vm 5 (10)(1.995/1.937)(20/1)(20.92 3 1026/39.40 3 1026)

5 109.4 knots (56.27 m/s)

2. Prototype horsepower

Cpp 5 Cpm 5S2Dp

rV2D
p

5S2Dp

rV2D
m

F 5 DpL2, Dp 5
F

L2
, so thatS 2 F

rV2L2D
p

5S 2 F

rV2L2D
m

Fp 5 Fm(rp /rm)(Vp/Vm)2(Lp/Lm)2

5 42,500 (1.995/1.937)(10/109.4)2(20/1)2 5 146,300 lbf
number.
Mach number is the ratio of the fluid velocity to its speed of sound and

may be written M 5 V/c 5 V √Es /r. For an ideal gas, M 5 V/ √kgcRT. In
compressible-flow problems, practice is to use the Mach number to
characterize the velocity or kinematic similarity, the Reynolds number
for dynamic similarity, and the pressure coefficient for force or pres-
sure-loss determination.

EXAMPLE. An airplane is to fly at 500 mi/h in an atmosphere whose temper-
ature is 32°F (0°C) and pressure is 12 lbf/in2. A 1 : 20 model is tested in a wind
tunnel where a supply of air at 392°F (200°C) and variable pressure is available.
At (1) what speed and (2) what pressure should the model be tested for dynamic
similarity?

1. Speed for Mach-number similarity

Mm 5 Mp 5S V

√E/r
D

m

5S V

√E/r
D

p

5S V

√kgcRT
D

m

5S V

√kgcRT
D

p

Vm 5 Vp(km/kp)1/2(Rm/Rp)1/2(Tm/Tp)1/2

For the same gas km 5 kp , Rm 5 Rp , and

Vm 5 Vp √Tm/Tp 5 500 √(851.7/491.7) 5 658.1 mi/h

2. Pressure for Reynolds-number similarity

Rm 5 Rp 5SrVL

m
D

m

5SrVL

m
D

p

rm 5 rp(Vp/Vm)(Lp/Lm)(mm/mp)

Since r 5 p/gcRT

S p

gcRTDm

5S p

gcRTDp

(Vp/Vm)(Lp/Lm)(mm /mp)

pm 5 pp(Tm/Tp)(Vp/Vm)(Lp/Lm)(mm /mp)
pm 5 12(851.7/491.7)(500/658.1)(20/1)(53.15 3 1026/35.67 3 1026)
pm 5 470.6 lbf/in2 (3.245 3 106 N/m2)

For information about wind-tunnel testing and its limitations, refer to Sec. 11.4.

Centrifugal Machinery This category includes the flow of fluids in
such centrifugal machinery as compressors, fans, and pumps. In addi-
tion to the inertia, pressure, viscous, and elastic forces, centrifugal
forces must now be considered. Since centrifugal force is really a spe-
cial case of the inertia force, their ratio as shown in Table 3.3.7 is
velocity ratio and is the ratio of the fluid velocity to the machine tangen-
tial velocity. In model /prototype relations for centrifugal machinery,
DN (D 5 diameter, ft , N 5 rotational speed) is substituted for the
velocity V, and D for L, which results in the following:

M 5 DN/ √kgcRT R 5 rD2N/m Cp 5 2Dp/rD2N2

EXAMPLE. A centrifugal compressor operating at 100 r/min is to compress
methane delivered to it at 50 lbf/in2 and 68°F (20°C). It is proposed to test this
compressor with air from a source at 140°F (60°C) and 100 lbf/in2. Determine
compressor speed and inlet-air pressure required for dynamic similarity.
Find speed for Mach-number similarity:

Mm 5 Mp 5 (DN/ √kgcRT)m 5 (DN/ √kgcRT )p

Nm 5 Np(Dp/Dm) √(km/kp)(Rm/Rp)(Tm/Tp)

5 100 (1) √(1.40/1.32)(53.34/96.33)(599.7/527.7)

5 81.70 r/min

Find pressure for Reynolds-number similarity:

Rm 5 Rp 5SrD2N

m
D

m

5SrD2N

m
D

p
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For an ideal gas r 5 p/gcRT, so that

(pD2N/gcRTm)m 5 (pD2N/gcRTm)p

pm 5 pp(Dp/Dm)2(Np/Nm)(Rm/Rp)(Tm/Tp)(mm/mp)
5 50(1)2(100/81.70)(53.34/96.33)(599.7/527.7) 3 (41.79

3 1028/22.70 3 1028) 5 70.90 lbf/in2 (4.888 3 105 N/m2)

See Sec. 14 for specific information on pump and compressor simi-
larity.

Liquid Surfaces Considered in this category are ships, seaplanes
during takeoff, submarines partly submerged, piers, dams, rivers, open-

DIMENSIONAL ANALYSIS

Dimensional analysis is the mathematics of dimensions and quantities
and provides procedural techniques whereby the variables that are as-
sumed to be significant in a problem can be formed into dimensionless
parameters, the number of parameters being less than the number of
variables. This is a great advantage, because fewer experimental runs
are then required to establish a relationship between the parameters than
between the variables. While the user is not presumed to have any
knowledge of the fundamental physical equations, the more knowl-
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channel flow, spillways, harbors, etc. Resistance at liquid surfaces is
due to surface tension and wave action. Since wave action is due to
gravity, the gravity force and surface-tension force are now added to the
forces that were considered in the last paragraph. These are expressed as
the square root of the inertia /gravity force ratio or Froude number F 5

V/ √Lg and as the inertia /surface tension force ratio or Weber number
W 5 rLV2/s. On the other hand, elastic and pressure forces are now
absent . Surface tension is a minor property in fluid mechanics and it
normally exerts a negligible effect on wave formation except when the
waves are small, say less than 1 in. Thus the effects of surface tension
on the model might be considerable, but negligible on the prototype.
This type of ‘‘scale effect’’ must be avoided. For accurate results, the
inertia /surface tension force ratio or Weber number should be consid-
ered. It is never possible to have complete dynamic similarity of liquid
surfaces unless the model and prototype are the same size, as shown in
the following example.

EXAMPLE. An ocean vessel 500 ft long is to travel at a speed of 15 knots. A
1 : 25 model of this ship is to be tested in a towing tank using seawater at design
temperature. Determine the model speed required for (1) wave-resistance similar-
ity, (2) viscous or skin-friction similarity, (3) surface-tension similarity, and
(4) the model size required for complete dynamic similarity.

1. Speed for Froude-number similarity

Fm 5 Fp 5 (V/ √Lg)m 5 (V/ √Lg)p

or Vm 5 Vp √Lm/Lp 5 15 √1/25 5 3 knots

2. Speed for Reynolds-number similarity

Rm 5 Rp 5 (rLV/m)m 5 (rLV/m)p

Vm 5 Vp(rp /rm)(Lp/Lm)(mm /mp)
Vm 5 15(1)(25/1)(1) 5 375 knots

3. Speed for Weber-number similarity

Wm 5 Wp 5 (rLV2/s)m 5 (rLV2/s)p

Vm 5 Vp √(rp /rm)(Lp/Lm)(sm /sp)

Vm 5 15 √(1)(25)(1) 5 75 knots

4. Model size for complete similarity. First try Reynolds and Froude similar-
ity; let

Vm 5 Vp(rp /rm)(Lp/Lm)(mm /mp) 5 Vp √Lm/Lp

which reduces to

Lm/Lp 5 (rp /rm)2/3(mm /mp)2/3

Next try Weber and Froude similarity; let

Vm 5 Vp √(rp /rm)(Lp/Lm)(sm /sp) 5 Vp √Lm/Lp

which reduces to

Lm/Lp 5 (rp /rm)1/2(sm /sp)1/2

For the same fluid at the same temperature, either of the above solves for Lm 5 Lp ,
or the model must be the same size as the prototype. For use of different fluids
and/or the same fluid at different temperatures.

Lm/Lp 5 (rp /rm)2/3(mm /mp)2/3 5 (rp /rm)1/2(sm /sp)1/2

which reduces to

(m4/rs3)m 5 (m4/rs3)p

No practical way has been found to model for complete similarity.
Marine engineering practice is to model for wave resistance and correct
for skin-friction resistance. See Sec. 11.3.
edgeable the user, the better the results. If any significant variable or
variables are omitted, the relationship obtained from dimensional anal-
ysis will not apply to the physical problem. On the other hand, inclusion
of all possible variables will result in losing the principal advantage of
dimensional analysis, i.e., the reduction of the amount of experimental
data required to establish relationships. Two formal methods of dimen-
sional analysis are used, the method of Lord Rayleigh and Buckingham’s II
theorem.

Dimensions used in mechanics are mass M, length L, time T, and force
F. Corresponding units for these dimensions are the slug (kilogram), the
foot (metre), the second (second), and the pound force (newton). Any
system in mechanics can be defined by three fundamental dimensions.
Two systems are used, the force (FLT) and the mass (MLT ). In the force
system, mass is a derived quantity and in the mass system, force is a
derived quantity. Force and mass are related by Newton’s law: F 5
MLT22 and M 5 FL21T 2. Table 3.3.8 shows common variables and
their dimensions and units.

Lord Rayleigh’s method uses algebra to determine interrelationships
among variables. While this method may be used for any number of
variables, it becomes relatively complex and is not generally used for
more than four. This method is most easily described by example.

EXAMPLE. In laminar flow, the unit shear stress t is some function of the
fluid dynamic viscosity m, the velocity difference dU between adjacent laminae
separated by the distance dy. Develop a relationship.

1. Write a functional relationship of the variables:

t 5 f (m, dU, dy)

Assume t 5 K(madUbdyc).
2. Write a dimensional equation in either FLT or MLT system:

(FL22) 5 K(FL22T )a(LT21)b(L)c

3. Solve the dimensional equation for exponents:

t m dU dy

Force F 1 5 a 1 0 1 0
Length L 2 2 5 2 2a 1 b 1 c
Time T 0 5 a 2 b 1 0

Solution: a 5 1, b 5 1, c 5 2 1
4. Insert exponents in the functional equation: t 5 K(madUbdyc) 5

K(m1du1dy21), or K 5 (mdU/tdy). This was based on the assumption of t 5
K(madUbdyc). The general relationship is K 5 f (mdU/tdy). The functional rela-
tionship cannot be obtained from dimensional analysis. Only physical analysis
and/or experiments can determine this. From both physical analysis and experi-
mental data,

t 5 m dU/dy

The Buckingham II theorem serves the same purpose as the method of
Lord Rayleigh for deriving equations expressing one variable in terms
of its dependent variables. The II theorem is preferred when the number
of variables exceeds four. Application of the II theorem results in the
formation of dimensionless parameters called p ratios. These p ratios
have no relation to 3.14159. . . . The II theorem will be illustrated in
the following example.

EXAMPLE. Experiments are to be conducted with gas bubbles rising in a still
liquid. Consider a gas bubble of diameter D rising in a liquid whose density is r,
surface tension s, viscosity m, rising with a velocity of V in a gravitational field of
g. Find a set of parameters for organizing experimental results.

1. List all the physical variables considered according to type: geometric, kine-
matic, or dynamic.
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Table 3.3.8 Dimensions and Units of Common Variables

Dimensions Units

Symbol Variable MLT FLT USCS* SI

Geometric

L
A
V

Length
Area
Volume

L
L2

L3

ft
ft2

ft3

m
m2

m3

Kinematic

t
v
f
V
v
Q
a
a

Time
Angular velocity
Frequency
Velocity
Kinematic viscosity
Volume flow rate
Angular acceleration
Acceleration

T

T21

LT21

L2T21

L3T21

T22

LT22

s

s21

ft /s
ft2/s
ft3/s
s22

ft /s22

s

s21

m/s
m2/s
m3/s
s22

m/s2

Dynamic

r
M
I
m
M
MV
Ft
Mv
g
p
t
E
s
F
E
W
FL
P
v

Density
Mass
Moment of inertia
Dynamic viscosity
Mass flow rate
Momentum
Impulse
Angular momentum
Specific weight
Pressure
Unit shear stress
Modulus of elasticity
Surface tension
Force
Energy
Work
Torque
Power
Specific volume

ML23

M
ML2

ML21T21

MT21

MLT21

ML2T21

ML22T22

ML21T22

MT22

MLT22

ML2T22

ML2T23

M21L3

FL24T 2

FL21T 2

FLT 2

FL22T
FL21T21

FT

FLT
FL23

FL22

FL21

F

FL

FLT21

F21L4T22

slug/ft3

slugs
slug ? ft2

slug/ft ? s
slug/s
lbf ? s

slug ? ft2/s
lbf/ft3

lbf/ft2

lbf/ft
lbf

lbf ? ft

lbf ? ft /s
ft3/ lbm

kg/m3

kg
kg ? m2

kg/m ? s
kg/s
N ? s

kg ? m2/s
N/m3

N/m2

N/m
N

J

W
m3/kg

*United States Customary System.

2. Choose either the FLT or MLT system of dimensions.
3. Select a ‘‘basic group’’ of variables characteristic of the flow as follows:

a. BG , a geometric variable
b. BK , a kinematic variable
c. BD , a dynamic variable (if three dimensions are used)

4. Assign A numbers to the remaining variables starting with A1 .

Type Symbol Description Dimensions Number

p1 5 D1V22r0g 5 Dg/V2

p2 5 (BG)x2(BK)y2(BD)z2(A2) 5 (D)x2(V )y2(r)z2(s)
(M0L0T 0) 5 (Lx2)(Lv2T2y2)(Mz2L23z2)(MT22)

Solution: x2 5 2 1, y2 5 2 2, z2 5 2 1

p2 5 D21V22r21s 5 s/DV2r
p3 5 (BG)x3(BK)y3(BD)z3(A3) 5 (D)x3(V )y3(r)z3(m)

(M0L0T 0) 5 (Lx3)(Ly3T2y3)(Mz3L23z3)(ML21T21)

Solution: x3 5 2 1, y3 5 2 1, z3 5 2 1
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Geometric D Bubble diameter L BG

Kinematic V Bubble velocity LT21 BK

g Acceleration of LT22 A1

gravity
Dynamic r Liquid density ML23 BD

s Surface tension MT22 A2

m Liquid viscosity ML21T21 A3

5. Write the basic equation for each p ratio as follows:

p1 5 (BG)x1(BK)y1(BD)z1(A1)
p2 5 (BG)x2(BK)y2(BD)z2(A2) . . . pn 5 (BG)xn(BK)yn(BD)zn(An)

Note that the number of p ratios is equal to the number of A numbers and thus
equal to the number of variables less the number of fundamental dimensions in a
problem.

6. Write the dimensional equations and use the algebraic method to determine
the value of exponents x, y, and z for each p ratio. Note that for all p ratios, the
sum of the exponents of a given dimension is zero.

p1 5 (BG)x1(BK)y1(BD)z1(A1) 5 (D)x1(V )y1(r)z1(g)
(M0L0T 0) 5 (Lx1)(Ly1T2y1)(Mz1L23z1)(LT22)

Solution: x1 5 1, y1 5 2 2, z1 5 0
p3 5 D21V21r21m 5 m/DVr

7. Convert p ratios to conventional practice. One statement of the Buckingham
II theorem is that any p ratio may be taken as a function of all the others, or f(p1 ,
p2 , p3 , . . . , pn) 5 0. This equation is mathematical shorthand for a functional
statement . It could be written, for example, as p2 5 f(p1 , p3 , . . . , pn). This
equation states that p2 is some function of p1 and p3 through pn but is not a
statement of what function p2 is of the other p ratios. This can be determined only
by physical and/or experimental analysis. Thus we are free to substitute any func-
tion in the equation; for example, p1 may be replaced with 2p1

21 or pn with apn
b .

The procedures set forth in this example are designed to produce p
ratios containing the same terms as those resulting from the application
of the principles of similarity so that the physical significance may be
understood. However, any other combinations might have been used.
The only real requirement for a ‘‘basic group’’ is that it contain the
same number of terms as there are dimensions in a problem and that
each of these dimensions be represented in it .

The p ratios derived for this example may be converted into conven-
tional practice as follows:

p1 5 Dg/V2
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is recognized as the inverse of the square root of the Froude number F

p2 5 s/DV2r

is the inverse of the Weber number W

p 5 m/DVr

is the inverse of the Reynolds number R

Let p1 5 f(p2 , p3)
Then V 5 K(Dg)142

Since the drag and lift forces may be considered independently,

FD 5 CDrV2(A)/2

where CD 5 f(R, M), and A 5 characteristic area.

FL 5 CLrV2(A)/2

where CL 5 f(R, M).
It is evident from Fig. 3.3.20 that CD and CL are also functions of the

angle of attack. Since the drag force arises from two sources, the pres-
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where K 5 f(W, R)

This agrees with the results of the dynamic-similarity analysis of liquid
surfaces. This also permits a reduction in the experimental program
from variations of six variables to three dimensionless parameters.

FORCES OF IMMERSED OBJECTS

Drag and Lift When a fluid impinges on an object as shown in Fig.
3.3.20, the undisturbed fluid pressure p and the velocity V change. Writ-
ing Bernoulli’s equation for two points on the surface of the object , the
point S being the most forward point and point A being any other point ,
we have, for horizontal flow,

p 1 rV2/2 5 pS 1 rV2
S/2 5 pA 1 rV2

A/2

At point S, VS 5 0, so that pS 5 p 1 rV2/2. This is called the stagnation
point , and pS is the stagnation pressure. Since point A is any other point ,
the result of the fluid impingement is to create a pressure pA 5 p 1
r(V2 2 V2

A)/2 acting normal to every point on the surface of the object .

Fig. 3.3.20 Notation for drag and lift.

In addition, a frictional force Ff 5 t0As tangential to the surface area As

opposes the motion. The sum of these forces gives the resultant force R
acting on the body. The resultant force R is resolved into the drag
component FD parallel to the flow and lift component FL perpendicular
to the fluid motion. Depending upon the shape of the object , a wake
may be formed which sheds eddies with a frequency of f. The angle a is
called the angle of attack. (See Secs. 11.4 and 11.5.)

From dimensional analysis or dynamic similarity,

f(Cp , R, M, S) 5 0

The formation of a wake depends upon the Reynolds number, or
S 5 f(R). This reduces the functional relation to f (Cp , R, M) 5 0.
sure or shape drag Fp and the skin-friction drag Ff due to wall shear
stress t0 , the drag coefficient is made up of two parts:

FD 5 Fp 1 Ff 5 CDrAV2/2 5 CprAV2/2 1 CfrAsV2/2
or CD 5 Cp 1 CfAs/A

where Cp is the coefficient of pressure, Cf the skin-friction coefficient ,
and As the characteristic area for shear.

Skin-Friction Drag Figure 3.3.21 shows a fluid approaching a
smooth flat plate with a uniform velocity profile of V. As the fluid
passes over the plate, the velocity at the plate surface is zero and in-
creases to V at some distance d from the surface. The region in which
the velocity varies from 0 to V is called the boundary layer. For some

Fig. 3.3.21 Boundary layer along a smooth flat plate.

distance along the plate, the flow within the boundary layer is laminar,
with viscous forces predominating, but in the transition zone as the
inertia forces become larger, a turbulent layer begins to form and in-
creases as the laminar layer decreases.

Boundary-layer thickness and skin-friction drag for incompressible
flow over smooth flat plates may be calculated from the following
equations, where RX 5 rVX/m:

Laminar

d/X 5 5.20 RX
21/2 0 , RX , 5 3 105

Cf 5 1.328 RX
21/2 0 , RX , 5 3 105

Turbulent

d/X 5 0.377 RX
21/5 5 3 104 , RX , 106

d/X 5 0.220 RX
21/6 106 , RX , 5 3 108

Cf 5 0.0735 RX
21/5 2 3 105 , RX , 107

Cf 5 0.455 (log10RX)22.58 107 , RX , 108

Cf 5 0.05863 (log10CfRX)22 108 , Rx , 109

Transition The Reynolds number at which the boundary layer
changes depends upon the roughness of the plate and degree of turbu-
lence. The generally accepted number is 500,000, but the transition can
take place at Reynolds numbers higher or lower. (Refer to Secs. 11.4
and 11.5.) For transition at any Reynolds number RX ,

Cf 5 0.455 (log10RX)22.58 2 (0.0735 Rt
4/5 2 1.328 8 Rt

1/2) RX
21

For Rt 5 5 3 105, Cf 5 0.455 (log10RX)22.58 2 1,725 RX
21.
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Pressure Drag Experiments with sharp-edged objects placed per-
pendicular to the flow stream indicate that their drag coefficients are
essentially constant at Reynolds numbers over 1,000. This means that
the drag for RX . 103 is pressure drag. Values of CD for various shapes
are given in Sec. 11 along with the effects of Mach number.

Wake Frequency An object in a fluid stream may be subject to the
downstream periodic shedding of vortices from first one side and then
the other. The frequency of the resulting transverse (lift) force is a
function of the stream Strouhal number. As the wake frequency ap-

Fig. 3.3.22. This wide zone is due to experimental and/or measurement
difficulties and the dependence on surface roughness to ‘‘trigger’’ the
boundary layer. Examination of Fig. 3.3.22 indicates an inverse relation
of Strouhal number to drag coefficient .

Observation of actual structures shows that they vibrate at their natu-
ral frequency and with a mode shape associated with their fundamental
(first) mode during vortex excitation. Based on observations of actual
stacks and wind-tunnel tests, Staley and Graven recommend a constant
Strouhal number of 0.2 for all ranges of Reynolds number. The ASME
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proaches the natural frequency of the structure, the periodic lift force
increases asymptotically in magnitude, and when resonance occurs, the
structure fails. Neglecting to take this phenomenon into account in de-
sign has been responsible for failures of electric transmission lines,
submarine periscopes, smokestacks, bridges, and thermometer wells.
The wake-frequency characteristics of cylinders are shown in Fig.
3.3.22. At a Reynolds number of about 20, vortices begin to shed alter-
nately. Behind the cylinder is a staggered stable arrangement of vortices
known as the ‘‘Kármán vortex trail.’’ At a Reynolds number of about
105, the flow changes from laminar to turbulent . At the end of the
transition zone (R ' 3.5 3 105), the flow becomes turbulent , the alter-

Fig. 3.3.22 Flow around a cylinder. (From Murdock, ‘‘Fluid Mechanics and Its
Applications,’’ Houghton Mifflin, 1976.)

nate shedding stops, and the wake is aperiodic. At the end of the super-
critical zone (R ' 3.5 3 106), the wake continues to be turbulent , but
the shedding again becomes alternate and periodic.

The alternating lift force is given by

FL(t) 5 CL rV2 A sin (2p ft)/2

where t is the time. For an analysis of this force in the subcritical zone,
see Belvins (Murdock, ‘‘Fluid Mechanics and Its Applications,’’
Houghton Mifflin, 1976). For design of steel stacks, Staley and Graven
(ASME 72PET/30) recommend CL 5 0.8 for 104 , R , 105, CL 5
2.8 2 0.4 log10 R for R 5 105 to 106, and CL 5 0.4 for 106 , R , 107.

The Strouhal number is nearly constant to R 5 105, and a nominal
design value of 0.2 is generally used. Above R 5 105, data from differ-
ent experimenters vary widely, as indicated by the crosshatched zone of
recommends S 5 0.22 for thermowell design (‘‘Temperature Measure-
ment ,’’ PTC 19.3). Until such time as the value of the Strouhal number
above R 5 105 has been firmly established, designers of structures in
this area should proceed with caution.

FLOW IN PIPES

Parameters for Pipe Flow The forces acting on a fluid flowing
through and completely filling a horizontal pipe are inertia, viscous,
pressure, and elastic. If the surface roughness of the pipe is «, either
similarity or dimensional analysis leads to Cp 5 f(R, M, L/D, «/D),
which may be written for incompressible fluids as Dp 5 CpV2/2 5
KrV2/2, where K is the resistance coefficient and «/D the relative rough-
ness of the pipe surface, and the resistance coefficient K 5 f(R, L/D,
«/D). The pressure loss may be converted to the terms of lost head:
hf 5 Dp/g 5 KV2/2g. Conventional practice is to use the friction factor f,
defined as f 5 KD/L or hf 5 KV2/2g 5 ( fL/D)V2/2g, where f 5
f (R, «/D). When a fluid flows into a pipe, the boundary layer starts at
the entrance, as shown in Fig. 3.3.23, and grows continuously until it
fills the pipe. From the equation of motion dhf 5 t dL/gRh and for
circular ducts Rh 5 D/4. Comparing wall shear stress t0 with friction
factor results in the following: t0 5 frV2/8.

Fig. 3.3.23 Velocity profiles in pipes.

Laminar Flow In this type of flow, the resistance is due to viscous
forces only so that it is independent of the pipe surface roughness, or
t0 5 m dU/dy. Application of this equation to the equation of motion
and the friction factor yields f 5 64/R. Experiments show that it is
possible to maintain laminar flow to very high Reynolds numbers if care
is taken to increase the flow gradually, but normally the slightest distur-
bance will destroy the laminar boundary layer if the value of Reynolds
number is greater than 4,000. In a like manner, flow initially turbulent
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Fig. 3.3.24 Friction factors for flow in pipes.

can be maintained with care to very low Reynolds numbers, but the
slightest upset will result in laminar flow if the Reynolds number is less
than 2,000. The Reynolds-number range between 2,000 and 4,000 is
called the critical zone (Fig. 3.3.24). Flow in the zone is unstable, and
designers of piping systems must take this into account .

EXAMPLE. Glycerin at 68°F (20°C) flows through a horizontal pipe 1 in in
diameter and 20 ft long at a rate of 0.090 lbm/s. What is the pressure loss? From
the continuity equation V 5 Q/A 5 (m/rg)/(pD2/4) 5 [0.090/(2.447 3 32.17)]/
[(p/4)(1/12)2] 5 0.2096 ft /s. The Reynolds number R 5 rVD/m 5

26

Table 3.3.9 Values of Absolute Roughness, New Clean
Commercial Pipes

Probable max
variation of f

from design, %Type of pipe or tubing

« ft (0.3048 m) 3 1026

Range Design

Asphalted cast iron
Brass and copper
Concrete
Cast iron

400
5

850

400
5

4,000
850

2 5 to 1 5
2 5 to 1 5

2 35 to 50
2 10 to 1 15

1,000 10,000
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(2.447)(0.2096)(1/12)/(29,500 3 10 ) 5 1.449. R , 2,000; therefore, flow is
laminar and f 5 64/R 5 64/1.449 5 44.17. K 5 fL/D 5 44.17 3 20(1/12) 5
10,600. Dp 5 KrV2/2 5 10,600 3 2.447 (0.2096)2/2 5 569.8 lbf/ft2 5
569.8/144 5 3.957 lbf/in2 (2.728 3 104 N/m2).

Turbulent Flow The friction factor for Reynolds number over 4,000
is computed using the Colebrook equation:

1

√f
5 2 2 log10 S«/D

3.7
1

2.51

R √f
D

Figure 3.3.24 is a graphical presentation of this equation (Moody,
Trans. ASME, 1944, pp. 671–684). Examination of the Colebrook
equation indicates that if the value of surface roughness « is small
compared with the pipe diameter («/D : 0), the friction factor is a
function of Reynolds number only. A smooth pipe is one in which the
ratio («/D)/3.7 is small compared with 2.51/R √f. On the other hand,
as the Reynolds number increases so that 2.51/R √f : 0, the friction
factor becomes a function of relative roughness only and the pipe is
called a rough pipe. Thus the same pipe may be smooth under one flow
condition, and rough under another. The reason for this is that as the
Reynolds number increases, the thickness of the laminar sublayer de-
creases as shown in Fig. 3.3.21, exposing the surface roughness to flow.
Values of absolute roughness « are given in Table 3.3.9. The variation
Galvanized iron
Wrought iron
Steel
Riveted steel
Wood stave

500
150
150

500
150
150

6,000
2,000

0 to 1 10
2 5 to 10
2 5 to 10

2 25 to 75
2 35 to 20

3,000 30,000
600 3,000

SOURCE: Compiled from data given in ‘‘Pipe Friction Manual,’’ Hydraulic Institute, 3d ed.,
1961.

of friction factor shown in Fig. 3.3.9 is for new, clean pipes. The change
of friction factor with age depends upon the chemical properties of the
fluid and the piping material. Published data for flow of water through
wrought-iron or cast-iron pipes show as much as 20 percent increase
after a few months to 500 percent after 20 years. When necessary to
allow for service life, a study of specific conditions is recommended.
The calculation of friction factor to four significant figures in the exam-
ples to follow is only for numerical comparison and should not be
construed to mean accuracy.

Engineering Calculations Engineering pipe computations usually
fall into one of the following classes:

1. Determine pressure loss Dp when Q, L, and D are known.
2. Determine flow rate Q when L, D, and Dp are known.
3. Determine pipe diameter D when Q, L, and Dp are known.

/knovel2/view_hotlink.jsp?hotlink_id=414433200
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Pressure-loss computations may be made to engineering accu-
racy using an expanded version of Fig. 3.3.24. Greater precision may
be obtained by using a combination of Table 3.3.9 and the Cole-
brook equation, as will be shown in the example to follow. Flow rate
may be determined by direct solution of the Colebrook equation. Com-
putation of pipe diameter necessitates the trial-and-error method of so-
lution.

EXAMPLE. Case 1: 2,000 gal /min of 68°F (20°C) water flow through 500 ft
of cast-iron pipe having an internal diameter of 10 in. At point 1 the pressure is

EXAMPLE. Case 3; Water at 68°F (20°C) is to flow at a rate of 500 ft3/s
through a concrete pipe 5,000 ft long with a head loss not to exceed 50 ft . Deter-
mine the diameter of the pipe. This problem may be solved by trial and error using
methods of the preceding example. First trial: Assume any diameter (say 1 ft).

R √f 5 (rD/m)(2ghf D/L)1/2

5 (1.937D/20.92 3 1026) 3 (2 3 32.17 3 50D/5,000)1/2

5 74,269D3/2 5 74,269(1)3/2 5 74,269
«/D1 5 4,000 3 1026/D 5 4,000 3 1026/(1) 5 4,000 3 1026

1
5 2 2 log10S«/D1

1
2.51D

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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10 lbf/in2 and the elevation 150 ft , and at point 2 the elevation is 100 ft . Find p2 .
From continuity V 5 Q/A 5 [2,000 3 (231/1,728)/60]/[(p/4)(10/12)2] 5 8.170

ft /s. Reynolds number R 5 rVD/m 5 (1.937)(8.170)(10/12)/(20.92 3 1026) 5
6.304 3 105. R . 4,000 .

.
. flow is turbulent . «/D 5 (850 3 1026)/

(10/12) 5 1.020 3 1023.
Determine f: from Fig. 3.3.24 by interpolation f 5 0.02. Substituting this value

on the right-hand side of the Colebrook equation,

1

√f
5 2 2 log10S«/D

3.7
1

2.51

R √f
D

5 2 2 log10F1.020 3 1023

3.7
1

2.51

(6.305 3 105) √0.02
G

1

√f
5 7.035 f 5 0.02021

Resistance coefficient K 5
fL

D
5

0.02021 3 500

10/12

K 5 12.13
h1 f 2 5 KV2/2g 5 12.13 3 (8.170)2/2 3 32.17
h1 f 2 5 12.58 ft

Equation of motion: p1/g 1 V2
1/2g 1 z1 5 p2/g 1 V2

2 /2g 1 z2 1 h1 f 2 . Noting
that V1 5 V2 5 V and solving for p2 ,

p2 5 p1 1 g(z1 2 z2 2 h1 f 2)
5 144 3 10 1 (1.937 3 32.17)(150 2 100 2 12.58)

p2 5 3,772 lbf/ft2 5 3,772/144 5 26.20 lbf/in2 (1.806 3 105 N/m2)

EXAMPLE. Case 2: Gasoline (sp. gr. 0.68) at 68°F (20°C) flows through a
6-in schedule 40 (ID 5 0.5054 ft) welded steel pipe with a head loss of 10 ft in 500
ft . Determine the flow. This problem may be solved directly by deriving equations
that do not contain the flow rate Q.

From hf 5S fL

DD V2

2g
, V 5 (2ghf D)1/2( fL)1/2

From R 5 rVD/m, V 5 Rm/rD

Equating the above and solving,

R √f 5 (rD/m)(2ghf D/L)1/2

5 (1.310 3 0.5054/5.98 3 1026)
3 (2 3 32.17 3 10 3 0.5054/500)1/2 5 89,285

which is now in a form that may be used directly in the Colebrook equation:

«/D 5 150 3 1026/0.5054 5 2.968 3 1024

From the Colebrook equation,

1

√f
5 2 2 log10S«/D

3.7
1

2.51

R √f
D

5 2 2 log10S2.968 3 1024

3.7
1

2.51

89,285D
1

√f
5 7.931 f 5 0.01590

R 5 89,285/ √f 5 89,285 3 7.93 5 7.08 3 105

R . 4,000 .
.
. flow is turbulent

V 5 Rm/rD 5 (7.08 3 105 3 5.98
3 1026)/(1.310 3 0.5054) 5 6.396 ft /s

Q 5 AV 5 (p/4)(0.5054)2(6.396)
Q 5 1.283 ft3/s (3.633 3 1022 m3/s1)
√f1 3.7 R √f1

5 2 2 log10S4,000 3 1026

3.7
1

2.51

74,269D
1

√f1
5 5.906 f1 5 0.02867

R1 5 74,269/ √f1 5 74,269 3 5.906 5 438,600
V1 5 Rm/rD1 5 (438,600 5 20.92 3 1026)/(1.937 3 1)
V1 5 4.737 ft /s
Q1 5 A1V1 5 [p (1)2/4]4.737 5 3.720 ft3/s

For the same loss and friction factor,

D2 5 D1(Q/Q1)2/5 5 (1)(500/3.720)2/5 5 7.102 ft

For the second trial use D2 5 7.102, which results in Q 5 502.2 ft3/s. Since the
nearest standard size would be used, additional trials are unnecessary.

Velocity Profile Figure 3.3.23a shows the formation of a laminar
velocity profile. As the fluid enters the pipe, the boundary layer starts at
the entrance and grows continuously until it fills the pipe. The flow
while the boundary is growing is called generating flow. When the
boundary layer completely fills the pipe, the flow is called established
flow. The distance required for establishing laminar flow is L/D '
0.028 R. For turbulent flow, the distance is much shorter because of the
turbulence and not dependent upon Reynolds number, L/D being from
25 to 50.

Examination of Fig. 3.3.23b indicates that as the Reynolds number
increases, the velocity distribution becomes ‘‘flatter’’ and the flow ap-
proaches one-dimensional. The velocity profile for laminar flow is para-
bolic, U/V 5 2[1 2 (r/ro)2] and for turbulent flow, logarithmic (except for
the very thin laminar boundary layer), U/V 5 1 1 1.43 √f 1 2.15 √f
log10 (1 2 r/ro). The use of the average velocity produces an error in the
computation of kinetic energy. If a is the kinetic-energy correction factor,
the true kinetic-energy change per unit mass between two points on a
flow system DKE 5 a1V2

1/2gc 2 a2V2
2/2gc , where a 5 (1/AV3)eU3dA.

For laminar flow, a 5 2 and for turbulent flow, a ' 1 1 2.7f. Of interest
is the pipe factor V/Umax ; for laminar flow, V/Umax 5 1/2 and for turbu-
lent flow, V/Umax 5 1 1 1.43 √f. The location at which the local velocity
equals the average velocity for laminar flow is U 5 V at r/ro 5 0.7071
and for turbulent flow is U 5 V at r/ro 5 0.7838.

Compressible Flow At the present time, there are no true analytical
solutions for the computation of actual characteristics of compressible
fluids flowing in pipes. In the real flow of a compressible fluid in a pipe,
the amount of heat transferred and its direction are dependent upon the
amount of insulation, the temperature gradient between the fluid and
ambient temperatures, and the heat-transfer coefficient . Each condition
requires an individual application of the principles of thermodynamics
and heat transfer for its solution.

Conventional engineering practice is to use one of the following
methods for flow computation.

1. Assume adiabatic flow. This approximates the flow of compress-
ible fluids in short , insulated pipelines.

2. Assume isothermal flow. This approximates the flow of gases in
long, uninsulated pipelines where the fluid and ambient temperatures
are nearly equal.

Adiabatic Flow If the Mach number is less than 1⁄4 , results within
normal engineering-accuracy requirements may be obtained by consid-
ering the fluid to be incompressible. A detailed discussion of and meth-
ods for the solution of compressible adiabatic flow are beyond the scope
of this section, and any standard gas-dynamics text should be consulted.



3-50 MECHANICS OF FLUIDS

Isothermal Flow The equation of motion for a horizontal piping
system may be written as follows:

dp 1 rV dV 1 g dhf 5 0

noting, from the continuity equation, that rV 5 ~M/A 5 G, where G is the
mass velocity in slugs/(ft2)(s), and that g dhf 5 [( f/D)rV2/2]dL 5 [( f/
D)GV/2]dL. Substituting in the above equation of motion and dividing
by GV/2 results in

2r dp 2dV f

friction in this line. From the equation of state, r1 5 p1/gcRT1 5 (144 3
100)/(32.17)(53.34)(527.7) 5 0.01590 slug/ft3. From Table 3.3.6, Rh 5
bD/2(b 1 D) 5 3 3 1/2(3 1 1) 5 0.375 ft , and Dh 5 4Rh 5 4 3 0.375 5
1.5 ft . For galvanized iron, «/Dh 5 500 3 1026/1.5 5 3.333 3 1024

G 5 ( ~m/gc)/A 5 (720/32.17)/(1 3 3) 5 7.460 slugs/(ft2)(s)
R 5 GDh /m 5 (7.460)(1.5)/(39.16 3 1028)

5 28,580,000 . 4,000 .
.
. flow is turbulent

From Fig. 3.3.24, f ' 0.015

1 «/D 2.51
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G2
1

V
1SDD dL 5 0

Integrating for an isothermal process (p/r 5 C) and assuming f is a
constant ,

r1p1

G2 FSp2

p1
D2

2 1G 1 2 logeSV2

V1
D 1

fL

D
5 0

Noting that A1 5 A2 , V2/V1 5 r1/r2 5 p1/p2 , and solving for G,

G 5H r1p1[1 2 (p2/p1)2]

2 loge (p1/p2) 1 fL/DJ1/2

The Reynolds number may be written as

R 5
rVD

m
5

GD

m
and G 5 R

m

D

The value of R √f may be obtained from the simultaneous solution of the
two equations for G, assuming that 2 loge p1/p2 is small compared with
fL/D.

R √f 'HD3r1p1

m2L F1 2Sp2

p1
DGJ1/2

EXAMPLE. Air at 68°F (20°C) is flowing isothermally through a horizontal
straight standard 1-in steel pipe (inside diameter 5 1.049 in). The pipe is 200 ft
long, the pressure at the pipe inlet is 74.7 lbf/in2, and the pressure drop through the
pipe is 5 lbf/in2. Find the flow rate in lbm/s. From the equation of state r1 5
p/gcRT 5 (144 3 74.7)/(32.17 3 53.34 3 527.7) 5 0.01188 slugs/ft3.

R √f 5 {[(D3r1p1/m2L)][1 2 (p2/p1)2]}1/2 5 {[(1.049/12)3(0.01188)
3 (144 3 74.7)/(39.16 3 1028)2(200)[1 2 (69.7/74.7)2]}1/2

5 18,977

For steel pipe « 5 150 3 1026 ft , «/D 5 (150 3 1026)/(1.049/12) 5 1.716 3
1023. From the Colebrook equation,

1

√f
5 2 2 log10S«/D

3.7
1

2.51

R √f
D

5 2 log10 [(1.716 3 1023/3.7) 1 (2.51)/(18,977)] 5 6.449
f 5 0.02404

R 5 (R √f )(1/ √f ) 5 (18,953)(6.449) 5 122,200
R . 4,000 .

.
. flow is turbulent

G 5H r1p1[1 2 (p2/p1)2]

2 loge (p1/p2) 1 fL/DJ
1/2

5H (0.01188)(144 3 74.7)[1 2 (69.7/74.7)2]

2 loge (74.7/69.7) 1 (0.02404)(200)/(1.049/12)J
1/2

5 0.5476 slug/(ft2)(s)
~m 5 gc AG 5 (32.17)(p/4)(1.049/12)2(0.5476)
~m 5 0.1057 lbm/s (47.94 3 1023 kg/s)

Noncircular Pipes For the flow of fluids in noncircular pipes, the
hydraulic diameter Dh is used. From the definition of hydraulic radius,
the diameter of a circular pipe was shown to be four times its hydraulic
radius; thus Dh 5 4Rh . The Reynolds number thus may be written as
R 5 rVDh/m 5 GDh/m, the relative roughness as «/Dh , and the resis-
tance coefficient K 5 fL/Dh . With the above modifications, flows
through noncircular pipes may be computed in the same manner as for
circular pipes.

EXAMPLE. Air at 68°F (20°C) and 100 lbf/in2 enters a rectangular duct 1 by
3 ft at a rate of 720 lbm/s. The duct is horizontal, 100 ft long, and made of
galvanized iron. Assuming isothermal flow, estimate the pressure loss due to
√f
5 2 2 log10S h

3.7
1

R √f
D

5 2 2 log10S3.333 3 1024

3.7
1

2.51

28,580,000 √0.015
D

f 5 0.01530

Solving the isothermal equation for p2/p1 ,

p2

p1

5H1 2S G2

r1p1
DF2 logeSp1

p2
D 1

fL

Dh
GJ1/2

For first trial, assume 2 loge(p1/p2) is small compared with fL/D:

p2/p1 5 {1 2 [(7.460)2/(0.01590)(144 3 100)][0 1 (0.01530)(100)/1.5]}1/2

5 0.8672

Second trial using first-trial values results in 0.8263. Subsequent trials result in
a balance at p2/p1 5 0.8036, p2 5 100 3 0.8036 5 80.36 lbf/in2 (5.541 3
105 N/m2).

PIPING SYSTEMS

Resistance Parameters The resistance to flow of a piping system is
similar to the resistance of an object immersed in a flow stream and is
made up of pressure (inertia) or shape drag and skin-friction (viscous)
drag. For long, straight pipes the pressure drag is characterized by the
relative roughness «/D and the skin friction by the Reynolds number R.
For other piping components, two parameters are used to describe the
resistance to flow, the resistance coefficient K 5 fL/D and the equivalent
length L/D 5 K/f. The resistance-coefficient method assumes that the
component loss is all due to pressure drag and that the flow through the
component is completely turbulent and independent of Reynold’s num-
ber. The equivalent-length method assumes that resistance of the com-
ponent varies in the same manner as does a straight pipe. The basic
assumption then is that its pressure drag is the same as that for the
relative roughness «/D of the pipe and that the friction drag varies with
the Reynolds number R in the same manner as the straight pipe. Both
methods have the inherent advantage of simplicity in application, but
neither is correct except in the fully developed turbulent region. Two
excellent sources of information on the resistance of piping-system
components are the Hydraulic Institute ‘‘Pipe Friction Manual,’’ which
uses the resistance-coefficient method, and the Crane Company Tech-
nical Paper 410 (‘‘Fluid Meters,’’ 6th ed. ASME, 1971), which uses the
equivalent-length concept .

For valves, branch flow through tees, and the type of components
listed in Table 3.3.10, the pressure drag is predominant , is ‘‘rougher’’
than the pipe to which it is attached, and will extend the completely
turbulent region to lower values of Reynolds number. For bends and
elbows, the loss is made up of pressure drag due to the change of
direction and the consequent secondary flows which are dissipated in 50
diameters or more downstream piping. For this reason, loss through
adjacent bends will not be twice that of a single bend.

In long pipelines, the effect of bends, valves, and fittings is usually
negligible, but in systems where there is little straight pipe, they are the
controlling factor. Under-design will result in the failure of the system
to deliver the required capacity. Over-design will result in inefficient
operation because it will be necessary to ‘‘throttle’’ one or more of the
valves. For estimating purposes, Tables 3.3.10 and 3.3.11 may be used
as shown in the examples. When available, the manufacturers’ data
should be used, particularly for valves, because of the wide variety of
designs for the same type. (See also Sec. 12.4.)
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Table 3.3.10 Representative Values of Resistance
Coefficient K

1

√f1
5 2 2 log10S8.706 3 1024

3.7
D f1 5 0.01899

1

√f1
5 2 2 log10S2.255 3 1024

3.7
D f2 5 0.01407

1. 2-in components K
Entrance loss, sharp-edged 5 0.5
50 ft straight pipe 5 f1 (50/0.1723) 5 290.2 f1
Globe valve 5 f1 (L/D) 5 450.0 f1
Sudden enlargement k 5 [2 (D/D2)2]2
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SOURCE: Compiled from data given in ‘‘Pipe Friction Manual,’’ 3d ed., Hy-
draulic Institute, 1961.

Table 3.3.11 Representative
Equivalent Length in Pipe Diameters
(L/D) of Various Valves and Fittings

Globe valves, fully open
Angle valves, fully open
Gate valves, fully open

3⁄4 open
1⁄2 open
1⁄4 open

Swing check valves, fully open
In line, ball check valves, fully open
Butterfly valves, 6 in and larger, fully open
90° standard elbow
45° standard elbow
90° long-radius elbow
90° street elbow
45° street elbow
Standard tee:

Flow through run
Flow through branch

450
200
13
35

160
900
135
150
20
30
16
20
50
26

20
60

SOURCE: Compiled from data given in ‘‘Flow of Fluids,’’
Crane Company Technical Paper 410, ASME, 1971.

Series Systems In a single piping system made of various sizes, the
practice is to group all of one size together and apply the continuity
equation, as shown in the following example.

EXAMPLE. Water at 68°F (20°C) leaves an open tank whose surface eleva-
tion is 180 ft and enters a 2-in schedule 40 steel pipe via a sharp-edged entrance.
After 50 ft of straight 2-in pipe that contains a 2-in globe valve, the line enlarges
suddenly to an 8-in schedule 40 steel pipe which consists of 100 ft of straight 8-in
pipe, two standard 90° elbows and one 8-in angle valve. The 8-in line discharges
below the surface of another open tank whose surface elevation is 100 ft . Deter-
mine the volumetric flow rate.

D1 5 2.067/12 5 0.1723 ft and D2 5 7.981/12 5 0.6651 ft
«/D1 5 150 3 1026/0.1723 5 8.706 3 1024

«/D2 5 150 3 1026/0.6651 5 2.255 3 1024

For turbulent flow,

1

√f1
5 2 2 log10S«/D

3.7
D

5 [1 2 (2.067/7.981)2]2 5 0.87
oK1 5 1.37 1 740.2 f1

2. 8-in components K
100 ft of straight pipe f2 (100/0.6651) 5 150.4 f2
2 standard 90° elbows 2 3 30 f2 5 60 f2
1 angle valve 200 f2 5 200 f2
Exit loss 5 1

oK2 5 1 1 410.4 f2

3. Apply equation of motion

h1 f 2 5 z1 2 z2 5 (oK1)
V2

1

2g
1 (oK2)

V2
2

2g

From continuity, r1A1V1 5 r2A2V2 for r1 5 r2

V2 5 V1(A1/A2) 5 V1(D1/D2)2

h1 f 2 5 z1 2 z2 5 [oK1 1 oK2(D1/D2)4]V2
1/2g

V1 5 {[2g(z1 2 z2)]/[oK1 1 oK2(D1/D2)4]}1/2

V1 5F 2 3 32.17 3 (180 2 100)

(1.37 1 740.2 f1) 1 (1 1 410.4f2)(2.067/7.981)4G1/2

V1 5
71.74

(1.374 1 740.2 f1 1 1.846f2)1/2

4. For first trial assume f1 and f2 for complete turbulence

V1 5
71.74

(1.374 1 740.2 3 0.01899 1 1.846 3 0.01407)1/2

V1 5 18.25 ft /s
V2 5 18.25 (2.067/7.981)2 5 1.224 ft /s
R1 5 r1V1D1/m 5 (1.937)(18.25)(0.1723)/(20.92 3 1026)
R1 5 291,100 . 4,000 .

.
. flow is turbulent

R2 5 r2V2D2/m2 5 (1.937)(1.224)(0.6651)/(20.92 3 1026)
R2 5 75,420 . 4,000 .

.
. flow is turbulent

5. For second trial use first trial V1 and V2 . From Fig. 3.3.24 and the Colebrook
equation,

1

√f1
5 2 2 log10S8.706 3 1024

3.7
1

2.51

291,100 √0.020
D

f1 5 0.02008

1

√f2
5 2 2 log10S2.255 3 1024

3.7
1

2.51

75,420 √0.020
D

f2 5 0.02008

V1 5
71.74

(1.374 1 740.2 3 0.02008 1 1.864 3 0.02008)1/2

V1 5 17.78

A third trial results in V 5 17.77 ft /s or Q 5 A1V1 5 (p/4)(0.1723)2(17.77) 5
0.4143 ft3/s (1.173 3 1022 m3/s).

Parallel Systems In solution of problems involving two or more
parallel pipes, the head loss for all of the pipes is the same as shown in
the following example.

EXAMPLE. Benzene at 68°F (20°C) flows at a rate of 0.5 ft3/s through two
parallel straight , horizontal pipes connecting two pressurized tanks. The pipes are
both schedule 40 steel, one being 1 in, the other 2 in. They both are 100 ft long and
have connections that project inwardly in the supply tank. If the pressure in the
supply tank is maintained at 100 lbf/in2, what pressure should be maintained on
the receiving tank?

D1 5 1.049/12 5 0.08742 ft and D2 5 2.067/12 5 0.1723 ft
«/D1 5 150 3 1026/0.08742 5 1.716 3 1023

«/D2 5 150 3 1026/0.1723 5 8.706 3 1024
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For turbulent flow,

1

√f
5 2 2 log10S«/D

3.7D
1

√f1
5 2 2 log10S1.716 3 1023

3.7 D f1 5 0.02249

1

√f2
5 2 2 log10S8.706 3 1024

3.7 D f2 5 0.01899

40 pipe to a Y branch connection (K 5 0.5) where 100 ft of 2-in pipe goes to tank
B, which is maintained at 80 lbf/in2 and 50 ft of 2-in pipe to tank C, which is also
maintained at 80 lbf/in2. All tank connections are flush and sharp-edged and are at
the same elevation. Estimate the flow rate to each tank.

D 5 2.067/12 5 0.1723 ft
«/D 5 850 3 1026/0.1723 5 4.933 3 1023

For turbulent flow,
1

√f
5 2 2 log10S«/D

3.7
D
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1. 1-in. components K
Entrance loss, inward projection 5 1.0
100 ft straight pipe f1 (100/0.08742) 5 1,144 f1
Exit loss 5 1.0

oK1 5 2.0 1 1,144 f1

2. 2-in components
Entrance loss, inward projection 5 1.0
100 ft straight pipe f2 (100/0.1723) 5 580.4 f2
Exit loss 5 1.0

oK2 5 2.0 1 580.4 f2

hf 5 oK1 V2
1/2g 5 oK2 V2

2/2g
From the continuity equation, Q 5 AV

oK1

Q2
1

2gA2
1

5 oK2

Q2
2

2gA2
2

Solving for Q1/Q2 ,

Q1

Q2

5
A1

A2 √oK2

oK1

5SD1

D2
D2

√oK2

oK1

5SD1

D2
D2

√2.0 1 580.4 f2
2.0 1 1,144 f1

For first trial assume flow is completely turbulent ,

Q1

Q2

5S0.08742

0.1723D2

√2.0 1 580.4 3 0.01899

2.0 1 1,144 3 0.02249

Q1

Q2

5 0.1764 Q 5 Q1 1 Q2 5 0.1764 Q2 1 Q2

0.5000 5 1.1764 Q2 Q2 5 0.4250
Q1 5 0.5000 2 0.4250 5 0.0750

for the second trial use first-trial values,

V1 5 Q1/A1 5 0.0750/(p/4)(0.08742)2 5 12.50
V2 5 Q2/A2 5 0.4250/(p/4)(0.1723)2 5 18.23
R1 5 r1V1D1/m1 5 (1.705)(12.50)(0.08742)/(13.62 3 1026)
R1 5 136,800 . 4,000 .

.
. flow is turbulent

R2 5 r2V2D2/m2 5 (1.705)(18.23)(0.1723)/(13.62 3 1026)
R2 5 393,200 . 4,000 .

.
. flow is turbulent

Using the Colebrook equation and Fig. 3.3.24,

1

√f1
5 2 2 log10S1.716 3 1023

3.7
1

2.51

136,800 √0.024
D

f1 5 0.02389

1

√f2
5 2 2 log10S8.706 3 1024

3.7
1

2.51

393,200 √0.020
D

f2 5 0.01981

hf 5 oK1

V2
1

2g
5 oK2

V2
2

2g

oK1V2
1/2g 5 (2.0 1 1,144 3 0.02389)(12.50)2/(2 3 32.17) 5 71.23

oK2V2
2/2g 5 (2.0 1 580.4 3 0.01981)(18.23)2/(2 3 32.17) 5 69.80

71.23 5 69.80; further trials not justifiable because of accuracy of f, K,
L/D. Use average or 70.52, so that Dp 5 rghf 5 (1.705 3 32.17 3 70.52)/144 5
26.86 lbf/in2 5 p1 2 p2 5 100 2 p2 , p2 5 100 2 26.86 5 73.40 lbf/in2

(5.061 3 105 N/m2).

Branch Flow Problems of a single line feeding several points may
be solved as shown in the following example.

EXAMPLE. Ethyl alcohol at 68°F (20°C) flows from tank A, which is main-
tained at a constant pressure of 100 lb/in2 through 200 ft of 2-in cast-iron schedule
1

√f
5 2 2 log10S4.933 3 1023

3.7
D f 5 0.03025

hAfB 5 (pA 2 pB)/rg 5 144(100 2 80)/(1.532 3 32.17) 5 58.44
hAfC 5 (pA 2 pC)/rg 5 hAfB 5 58.44

Let point X be just before the Y; then

1. From tank A to Y K
Entrance loss, sharp-edged 5 0.5
200 ft straight pipe 5 fAX(200/0.1723) 5 1,161 fAX

oKAX 5 0.5 1 1,161 fAX

2. From Y to tank B
Y branch 5 0.5
100 ft straight pipe 5 fXB(100/0.1723) 5 580.4 fXB

Exit loss 5 1.0

oKXB 5 1.5 1 580.4 fXB

3. From Y to tank C
Y branch 5 0.5
50 ft straight pipe 5 fXC(50/0.1723) 5 290.2 fXC

Exit loss 5 1.0

oKXC 5 1.5 1 290.2 fXC

Balance of flows:

QAX 5 QXB 1 QXC

and from continuity, (AAX 5 AXB 5 AXC), VAX 5 VXB 1 VXC ; then

hAfB 5 oKAX

V2
AX

2g
1 oKXB

V2
XB

2g

hAfC 5 oKAX

V2
AX

2g
1 oKXC

V2
XC

2g

For first trial assume completely turbulent flow

hAfB 5
(0.5 1 1,161 fAX)V2

AX

2g
1

(1.5 1 580.4 fXB)V2
XB

2g

58.44 5
(0.5 1 1,161 3 0.03025)V2

AX

2 3 32.17
1

(1.5 1 580.4 3 0.03025)V2
XB

2 3 32.17

58.44 5 0.5536 V2
AX 1 0.2962 V2

XB

and in a like manner

hAfC 5 58.44 5 0.5536 V2
XC 1 0.1598 V2

XC

Equating hAfB 5 hAfC ,

0.5536 V2
AX 1 0.2962 V2

XB 5 0.5536 V2
AX 1 0.1598 V2

XC

or VXC 5 1.3615 VXB and since VAX 5 VXB 1 VXC

VAX 5 VXB 1 1.3615 VXB 5 2.3615 VXB

so that hAfB 5 58.44 5 0.5536(2.3615 V2
XB) 1 0.2962 V2

XB

VXB 5 4.156
VXC 5 1.3615(4.156) 5 5.658
VAX 5 4.156 1 5.658 5 9.814

Second trial,

RAX 5
rVAXD

m
5

1.532 3 9.814 3 0.1723

25.06 3 1026

RAX 5 103,400 . 4,000 [ flow is turbulent

In a like manner,

RXB 5 43,780 RXC 5 59,600

Using the Colebrook equation and Fig. 3.3.24,

1

√fAX

5 2 2 log10S4.933 3 1023

3.7
1

2.51

103,400 √0.031
D

fAX 5 0.03116
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In a like manner,

fXB 5 0.03231 fXC 5 0.03179

hAfB 5
(0.5 1 1,161 3 0.03116)V2

AX

2 3 32.17
1

(1.5 1 580.4 3 0.03231)V2
XB

2 3 32.17

hAfB 5 0.5700 V2
AX 1 0.3148 V2

XB

hAfC 5 0.5700 V2
AX 1

(1.5 1 290.2 3 0.03179)V2
XC

2 3 32.17

hAfC 1 0.5700 V2
AX 1 0.1667 V2

XC

1. Components from A to B. (Note loss in second bend takes place in downstream
piping.) K

Entrance (inward projection) 5 1.0
100 ft straight pipe f (100/0.5054) 5 197.9 f
First bend 5 25 f

oKAB 5 1.0 1 227.9 f

2. Components from A to C
oKAB 5 1.0 1 2,229 f
1,900 ft of straight pipe f (1,900/0.5054) 5 3,759.4 f
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0.3148 V2
XB 5 0.1667 V2

XC

VXC 5 1.374 VXB

VAX 5 VXB 1 1.374 VXB 5 2.374 VXB

so that

hAfB 5 58.44 5 0.5700 (2.374 VXB)2 1 0.3148 V2
XB

VXB 5 4.070 VXC 5 5.592 VAX 5 9.663

Further trials are not justified.

A 5 pD2/4 5 (p/4)(0.1723)2 5 0.02332 ft2

QAB 5 VABA 5 4.070 3 0.02332 5 0.09491 ft1/s (2.686 3 1021 m1/s)
QXC 5 VXCA 5 5.592 3 0.02332 5 0.1304 ft3/s (3.693 3 1023 m3/s)

Siphons are arrangements of hose or pipe which cause liquids to flow
from one level A in Fig. 3.3.25 to a lower level C over an intermediate
summit B. Performance of siphons may be evaluated from the equation
of motion between points A and B:

pA

g
1

V2
A

2g
1 zA 5

pB

g
1

V2
B

2g
1 zB 1 hAfB

Noting that on the surface VA 5 0 and the minimum pressure that can
exist at point B is the vapor pressure pv, the maximum elevation of point
B is

zB 2 zA 5
pA

g
2Spv

g
1

V2
B

2g
1 hAfBD

The friction loss hf 5 oKABV2
B /2g, and let VB 5 V; then

zB 2 zA 5
pA 2 pv

rg
2 (1 2 oKAB)

V2

2g

Flow under this maximum condition will be uncertain. The air pump or
ejector used for priming the pipe (flow will not take place unless the
siphon is full of water) might have to be operated occasionally to re-
move accumulated air and vapor. Values of zB 2 zA less than those
calculated by the above equation should be used.

Fig. 3.3.25 Siphon.

EXAMPLE. The siphon shown in Fig. 3.3.25 is composed of 2,000 ft of 6-in
schedule 40 cast-iron pipe. Reservoir A is at elevation 800 ft and C at 600 ft .
Estimate the maximum height for zB 2 zA if the water temperature may reach
104°F (40°C), and the amount of straight pipe from A to B is 100 ft . For the
first bend L/D 5 25 and the second (at B) L/D 5 50. Atmospheric pressure
is 14.70 lbf/in2. For 6-in schedule 40 pipe D 5 6.065/12 5 0.5054 ft , «/D 5
850 3 1026/0.5054 5 1.682 3 1023. Turbulent friction factor

1/√f 5 2 2 log10S«/D

3.7D 5 2 2 log10 (1.682 3 1023/3.7) 5 0.02238
Second bend 5 50 f
Exit loss 5 1

oKAC 5 2.0 1 4,032 f

First trial assume complete turbulence. Writing the equation of motion between A
and C.

pA

g
1

V2
A

2g
1 zA 5

pC

g
1

V2
C

2g
1 zC 1 oKAC

V2

2g

Noting VA 5 VC 5 0, and pA 5 pC 5 14.7 lbf/in2,

V 5 √2g(zA 2 zC)

oKAC

5 √ 2g(zA 2 zC)

2.0 1 4,032 f

5 √2 3 32.17 (800 2 600)

2.0 1 4,032 f

5
113.44

√2.0 1 4,032 3 0.02238

5 11.81

Second trial, use first-trial values,

R 5
rVD

m
5 (1.925)(11.81)(0.5054)/(13.61 3 1026)

R 5 846,200 . 4,000 .
.
. flow is turbulent

From Fig. 3.3.24 and the Colebrook equation,

1

√f
5 2 2 log10S1.682 3 1023

3.7
1

2.51

844,200 √0.023
D

f 5 0.02263

V 5
113.44

√2.0 1 4,032 3 0.02263
5 11.75 (close check)

From Sec. 4.2 steam tables at 104°F, pv 5 1.070 lbf/in2, the maximum height

zB 2 zA 5
pA 2 pv

rg
2 (1 1 oKAB)

V2

2g

5
144(14.70 2 1.070)

1.925 3 32.17
2 (1 1 1 1 227.9

3 0.02262)
(11.75)2

2 3 32.17
5 16.58 ft (5.053 m)

Note that if a 6 10 percent error exists in calculation of pressure loss, maximum
height should be limited to ; 15 ft (5 m).

ASME PIPELINE FLOWMETERS

Parameters Dimensional analysis of the flow of an incompressible
fluid flowing in a pipe of diameter D, surface roughness «, through a
primary element (venturi, nozzle or orifice) whose diameter is d with a
velocity of V, producing a pressure drop of Dp sensed by pressure taps
located a distance L apart results in f (Cp , Rd, «/D, d/D) 5 0, which may
be written as Dp 5 CprV2/2. Conventional practice is to express the
relations as V 5 K √2Dp/r, where K is the flow coefficient, K 5 1/ √Cp,
and K 5 f(Rd , L/D, «/d, d/D). The ratio of the diameter of the primary
element to meter tube (pipe) diameter D is known as the beta ratio,
where b 5 d/D. Application of the continuity equation leads to Q 5

KA2 √2Dp/r, where A2 is the area of the primary element .
Conventional practice is to base flowmeter computations on the as-

sumption of one-dimensional frictionless flow of an incompressible
fluid in a horizontal meter tube and to correct for actual conditions by
the use of a coefficient for viscous effects and a factor for elastic ef-
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fects. Application of the Bernoulli equation for horizontal flow from sec-
tion 1 (inlet tap) to section 2 (outlet tap) results in p1/rg 1 V2

1/2g 5
p2/rg 1 V2

2/2g or (p1 2 p2)/r 5 V2
2 2 V2

1 5 Dp/r. From the equation
of continuity, Qi 5 A1V1 5 A2V2 , where Qi is the ideal flow rate. Substitut-
ing, 2Dp/r 5 Qi

2/A2
1 2 Qi

2/A2
2 , and solving for Qi, Qi 5 A2 √2Dp/r/

√1 2 (A2/A1)2, noting that A2/A1 5 (d/D)2 5 b2, Qi 5 A2 √2Dp/r/
√1 2 b4. The discharge coefficient C is defined as the ratio of the
actual flow Q to the ideal flow Qi , or C 5 Q/Qi , so that Q 5 CQi 5

CA2 √2Dp/r/ √1 2 b4. It is customary to write the volumetric-flow

chambers are connected to a pressure-differential sensor. Discharge co-
efficients for venturi tubes as established by the American Society of
Mechanical Engineers are given in Table 3.3.12. Coefficients of dis-
charge outside the tabulated limits must be determined by individual
calibrations.

EXAMPLE. Benzene at 68°F (20°C) flows through a machined-inlet venturi
tube whose inlet diameter is 8 in and whose throat diameter is 3.5 in. The differ-
ential pressure is sensed by a U-tube manometer. The manometer contains mer-
cury under the benzene, and the level of the mercury in the throat leg is 4 in.

D
02

M
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equation as Q 5 CEA2 √2Dp/r, where E 5 1/ √1 2 b4. E is called the
velocity-of-approach factor because it accounts for the one-dimensional
kinetic energy at the upstream tap. Comparing the equation from
dimensional analysis with the modified Bernoulli equation, Q 5

KA2 √2Dp/r 5 CEA2 √2Dp/r, or K 5 CE and C 5 f (Rd , L/D, b).
For compressible fluids, the incompressible equation is modified by

the expansion factor Y, where Y is defined as the ratio of the flow of a
compressible fluid to that of an incompressible fluid at the same value
of Reynolds number. Calculations are then based on inlet-tap-fluid
properties, and the compressible equation becomes

Q1 5 KYA2 √2Dp/r1 5 CEYA2 √2Dp/r1

where Y 5 f(L/D, «/D, b, M). Reynolds number Rd is also based on
inlet-fluid properties, but on the primary-element diameter or

Rd 5 r1V2d/m1 5 r1(Q1/A2)d/m1 5 4r1Q1/p dm1

Caution The numerical values of coefficients for flowmeters given
in the paragraphs to follow are based on experimental data obtained
with long, straight pipes where the velocity profile approaching the
primary element was fully developed. The presence of valves, bends,
and fittings upstream of the primary element can cause serious errors.
For approach and discharge, straight-pipe requirements, ‘‘Fluid
Meters,’’ (6th ed., ASME, 1971) should be consulted.

Venturi Tubes Figure 3.3.26 shows a typical venturi tube consisting
of a cylindrical inlet , convergent cone, throat , and divergent cone. The
convergent entrance has an included angle of about 21° and the diver-
gent cone 7 to 8°. The purpose of the divergent cone is to reduce the

Fig. 3.3.26 Venturi tube.

overall pressure loss of the meter; its removal will have no effect on the
coefficient of discharge. Pressure is sensed through a series of holes in
the inlet and throat . These holes lead to an annular chamber, and the two

Table 3.3.12 ASME Coefficients for Venturi Tubes

Reynolds number Rd

Inlet diam
(2.54 3 1

Type of inlet
cone Min Max Min

Machined 1 3 106 2

Rough welded 5

sheet metal

5 3 10 8

Rough cast

2 3 106

4

SOURCE: Compiled from data given in ‘‘Fluid Meters,’’ 6th ed., ASME, 19
Compute the volumetric flow rate. Noting that D 5 8 in (0.6667 ft) and b 5
3.5/8 5 0.4375 are within the limits of Table 3.3.12, assume C 5 0.995, and then
check Rd to verify if it is within limits. For a U-tube manometer (Fig. 3.3.6a), p2 2
p1 5 (gm 2 gf)h 5 Dp and Dp/r1 5 (rmg 2 rfg)h/rf 5 g(rm /rf 2 1)h 5
32.17(26.283/1.705 2 1)(4/12) 5 154.6. For a liquid, Y 5 1 (incompressible fluid),
E 5 1/ √1 2 b4 5 1/ √1 2 (0.4375)4 5 1.019.

Q1 5 CEY Ad √2Dp/r1

5 (0.995)(1.019)(p/4)(3.5/12)2 √2 3 154.6
5 1.192 ft3/s (3.373 3 1023 m3/s)

Rd 5 4r1Q1/p dm1 5 4(1.705)(1.192)/p (3.5/12)(13.62 3 1026)
Rd 5 651,400, which lies between 200,000 and 1,000,000 of Table

3.3.12 .
.
. solution is valid.

Flow Nozzles Figure 3.3.27 shows an ASME flow nozzle. This
nozzle is built to rigid specifications, and pressure differential may be
sensed by either throat taps or pipe-wall taps. Taps are located one pipe
diameter upstream and one-half diameter downstream from the nozzle
inlet . Discharge coefficients for ASME flow nozzles may be computed
from C 5 0.9975 2 0.00653 (106/Rd)a, where a 5 1/2 for Rd , 106 and
a 5 1/5 for Rd . 106. Most of the data were obtained for D between 2
and 15.75 in, Rd between 104 and 106, and beta between 0.15 and 0.75.
For values of C within these ranges, a tolerance of 2 percent may be
anticipated, and outside these limits, the tolerance may be greater than 2
percent . Because slight variations in form or dimension of either pipe or
nozzle may affect the observed pressures, and thus cause the exponent a
and the slope term (2 0.00653) to vary considerably, nozzles should be
individually calibrated.

EXAMPLE. An ASME flow nozzle is to be designed to measure the flow of
400 gal /min of 68°F (20°C) water in a 6-in schedule 40 (inside diameter 5
6.065 in) steel pipe. The pressure differential across the nozzle is not to exceed
75 in of water. What should be the throat diameter of the nozzle? Dp 5 hr1g,
Dp/r1 5 hg 5 (75/12)(32.17) 5 201.1, Q 5 (400/60)(231/1,728) 5 0.8912 ft3/s.
A trial-and-error solution is necessary to establish the values of C and E because
they are dependent upon b and Rd , both of which require that d be known. Since
K 5 CE ' 1, assume for first trial that CE 5 1. Since a liquid is involved,
Y 5 1, A2 5 Q1/(CE)(Y ) √2Dp/r1 5 (0.8912)/(1)(1) √2 3 201.1 5 0.04444 ft2,
d 5 √4A2/p 5 √4(0.04444)/p 5 0.2379 ft or d 5 0.2379 3 12 5 2.854 in, b 5
d/D 5 2.854/6.065 5 0.4706.

For second trial use first-trial value:

E 5 1/ √1 2 b4 5 1/ √1 2 (0.4706)4 5 1.025

Rd 5 4r1Q1/pdm1 5 4(1.937)(0.8912)/p (0.2379)(20.92 3 1026) 5 442,600 ,

106 .
.
. a 5 1/2 and C 5 0.9975 2 0.00653(106/Rd)1/2. C 5 0.9975 2

0.00653(106/442,600)1/2 5 0.9877. A2 5 (0.8912)/(0.9877 3 1.025)√2 3 201.1 5

0.04389, d2 5 √4 3 (0.04389/p) 5 0.2364, d2 5 0.2364 3 12 5 2.837 in (7.205 3
1022 m). Further trials are not necessary in view of the 6 2 percent tolerance of C.

in
2 m) b

ax Min Max C
Tolerance,

%

10 0.75 0.995 61.0

0.4

48 0.70 0.985 61.5

32 0.3 0.75 0.984 60.7

71.
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Maximum flow is obtained when the critical pressure ratio is reached.
The critical pressure ratio rc may be calculated from

r(12k)/k 1
k 2 1

2
b4r2/k 5

k 1 1

2

Table 3.3.13 gives selected values of Yc and rc .

EXAMPLE. A piping system consists of a compressor, a horizontal straight
length of 2-in-inside-diameter pipe, and a 1-in-throat-diameter ASME flow nozzle

Pr

5

0.7
0.7
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Fig. 3.3.27 ASME flow nozzle.

Compressible Flow—Venturi Tubes and Flow Nozzles The ex-
pansion factor Y is computed based on the assumption of a frictionless
adiabatic (isentropic) expansion of an ideal gas from the inlet to the
throat of the primary element , resulting in (see Sec. 4.1)

Y 5F kr2/k(1 2 r(k21)/k)(1 2 b4)

(1 2 r)(k 2 1)(1 2 b4r2/k)G1/2

where r 5 p2/p1 .

Table 3.3.13 Expansion Factors and Critical
and Flow Nozzles

Critical values

b k rc Yc r

0

1.10
1.20

0.5846
0.5644

0.6894
0.6948
1.30
1.40

0.5457
0.5282

0.7000
0.7049

0.7
0.7

0.20

1.10
1.20
1.30
1.40

0.5848
0.5546
0.5459
0.5284

0.6892
0.6946
0.6998
0.7047

0.7
0.7
0.7
0.7

0.50

1.10
1.20
1.30
1.40

0.5921
0.5721
0.5535
0.5362

0.6817
0.6872
0.6923
0.6973

0.6
0.7
0.7
0.7

0.60

1.10
1.20
1.30
1.40

0.6006
0.5808
0.5625
0.5454

0.6729
0.6784
0.6836
0.6885

0.6
0.7
0.7

0.70

1.10
1.20
1.30
1.40

0.6160
0.5967
0.5788
0.5621

0.6570
0.6624
0.6676
0.6726

0.6
0.6
0.7

0.80

1.10
1.20
1.30
1.40

0.6441
0.6238
0.6087
0.5926

0.6277
0.6331
0.6383
0.6433 0.6

SOURCE: Murdock, ‘‘Fluid Mechanics and Its Applications,’’ H
attached to the end of the pipe, discharging into the atmosphere. The compressor is
operated to maintain a flow of air with 115 lbf/in2 and 140°F (60°C) conditions in
the pipe just one pipe diameter before the nozzle inlet . Barometric pressure is
14.7 lbf/in2. Estimate the flow rate of the air in lbm/s.

From the equation of state, r1 5 p1/gcRT1 5 (144 3 115)/(32.17)(53.34)
(140 1 459.7) 5 0.01609 slug/ft3, b 5 d/D 5 1/2 5 0.5, E 5 1/ √1 2 b4 5

1/ √1 2 (0.5)4 5 1.033, r 5 p2/p1 5 14.7/115 5 0.1278, but from Table 3.3.13 at
b 5 0.5, k 5 1.4, rc 5 0.5362, and Yc 5 0.6973, so that because of critical flow the
throat pressure pc 5 115 3 0.5362 5 61.66 lbf/in2. Dpc/r1 5 144(115 2
61.66)/0.01609 5 477,375. A trial-and-error solution is necessary to obtain C. For
the first trial assume 106/Rd 5 0 or C 5 0.9975. Then Q1 5 CEYc A2 √2Dpc/r1 5

(0.9975)(1.033)(0.6973)(p/4)(1.12)2 √2 3 477,375 5 3.829 ft3/s, Rd 5 4r1Q/
p dm1 5 (4)(0.01609)(3.828)/p (1/12)(41.79 3 1028) 5 2,252,000.

Second trial, use first-trial values:

R . 106, a 5 115, C 5 0.9975 2 (0.00653)(106/2,252,000)1/5

C 5 0.9919, Q1 5 3.828(0.9919/0.9975) 5 3.806 ft3/s

Further trials are not necessary in view of 6 2 percent tolerance on C.

~m 5 Q1r1g 5 3.806 3 0.01609 3 32.17 5 1.970 lbm/s (0.8935 kg/s)

Orifice Meters When a fluid flows through a square-edged thin-
plate orifice, the minimum-flow area is found to occur downstream
from the orifice plate. This minimum area is called the vena contracta,
and its location is a function of beta ratio. Figure 3.3.28 shows the
relative pressure difference due to the presence of the orifice plate.
Because the location of the pressure taps is vital, it is necessary to
specify the exact position of the downstream pressure tap. The jet con-

essure Ratios for Venturi Tubes

Expansion factor Y

0.60 r 5 0.70 r 5 0.80 r 5 0.90

021
228
409

0.7820
0.7981
0.8119

0.8579
0.8689
0.8783

0.9304
0.9360
0.9408
568 0.8240 0.8864 0.9449

017
225
406
576

0.7817
0.7978
0.8117
0.8237

0.8577
0.8687
0.8781
0.8862

0.9303
0.9359
0.9407
0.9448

883
094
248
440

0.7699
0.7864
0.8007
0.8133

0.8485
0.8600
0.8699
0.8785

0.9250
0.9310
0.9361
0.9405

939
126
292

0.7556
0.7727
0.7875
0.8006

0.8374
0.8495
0.8599
0.8689

0.9186
0.9250
0.9305
0.9352

651
844
015

0.7290
0.7469
0.7626
0.7765

0.8160
0.8292
0.8405
0.8505

0.9058
0.9131
0.9193
0.9247

491

0.6778
0.6970
0.7140
0.7292

0.7731
0.7881
0.8012
0.8182

0.8788
0.8877
0.8954
0.9021

oughton Mifflin, 1976.
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traction amounts to about 60 percent of the orifice area; so orifice coef-
ficients are in the order of 0.6 compared with the nearly unity obtained
with venturi tubes and flow nozzles.

Three pressure-differential-measuring tap locations are specified by
the ASME. These are the flange, vena contracta, and the 1 D and 1/2 D.
In the flange tap, the location is always 1 in from either face of the

that if the orifice size is changed, a new downstream tap must be drilled.
The 1 D and 1/2 D taps incorporate the best features of the vena con-
tracta taps and are symmetrical with respect to pipe size.

Discharge coefficients for orifices may be calculated from

C 5 Co 1 DCRd
20.75 (Rd . 104)

where Co and DC are obtained from Table 3.3.14.
Tolerances for uncalibrated orifice meters are in the order of 6 1 to

6 2 percent depending upon b, D, and Rd .

tion

b

0

, all

1
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Fig. 3.3.28 Relative-pressure changes due to flow through an orifice.

orifice plate regardless of the size of the pipe. In the vena contracta tap,
the upstream tap is located one pipe diameter from the inlet face of the
orifice plate and the downstream tap at the location of the vena con-
tracta. In the 1 D and 1/2 D tap, the upstream tap is located one pipe
diameter from the inlet face of the orifice plate and downstream one-
half pipe diameter from the inlet face of the orifice plate.

Flange taps are used because they can be prefabricated, and flanges
with holes drilled at the correct locations may be purchased as off-the-
shelf items, thus saving the cost of field fabrication. The disadvantage
of flange taps is that they are not symmetrical with respect to pipe size.
Because of this, coefficients of discharge for flange taps vary greatly
with pipe size.

Vena contracta taps are used because they give the maximum differ-
ential for any given flow. The disadvantage of the vena contracta tap is

Table 3.3.14 Values of Co and DC for Use in Orifice Coefficient Equa

Pipe ID, in 0.20 0.25 0.30 0.35 0.4

DC

All 5.486 8.106 11.153 14.606 18.45
Co , vena contracta an

All 0.5969 0.5975 0.5983 0.5992 0.6003

Co, flang

2.0
2.5
3.0
3.5

0.5969
0.5969
0.5969
0.5969

0.5975
0.5975
0.5975
0.5975

0.5982
0.5983
0.5983
0.5983

0.5992
0.5993
0.5993
0.5993

0.6003
0.6004
0.6004
0.6004

4.0
5.0
6.0
8.0

0.5969
0.5969
0.5969
0.5969

0.5976
0.5976
0.5976
0.5976

0.5983
0.5983
0.5983
0.5984

0.5993
0.5993
0.5993
0.5993

0.6004
0.6004
0.6004
0.6004

10.0
12.0
16.0
24.0
48.0

0.5969
0.5970
0.5970
0.5970
0.5970

0.5976
0.5976
0.5976
0.5976
0.5976

0.5984
0.5984
0.5984
0.5984
0.5984

0.5993
0.5993
0.5993
0.5993
0.5993

0.6004
0.6004
0.6003
0.6003
0.6003

` 0.5970 0.5976 0.5984 0.5993 0.6003

SOURCE: Compiled from data given in ASME Standard MFC-3M-1984 ‘‘Measurement of Fluid
Compressible Flow through ASME Orifices As shown in Fig.
3.3.28, the minimum flow area for an orifice is at the vena contracta
located downstream of the orifice. The stream of compressible fluid is
not restrained as it leaves the orifice throat and is free to expand trans-
versely and longitudinally to the point of minimum-flow area. Thus the
contraction of the jet will be less for a compressible fluid than for a
liquid. Because of this, the theoretical-expansion-factor equation may
not be used with orifices. Neither may the critical-pressure-ratio equa-
tion be used, as the phenomenon of critical flow has not been observed
during testing of orifice meters.

For orifice meters, the following equation, which is based on experi-
mental data, is used:

Y 5 1 2 (0.41 1 0.35b4)(Dp/p1)/k

EXAMPLE. Air at 68°F (20°C) and 150 lbf/in2 flows in a 2-in schedule 40
pipe (inside diameter 5 2.067 in) at a volumetric rate of 15 ft3/min. A 0.5500-in
ASME orifice equipped with flange taps is used to meter this flow. What deflec-
tion in inches could be expected on a U-tube manometer filled with 60°F water?
From the equation of state, r1 5 p1/gcRT1 5 (144 3 150)/(32.17)(53.34)
(68 1 459.7) 5 0.02385 slug/ft3, b 5 0.5500/2.067 5 0.2661. Q1 5 15/60 5

0.25 ft3/s, A2 5 (p/4)(0.5500/12)2 5 1.650 3 1023 ft2. E 5 1/ √1 2 b4 5 1/
√1 2 (0.2661)4 5 1.003. Rd 5 4r1Q1/p dm1 5 4(0.02385)(0.25)/p(0.5500/
12)(39.16 3 1028). Rd 5 423,000.

From Table 3.3.14 at b 5 0.2661, D 5 2.067-in flange taps, by interpolation,
Co 5 0.5977, DC 5 9.087, from orifice-coefficient equation C 5 Co 1 DCRd

20.75.
C 5 0.5977 1 (9.087)(423,000)20.75 5 0.5982. A trial-and-error solution is re-
quired because the pressure loss is needed in order to compute Y. For the first trial,
assume Y 5 1, Dp 5 (Q1/CEYA2)2(r1/2) 5 [(0.25)/(0.5982)(1.003)(Y )(1.650 3
1023)]2(0.02385/2) 5 760.5/Y 2 5 760.5/(1)2 5 760.5 lbf/ft2.

0.45 0.50 0.55 0.60 0.65 0.70

taps

22.675 27.266 32.215 37.513 45.153 49.129
d 1D and 1⁄2D taps

0.6016 0.6031 0.6045 0.6059 0.6068 0.6069

e taps

0.6016
0.6017
0.6017
0.6016

0.6030
0.6032
0.6031
0.6030

0.6044
0.6046
0.6044
0.6042

0.6056
0.6059
0.6055
0.6052

0.6065
0.6068
0.6061
0.6056

0.6066
0.6068
0.6057
0.6049

0.6016
0.6016
0.6016
0.6015

0.6029
0.6028
0.6028
0.6027

0.6041
0.6039
0.6038
0.6037

0.6050
0.6047
0.6045
0.6042

0.6052
0.6047
0.6044
0.6040

0.6043
0.6034
0.6029
0.6022

0.6015
0.6015
0.6015
0.6015
0.6014

0.6026
0.6026
0.6026
0.6025
0.6025

0.6036
0.6035
0.6035
0.6034
0.6033

0.6041
0.6040
0.6039
0.6037
0.6036

0.6037
0.6035
0.6033
0.6031
0.6029

0.6017
0.6015
0.6011
0.6007
0.6004

0.6014 0.6025 0.6032 0.6035 0.6027 0.6000

Flow in Pipes Using Orifice, Nozzle and Venturi.’’
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For the second trial we use first-trial values.

Y 5 1 2 (0.41 1 0.35b4)
Dp/p1

k

5 1 2 [0.41 1 0.35(0.2661)4]
760.5/144 3 150

1.4
5 0.9896

Dp 5
760.5

Y 2
5

760.5

(0.9896)2
5 776.1 lbf/ft2

For the third trial we use second-trial values.

pipe coefficient CP is defined as the ratio of the average velocity to the
stream-tube velocity, or CP 5 V/U, and Q 5 CPA1V 5 CPCTA1 √2Dp/r.
The numerical value of CP is dependent upon the location of the tube
and the velocity profile. The values of CP may be established by (1)
making a ‘‘traverse’’ by taking data at various points in the flow stream
and determining the velocity profile experimentally (see ‘‘Fluid
Meters,’’ 6th ed., ASME, 1971, for locations of traverse points), (2)
using standard velocity profiles, (3) locating the Pitot tube at a point
where U 5 V, and (4) assuming one-dimensional flow of CP 5 1 only in

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Y 5 1 2 [0.41 1 0.35(0.2661)4]
776.1/144 3 150

1.4
5 0.9894

Dp 5
776.1

(0.9894)2
5 793.3 lbf/ft2

Resubstitution does not produce any further change in Y. From the U-tube-mano-
meter equation:

h 5
Dp

gm 5 gf

5
Dp

gc(rm 2 rf)

5
793.3

32.17
(1.937 2 0.02385) 5 12.89 ft

5 12.89 3 12 5 154.7 in (3.929 m)

PITOT TUBES

Definition A Pitot tube is a device that is shaped in such a manner
that it senses stagnation pressure. The name ‘‘Pitot tube’’ has been
applied to two general classifications of instruments, the first being a
tube that measures the impact or stagnation pressures only, and the
second a combined tube that measures both impact and static pressures
with a single primary instrument . The combined sensor is called a
Pitot-static tube.

Tube Coefficient From Fig. 3.3.29, it is evident that the Pitot tube
can sense only the stagnation pressure resulting from the local stream-
tube velocity U. The local ideal velocity Ui for an incompressible fluid
is obtained by the application of the Bernoulli equation (zS 5 z), U2

i/2g 1
p/rg 5 U2

S/2g 1 pS/rg. Solving for Ui and noting that by definition

Fig. 3.3.29 Notation for Pitot tube study.

US 5 0, Ui 5 √2(pS 2 p)/r. Conventional practice is to define the tube
coefficient CT as the ratio of the actual stream-tube velocity to the ideal
stream-tube velocity, or CT 5 U/Ui and U 5 CTUi 5 CT √2Dp/r. The
numerical value of CT depends primarily upon its geometry. The value
of CT may be established (1) by calibration with a uniform velocity, (2)
from published data for similar geometry, or (3) in the absence of other
information, may be assumed to be unity.

Pipe Coefficient For the calculation of volumetric flow rate, it is
necessary to integrate the continuity equation, Q 5 e U da 5 AV. The
the absence of other data.
Compressible Flow For compressible flow, the compression factor Z

is based on the assumption of a frictionless adiabatic (isentropic) com-
pression of an ideal gas from the moving stream tube to the stagnation
point (see Sec. 4.1), which results in

Z 5F k

k 2 1

(pS/p)(k21)/k 2 1

(pS/p) 2 1 G1/2

and the volumetric flow rate becomes

Q 5 CPCTZA1 √2Dp/r

EXAMPLE. Carbon dioxide flows at 68°F (20°C) and 20 lbf/in2 in an 8-in
schedule 40 galvanized-iron pipe. A Pitot tube located on the pipe centerline
indicates a pressure differential of 6.986 lbf/in2. Estimate the mass flow rate. For
8-in schedule 40 pipe D 5 7.981/12 5 0.6651, «/D 5 500 3 1026/0.6651 5
7.518 3 1024, A1 5 pD2/4 5 (p/4)(0.6651)2 5 0.3474 ft2, pS 5 p 1 Dp 5
20 1 6.986 5 26.986 lbf/in2. From the equation of state, r 5 p/gcRTo 5
(20 3 144)/(32.17)(35.11)(68 1 459.7) 5 0.004832,

Z 5F k

k 2 1

(pS/p)(k21)/k 2 1

(pS/p) 2 1 G1/2

5H[1.3/(1.3 2 1)] 3
(26.986/20)(1.321)/1.3 2 1

(26.986/20) 2 1 J1/2

5 0.9423

In the absence of other data, CT may be assumed to be unity. A trial-and-error
solution is necessary to determine CP , since f requires flow rate. For the first trial
assume complete turbulence.

1/ √f 5 2 2 log10 (7.518 3 1024/3.7) √f 5 0.1354
CP 5 V/U 5 V/Umax 5 1/(1 1 1.43 √f ) 5 1/(1 1 1.43 3 0.1354) 5 0.8378
V 5 CPCTZ √2Dp/r 5 (0.8378)(1)(0.9423)√2 3 144(6.987)/(0.004832)
V 5 509.4 ft /s
R 5 rVD/m 5 (0.004832)(509.4)(0.6651)/(30.91 3 10218)
R 5 5,296,000 . 4,000 .

.
. flow is turbulent

From the Colebrook equation and Fig. 3.3.24,

1

√f
5 2 2 log10S7.518 3 1024

3.7
1

2.51

5,296,000√0.018
D

√f 5 0.1357
CP 5 1/(1 1 1.43 3 0.1357) 5 0.8375 (close check)
V 5 509.4(0.8375/8378) 5 509.2 ft /s

From the continuity equation, m 5 rA1Vgc 5 (0.004832)(0.3474)(509.2)
(32.17) 5 27.50 lbm/s (12.47 kg/s).

ASME WEIRS

Definitions A weir is a dam over which liquids are forced to flow.
Weirs are used to measure the flow of liquids in open channels or in
conduits which do not flow full; i.e., there is a free liquid surface. Weirs
are almost exclusively used for measuring water flow, although small
ones have been used for metering other liquids. Weirs are classified
according to their notch or opening as follows: (1) rectangular notch
(original form); (2) V or triangular notch; (3) trapezoidal notch, which
when designed with end slopes one horizontal to four vertical is called
the Cipolletti weir; (4) the hyperbolic weir designed to give a constant
coefficient of discharge; and (5) the parabolic weir designed to give a
linear relationship of head to flow. As shown in Fig. 3.3.30, the top of
the weir is the crest and the distance from the liquid surface to the crest h
is called the head.

The sheet of liquid flowing over the weir crest is called the nappe.
When the nappe falls downstream of the weir plate, it is said to be free,
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or aerated. When the width of the approach channel Lc is greater than the
crest length Lw , the nappe will contract so that it will have a minimum
width less than the crest length. For this reason, the weir is known as a
contracted weir. For the special case where Lw 5 Lc , the contractions do
not take place, and such weirs are known as suppressed weirs.

EXAMPLE. Water flows in a channel whose width is 40 ft . At the end of the
channel is a rectangular weir whose crest width is 10 ft and whose crest height is
4 ft . The water flows over the weir at a height of 3 ft above the crest of the weir.
Estimate the volumetric flow rate. Lw/Lc 5 10/40 5 0.25, h/Z 5 3/4 5 0.75, from
Table 3.3.15 (interpolated), C 5 0.589, DL 5 0.008, La 5 Lw 1 DL 5 10 1
0.008 5 10.008 ft , ha 5 h 1 0.003 5 3 1 0.003 5 3.003 ft , Q 5 (2/3)
CLa √2g h3/2, Q 5 (2/3)(0.589)(10.008)(2 3 32.17)1/2(3.003)3/2 Q 5 164.0 ft3/s
(4.644 m3/s).

Re

/c

of

3 0.595 0.597 0.599 0.603
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Fig. 3.3.30 Notation for weir study.

Parameters The forces acting on a liquid flowing over a weir are
inertia, viscous, surface tension, and gravity. If the weir head produced
by the flow is h, the characteristic length of the weir is Lw , and the
channel width is Lc , either similarity or dimensional analysis leads to
f(F, W, R, Lw/Lc) 5 0, which may be written as V 5 K √2gh, where K is
the weir coefficient and K 5 f(W, R, Lw/Lc). Since the weir has been
almost exclusively used for metering water flow over limited tempera-
ture ranges, the effects of surface tension and viscosity have not been
adequately established by experiment .

Caution The numerical values of coefficients for weirs are based on
experimental data obtained from calibration of weirs with long ap-
proaches of straight channels. Head measurement should be made at a
distance at least three or four times the expected maximum head h.
Screens and baffles should be used as necessary to ensure steady uni-
form flow without waves or local eddy currents. The approach channel
should be relatively wide and deep.

Rectangular Weirs Figure 3.3.31 shows a rectangular weir whose
crest width is Lw . The volumetric flow rate may be computed from the
continuity equation: Q 5 AV 5 (Lwh)(K √2gh) 5 KLw √2g h3/2. The
ASME ‘‘Fluid Meters’’ report recommends the following equation for
rectangular weirs: Q 5 (2⁄3)CLa √2g ha

3/2, where C is the coefficient of
discharge C 5 f(Lw/Lc , h/Z), La is the adjusted crest length La 5 Lw 1
DL, and ha is the adjusted weir head ha 5 h 1 0.003 ft . Values of C and
DL may be obtained from Table 3.3.15. To avoid the possibility that the
liquid drag along the sides of the channel will affect side contractions,
Lc 2 Lw should be at least 4h. The minimum crest length should be
0.5 ft to prevent mutual interference of the end contractions. The mini-
mum head for free flow of the nappe should be 0.1 ft .

Table 3.3.15 Values of C and DL for Use in

Crest length

h/Z 0 0.2 0.4 0.6

Coefficient

0 0.587 0.589 0.591 0.59

0.5
1.0
1.5
2.0
2.5
3.0

0.586
0.586
0.584
0.583
0.582
0.580

0.588
0.587
0.586
0.586
0.585
0.584

0.594
0.597
0.600
0.603
0.608
0.610

0.602
0.611
0.620
0.629
0.637
0.647

Adjustment for cre

Any 0.007 0.008 0.009 0.012

SOURCE: Compiled from data given in ‘‘Fluid Meters,’’ ASM
Fig. 3.3.31 Rectangular weir.

Triangular Weirs Figure 3.3.32 shows a triangular weir whose
notch angle is u. The volumetric flow rate may be computed from the
continuity equation Q 5 AV 5 (h2 tan u/2)(K √2gh) 5 K tan (u/2) √2g
h5/2. The ASME ‘‘Fluid Meters’’ report recommends the following
for triangular weirs: Q 5 (8/15) C tan (u/2) √2g (h 1 Dh)5/2, where C
is the coefficient of discharge C 5 f(u) and Dh is the correction for head/
crest ratio Dh 5 f (u). Values of C and Dh may be obtained from Table
3.3.16.

EXAMPLE. It is desired to maintain a flow of 167 ft3/s in an open channel
whose width is 20 ft at a height of 7 ft by locating a triangular weir at the end of
the channel. The weir has a crest height of 2 ft . What notch angle is required to
maintain these conditions? A trial-and-error solution is required. For the first trial
assume u 5 60° (mean value 20 to 100°); then C 5 0.576 and Dh 5 0.004.

h 1 Z 5 7 5 h 1 2 [ h 5 5
Q 5 (8/15) C tan (u/2) √2g (h 1 Dh)5/2

167 5 (8/15)(0.576) tan (u/2) √2 3 32.17 (5 1 0.004)5/2, tan21 (u/2) 5 1.20993,
u 5 100°519.

Second trial, using u 5 100, C 5 0.581, Dh 5 0.003, 167 5 (8/15)(0.581)
tan (u/2) √2 3 32.17 (5 1 0.003)5/2, tan21 (u/2) 5 1.20012, u 5 100°399
(close check).

ctangular-Weir Equation

hannel width 5 Lw/Lc

0.7 0.8 0.9 1.0

discharge C
0.610
0.625
0.640
0.655
0.671
0.687

0.620
0.642
0.664
0.687
0.710
0.733

0.631
0.663
0.695
0.726
0.760
0.793

0.640
0.676
0.715
0.753
0.790
0.827

st length DL, ft

0.013 0.014 0.013 2 0.005

E, 1971.
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Parameters The forces acting on a liquid flowing in an open chan-
nel are inertia, viscous, surface tension, and gravity. If the channel has a
surface roughness of «, a hydraulic radius of Rh , and a slope of S, either
similarity or dimensional analysis leads to f (F, W, R, «/4Rh) 5 0, which
may be written as V 5 C √RhS, where C 5 f (W, R, «/4Rh) and is known
as the Chézy coefficient. The relationship between the Chézy coefficient
C and the friction factor may be determined by equating

V 5 √8Rhhfg/fL 5 C √RhS 5 C √(Rhhf)/L
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Fig. 3.3.32 Triangular weir.

Table 3.3.16 Values of C and Dh for Use in Triangular-Weir Equation

Weir notch angle u, deg

Item 20 30 45 60 75 90 100

C
Dh, ft

0.592
0.010

0.586
0.007

0.580
0.005

0.576
0.004

0.576
0.003

0.579
0.003

0.581
0.003

SOURCE: Compiled from data given in ‘‘Fluid Meters,’’ ASME, 1971.

OPEN-CHANNEL FLOW

Definitions An open channel is a conduit in which a liquid flows
with a free surface subjected to a constant pressure. Flows of water in
natural streams, artificial canals, irrigation ditches, sewers, and flumes
are examples where the water surface is subjected to atmospheric pres-
sure. The flow of any liquid in a pipe where there is a free liquid surface
is an example of open-channel flow where the liquid surface will be
subjected to the pressure existing in the pipe. The slope S of a channel is
the change in elevation per unit of horizontal distance. For small slopes,
this is equivalent to dividing the change in elevation by the distance L
measured along the channel bottom between two sections. For steady
uniform flow, the velocity distribution is the same at all sections of the
channel, so that the energy grade line has the same angle as the bottom
of the channel, thus:

S 5 hf /L

The distance between the liquid surface and the bottom of the channel is
sometimes called the stage and is denoted by the symbol y in Fig. 3.3.33.
When the stages between the sections are not uniform, that is, y1 Þ y2 or
the cross section of the channel changes, or both, the flow is said to be
varied. When a liquid flows in a channel of uniform cross section and
the slope of the surface is the same as the slope of the bottom of the
channel (y1 5 y 5 y2), the flow is said to be uniform.

Fig. 3.3.33 Notation for open channel flow.
or C 5 (8g/f )1/2. Although this establishes a relationship between the
Chézy coefficient and the friction factor, it should be noted that f 5
f(R, «/4Rh) and C 5 f(W,R,«/4Rh), because in open-channel flow,
pressure forces are absent and in pipe flow, surface-tension and gravity
forces are absent . For these reasons, data obtained in pipe flow should
not be applied to open-channel flow.

Roughness Factors For open-channel flow, the Chézy coefficient
is calculated by the Manning equation, which was developed from ex-
amination of experimental results of water tests. The Manning relation is
stated as

C 5
1.486

n
Rh

1/6

where n is a roughness factor and should be a function of Reynolds
number, Weber number, and relative roughness. Since only water-test
data obtained at ordinary temperatures support these values, it must be
assumed that n is the value for turbulent flow only. Since surface ten-
sion is a weak property, the effects of Weber-number variation are
negligible, leaving n to be some function of surface roughness. Design
values of n are given in Table 3.3.17. Maximum flow for a given slope
will take place when Rh is a maximum, and values of Rhmax are given in
Table 3.3.6.

Table 3.3.17 Values of Roughness Factor n for Use in
Manning Equation

Surface n Surface n

Brick
Cast iron
Concrete, finished
Concrete, unfinished
Brass pipe
Earth

0.015
0.015
0.012
0.015
0.010
0.025

Earth, with stones
and weeds

Gravel
Riveted steel
Rubble
Wood, planed
Wood, unplaned

0.035

0.029
0.017
0.025
0.012
0.013

SOURCE: Compiled from data given in R. Horton, Engineering News, 75, 373, 1916.

EXAMPLE. It is necessary to carry 150 ft3/s of water in a rectangular unplaned
timber flume whose width is to be twice the depth of water. What are the required
dimensions for various slopes of the flume? From Table 3.3.6, A 5 b2/2 and Rh 5
h/2 5 b/4. From Table 3.3.17, n 5 0.013 for unplaned wood. From Manning’s
equation, C 5 1.486/n, Rh

1/6 5 (1.486/0.013)(b1/6/(4)1/6 5 90.73 b1/6. From the
continuity equation, V 5 Q/A 5 150/(b2/2), V 5 300/b2. From the Chézy equa-
tion, V 5 C √RhS 5 300/b2 5 90.73b1/6 √(b/4)S; solving for b, b 5 2.0308/S3/16.

Assumed S: 1 3 1021 1 3 1022 1 3 1023 1 3 1024 1 3 1025 1 3 1026 ft /ft
Required b: 3.127 4.816 7.416 11.42 17.59 27.08 ft

EXAMPLE. A rubble-lined trapezoidal canal with 45° sides is to carry 360
ft3/s of water at a depth of 4 ft . If the slope is 9 3 1024 ft /ft , what should be
the dimensions of the canal? From Table 3.3.17, n 5 0.025 for rubble. From
Table 3.3.6 for a 5 45°, A 5 (b 1 h)h 5 4(b 1 4), and Rh 5 (b 1 h)h/(b 1
2.828h) 5 4(b 1 4)/(b 1 11.312). From the Manning relation, C 5 (1.486/n)
(Rh

1/6) 5 (1.486/0.025)Rh
1/6 5 59.44 Rh

1/6. For the first trial, assume Rh 5 Rhmax 5
h/2 5 4/2 5 2; then C 5 59.44(2)1/6 5 66.72 and V 5 C √RhS 5 66.72
√2 3 9 3 1024 5 2.831. From the continuity equation, A 5 Q/V 5
360/2.831 5 127.2 5 4(b 1 4); b 5 27.79 ft . Second trial, use the first trial,
Rh 5 4(27.79 1 4)/(27.79 1 11.312), Rh 5 3.252, V 5 59.44(3.252)1/6

√3.252 3 9 3 1024 5 3.914. From the equation of continuity, Q/V 5
360/3.914 5 91.97 5 4(b 1 4), b 5 18.99. Subsequent trial-and-error solutions
result in a balance at b 5 19.93 ft (6.075 m).
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Specific Energy Specific energy is defined as the energy of the fluid
referred to the bottom of the channel as the datum. Thus the specific
energy E at any section is given by E 5 y 1 V2/2g; from the continuity
equation V 5 Q/A or E 5 y 1 (Q/A)2/2g. For a rectangular channel
whose width is b, A 5 by; and if q is defined as the flow rate per unit
width, q 5 Q/b and E 5 y 1 (qb/by)2/2g 5 y 1 (q/y)2/2g.

Critical Values For rectangular channels, if the specific-energy
equation is differentiated and set equal to zero, critical values are
obtained; thus dE/dy 5 d/dy [y 1 (q/y)2/2g] 5 0 5 1 2 q2/y3g or qc

2 5
3 3 2

Qi is the coefficient of discharge C, or Q 5 CQi 5 CaVi 5 CcCva √2gh,
and C 5 CcCv . Nominal values of coefficients for various openings are
given in Fig. 3.3.36.
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ycg. Substituting in the specific-energy equation, E 5 yc 1 ycg/2gyc 5
3/2yc. Figure 3.3.34 shows the relation between depth and specific
energy for a constant flow rate. If the depth is greater than critical, the
flow is subcritical; at critical depth it is critical and at depths below
critical the flow is supercritical. For a given specific energy, there is a
maximum unit flow rate that can exist .

Fig. 3.3.34 Specific energy diagram, constant flow rate.

The Froude number F 5 V/ √gy, when substituted in the specific-
energy equation, yields E 5 y 1 (F2gy)/2g 5 y(1 1 F2/2) or E/y 5
1 1 F2/2. For critical flow, Ec/yc 5 3/2. Substituting Ec/yc 5 3/2 5
1 1 Fc

2 /2, or F 5 1,

F , 1 Flow is subcritical
F 5 1 Flow is critical
F . 1 Flow is supercritical

It is seen that for open-channel flow the Froude number determines
the type of flow in the same manner as Mach number for compressible
flow.

EXAMPLE. Water flows at a ate of 600 ft3/s in a rectangular channel 10 ft
wide at a depth of 4 ft . Determine (1) specific energy and (2) type of flow.

1. from the continuity equation,

V 5 Q/A 5 600/(10 3 4) 5 15 ft /s
E 5 y 1 V2/2g 5 4 1 (15)2/2(2 3 32.17) 5 7.497 ft

2. F 5 V/ √gy 5 15/ √32.17 3 4 5 1.322; F . 1 [ flow is supercritical.

FLOW OF LIQUIDS FROM TANK OPENINGS

Steady State Consider the jet whose velocity is V discharging from
an open tank through an opening whose area is a, as shown in Fig.
3.3.35. The liquid height above the centerline is h, and the cross-sec-
tional area of the tank at h is A. The ideal velocity of the jet is Vi 5 √2gh.
The ratio of the actual velocity V to the ideal velocity Vi is the coefficient
of velocity Cv, or V 5 CvVi 5 Cv √2gh. The ratio of the actual opening a
to the minimum area of the jet ac is the coefficient of contraction Cc , or
a 5 Ccac . The ratio of the actual discharge Q to the ideal discharge
Fig. 3.3.35 Notation for tank flow.

Unsteady State If the rate of liquid entering the tank Qin is different
from that leaving, the level h in the tank will change because of the
change in storage. For liquids, the conservation-of-mass equation may
be written as Qin 2 Qout 5 Qstored ; for a time interval dt, (Qin 2 Qout)dt 5

L
D

L
D , 1

Fig. 3.3.36 Nominal coefficients of orifices.
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A dh, neglecting fluid acceleration,

Qout dt 5 Ca √2gh dt, or (Qin 2 Ca √2gh) dt

5 A dh, or Et2

t1

dt 5 Eh2

h1

A dh

Qin 2 Qout

5 Eh2

h1

A dh

Qin 2 Ca √2gh

pressure wave traveling at sonic velocity c, ~M 5 rAc. From the im-
pulse-momentum equation, ~M(V2 2 V1) 5 p2A2 2 p1A1 ; for this appli-
cation, (rAc)(V 2 DV 2 V) 5 p2A 2 p1A, or the increase in pressure
Dp 5 2 rcDV. When the liquid is flowing in an elastic pipe, the equa-
tion for pressure rise must be modified to account for the expansion of
the pipe; thus

c 5 √ Es

r[1 1 (Es/Ep)(Do 1 Di)/(Do 2 Di)]

ib
d M
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EXAMPLE. An open cylindrical tank is 6 ft in diameter and is filled with water
to a depth of 10 ft . A 4-in-diameter sharp-edged orifice is installed on the bottom
of the tank. A pipe on the top of the tank supplies water at the rate of 1 ft3/s.
Estimate (1) the steady-state level of this tank, (2) the time required to reduce the
tank level by 2 ft .

1. Steady-state level. From Fig. 3.3.36, C 5 0.61 for a sharp-edged orifice,
a 5 (p/4)d 2 5 (p/4)(4/12)2 5 0.08727 ft2. For steady state, Qin 5 Qout 5
Ca √2gh 5 1 5 (0.61)(0.08727)(2 3 32.17h)1/2; h 5 5.484 ft .

2. Time required to lower level 2 ft , A 5 (p/4)D2 5 (p/4)(6)2 5 28.27 ft2

t2 2 t1 5 Eh2

h1

A dh

Qin 2 Ca √2gh

This equation may be integrated by letting Q 5 Ca √2g h1/2; then dh 5 2Q dQ/
(Ca √2g)2; then

t2 2 t1 5
2 A

(Ca √2g)2
FQin logeSQin 2 Q1

Qin 2 Q2
D 1 Q1 2 Q2G

At t1 : Q1 5 0.61 3 0.08727 √2 3 32.17 3 10 5 1.350 ft3/s
At t2 : Q2 5 0.61 3 0.08727 √2 3 32.17 3 8 5 1.208 ft3/s

t2 2 t1 5
2 3 28.27

(0.61 3 0.08727 √2 3 32.17)2

3F(1) logeS1 2 1.350

1 2 1.208D 1 1.350 2 1.208G
t2 2 t1 5 205.4 s

WATER HAMMER

Equations Water hammer is the series of shocks, sounding like
hammer blows, produced by suddenly reducing the flow of a fluid in a
pipe. Consider a fluid flowing frictionlessly in a rigid pipe of uniform
area A with a velocity V. The pipe has a length L, and inlet pressure p1

and a pressure p2 at L. At length L, there is a valve which can suddenly
reduce the velocity at L to V 2 DV. The equivalent mass rate of flow of a

3.4 V
by Leonar

REFERENCES: Harris, ‘‘Shock and Vibration Handbook,’’ 3d ed., McGraw-Hill.
Thomson, ‘‘Theory of Vibration with Applications,’’ 4th ed., Prentice Hall. Meir-

ovitch, ‘‘Elements of Vibration Analysis,’’ 2d ed., McGraw-Hill. Meirovitch,
‘‘Principles and Techniques of Vibrations,’’ Prentice-Hall.

SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Discrete System Components A system is defined as
tion of components acting together as one entity. The com
vibratory mechanical system are of three different types, and they relate
where r 5 mass density of the fluid, Es 5 bulk modulus of elasticity of
the fluid, Ep 5 modulus of elasticity of the pipe material, Do 5 outside
diameter of pipe, and Di 5 inside diameter of pipe.

Time of Closure The time for a pressure wave to travel the length of
pipe L and return is t 5 2L/c. If the time of closure tc # t, the approxi-
mate pressure rise Dp ' 2 2 rV(L/tc). When it is not feasible to close
the valve slowly, air chambers or surge tanks may be used to absorb all or
most of the pressure rise. Water hammer can be very dangerous. See
Sec. 9.9.

EXAMPLE. Water flows at 68°F (20°C) in a 3-in steel schedule 40 pipe at a
velocity of 10 ft /s. A valve located 200 ft downstream is suddenly closed. Deter-
mine (1) the increase in pressure considering pipe to be rigid, (2) the increase
considering pipe to be elastic, and (3) the maximum time of valve closure to be
considered ‘‘sudden.’’

For water, r 5 2 1.937 slugs/ft3 5 1.937 lb ? sec2/ft4; Es 5 319,000 lb/in2;
Ep 5 28.5 3 106 lb/in2 (Secs. 5.1 and 6); c 5 4,860 ft /s; from Sec. 8.7, Do 5 3.5 in,
Di 5 3.068 in.

1. Inelastic pipe

Dp 5 2 rcDV 5 2 (1.937)(4,860)(2 10) 5 94,138 lbf/ft2

5 94,138/144 5 653.8 lbf/in2 (4.507 3 106 N/m2)

2. Elastic pipe

c 5 √ Es

r[1 1 (Es/Ep)(Do 1 Di)/(Do 2 Di)]

5 √
319,000 3 144

1.937F1 1
(319,000/28.5 3 106)(3.500 1 3.067)

(3.500 2 3.067) G
5 4,504

Dp 5 2 (1.937)(4,504)(2 10)
5 87,242 lbf/ft2 5 605.9 lbf/in2 (4.177 3 106 N/m2)

3. Maximum time for closure

t 5 2L/c 5 2 3 200/4,860 5 0.08230 s or less than 1/10 s

ration
eirovitch

forces to velocities is called a viscous damper or a dashpot (Fig. 3.4.1b).
It consists of a piston fitting loosely in a cylinder filled with liquid so

that the liquid can flow around the piston when it moves relative to the
cylinder. The relation between the damper force and the velocity of the
piston relative to the cylinder is

Fd 5 c( ~x2 2 ~x1) (3.4.2)

the coefficient of viscous damping; note that dots denote
th respect to time. Finally, the relation between forces and
an aggrega-
ponents of a in which c is

derivatives wi
forces to displacements, velocities, and accelerations. The component
relating forces to displacements is known as a spring (Fig. 3.4.1a). For a
linear spring the force Fs is proportional to the elongation d 5 x2 2 x1, or

Fs 5 kd 5 k(x2 2 x1) (3.4.1)

where k represents the spring constant, or the spring stiffness, and x1 and
x2 are the displacements of the end points. The component relating
accelerations is given by Newton’s second law of motion:

Fm 5 mẍ (3.4.3)

where m is the mass (Fig. 3.4.1c).
The spring constant k, coefficient of viscous damping c, and mass m

represent physical properties of the components and are the system pa-
rameters. By implication, these properties are concentrated at points,
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thus they are lumped, or discrete, parameters. Note that springs
and dampers are assumed to be massless and masses are assumed to be
rigid.

Springs can be arranged in parallel and in series. Then, the propor-
tionality constant between the forces and the end points is known as an

x1 x2

Table 3.4.1 Equivalent Spring Constants

keq

keq

keq

kteq
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x1 x2

Fs Fs

Fd Fd

Fm

(a)

c

m

(b)

(c)

ẍ

˙ ˙

Fig. 3.4.1

equivalent spring constant and is denoted by keq, as shown in Table 3.4.1.
Certain elastic components, although distributed over a given line seg-
ment , can be regarded as lumped with an equivalent spring constant
given by keq 5 F/d, where d is the deflection at the point of application
of the force F. A similar relation can be given for springs in torsion.
Table 3.4.1 lists the equivalent spring constants for a variety of compo-
nents.

Equation of Motion The dynamic behavior of many engineering
systems can be approximated with good accuracy by the mass-damper-
spring model shown in Fig. 3.4.2. Using Newton’s second law in con-
junction with Eqs. (3.4.1) to (3.4.3) and measuring the displacement x(t)
from the static equilibrium position, we obtain the differential equation
of motion

mẍ(t) 1 c ~x(t) 1 kx(t) 5 F(t) (3.4.4)

which is subject to the initial conditions x(0) 5 x0, ~x(0) 5 v0, where
x0 and v0 are the initial displacement and initial velocity, respectively.
Equation (3.4.4) is in terms of a single coordinate, namely x(t); the
system of Fig. 3.4.2 is therefore said to be a single-degree-of-freedom
system.

Free Vibration of Undamped Systems Assuming zero damping and
external forces and dividing Eq. (3.4.4) through by m, we obtain

ẍ 1 vn
2x 5 0 vn 5 √k/m (3.4.5)

In this case, the vibration is caused by the initial excitations alone. The
solution of Eq. (3.4.5) is

x(t) 5 A cos (vnt 2 f) (3.4.6)

which represents simple sinusoidal, or simple harmonic oscillation with
amplitude A, phase angle f, and frequency

vn 5 √k/m rad/s (3.4.7)

Systems described by equations of the type (3.4.5) are called har-
monic oscillators. Because the frequency of oscillation represents an in-
herent property of the system, independent of the initial excitation, vn

is called the natural frequency. On the other hand, the amplitude and
keq

keq

keq

keq

keq

keq

keq

keq

phase angle do depend on the initial displacement and velocity, as
follows:

A 5 √x2
0 1 (v0 /vn)2 f 5 tan2 1 v0 /x0vn (3.4.8)

The time necessary to complete one cycle of motion defines the period

T 5 2p/vn seconds (3.4.9)

The reciprocal of the period provides another definition of the natural
frequency, namely,

fn 5
1

T
5

vn

2p
Hz (3.4.10)

where Hz denotes hertz [1 Hz 5 1 cycle per second (cps)].
A large variety of vibratory systems behave like harmonic oscillators,

many of them when restricted to small amplitudes. Table 3.4.2 shows a
variety of harmonic oscillators together with their respective natural
frequency.

Free Vibration of Damped Systems Let F(t) 5 0 and divide
through by m. Then, Eq. (3.4.4) reduces to

ẍ(t) 1 2zvn ~x(t) 1 vn
2 x(t) 5 0 (3.4.11)

where z 5 c/2mvn (3.4.12)

is the damping factor, a nondimensional quantity. The nature of
the motion depends on z. The most important case is that in which
0 , z , 1.

c

k

m

x(t)

F(t)

Fig. 3.4.2
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Table 3.4.2 Harmonic Oscillators and Natural Frequencies

,

In this case, the system is said to be underdamped and the solution of Eq.
(3.4.11) is

x(t) 5 Ae2 zvnt cos(vdt 2 f) (3.4.13)
where vd 5 (1 2 z2)1/2vn (3.4.14)

is the frequency of damped free vibration and

T 5 2p/vd (3.4.15)

is the period of damped oscillation. The amplitude and phase angle de-

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
k

pend on the initial displacement and velocity, as follows:

A 5 √x0
2 1 (zvnx0 1 v0)2/v2

d f 5 tan2 1 (zvnx0 1 v0)/x0vd (3.4.16)

The motion described by Eq. (3.4.13) represents decaying oscillation,
where the term Ae2 zv n t can be regarded as a time-dependent amplitude,
providing an envelope bounding the harmonic oscillation.

When z $ 1, the solution represents aperiodic decay. The case z 5 1
represents critical damping, and

cc 5 2mvn (3.4.17)

is the critical damping coefficient, although there is nothing critical about
it . It merely represents the borderline between oscillatory decay and
aperiodic decay. In fact , cc is the smallest damping coefficient for which
the motion is aperiodic. When z . 1, the system is said to be over-
damped.

Logarithmic Decrement Quite often the damping factor is not
known and must be determined experimentally. In the case in which the
system is underdamped, this can be done conveniently by plotting x(t)
versus t (Fig. 3.4.3) and measuring the response at two different times

0
t1 t2

x2

x1

T 5 2p
vd

t

x(t)

Fig. 3.4.3

separated by a complete period. Let the times be t1 and t1 1 T, introduce
the notation x(t1) 5 x1, x(t1 1 T) 5 x2, and use Eq. (3.4.13) to obtain

x1

x2

5
Ae2zvnt1 cos (vdt1 2 f)

Ae2zvn(t11T) cos [vd(t1 1 T) 2 f]
5 ezvnT (3.4.18)

where cos [vd(t1 1 T) 2 f] 5 cos (vdt1 2 f 1 2p) 5 cos (vdt1 2 f).
Equation (3.4.18) yields the logarithmic decrement

d 5 ln
x1

x2

5 zvnT 5
2pz

√1 2 z2
(3.4.19)

which can be used to obtain the damping factor

z 5
d

√(2p)2 1 d2
(3.4.20)

For small damping, the logarithmic decrement is also small, and the
damping factor can be approximated by

z '
d

2p
(3.4.21)
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Response to Harmonic Excitations Consider the case in which the
excitation force F(t) in Eq. (3.4.4) is harmonic. For convenience, ex-
press F(t) in the form kA cos vt, where k is the spring constant , A is an
amplitude with units of displacement and v is the excitation frequency.
When divided through by m, Eq. (3.4.4) has the form

ẍ 1 2zvn ~x 1 vn
2 x 5 vn

2A cos vt (3.4.22)

The solution of Eq. (3.4.22) can be expressed as

x(t) 5 A |G(v) | cos (vt 2 f) (3.4.23)

√1 2 2z2, provided z , 1/√2. The peak values are |G(v) |max 5

1/2z√1 2 z2. For small z, the peaks occur approximately at v/vn 5 1
and have the approximate values |G(v) |max 5 Q ' 1/2z, where Q is
known as the quality factor. In such cases, the phase angle tends to 90°.
Clearly, for small z the system experiences large-amplitude vibration, a
condition known as resonance. The points P1 and P2, where |G | falls to
Q/√2, are called half-power points. The increment of frequency asso-
ciated with the half-power points P1 and P2 represents the bandwidth Dv
of the system. For small damping, it has the value
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where

|G(v) | 5
1

√[1 2 (v/vn)2]2 1 (2zv/vn)2
(3.4.24)

is a nondimensional magnitude factor* and

f(v) 5 tan21
2zv/vn

1 2 (v/vn)2
(3.4.25)

is the phase angle; note that both the magnitude factor and phase angle
depend on the excitation frequency v.

Equation (3.4.23) shows that the response to harmonic excitation is
also harmonic and has the same frequency as the excitation, but differ-
ent amplitude A |G(v) | and phase angle f(v). Not much can be learned
by plotting the response as a function of time, but a great deal of infor-
mation can be gained by plotting |G | versus v/vn and f versus v/vn.
They are shown in Fig. 3.4.4 for various values of the damping factor z.

In Fig. 3.4.4, for low values of v/vn, the nondimensional magnitude
factor |G(v) | approaches unity and the phase angle f(v) approaches
zero. For large values of v/vn, the magnitude approaches zero (see
accompanying footnote about magnification factor) and the phase angle
approaches 180°. The magnitude experiences peaks for v/vn 5

* The term |G(v)| is often referred to as magnification factor, but this is a
misnomer, as we shall see shortly.

6

p

0

0

/

1

1 2

2

3

4

5

|G(  )|

Q

P1
P2

Q/√2

v

2
pf

v1 vn
/v vn

/v2 vn

5 1.00z

5 0.50z

5 0.15z

z 5 0.10

5 0.05z

5 0.25z

Fig. 3.4.4 Frequency response plots.
Dv 5 v2 2 v1 ' 2zvn (3.4.26)

The case z 5 0 deserves special attention. In this case, referring to Eq.
(3.4.22), the response is simply

x(t) 5
A

1 2 (v/vn)2
cos vt (3.4.27)

For v/vn , 1, the displacement is in the same direction as the force, so
that the phase angle is zero; the response is in phase with the excitation.
For v/vn . 1, the displacement is in the direction opposite to the force,
so that the phase angle is 180° out of phase with the excitation. Finally,
when v 5 vn the response is

x(t) 5
A

2
vnt sin vnt (3.4.28)

This is typical of the resonance condition, when the response increases
without bounds as time increases. Of course, at a certain time the dis-
placement becomes so large that the spring ceases to be linear, thus
violating the original assumption and invalidating the solution. In prac-
tical terms, unless the excitation frequency varies, passing quickly
through v 5 vn, the system can break down.

When the excitation is F(t) 5 kA sin vt, the response is

x(t) 5 A |G(v) | sin (vt 2 f) (3.4.29)

5 0z

5 0.05z

5 0.10z

5 0.15z

5 0.25z
3

5 0z

5 0z
1 2 3

/v vn

5 0.50z

5 1.00z
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One concludes that in harmonic response, time plays a secondary role to
the frequency. In fact , the only significant information is extracted from
the magnitude and phase angle plots of Fig. 3.4.4. They are referred to
as frequency-response plots.

Since time plays no particular role, the harmonic response is called
steady-state response. In general, for linear systems with constant param-
eters, such as the mass-damper-spring system under consideration, the
response to the initial excitations is added to the response to the excita-
tion forces. The response to initial excitations, however, represents

The transmissibility is less than 1 for v/vn . √2, and decreases as
v/vn increases. Hence, for an isolator to perform well, its natural fre-
quency must be much smaller than the excitation frequency. However,
for very low natural frequencies, difficulties can be encountered in iso-
lator design. Indeed, the natural frequency is related to the static deflec-
tion dst by vn 5 √k/m 5 √g/dst, where g is the gravitational constant . For
the natural frequency to be sufficiently small, the static deflection may
have to be impractically large. The relation between the excitation fre-
quency f measured in rotations per minute and the static deflection dst
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transient response. This is due to the fact that every system possesses
some amount of damping, so that the response to initial excitations
disappears with time. In contrast , steady-state response persists with
time. Hence, in the case of harmonic excitations, it is meaningless to
add the response to initial excitations to the harmonic response.

Vibration Isolation A problem of great interest is the magnitude of
the force transmitted to the base by a system of the type shown in Fig.
3.4.2 subjected to harmonic excitation. This force is a combination of
the spring force kx and the dashpot force c ~x. Recalling Eq. (3.4.23),
write

kx 5 kA |G | cos (vt 2 f)
c ~x 5 2 cvA |G | sin (vt 2 f)

5 cvA |G | cosSvt 2 f 1
p

2D (3.4.30)

so that the dashpot force is 90° out of phase with the spring force.
Hence, the magnitude of the force is

Ftr 5 √(kA |G |)2 1 (cvA |G |)2 5 kA |G |√1 1 (cv/k)2

5 kA |G |√1 1 (2zv/vn)2 (3.4.31)

Let the magnitude of the harmonic excitation be F0 5 kA; the force
transmitted to the base is then

T 5
Ftr

F0

5 |G |√1 1 (2zv/vn)2

5 √ 1 1 (2zv/vn)2

[1 2 (v/vn)2]2 1 (2zv/vn)2
(3.4.32)

which represents a nondimensional ratio called transmissibility. Figure
3.4.5 plots Ftr /F0 versus v/vn for various values of z.
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Fig. 3.4.5
measured in inches is

f 5 187.7√ 2 2 R

dst(1 2 R)
rpm (3.4.33)

where R 5 1 2 T represents the percent reduction in vibration. Figure
3.4.6 shows a logarithmic plot of f versus dst with R as a parameter.

Fig. 3.4.6

Figure 3.4.7 depicts two types of isolators. In Fig. 3.4.7a, isolation is
accomplished by means of springs and in Fig. 3.4.7b by rubber rings
supporting the bearings. Isolators of all shapes and sizes are available
commercially.

Fig. 3.4.7

Rotating Unbalanced Masses Many appliances, machines, etc., in-
volve components spinning relative to a main body. A typical example
is the clothes dryer. Under certain circumstances, the mass of the spin-
ning component is not symmetric relative to the center of rotation, as
when the clothes are not spread uniformly in the spinning drum, giving
rise to harmonic excitation. The behavior of such systems can be simu-
lated adequately by the single-degree-of-freedom model shown in Fig.
3.4.8, which consists of a main mass M 2 m, supported by two springs
of combined stiffness k and a dashpot with coefficient of viscous damp-
ing c, and two eccentric masses m/2 rotating in opposite sense with the
constant angular velocity v. Although there are three masses, the mo-
tion of the eccentric masses relative to the main mass is prescribed, so
that there is only one degree of freedom. The equation of motion for the
system is

Mẍ 1 c ~x 1 kx 5 mlv2 sin vt (3.4.34)

x(t)

c

tv tv

k
2

— M – m

m/2 m/2
ll

k
2

Fig. 3.4.8
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Using the analogy with Eq. (3.4.29), the solution of Eq. (3.4.34) is

x(t) 5
m

M
lS v

vn
D2

|G(v) | sin (vt 2 f) v2
n 5

k

M
(3.4.35)

The magnitude factor in this case is (v/vn)2 |G(v) |, where |G(v) | is
given by Eq. (3.4.24); it is plotted in Fig. 3.4.9. On the other hand, the
phase angle remains as in Fig. 3.4.4.

where, assuming that the shaft is simply supported (see Table 3.4.1),
keq 5 48EI/L3, in which E is the modulus of elasticity, I the cross-sec-
tional area moment of inertia, and L the length of the shaft . By analogy
with Eq. (3.4.27), Eqs. (3.4.36) have the solution

x(t) 5
e(v/vn)2

1 2 (v/vn)2
cos vt y(t) 5

e(v/vn)2

1 2 (v/vn)2
sin vt (3.4.37)

Clearly, resonance occurs when the whirling angular velocity coincides
with the natural frequency. In terms of rotations per minute, it has the
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Whirling of Rotating Shafts Many mechanical systems involve ro-
tating shafts carrying disks. If the disk has some eccentricity, then the
centrifugal forces cause the shaft to bend, as shown in Fig. 3.4.10a. The
rotation of the plane containing the bent shaft about the bearing axis is
called whirling. Figure 3.4.10b shows a disk with the body axes x,y
rotating about the origin O with the angular velocity v. The geometrical
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xx
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O
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L
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m

(a) (b)

v

u

vt

L
2

Fig. 3.4.10

center of the disk is denoted by S and the mass center by C. The distance
between the two points is the eccentricity e. The shaft is massless and of
stiffness keq and the disk is rigid and of mass m. The x and y components
of the displacement of S relative to O are independent from one another
and, for no damping, satisfy the equations of motion

ẍ 1 v2
nx 5 ev2 cos vt ÿ 1 v2

ny 5 ev2 sin vt v2
n 5 keq /m

(3.4.36)
value

fc 5
60

2p
vn 5

60

2p √48EI

mL3
rpm (3.4.38)

where fc is called the critical speed.
Structural Damping Experience shows that energy is dissipated in

all real systems, including those assumed to be undamped. For example,
because of internal friction, energy is dissipated in real springs under-
going cyclic stress. This type of damping is called structural damping or
hysteretic damping because the energy dissipated in one cycle of stress is
equal to the area inside the hysteresis loop. Systems possessing struc-
tural damping and subjected to harmonic excitation with the frequency
v can be treated as if they possess viscous damping with the equivalent
coefficient

ceq 5 a/pv (3.4.39)

where a is a material constant . In this case, the equation of motion is

mẍ 1
a

pv
~x 1 kx 5 kA cos vt (3.4.40)

The solution of Eq. (3.4.40) is

x(t) 5 A|G| cos (vt 2 f) (3.4.41)

where this time the magnitude factor and phase angle have the values

G 5
1

√[1 2 (v/vn)2]2 1 g2
f 5 tan2 1

gv2
n

v[1 2 (v/vn)2]
(3.4.42)

in which

g 5
a

pk
(3.4.43)

is known as the structural damping factor. One word of caution is in
order: the analogy between structural and viscous damping is valid only for
harmonic excitation.

Balancing of Rotating Machines Machines such as electric motors
and generators, turbines, compressors, etc. contain rotors with journals
supported by bearings. In many cases, the rotors rotate relative to the
bearings at very high rates, reaching into tens of thousands of revolu-
tions per minute. Ideally the rotor is rigid and the axis of rotation coin-
cides with one of its principal axes; by implication, the rotor center of
mass lies on the axis of rotation. Such a rotor does not wobble and the
only forces exerted on the bearings are due to the weight of the rotor.
Such a rotor is said to be perfectly balanced. These ideal conditions are
seldom realized, and in practice the mass center lies at a distance e
(eccentricity) from the axis of rotation, so that there is a net centrifugal
force F 5 mev2 acting on the rotor, where m is the mass of the rotor and
v is the rotational speed. This centrifugal force is balanced by reaction
forces in the bearings, which tend to wear out the bearings with time.

The rotor unbalance can be divided into two types, static and dy-
namic. Static unbalance can be detected by placing the rotor on a pair of
parallel rails. Then, the mass center will settle in the lowest position in a
vertical plane through the rotation axis and below this axis. To balance
the rotor statically, it is necessary to add a mass m9 in the same plane at a
distance r from the rotation axis and above this axis, where m9 and r
must be such that m9r 5 me. In this manner, the net centrifugal force on
the rotor is zero. The net result of static balancing is to cause the mass
center to coincide with the rotation axis, so that the rotor will remain in
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any position placed on the rails. However, unless the mass m9 is placed
on a line containing m and at right angles with the bearings axis, the
centrifugal forces on m and m9 will form a couple (Fig. 3.4.11). Static
balancing is suitable when the rotor is in the form of a thin disk, in
which case the couple tends to be small. Automobile tires are at times
balanced statically (seems), although strictly speaking they are neither
thin nor rigid.

m9r 2v

Inertial Unbalance of Reciprocating Engines The crank-piston
mechanism of a reciprocating engine produces dynamic forces capable
of causing undesirable vibrations. Rotating parts, such as the crank-
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In general, for practical reasons, the mass m9 cannot be placed on an
axis containing m and perpendicular to the bearing axis. Hence, al-
though in static balancing the mass center lies on the rotation axis, the
rotor principal axis does not coincide with the bearing axis, as shown in
Fig. 3.4.12, causing the rotor to wobble during rotation. In this case, the
rotor is said to be dynamically unbalanced. Clearly, it is highly desirable
to place the mass m9 so that the rotor is both statically and dynamically
balanced. In this regard, note that the end planes of the rotor are conve-

v

Principal axis

Fig. 3.4.12

nient locations to place correcting masses. In Fig. 3.4.13, if the mass
center is at a distance a from the right end, then dynamic balance can be
achieved by placing masses m9a/L and m9(L 2 a)/L on the intersection
of the plane of unbalance and the rotor left end plane and right end
plane, respectively. In this manner, the resultant centrifugal force is zero

m9r
a
L

2v

me 2v

m9r
L2a

L
2v

m9
L2a

Lm9
a
L

aL2a

Fig. 3.4.13

and the two couples thus created are equal in value to m9a(L 2 a)v2/L
and opposite in sense, so that they cancel each other. This results in a
rotor completely balanced, i.e., balanced statically and dynamically.

The task of determining the magnitude and position of the unbalance
is carried out by means of a balancing machine provided with elastically
supported bearings permitting the rotor to spin (Fig. 3.4.14). The unbal-
ance causes the bearings to oscillate laterally so that electrical pickups
and stroboflash light can measure the amplitude and phase of the rotor
with respect to an arbitrary rotor.

In cases in which the rotor is very long and flexible, the position of
the unbalance depends on the elastic configuration of the rotor, which in
turn depends on the speed of rotation, temperature, etc. In such cases, it
is necessary to balance the rotor under normal operating conditions by
means of a portable balancing instrument .
Fig. 3.4.14

shaft , can be balanced. However, translating parts, such as the piston,
cannot be easily balanced, and the same can be said about the connect-
ing rod, which executes a more complex motion of combined rotation
and translation.

In the calculation of the unbalanced forces in a single-cylinder en-
gine, the mass of the moving parts is divided into a reciprocating mass
and a rotating mass. This is done by apportioning some of the mass of
the connecting rod to the piston and some to the crank end. In general,
this division of the connecting rod into two lumped masses tends to
cause errors in the moment of inertia, and hence in the torque equation.
On the other hand, the force equation can be regarded as being accurate.
(See also Sec. 8.2.)

Assuming that the rotating mass is counterbalanced, only the recipro-
cating mass is of concern, and the inertia force for a single-cylinder
engine is

F 5 mrecrv2 cos vt 1 mrec

r2

L
v2 cos 2vt (3.4.44)

where mrec is the reciprocating mass, r the radius of the crank, v the
angular velocity of the crank, and L the length of the connecting rod.
The first component on the right side, which alternates once per revolu-
tion, is denoted by X1 and referred to as the primary force, and the
second component , which is smaller and alternates twice per revolution,
is denoted by X2 and is called the secondary force.

In addition to the inertia force, there is an unbalanced torque about
the crankshaft axis due to the reciprocating mass. However, this torque
is considered together with the torque created by the power stroke, and
the torsional oscillations resulting from these excitations can be miti-
gated by means of a pendulum-type absorber (see ‘‘Centrifugal Pendu-
lum Vibration Absorbers’’ below) or a torsional damper.

The analysis for the single-cylinder engine can be extended to multi-
cylinder in-line and V-block engines by superposition. For the in-line
engine or one block of the V engine, the inertia force becomes

F 5 mrecrv2 On
j51

cos (vt 1 fj)

1 mrec

r2

L
v2 On

j51

cos 2(vt 1 fj) (3.4.45)

where fj is a phase angle corresponding to the crank position associated
with cylinder j and n is the number of cylinders. The vibration’s force
can be eliminated by proper spacing of the angular positions fj ( j 5
1, 2, . . . , n).

Even if F 5 0, there can be pitching and yawing moments due to the
spacing of the cylinders. Table 3.4.3 gives the inertial unbalance and
pitching of the primary and secondary forces for various crank-angle
arrangements of n-cylinder engines.

Centrifugal Pendulum Vibration Absorbers For a rotating system,
such as the crank mechanism just discussed, the exciting torques are
proportional to the rotational speed v, which varies over a wide range.
Hence, for a vibration absorber to be effective, its natural frequency
must be proportional to v. The centrifugal pendulum shown in Fig.
3.4.15 is ideally suited to this task. Strictly speaking, the system of Fig.
3.4.15 represents a two-degree-of-freedom nonlinear system. However,
assuming that the motion of the wheel consists of a steady rotation v
and a small harmonic oscillation at the frequency V, or

u(t) 5 vt 1 u0 sin Vt (3.4.46)
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Table 3.4.3 Inertial Unbalance of Four-Stroke-per-Cycle Engines

Unbalanced pitching
Unbalanced forces moments about 1st cylinder

No. n of
cylinders Crank phase angle fj Primary Secondary Primary Secondary

1 X1 X2 — —
2 0–180° 0 2X2 ,X1 2,X2

4 0–180°–180°–0 0 4X2 0 6,X2

4 0–90°–270°–180° 0 0 ,X1√1 1 32 0
6 0–120°–240°–

240°–120°–0
0 0 0 0

8 0–180°–90°–270°–
270°–90°–180°–0

0 0 0 0

90° V-8 0–90°–270°–180° 0 0 Rotating primary couple of
constant magnitude √10,X1

which may be completely
counterbalanced

m
r

R

v

f

u

Response to Periodic Excitations A problem of interest in me-
chanical vibrations concerns the response x(t) of the cam and follower
system shown in Fig. 3.4.17. As the cam rotates at a constant angular
rate, the follower undergoes the periodic displacement y(t), where y(t)
has the period T. The equation of motion is

mẍ 1 (k1 1 k2)x 5 k2y (3.4.51)
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Fig. 3.4.15

and that the pendulum angle f is relatively small, then the equation of
motion of the pendulum reduces to the linear single-degree-of-freedom
system

f̈ 1 v2
nf 5

R 1 r

r
V2u0 sin Vt (3.4.47)

where vn 5 v√R/r (3.4.48)

is the natural frequency of the pendulum. The torque exerted by the
pendulum on the wheel is

T 5 2
m(R 1 r)2

1 2 rV2/Rv2
ü (3.4.49)

so that the system behaves like a wheel with the effective mass moment
of inertia

Jeff 5 2
m(R 1 r)2

1 2 rV2/Rv2
(3.4.50)

which becomes infinite when V is equal to the natural frequency vn. To
suppress disturbing torques of frequency V several times larger than the
rotational speed v, the ratio r/R must be very small, which requires a
short pendulum. The bifilar pendulum depicted in Fig. 3.4.16, which
consists of a U-shaped counterweight that fits loosely and rolls on two
pins of radius r2 within two larger holes of equal radius r1, represents a
suitable design whereby the effective pendulum length is r 5 r1 2 r2.

Fig. 3.4.16
k1
x(t)

m

k2

y(t)

Fig. 3.4.17

Any periodic function can be expanded in a series of harmonic compo-
nents in the form of the Fourier series

y(t) 5
1

2
a0 1 O`

p51

(ap cos v0t 1 bp sin pv0t) v0 5 2p/T (3.4.52)

where v0 is called the fundamental harmonic and pv0 (p 5 1, 2, . . .)
are called higher harmonics, in which p is an integer. The coefficients
have the expressions

ap 5
2

T ET

0

y(t) cos pv0t p 5 0, 1, 2, . . .

bp 5
2

T ET

0

y(t) sin pv0t p 5 1, 2, . . .
(3.4.53)

Note that the limits of integration can be changed, as long as the inte-
gration covers one complete period. From Eq. (3.4.27), and a compan-
ion equation for the sine counterpart , the response is

x(t) 5
k2

k1 1 k2
F1

2
a0 1 O`

p51

1

1 2 (pv0 /vn)2

3 (ap cos pv0t 1 bp sin pv0t)G (3.4.54)

where vn 5 √(k1 1 k2)/m (3.4.55)
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is the natural frequency of the system. Equation (3.5.54) describes a
steady-state response, so that a description in terms of time is not very
informative. More significant information can be extracted by plotting
the amplitudes of the harmonic components versus the harmonic num-
ber. Such plots are called frequency spectra, and there is one for the
excitation and one for the response. Equation (3.4.54) leads to the con-
clusion that resonance occurs for pv0 5 vn.

As an example, consider the periodic excitation shown in Fig. 3.4.18
and use Eqs. (3.4.53) to obtain the coefficients

being equal to zero. For the mass-damper-spring system of Fig. 3.4.2,
the impulse response is

g(t) 5
1

mvd

e2zvnt sin vdt t . 0 (3.4.57)

1
(t 2 a)

e

d
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a0 5 2 A, ap 5 0, bp 5H0
4B/pp p odd

p even
(3.4.56)

A1B

y(t)

A2B
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Fig. 3.4.18 Example of periodic excitation.

The excitation and response frequency spectra are displayed in Figs.
3.4.19a and b, the latter for the case in which vn 5 4v0.
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Fig. 3.4.19 (a) Excitation frequency spectrum; (b) response frequency spec-
trum for the periodic excitation of Fig. 3.4.18.

Unit Impulse and Impulse Response Harmonic and periodic forces
represent steady-state excitations and persist indefinitely. The response to
such forces is also steady state. An entirely different class of forces
consists of arbitrary, or transient, forces. The term transient is not en-
tirely appropriate, as some of these forces can also persist indefinitely.
Concepts pivotal to the response to arbitrary forces are the unit impulse
and the impulse response. The unit impulse, denoted by d(t 2 a), repre-
sents a function of very high amplitude and defined over a very small
time interval at t 5 a such that the area enclosed is equal to 1 (Fig.
3.4.20). The impulse response, denoted by g(t), is defined as the response
of a system to a unit impulse applied at t 5 0, with the initial conditions
0
e

a

t

Fig. 3.4.20

Convolution Integral An arbitrary force F(t) as shown in Fig. 3.4.21
can be regarded as a superposition of impulses of magnitude F(t) dt and
applied at t 5 t. Hence, the response to an arbitrary force can be re-
garded as a superposition of impulse responses g(t 2 t) of magnitude
F(t) dt, or

x(t) 5 Et

0

F(t)g(t 2 t) dt

5
1

mvd
Et

0

F(t)e2 zvn(t2t) sin vd(t 2 t) dt (3.4.58a)

which is called the convolution integral or the superposition integral; it can
also be written in the form

x(t) 5 Et

0

F(t 2 t)g(t) dt

5
1

mvd
Et

0

F(t 2 t)e2 zvnt sin vdt dt (3.4.58b)

t0
t

F(t )

Dt

F(  ) t

t

Fig. 3.4.21

Shock Spectrum Many systems are subjected on occasions to large
forces applied suddenly and over periods of time that are short com-
pared to the natural period. Such forces are capable of inflicting serious
damage on a system and are referred to as shocks. The severity of a
shock is commonly measured in terms of the maximum value of the
response of a mass-spring system. The plot of the peak response versus
the natural frequency is called the shock spectrum or response spectrum.

A shock F(t) is characterized by its maximum value F0, its duration T,
and its shape. It is common to approximate the force by the half-sine
pulse

F(t) 5H0
F0 sin vt for

for
0 , t , T 5 p/v
t , 0 and t . T

(3.4.59)

Using the convolution integral, Eq. (3.4.58b) with z 5 0, the response of
a mass-spring system during the duration of the pulse is

x(t) 5
F0

k[1 2 (v/vn)2] Ssin vt 2
v

vn

sin vntD
0 , t , p/v (3.4.60)
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The maximum response is obtained when ~x 5 0 and has the value

xmax 5
F0

k(1 2 v/vn)
sin

2ip

1 1 vn/v

i 5 1, 2, . . . ; i ,
1

2 S1 1
vn

v
D (3.4.61)

On the other hand, the response after the termination of the pulse is

F0v2
n/v

mi

the stiffness matrix, all three symmetric matrices. (In the present case the
mass matrix is diagonal, but in general it is not , although it is sym-
metric.)

Response of Undamped Systems to Harmonic Excitations Let the
harmonic excitation have the form

F(t) 5 F0 sin vt (3.4.66)

where F0 is a constant vector and v is the excitation, or driving fre-
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x(t) 5
k[1 2 (vn/v)2]

[cos vnt 1 cos vn(t 2 T)] (3.4.62)

which has the maximum value

xmax 5
2 F0vn/v

k[1 2 (vn/v)2]
cos

pvn

2v
(3.4.63)

The shock spectrum is the plot xmax versus vn/v. For vn , v, the
maximum response is given by Eq. (3.4.63) and for vn . v by Eq.
(3.4.61). The shock spectrum is shown in Fig. 3.4.22 in the form of the
nondimensional plot xmaxk/F0 versus vn/v.
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Fig. 3.4.22

MULTI-DEGREE-OF-FREEDOM SYSTEMS

Equations of Motion Many vibrating systems require more elabo-
rate models than a single-degree-of-freedom system, such as the multi-
degree-of-freedom system shown in Fig. 3.4.23. By using Newton’s sec-
ond law for each of the n masses mi (i 5 1, 2, . . . , n), the equations of
motion can be written in the form

mi ẍi(t) 1 On
j51

cij ~xj(t) 1 On
j51

kijxj(t) 5 Fi (t)

i 5 1, 2, . . . , n (3.4.64)

where xi (t) is the displacement of mass mi, Fi (t) is the force acting on mi,
and cij and kij are damping and stiffness coefficients, respectively. The
matrix form of Eqs. (3.4.64) is

Mẍ(t) 1 C~x(t) 1 Kx(t) 5 F(t) (3.4.65)

in which x(t) is the n-dimensional displacement vector, F(t) the corre-
sponding force vector, M the mass matrix, C the damping matrix, and K

c1

k1

F1(t )

x1(t )

m1 mi21

Fi21(t )

xi21(t )

c1

ki
Fig. 3.4.23
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mnmi11
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k i11 kn11

ci11 cn11

quency. The response to the harmonic excitation is a steady-state re-
sponse and can be expressed as

x(t) 5 Z21(v)F0 sin vt (3.4.67)

where Z21(v) is the inverse of the impedance matrix Z(v). In the absence
of damping, the impedance matrix is

Z(v) 5 K 2 v2M (3.4.68)

Undamped Vibration Absorbers When a mass-spring system m1, k1

is subjected to a harmonic force with the frequency equal to the natural
frequency, resonance occurs. In this case, it is possible to add a second
mass-spring system m2,k2 so designed as to produce a two-degree-of-
freedom system with the response of m1 equal to zero. We refer to m1, k1

as the main system and to m2,k2 as the vibration absorber. The resulting
two-degree-of-freedom system is shown in Fig. 3.4.24 and has the im-
pedance matrix

Z(v) 5Fk1 1 k2 2 v2m1

2 k2

2 k2

k2 2 v2m2
G (3.4.69)

tv

x2(t )

x1(t )

F1 sin

m2

m1

k1

k2

Fig. 3.4.24

Inserting Eq. (3.4.69) into Eq. (3.4.67), together with F1(t) 5 F1 sin vt,
F2(t) 5 0, write the steady-state response in the form

x1(t) 5 X1(v) sin vt (3.4.70a)
x2(t) 5 X2(v) sin vt (3.4.70b)
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where the amplitudes are given by

X1(v) 5
[1 2 (v/va)2]xst

[1 1 m(va /vn)2 2 (v/vn)2][1 2 (v/va)2] 2 m(va /vn)2

(3.4.71a)

X2(v) 5
xst

[1 1 m(va /vn)2 2 (v/vn)2][1 2 (v/va)2] 2 m(va /vn)2

(3.4.71b)

Natural Modes of Vibration In the absence of damping and external
forces, Eq. (3.4.65) reduces to the free-vibration equation

Mẍ(t) 1 Kx(t) 5 0 (3.4.74)

which has the harmonic solution

x(t) 5 u cos (vt 2 f) (3.4.75)

where u is a constant vector, v a frequency of oscillation, and f a phase
angle. Introduction of Eq. (3.4.75) into Eq. (3.4.74) and division
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in which

vn 5 √k1/m1 5 the natural frequency of the main system alone

va 5 √k2 /m2 5 the natural frequency of the absorber alone

xst 5 F1 /k1 5 the static deflection of the main system

m 5 m2 /m1 5 the ratio of the absorber mass to the main mass

From Eqs. (3.4.70a) and (3.4.71a), we conclude that if we choose m2

and k2 such that va 5 v, the response x1(t) of the main mass is zero.
Moreover, from Eqs. (3.4.70b) and (3.4.71b),

x2(t) 5 2Svn

va
D2 xst

m
sin vt 5 2

F1

k2

sin vt (3.4.72)

so that the force in the absorber spring is

k2 x2(t) 5 2 F1 sin vt (3.4.73)

Hence, the absorber exerts a force on the main mass balancing exactly
the applied force F1 sin vt.

A vibration absorber designed for a given operating frequency v can
perform satisfactorily for operating frequencies that vary slightly from
v. In this case, the motion of m1 is not zero, but its amplitude tends to be
very small, as can be verified from a frequency response plot X1(v)/xst

versus v/vn; Fig. 3.4.25 shows such a plot for m 5 0.2 and vn 5 va. The
shaded area indicates the range in which the performance can be re-
garded as satisfactory. Note that the thin line in Fig. 3.4.25 represents
the frequency response of the main system alone. Also note that the
system resulting from the combination of the main system and the ab-
sorber has two resonance frequencies, but they are removed from the
operating frequency v 5 vn 5 va.
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through by cos (vt 2 f) results in

Ku 5 v2Mu (3.4.76)

which represents a set of n simultaneous algebraic equations known as
the eigenvalue problem. It has n solutions consisting of the eigenvalues
v r

2; the square roots represent the natural frequencies vr (r 5 1,
2, . . . , n). Moreover, to each natural frequency vr there corresponds
a vector ur (r 5 1, 2, . . . , n) called eigenvector, or modal vector, or
natural mode. The modal vectors possess the orthogonality property, or

us
TMur 5 0 (3.4.77a)

us
TKur 5 0 (3.4.77b)

(for r, s 5 1, 2, . . . , n; r Þ s), in which us
T is the transpose of us, a row

vector. It is convenient to adjust the magnitude of the modal vectors so
as to satisfy

ur
TMur 5 1 (3.4.78a)

ur
TKur 5 v r

2 (3.4.78b)

(for r 5 1, 2, . . . , n), a process known as normalization, in which
case ur are called normal modes. Note that the normalization process
involves Eq. (3.4.78a) alone, as Eq. (3.4.78b) follows automatically.
The solution of the eigenvalue problem can be obtained by a large
variety of computational algorithms (Meirovitch, ‘‘Principles and
Techniques of Vibrations,’’ Prentice-Hall). Commercially, they are
available in software packages for numerical computations, such as
MATLAB.

The actual solution of Eq. (3.4.74) is obtained below in the context of
the transient response.

Transient Response of Undamped Systems From Eq. (3.4.65), the
vibration of undamped systems satisfies the equation

Mẍ(t) 1 Kx(t) 5 F(t) (3.4.79)

where F(t) is an arbitrary force vector. In addition, the displacement and
velocity vectors must satisfy the initial conditions x(0) 5 x0, ~x(0) 5 v0.
The solution of Eq. (3.4.79) has the form

x(t) 5 On
r51

urqr(t) (3.4.80)

in which ur are the modal vectors and qr(t) are associated modal coordi-
nates. Inserting Eq. (3.4.80) into Eq. (3.4.79), premultiplying the result
by us

T, and using Eqs. (3.4.77) and (3.4.78) we obtain the modal equa-
tions

q̈r(t) 1 v r
2qr(t) 5 Qr(t) r 5 1, 2, . . . , n (3.4.81)

where

Qr(t) 5 ur
TF(t) r 5 1, 2, . . . , n (3.4.82)

are modal forces. Equations (3.4.81) resemble the equation of single-
degree-of-freedom system and have the solution

qr(t) 5
1

vr
Et

0

Qr(t 2 t) sin vrt dt 1 qr(0) cos vr t 1
~qr(0)

vr

sin vr t

r 5 1, 2, . . . , n (3.4.83)

where

qr(0) 5 ur
TMx0 (3.4.84a)

~qr(0) 5 ur
TMv0 (3.4.84b)

(for r 5 1, 2, . . . , n) are initial modal displacements and velocities,
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respectively. The solution to both external forces and initial excitations
is obtained by inserting Eqs. (3.4.83) into Eq. (3.4.80).

Systems with Proportional Damping When the system is damped,
the response does not in general have the form of Eq. (3.4.80), and a
more involved approach is necessary (Meirovitch, ‘‘Elements of Vibra-
tion Analysis,’’ 2d ed., McGraw-Hill). In the special case in which the
damping matrix C is proportional to the mass matrix M or the stiffness
matrix K, or is a linear combination of M and K, the preceding approach
yields the modal equations

where A and B are constants of integration, determined from specified
boundary conditions. In the case of a fixed-free rod, the boundary condi-
tions are

U(0) 5 0 (3.4.94a)

EA
dU

dx
U

x5L

5 0 (3.4.94b)

Condition (3.4.94a) gives B 5 0 and condition (3.4.94b) yields the
characteristic equation
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q̈r(t) 1 2zrvr ~qr(t) 1 vr
2qr(t) 5 Qr(t) r 5 1, 2, . . . , n (3.4.85)

where zr are modal damping factors. Equations (3.4.85) have the solution

qr(t) 5
1

vdr
Et

0

Qr(t 2 t)e2zrvrt sin vdrt dt

1
qr(0)

√1 2 z r
2

e2zrvrt cos (vdrt 2 cr) 1
~qr(0)

vdr

sin vdr t

r 5 1, 2, . . . , n (3.4.86)

in which

vdr 5 vr √1 2 z r
2 r 5 1, 2, . . . , n (3.4.87)

is the damped frequency in the rth mode and

cr 5 tan21
zr

√1 2 z r
2

r 5 1, 2, . . . , n (3.4.88)

is a phase angle associated with the r th mode. The quantities Qr(t),
qr(0), and ~qr(0) remain as defined by Eqs. (3.4.82), (3.4.84a), and
(3.4.84b), respectively.

DISTRIBUTED-PARAMETER SYSTEMS

Vibration of Rods, Shafts, and Strings The axial vibration of rods is
described by the equation

2
­

­x HEA(x)
­u(x, t)

­x J 1 m(x)
­2u(x, t)

­t 2
5 f(x, t)

0 , x , L (3.4.89)

where u(x, t) is the axial displacement , f(x, t) the axial force per unit
length, E the modulus of elasticity, A(x) the cross-sectional area, and
m(x) the mass per unit length. The solution u(x, t) is subject to one
boundary condition at each end.

Before attempting to solve Eq. (3.4.89), consider the free vibration
problem, f(x, t) 5 0. The solution of the latter problem is harmonic and
can be expressed as

u(x, t) 5 U(x) cos (vt 2 f) (3.4.90)

where U(x) is the amplitude, v the frequency, and f an inconsequential
phase angle. Inserting Eq. (3.4.90) into Eq. (3.4.89) with f (x, t) 5 0 and
dividing through by cos (vt 2 f), we conclude that U(x) and v must
satisfy the eigenvalue problem

2
d

dx HEA(x)
dU(x)

dx J 5 v2m(x)U(x) 0 , x , L (3.4.91)

where U(x) must satisfy one boundary condition at each end. At a fixed
end the displacement U must be zero and at a free end the axial force
EA dU/dx is zero.

Exact solutions of the eigenvalue problem are possible in only a few
cases, mostly for uniform rods, in which case Eq. (3.4.91) reduces to

d2U(x)

dx2
1 b2U(x) 5 0 b2 5

v2m

EA
0 , x , L (3.4.92)

whose solution is

U(x) 5 A sin bx 1 B cos bx (3.4.93)
cos bL 5 0 (3.4.95)

which has the infinity of solutions

brL 5
(2r 2 1)p

2
r 5 1, 2, . . . (3.4.96)

where br represent the eigenvalues; they are related to the natural fre-
quencies vr by

vr 5 br√EA

m
5

(2r 2 1)p

2 √ EA

mL2
r 5 1, 2, . . . (3.4.97)

From Eq. (3.4.93), the normal modes are

Ur(x) 5 √ 2

mL
sin

(2r 2 1)px

2L
r 5 1, 2, . . . (3.4.98)

For a fixed-fixed rod, the natural frequencies and normal modes are

vr 5 rp√ EA

mL2
Ur(x) 5 √ 2

mL
sin

rpx

L
r 5 1, 2, . . . (3.4.99)

and for a free-free rod they are

v0 5 0 U0 5 √ 1

mL
(3.4.100a)

vr 5 rp√ EA

mL2
Ur(x) 5 √ 2

mL
cos

rpx

L

r 5 1, 2, . . . (3.4.100b)

Note that U0 represents a rigid-body mode, with zero natural frequency.
In every case the modes are orthogonal, satisfying the conditions

EL

0

mUs(x)Ur(x) dx 5 0 (3.4.101a)

2EL

0

Us(x)
d

dx FEA
dUr(x)

dx G dx 5 0 (3.4.101b)

(for r, s 5 0, 1, 2, . . . , r Þ s) and have been normalized to satisfy the
relations

EL

0

mU2
r (x) dx 5 1 (3.4.102a)

2EL

0

Ur(x)
d

dx FEA
dUr(x)

dx G dx 5 v2
r (3.4.102b)

(for r 5 0, 1, 2, . . .). Note that the orthogonality of the normal modes
extends to the rigid-body mode.

The response of the rod has the form

u(x, t) 5 O`
r51

Ur(x)qr(t) (3.4.103)

Introducing Eq. (3.4.103) into Eq. (3.4.89), multiplying through by
Us(x), integrating over the length of the rod, and using Eqs. (3.4.101)
and (3.4.102) we obtain the modal equations

q̈r(t) 1 v2
rqr(t) 5 Qr(t) r 5 1, 2, . . . (3.4.104)

where Qr(t) 5 EL

0

Ur(x) f (x, t) dx r 5 1, 2, . . . (3.4.105)
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Table 3.4.4 Analogous Quantities for Rods, Shafts, and Strings

Rods Shafts Strings

Displacement Axial—u(x, t) Torsional—u(x, t) Transverse—w(x, t)

Inertia (per
unit length)

Mass—m(x) Mass polar moment
of inertia— I(x)

Mass—r(x)

Stiffness Axial—EA(x)
E 5 Young’s modulus
A(x) 5 cross-sectional
area

Torsional—GJ(x)
G 5 shear modulus
J(x) 5 area polar
moment of inertia

Tension—T(x)

Load (per unit
length)

Force— f (x, t) Moment—m(x, t) Force— f (x, t)

are the modal forces. Equations (3.4.104) resemble Eqs. (3.4.81) en-
tirely; their solution is given by Eqs. (3.4.83). The displacement of the
rod is obtained by inserting Eqs. (3.4.83) into Eq. (3.4.103).

As an example, consider the response of a uniform fixed-free rod to
the uniformly distributed impulsive force

f(x, t) 5 f̂0d(t) (3.4.106)

Inserting Eqs. (3.4.98) and (3.4.106) into Eq. (3.4.105), we obtain the
modal forces

2 L (2r 2 1)px

s f

I

2

in which w(x, t) is the transverse displacement , f (x, t) the force per unit
length, I(x) the cross-sectional area moment of inertia, and m(x) the
mass per unit length. The solution w(x, t) must satisfy two boundary
conditions at each end.

The eigenvalue problem is described by the differential equation

d2

dx2 FEI(x)
d2W(x)

dx2 G 5 v2m(x)W(x) 0 , x , L (3.4.111)

and two boundary conditions at each end, depending on the type of

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
this product is subject to the terms of its License Agreement.   Click here to view.
Qr(t) 5 √mL E0

sin
2L

f̂0d(t) dx

5
2

(2r 2 1)p √2L

m
f̂0d(t) r 5 1, 2, . . . (3.4.107)

so that , from Eqs. (3.4.83), the modal displacements are

qr(t) 5
1

vr

2

(2r 2 1)p √2L

m
f̂0 Et

0

d(t 2 t) sin vrtdt

5F 2

(2r 2 1)pG2

√2L3

EA
f̂0 sin

(2r 2 1)p

2 √ EA

mL2
t

r 5 1, 2, . . . (3.4.108)

Finally, from Eq. (3.4.103), the response is

u(x, t) 5
8 f̂0L

p2 √ 1

mEA O`
r51

1

(2r 2 1)2
sin

(2r 2 1)px

2L

3 sin
(2r 2 1)p

2 √ EA

mL2
t (3.4.109)

The torsional vibration of shafts and the transverse vibration of
strings are described by the same differential equation and boundary
conditions as the axial vibration of rods, except that the nature of the
displacement , inertia and stiffness parameters, and external excitations
differs, as indicated in Table 3.4.4.

Bending Vibration of Beams The procedure for evaluating the re-
sponse of beams in transverse vibration is similar to that for rods, the
main difference arising in the stiffness term. The differential equation
for beams in bending is

­2

­x2 FEI(x)
­2w(x,t)

­x2 G 1 m(x)
­2w(x, t)

­t 2

5 f(x, t) 0 , x , L (3.4.110)

Table 3.4.6 Normalized Natural Frequencie

Beam type v1√mL4/EI v2√mL4/E

Hinged–hinged p2 4p2

Clamped–free 1.8752 4.6942

Free–free 0 0

Clamped–clamped (1.506p)2 (2.500p)
Clamped–hinged 3.9272 7.0692

Hinged–free 0 3.9272
or Various Beams

v3√mL4/EI v4√mL4/EI v5√mL2/EI

9p2 16p2 25p2

7.8552 10.9962 14.1372

(1.506p)2 (2.500p)2 (3.500p)2

(3.500p)2 (4.500p)2 (5.500p)2

support . Some possible boundary conditions are given in Table 3.4.5.
The solution of the eigenvalue problem consists of the natural frequen-
cies vr and natural modes Wr(x) (r 5 1, 2, . . .). The first five normal-
ized natural frequencies of uniform beams with six different boundary
conditions are listed in Table 3.4.6. The normal modes for the hinged-
hinged beam are

Wr(x) 5 √ 2

mL
sin

rpx

L
r 5 1, 2, . . . (3.4.112)

The normal modes for the remaining beam types are more involved and
they involve both trigonometric and hyperbolic functions (Meirovitch,
‘‘Elements of Vibration Analysis,’’ 2d ed.) The modes for every beam
type are orthogonal and can be used to obtain the response w(x, t) in the
form of a series similar to Eq. (3.4.103).

Table 3.4.5 Quantities Equal to Zero at Boundary

Bending
Boundary Displacement Slope moment Shearing force

type W dW/dx EId 2W/dx2 d(EId 2W/dx2)/dx

Hinged U U
Clamped U U
Free U U

Vibration of Membranes A membrane is a very thin sheet of mate-
rial stretched over a two-dimensional domain enclosed by one or two
nonintersecting boundaries. It can be regarded as the two-dimensional
counterpart of the string. Like a string, it derives the ability to resist
transverse displacements from tension, which acts in all directions in
the plane of the membrane and at all its points. It is commonly assumed
that the tension is uniform and does not change as the membrane de-
10.2102 13.3522 16.4932

7.0692 10.2102 13.3522
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flects. The general procedure for calculating the response of membranes
remains the same as for rods and beams, but there is one significant new
factor, namely, the shape of the boundary, which dictates the type of
coordinates to be used. For rectangular membranes cartesian coordi-
nates must be used, and for circular membranes polar coordinates are
indicated.

The differential equation for the transverse vibration of membranes is

2 T=2w 1 r
­2w

­t 2
5 f (3.4.113)

Table 3.4.7 Circular Membrane Normalized Natural Frequencies
v*mn 5 (vmn/2p)√ra2/T

n

m 1 2 3

0 0.3827 0.8786 1.3773
1 0.6099 1.1165 1.6192
2 0.8174 1.3397 1.8494
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which must be satisfied at every interior point of the membrane, where
w is the transverse displacement , f the transverse force per unit area, T
the tension, and r the mass per unit area. Moreover, =2 is the Laplacian
operator, whose expression depends on the coordinates used. The solu-
tion w must satisfy one boundary condition at every boundary point .
Using the established procedure, the eigenvalue problem is described by
the differential equation

2 T=2W 5 v2 rW (3.4.114)

where W is the displacement amplitude; it must satisfy one boundary
condition at every point of the boundary.

Consider a rectangular membrane fixed at x 5 0, a and y 5 0, b, in
which case the Laplacian operator in terms of the cartesian coordinates
x and y has the form

=2 5
­2

­x2
1

­2

­y2
(3.4.115)

The boundary conditions are W(0, y) 5 W(a, y) 5 W(x, 0) 5
W(x, b) 5 0. The natural frequencies are

vmn 5 p√FSm

aD2

1Sn

bD2G T

r
m, n 5 1, 2, . . . (3.4.116)

and the normal modes are

Wmn(x, y) 5
2

√rab
sin

mpx

a
sin

npy

b
m, n 5 1, 2, . . . (3.4.117)

The modes satisfy the orthogonality conditions

Ea

0
Eb

0

rWmn(x, y)Wrs(x, y) dx dy 5 0,

m Þ r and/or n Þ s (3.4.118a)

2Ea

0
Eb

0

Wmn(x, y)T=2Wrs(x, y) dx dy 5 0,

m Þ r and/or n Þ s (3.4.118b)

and have been normalized so that ea
0 eb

0 rW2
mn(x, y) dx dy 5 1(m, n 5 1,

2, . . .). Note that, because the problem is two-dimensional, it is nec-
essary to identify the natural frequencies and modes by two subscripts.
With this exception, the procedure for obtaining the response is the
same as for rods and beams.

Next , consider a uniform circular membrane fixed at r 5 a. In this case,
the Laplacian operator in terms of the polar coordinates r and u is

=2 5
­2

­r2
1

1

r

­

­r
1

1

r2

­2

­u2
(3.4.119)

The natural modes for circular membranes are appreciably more in-
volved than for rectangular membranes. They are products of Bessel
functions of vmnr and trigonometric functions of mu, where m 5 0, 1,
2, . . . and n 5 1, 2, . . . . The modes are given in Meirovitch,
‘‘Principles and Techniques of Vibrations,’’ Prentice-Hall. Table 3.4.7
gives the normalized natural frequencies v*mn 5 (vmn/2p)√ra2/T corre-
sponding to m 5 0, 1, 2 and n 5 1, 2, 3. The modes satisfy the orthogo-
nality relations

Ea

0
E2p

0

rWmn(r, u)Wrs(r, u)r dr du 5 0

m Þ r and/or n Þ s (3.4.120a)
2Ea

0
E2p

0
Wmn(r,u)T=2Wrs(r, u)r dr du 5 0

m Þ r and/or n Þ s (3.4.120b)

The response of circular membranes is obtained in the usual manner.
Bending Vibration of Plates Consider plates whose behavior is gov-

erned by the elementary plate theory, which is based on the following
assumptions: (1) deflections are small compared to the plate thickness;
(2) the normal stresses in the direction transverse to the plate are negli-
gible; (3) there is no force resultant on the cross-sectional area of a plate
differential element: the middle plane of the plate does not undergo
deformations and represents a neutral plane, and (4) any straight line
normal to the middle plane remains so during bending. Under these
assumptions, the differential equation for the bending vibration of
plates is

D=4w 1 m
­2w

­t 2
5 f (3.4.121)

and is to be satisfied at every interior point of the plate, where w is the
transverse displacement , f the transverse force per unit area, m the mass
per unit area, D 5 Eh3/12(1 2 v2) the plate flexural rigidity, E Young’s
modulus, h the plate thickness, and v Poisson’s ratio. Moreover, =4 is
the biharmonic operator. The solution w must satisfy two boundary
conditions at every point of the boundary. The eigenvalue problem is
defined by the differential equation

D=4W 5 v2mW (3.4.122)

and corresponding boundary conditions.
Consider a rectangular plate simply supported at x 5 0, a and y 5 0, b.

Because of the shape of the plate, we must use cartesian coordinates, in
which case the biharmonic operator has the expression

=4 5 =2=2 5S ­2

­x2
1

­2

­y2DS ­2

­x2
1

­2

­y2D
5

­4

­x4
1 2

­4

­x2­y2
1

­4

­y4
(3.4.123)

Moreover, the boundary conditions are W 5 0 and ­2W/­x2 5 0 for x 5
0, a and W 5 0 and ­2W/­y2 5 0 for y 5 0, b. The natural frequencies
are

vmn 5 p2FSm

aD2

1Sn

bD2G√D

m

m, n 5 1, 2, . . . (3.4.124)

and no confusion should arise because the same symbol is used for one
of the subscripts and for the mass per unit area. The corresponding
normal modes are

Wmn(x, y) 5
2

√mab
sin

mpx

n
sin

npy

b
m, n 5 1, 2, . . . (3.4.125)

and they are recognized as being the same as for rectangular membranes
fixed at all boundaries.

A circular plate requires use of polar coordinates, so that the bihar-
monic operator has the form

=4 5 =2=2 5S ­2

­r2
1

1

r

­

­r
1

1

r2

­2

­u2DS ­2

­r2
1

1

r

­

­r
1

1

r2

­2

­u2D
(3.4.126)
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Table 3.4.8 Circular Plate Normalized Natural Frequencies
v*mn 5 (vmn(a/p)2√m/D

n

m 1 2 3

0 1.0152 2.0072 3.0002

1 1.4682 2.4832 3.4902

2 1.8792 2.9922 4.0002

the lowest eigenvalue v2
1 than W(x) is to W1(x), thus providing a good

estimate v of the lowest natural frequency v1. Quite often, the static
deformation of the system acted on by loads proportional to the mass
distribution is a good choice. In some cases, the lowest mode of a
related simpler system can yield good results.

As an example, estimate the lowest natural frequency of a uniform
bar in axial vibration with a mass M attached at x 5 L (Fig. 3.4.26) for
the three trial functions (1) U(x) 5 x/L; (2) U(x) 5 (1 1 M/mL)(x/L) 2
(x/L)2/2, representing the static deformation; and (3) U(x) 5 sin px/2L,
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Consider a plate clamped at r 5 a, in which case the boundary conditions
are W(r, u) 5 0 and ­W(r, u)/­r 5 0 at r 5 a. In addition, the solution
must be finite at every interior point in the plate, and in particular
at r 5 0. The natural modes have involved expressions; they are
given in Meirovitch, ‘‘Principles and Techniques of Vibrations,’’ Pren-
tice-Hall. Table 3.4.8 lists the normalized natural frequencies v*mn 5
vmn(a/p)2 √m/D corresponding to m 5 0, 1, 2 and n 5 1, 2, 3.

The natural modes of the plates are orthogonal and can be used to
obtain the response to both initial and external excitations.

APPROXIMATE METHODS FOR
DISTRIBUTED SYSTEMS

Rayleigh’s Energy Method The eigenvalue problem contains vital
information concerning vibrating systems, namely, the natural frequen-
cies and modes. In the majority of practical cases, exact solutions to the
eigenvalue problem for distributed systems are not possible, so that the
interest lies in approximate solutions. This is often the case when the
mass and stiffness are distributed nonuniformly and/or the boundary
conditions cannot be satisfied, the latter in particular for two-dimen-
sional systems with irregularly shaped boundaries.

When the objective is to estimate the lowest natural frequency, Ray-
leigh’s energy method has few equals. As discussed earlier, free vibra-
tion of undamped systems is harmonic and can be expressed as

w(x, t) 5 W(x) cos (vt 2 f) (3.4.127)

where W(x) is the displacement amplitude, v the free vibration fre-
quency, and f an inconsequential phase angle. The kinetic energy rep-
resents an integral involving the velocity squared. Hence, using Eq.
(3.4.127), the kinetic energy can be written in the form

T(t) 5
1

2 EL

0

m(x)F­w(x, t)

­t G2

dx 5 v2Tref sin2(vt 2 f) (3.4.128)

where Tref 5
1

2 EL

0

m(x)W2(x) dx (3.4.129)

is called the reference kinetic energy. The form of the potential energy is
system-dependent , but in general is an integral involving the square of
the displacement and of its derivatives with respect to the spatial coor-
dinates (see Table 3.4.9). It can be expressed as

V(t) 5 Vmax cos2(vt 2 f) (3.4.130)

where Vmax is the maximum potential energy, which can be obtained by
simply replacing w(x, t) by W(x) in V(t). Using the principle of conser-
vation of energy in conjunction with Eqs. (3.4.128) and (3.4.130), we
can write

E 5 T 1 V 5 Tmax 1 0 5 0 1 Vmax (3.4.131)
in which Tmax 5 v2Tref (3.4.132)

It follows that

v2 5
Vmax

Tref

(3.4.133)

Equation (3.4.133) represents Rayleigh’s quotient, which has the remark-
able property that it has a minimum value for W(x) 5 W1(x), the mini-
mum value being v1

2. Rayleigh’s energy method amounts to selecting a
trial function W(x) reasonably close to the lowest natural mode W1(x),
inserting this function into Rayleigh’s quotient, and carrying out the
indicated integrations. Then, v2 will be one order of magnitude closer to
representing the lowest mode of the bar without the mass M. The Ray-
leigh quotient for this bar is

v2 5
EL

0

EA(x)[dU(x)/dx]2 dx

EL

0

m(x)U2(x) dx 1 MU2(L)

(3.4.134)

x

m, EA

U(x)L

M

Fig. 3.4.26

The results are:

1. v2 5
EL

0

EA(1/L)2 dx

EL

0

m(x/L)2 dx 1 M

5
EA

(M 1 mL/3)L

2.
EL

0

EA(1 1 M/mL 2 x/L)2(1/L)2 dx

EL

0

m[(1 1 M/mL)(x/L) 2 (x/L)2/2]2 dx 1 M(1 1 2M/mL)2/4

5

S M

mLD2

1
M

mL
1

1

3

1

3 S M

mLD2

1
5

12

M

mL
1

2

15
1

M

mLS1

2
1

M

mLD2

EA

mL2

(3.4.135)

3. v2 5
EL

0

EAS p

2LD2

cos2
px

2L
dx

EL

0

m sin2
px

2L
dx 1 M

5
p2

8S1

2
1

M

mLD
EA

mL2

Table 3.4.9 Potential Energy for Various Systems

System Potential energy* V(t)

Rods (also shafts
and strings)

1

2 EL

0

EA(x)[­u(x, t)/­x]2dx

Beams
1

2 EL

0

EI(x)[­2w(x, t)/­x2]2dx

Beams with axial
force

1

2 EL

0

{EI(x)[­2w(x, t)/­x2]2 1 P(x)[­v(x, t)/­x]2}dx

Membranes
1

2 EArea

T{[­w(x, y, t)/­x]2 1 [­w(x, y, t)/­y]2}dx dy

Plates
1

2EArea

D{=2w(x, y, t))2 1 2(1 2 n)[­2w(x, y, t) /­x ­y}2

2 (­2w(x, y, t)/­x2)(­2w(x, y, t)/­y2)]}dx dy

* If the distributed system has a spring at the boundary point a, then add a term kw2(a, t)/2.
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For comparison purposes, let M 5 mL, which yields the following
estimates for the lowest natural frequency:

1. v 5 0.8660 √ EA

mL2

2. v 5 0.8629 √ EA

mL2
(3.4.136)

2. v 5 0.9069
EA

2

As an illustration, consider the same rod in axial vibration used to
demonstrate Rayleigh’s energy method. Insert Eqs. (3.4.137) with W(x)
replaced by U(x) into the numerator and denominator of Eq. (3.4.134)
to obtain

EL

0

EA(x)FdU(x)

dx G2

dx

5 On
i51

On
j51
FEL

0

EA(x)
dfi(x)

dx

dfj(x)

dx
dxD aiaj (3.4.142a)
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√mL

The best estimate is the lowest one, which corresponds to case 2, with
the trial function in the form of the static displacement . Note that the
estimate obtained in case 1 is also quite good. It corresponds to the first
case in Table 3.4.2, representing a mass-spring system in which the
mass of the spring is included.

Rayleigh-Ritz Method Rayleigh’s quotient, Eq. (3.4.133), corre-
sponding to any trial function W(x) is always larger than the lowest
eigenvalue v1

2, and it takes the minimum value of v1
2 when W(x) coin-

cides with the lowest natural mode W1(x). However, this possibility
must be ruled out by virtue of the assumption that W1 is not available.
The Rayleigh-Ritz method is a procedure for minimizing Rayleigh’s quo-
tient by means of a sequence of approximate solutions converging to the
actual solution of the eigenvalue problem. The minimizing sequence
has the form

W(x) 5 a1fi(x)

W(x) 5 a1f1(x) 1 a2f2(x) 5 O2
j51

ajfj(x)
(3.4.137)

? ? ?

W(x) 5 a1f1(x) 1 a2f2(x) 1 ? ? ? 1 anfn(x) 5 On
j51

ajfj(x)

where aj are undetermined coefficients and fj(x) are suitable trial func-
tions satisfying all, or at least the geometric boundary conditions. The
coefficients aj( j 5 1, 2, . . . , n) are determined so that Rayleigh’s
quotient has a minimum. With Eqs. (3.4.137) inserted into Eq.
(3.4.133), Rayleigh’s quotient becomes

V2 5

On
i51

On
j51

kijaiaj

On
i51

On
j51

mijaiaj
n 5 1, 2, . . .

(3.4.138)

where kij 5 kji and mij 5 mji (i, j 5 1, 2, . . . , n) are symmetric
stiffness and mass coefficients whose nature depends on the potential
energy and kinetic energy, respectively. The special case in which n 5 1
represents Rayleigh’s energy method. For n $ 2, minimization of Ray-
leigh’s quotient leads to the solution of the eigenvalue problem

On
j51

kijaj 5 V2 On
j51

mijaj

i 5 1, 2, . . . , n; n 5 2, 3, . . . (3.4.139)

Equations (3.4.139) can be written in the matrix form

Ka 5 V2Ma (3.4.140)

in which K 5 [kij] is the symmetric stiffness matrix and M 5 [mij] is the
symmetric mass matrix. Equation (3.4.140) resembles the eigenvalue
problem for multi-degree-of-freedom systems, Eq. (3.4.76), and its solu-
tions possess the same properties. The eigenvalues Vr

2 provide approxi-
mations to the actual eigenvalues v r

2, and approach them from above as n
increases. Moreover, the eigenvectors ar 5 [ar1 ar2 . . . arn]T can be
used to obtain the approximate natural modes by writing

Wr(x) 5 ar1f1(x) 1 ar2f2(x) 1 ? ? ? 1 arnfn(x) 5 On
j51

arjfj (x)

r 5 1, 2, . . . , n; n 5 2, 3, . . . (3.4.141)
EL

0

m(x)U2(x) dx 1 MU2(L)

5 On
i51

On
j51
FEL

0

m(x)fi(x)fj (x) dx 1 Mfi(L)fj(L)G aiaj (3.4.142b)

so that the stiffness and mass coefficients are

kij 5 EL

0

EA(x)
dfi (x)

dx

dfj(x)

dx
dx i, j 5 1, 2, . . . , n (3.4.143a)

mij 5 EL

0

m(x)fi(x)fj(x) dx 1 Mfi(L)fj(L)

i, j 5 1, 2, . . . , n (3.4.143b)

respectively. As trial functions, use

fj(x) 5 (x/L) j j 5 1, 2, . . . , n (3.4.144)

which are zero at x 5 0, thus satisfying the geometric boundary condi-
tion. Hence, the stiffness and mass coefficients are

kij 5
EAij

Li1 j EL

0

x i21x j21 dx 5
ij

i 1 j 2 1

EA

L

i, j 5 1, 2, . . . , n (3.4.145a)

mij 5
m

Li1 j EL

0

x ix j dx 1 M 5
mL

i 1 j 1 1
1 M

i, j 5 1, 2, . . . , n (3.4.145b)

so that the stiffness and mass matrices are

1 1 1 ? ? ? 1
1 4/3 3/2 ? ? ? 2n/(n 1 1)

K 5
EA

L F1 3/2 9/5 ? ? ? 3n/(n 1 2) G? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1 2n/(n 1 1) 3n/(n 1 2) ? ? ? n2/(2n 2 1)

(3.4.146a)

1/3 1/4 1/5 ? ? ? 1/(n 1 2)
1/4 1/5 1/6 ? ? ? 1/(n 1 3)

M 5 mLF 1/5 1/6 1/7 ? ? ? 1/(n 1 4) G? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
1/(n 1 2) 1/(n 1 3) 1/(n 1 4) ? ? ? 1/(2n 1 1)

1 1 1 ? ? ? 1
1 1 1 ? ? ? 1

1 MF1 1 1 ? ? ? 1G (3.4.146b)
? ? ? ? ? ? ? ? ? ? ? ? ?
1 1 1 ? ? ? 1

For comparison purposes, consider the case in which M 5 mL. Then,
for n 5 2, the eigenvalue problem is

F1

1

1

4/3GFa1

a2
G 5 lF4/3

5/4

5/4

6/5GFa1

a2
G
l 5 V2

mL2

EA
(3.4.147)

which has the solutions

l1 5 0.7407 a1 5 [1 2 0.1667]T

l2 5 12.0000 a2 5 [1 2 1.0976]T (3.4.148)
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Hence, the computed natural frequencies and modes are

V1 5 0.8607 √ EA

mL2
U1(x) 5

x

L
2 0.1667 Sx

L
D2

V2 5 3.4641 √ EA

mL2
U2(x) 5

x

L
2 1.0976 Sx

L
D2 (3.4.149)

Comparing Eqs. (3.4.149) with the estimates obtained by Rayleigh’s
energy method, Eqs. (3.4.136), note that the Rayleigh-Ritz method has

Introducing Eq. (3.4.151) into Eqs. (3.4.152) and considering the
boundary conditions, we obtain the element stiffness and mass matrices

K1 5
EA

h
Ke 5

EA

h F 1

2 1

2 1

1 G e 5 2, 3, . . . , n 2 1

Kn 5
EA

h F 1

2 1

2 1

Kh/EAG M1 5
hm

3

Me 5
hm F2 1G e 5 2, 3, . . . , n (3.4.153)
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produced a more accurate approximation for the lowest natural fre-
quency. In addition, it has produced a first approximation for the second
lowest natural frequency, as well as approximations for the two lowest
modes, which Rayleigh’s energy method is unable to produce. The
approximate solutions can be improved by letting n 5 3, 4, . . . .

Finite Element Method In the Rayleigh-Ritz method, the trial func-
tions extend over the entire domain of the system and tend to be compli-
cated and difficult to work with. More importantly, they often cannot be
produced, particularly for two-dimensional problems. Another version
of the Rayleigh-Ritz method, the finite element method, does not suffer
from these drawbacks. Indeed, the trial functions extending only over
small subdomains, referred to as finite elements, are known low-degree
polynomials and permit easy computer coding. As in the Rayleigh-Ritz
method, a solution is assumed in the form of a linear combination of
trial functions, known as interpolation functions, multiplied by undeter-
mined coefficients. In the finite element method the coefficients have
physical meaning, as they represent ‘‘nodal’’ displacements, where
‘‘nodes’’ are boundary points between finite elements. The computation
of the stiffness and mass matrices is carried out for each of the elements
separately and then the element stiffness and mass matrices are assem-
bled into global stiffness and mass matrices. One disadvantage of the
finite element method is that it requires a large number of degrees of
freedom.

To illustrate the method, and for easy visualization, consider the
transverse vibration of a string fixed at x 5 0 and with a spring of
stiffness K attached at x 5 L (Fig. 3.4.27) and divide the length L into n
elements of width h, so that nh 5 L. Denote the displacements of the
nodal points xe by ae and assume that the string displacement is linear
between any two nodal points. Figure 3.4.28 shows a typical element e.

w(x)

a1

ae21a2

h 2h (e21)h
Fig. 3.4.27

The process can be simplified greatly by introducing the nondimen-

sional local coordinate j 5 j 2 x/h. Then, considering the two linear
interpolation functions

f1(j) 5 j f2(j) 5 1 2 j (3.4.150)

the displacement at point j can be expressed as
6 1 2

where K1 and M1 are really scalars, because the left end of the first
element is fixed, so that the displacement is zero. Then, since the nodal

ae21

w

h

ae 2

ae

(e21)h x eh

f

ae21 1f

j

Fig. 3.4.28

displacement ae is shared by elements e and e 1 1 (e 5 1, 2, . . . ,
n 2 2), the element stiffness and mass matrices can be assembled into
the global stiffness and mass matrices

an21 an
Kae

(n21)h nh5L

x

eh
2 2 1 0 ? ? ? 0 0
2 1 2 2 1 ? ? ? 0 0

0 2 1 2 ? ? ? 0 0
K 5

EA

h F G? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 ? ? ? 2 2 1
0 0 0 ? ? ? 2 1 Kh/EA

(3.4.154)
v(j) 5 ae21f1(j) 1 aef2(j) (3.4.151)

where ae21 and ae are the nodal displacements for element e. Using Eqs.
(3.4.143) and changing variables from x to j , we can write the element
stiffness and mass coefficients

keij 5
1

h E1

0

EA
dfi

dj

dfj

dj
dj meij 5 h E1

0

mfifjdj,

i, j 5 1, 2 (3.4.152)
4 1 0 ? ? ? 0 0
1 4 1 ? ? ? 0 0
0 1 4 ? ? ? 0 0

M 5
hm

6 F G? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
0 0 0 ? ? ? 4 1
0 0 0 ? ? ? 1 2
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For beams in bending, the displacements consist of one translation
and one rotation per node; the interpolation functions are the Hermite
cubics

f1(j) 5 3j2 2 2j3, f2(j) 5 j2 2 j3

f3(j) 5 1 2 3j2 1 2j3, f4(j) 5 2 j 1 2j2 2 j3 (3.4.155)

and the element stiffness and mass coefficients are

1 1 d 2fi d 2fj
1

m

c

z(t)

x(t )
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keij 5
h3 E

0

EI
dj2 dj2

dj meij 5 h E
0

mfifjdj

i, j 5 1, 2, 3, 4 (3.4.156)

yielding typical element stiffness and mass matrices

12 6 2 12 6
6 4 2 6 2

Ke 5
EI

h3 F G2 12 2 6 12 2 6
6 2 2 6 4

156 22 54 2 13
22 4 13 2 3

Me 5
hm

420 F G (3.4.157)
54 13 156 2 22

2 13 2 3 2 22 4

The treatment of two-dimensional problems, such as for membranes
and plates, is considerably more complex (see Meirovitch, ‘‘Principles
and Techniques of Vibration,’’ Prentice-Hall) than for one-dimensional
problems.

The various steps involved in the finite element method lend them-
selves to ready computer programming. There are many computer
codes available commercially; one widely used is NASTRAN.

VIBRATION-MEASURING INSTRUMENTS

Typical quantities to be measured include acceleration, velocity, dis-
placement , frequency, damping, and stress. Vibration implies motion,
so that there is a great deal of interest in transducers capable of measur-
ing motion relative to the inertial space. The basic transducer of many
vibration-measuring instruments is a mass-damper-spring enclosed in a
case together with a device, generally electrical, for measuring the dis-
placement of the mass relative to the case, as shown in Fig. 3.4.29. The
equation for the displacement z(t) of the mass relative to the case is

mz̈(t) 1 c ~z(t) 1 kz(t) 5 2 mÿ(t) (3.4.158)

where y(t) is the displacement of the case relative to the inertial space. If
this displacement is harmonic, y(t) 5 Y sin vt, then by analogy with Eq.
(3.4.35) the response is

z(t) 5 Y S v

vn
D2

|G(v) | sin (vt 2 f)

5 Z(v) sin (vt 2 f) (3.4.159)

so that the magnitude factor Z(v)/Y 5 (v/vn)2 |G(v) | is as plotted in
Fig. 3.4.9 and the phase angle f is as in Fig. 3.4.4. The plot Z(v)/Y

2.5

2.0

1.5

1.0

0.5

v
Y

Z(  )

5 1.00z

5 0.50z

5 0.25z

2( )v
vn
1 20

Fig. 3.4.30
ky(t)

Fig. 3.4.29

versus v/vn is shown again in Fig. 3.4.30 on a scale more suited to our
purposes.

Accelerometers are high-natural-frequency instruments. Their useful-
ness is limited to a frequency range well below resonance. Indeed, for
small values of v/vn, Eq. (3.4.159) yields the approximation

Z(v) '
1

v2
n

v2Y (3.4.160)

so that the signal amplitude is proportional to the amplitude of the
acceleration of the case relative to the inertial space. For z 5 0.7, the
accelerometer can be used in the range 0 # v/vn # 0.4 with less than 1
percent error, and the range can be extended to v/vn # 0.7 if proper
corrections, based on instrument calibration, are made.

Commonly used accelerometers are the compression-type piezoelec-
tric accelerometers. They consist of a mass resting on a piezoelectric
ceramic crystal, such as quartz, tourmaline, or ferroelectric ceramic,
with the crystal acting both as spring and sensor. Piezoelectric actuators
have negligible damping, so that their range must be smaller, such as
0 , v/vn , 0.2. In view of the fact, however, that the natural frequency
is very high, about 30,000 Hz, this is a respectable range.

Displacement-Measuring Instruments These are low-natural-
frequency devices and their usefulness is limited to a frequency range
well above resonance. For v/vn .. 1, Eq. (3.4.159) yields the approxi-
mation

Z(v) ' Y (3.4.161)

so that the signal amplitude is proportional to the amplitude of the case
displacement . Instruments with low natural frequency compared to the
excitation frequency are known as seismometers. They are commonly
used to measure ground motions, such as those caused by earthquakes
or underground nuclear explosions. The requirement of low natural
frequency dictates that the mass, referred to as seismic mass, be very
large and the spring very soft , so that essentially the mass remains
3 4 5
/v vn
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stationary in an inertial space while the case attached to the ground
moves relative to the mass.

Seismometers tend to be considerably larger in size than acceler-
ometers. If a large-size instrument is undesirable, or even if size is
not an issue, displacements in harmonic motion, as well as velocities,
can be obtained from accelerometer signals by means of electronic inte-
grators.

Some other transducers, not mass-damper-spring transducers, are as
follows (Harris, ‘‘Shock and Vibration Handbook,’’ 3d ed., McGraw-

Differential-transformer pickups: They consist of a core of magnetic
material attached to the vibrating structure, a primary coil, and two
secondary coils. As the core moves, both the inductance and induced
voltage of one secondary coil increase while those of the other decrease.
The output voltage is proportional to the displacement over a wide
range. Such pickups are used for very low frequencies, up to 60 Hz.

Strain gages: They consist of a grid of fine wires which exhibit a
change in electrical resistance proportional to the strain experienced.
Their flimsiness requires that strain gages be either mounted on or

Copyright (C) 1999 by The McGraw-Hill Companies, Inc.  All rights reserved.  Use of
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Hill):
 bonded to some carrier material.
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