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3.1 MECHANICS OF SOLIDS
by Robert F. Steidel, Jr.
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PHYSICAL MECHANICS

Definitions

Force isthe action of one body on another which will cause acceleration
of the second body unless acted on by an equal and opposite action
counteracting the effect of the first body. It is avector quantity.

Time is ameasure of the sequence of events. In newtonian mechanics
it is an absolute quantity. In relativistic mechanics it is relative to the
frames of reference in which the sequence of events is observed. The
common unit of time is the second.

Inertia is that property of matter which causes a resistance to any
change in the motion of a body.

Mass is a quantitative measure of inertia.

Acceleration of Gravity Every object which fallsin avacuum at a
given position on the earth’s surface will have the same acceleration g.
Accurate values of the acceleration of gravity as measured relative to
the earth’s surface include the effect of the earth’s rotation and flatten-
ing at the poles. Theinternational gravity formulafor the acceleration of
gravity at the earth’s surface is g = 32.0881(1 + 0.005288 sin? ¢ —
0.0000059 sin? 2¢) ft/s?, where ¢ is latitude in degrees. For extreme
accuracy, thelocal acceleration of gravity must also be corrected for the
presence of large water or land masses and for height above sea level.
The absolute acceleration of gravity for a nonrotating earth discounts
the effect of the earth’s rotation and is rarely used, except outside the
earth’s atmosphere. If g, represents the absolute acceleration at sea
level, the absolute value at an dtitudehisg = gyR?(R + h)?, whereRis
the radius of the earth, approximately 3,960 mi (6,373 km).

Weight isthe resultant force of attraction on the mass of abody dueto
a gravitational field. On the earth, units of weight are based upon an
acceleration of gravity of 32.1740 ft/s? (9.80665 m/s?).

Linear momentum is the product of mass and the linear velocity of a
particle and is a vector. The moment of the linear-momentum vector
about a fixed axis is the angular momentum of the particle about that
fixed axis. For arigid body rotating about afixed axis, angular momen-
tum is defined as the product of moment of inertiaand angular velocity,
each measured about the fixed axis.

An increment of work is defined as the product of an incremental
displacement and the component of the force vector in the direction of
the displacement or the component of the displacement vector in the
direction of the force. Theincrement of work done by acoupleacting on
abody during arotation of d6 in the plane of the coupleisdU = M dé.

Energy is defined as the capacity of a body to do work by reason of its
motion or configuration (see Work and Energy).

A vector isadirected line segment that has both magnitude and direc-
tion. In script or text, a vector is distinguished from a scalar V by a
boldface-type V. The magnitude of the scalar is the magnitude of the
vector, V = |V|.

A frame of reference is a specified set of geometric conditions to
which other locations, motion, and time are referred. In newtonian me-
chanics, the fixed stars are referred to as the primary (inertial) frame of
reference. Relativistic mechanics denies the existence of a primary ref-

erence frame and holds that all reference frames must be described
relative to each other.

SYSTEMS AND UNITS OF MEASUREMENTS

In absolute systems, the units of length, mass, and time are considered
fundamental quantities, and all other units including that of force are
derived.

In gravitational systems, the units of length, force, and time are con-
sidered fundamental qualities, and all other unitsincluding that of mass
are derived.

Inthe Sl system of units, the unit of massisthe kilogram (kg) and the
unit of length is the metre (m). A force of one newton (N) is derived as
the force that will give 1 kilogram an acceleration of 1 m/s%.

In the English engineering system of units, the unit of mass is the
pound mass (Ibm) and the unit of length is the foot (ft). A force of one
pound (1 Ibf) is the force that gives a pound mass (1 Ibm) an accelera-
tion equal to the standard acceleration of gravity on the earth, 32.1740
ft/s? (9.80665 m/s?). A slug is the mass that will be accelerated 1 ft/s?
by aforceof 1 Ibf. Therefore, 1 slug = 32.1740 |bm. When described in
the gravitational system, mass is a derived unit, being the constant of
proportionality between force and acceleration, as determined by New-
ton’s second law.

General Laws

NEWTON’S LAWS

I. If abalanced force system actson a particle at rest, it will remain
at rest. If a balanced force system acts on a particle in motion, it will
remain in motion in a straight line without acceleration.

I1.  If an unbalanced force system acts on a particle, it will acceler-
ate in proportion to the magnitude and in the direction of the resultant
force.

I11. When two particles exert forces on each other, these forces are
equal in magnitude, opposite in direction, and collinear.

Fundamental Equation The basic relation between mass, accelera-
tion, and force is contained in Newton's second law of motion. As
applied to a particle of mass, F = ma, force = mass X acceleration.
This equation is a vector equation, since the direction of F must be the
direction of a, aswell as having F equal in magnitude to ma. An alter-
native form of Newton’s second law states that the resultant force is
equal to the time rate of change of momentum, F = d(mv)/dt.

Law of the Conservation of Mass The mass of a body remains
unchanged by any ordinary physical or chemical changetowhichit may
be subjected.

Law of the Conservation of Energy The principle of conservation
of energy requires that the total mechanical energy of a system remain
unchanged if it is subjected only to forces which depend on position or
configuration.

Law of the Conservation of Momentum Thelinear momentum of a
system of bodies is unchanged if there is no resultant external force on
the system. The angular momentum of a system of bodies about afixed
axis is unchanged if there is no resultant external moment about this
axis.

Law of Mutual Attraction (Gravitation) Two particles attract each
other with a force F proportional to their masses m; and m, and in-
versely proportional to the square of the distance r between them, or
F = kmym,/r2, inwhich kisthe gravitational constant. The value of the
gravitational constantisk = 6.673 X 10~ m3kg - s?in Sl or absolute
units, or k = 3.44 X 10~ 8 ft4Ib—1 s~ 4in engineering gravitational units.



It should be pointed out that the unit of force F in the S| system is the
newton and is derived, while the unit force in the gravitational systemis
the pound-force and is a fundamental quantity.

ExAMPLE. Each of two solid steel spheres 6 inin diam will weigh 32.0 b on
the earth’s surface. Thisis the force of attraction between the earth and the steel
sphere. The force of mutual attraction between the spheresif they arejust touching
is 0.000000136 Ib.

STATICS OF RIGID BODIES

General Considerations

If the forces acting on arigid body do not produce any acceleration, they
must neutralize each other, i.e., form a system of forces in equilibrium.
Equilibrium is said to be stable when the body with the forces acting
upon it returns to its original position after being displaced avery small
amount from that position; unstable when the body tends to move still
farther from its original position than the very small displacement; and
neutral when the forces retain their equilibrium when the body isin its
new position.

External and Internal Forces The forces by which the individual
particles of a body act on each other are known as internal forces. All
other forces are called external forces. If abody is supported by other
bodies while subject to the action of forces, deformations and forces
will be produced at the points of support or contact and these internal
forces will be distributed throughout the body until equilibrium exists
and the body is said to be in a state of tension, compression, or shear.
The forces exerted by the body on the supports are known as reactions.
They are equal in magnitude and opposite in direction to the forces with
which the supports act on the body, known as supporting forces. The
supporting forces are external forces applied to the body.

In considering abody at a definite section, it will be found that al the
internal forces act in pairs, the two forces being equal and opposite. The
external forces act singly.

General Law When abody is at rest, the forces acting externaly to
it must form an equilibrium system. This law will hold for any part of
the body, in which case the forces acting at any section of the body
become external forces when the part on either side of the section is
considered alone. In the case of arigid body, any two forces of the same
maghnitude, but acting in opposite directions in any straight line, may be
added or removed without change in the action of the forces acting on
the body, provided the strength of the body is not affected.

Composition, Resolution, and Equilibrium of
Forces
The resultant of several forces acting at a point is a force which will
produce the same effect as al the individual forces acting together.

Forces Acting on a Body at the Same Point The resultant R of two
forces F, and F, applied to arigid body at the same point is represented
in magnitude and direction by the diagonal of the parallelogram formed
by F, and F, (see[Elgs_3 0 and

R=VF#+ F3+ 2FF,cosa
sina, = (F,sina)/R sina, = (F; sina)/R
Whena = 90°, R=VF2+ F3,sna, = F,/R, andsina, = F/R.

Whena=0,R=F, + F,
Whena = 180°, R=F, — F,

A force R may be resolved into two component forces intersecting any-
where on R and acting in the same plane as R, by the reverse of the
operation shown by Eigs 311 an and by repeating the operation
with the components, R may be resolved into any number of component
forces intersecting R at the same point and in the same plane.

Forces act in same
straight line.

—_———— R |
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Fig. 3.1.1
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Resultant of Any Number of Forces Applied to a Rigid Body at the
Same Point  Resolve each of the given forces F into componentsalong
three rectangular coordinate axes. If A, B, and C are the angles made
with XX, YY, and ZZ, respectively, by any force F, the components
will be F cos A along XX, F cos B along YY, F cos C along ZZ; add
the components of all the forces along each axis algebraically and ob-
tain =F cos A = EX aong XX, 2F cos B = XY aong YY, and 2F
cos C = XZ dong ZZ.

Theresultant R = V(2X)2 + (2Y)2 + (2Z)2 The angles made by the
resultant with the three axes are A, with XX, B, with YY, C, with ZZ,
where

cos A, = ZXIR cos B, = 2Y/R cosC, = ZZ/IR

The direction of theresultant can be determined by plotting the algebraic
sums of the components.

If the forces are all in the same plane, the components of each of the
forces along one of the three axes (say ZZ) will be 0; i.e,, angle C, =
90° and R = V(2X)2 + (2Y)? cos A, = =X/R, and cos B, = SY/R.

For equilibrium, it is necessary that R = 0; i.e., X, 2V, and =Z must
each be equal to zero.

General Law |n order that a number of forces acting at the same
point shall be in equilibrium, the algebraic sum of their components
along any three coordinate axes must each be equal to zero. When the
forces al act in the same plane, the algebraic sum of their components
along any two coordinate axes must each equal zero.

When the Forces Form a System in Equilibrium Three unknown
forces can be determined if the lines of action of the forces are all
known and arein different planes. If the forcesare all in the same plane,
the lines of action being known, only two unknown forces can be deter-
mined. If the lines of action of the unknown forces are not known, only
one unknown force can be determined in either case.

Couples and Moments

Couple Two parallel forces of equal magnitude [FIg—3.1.3) which
act in opposite directions and are not collinear form a couple. A couple
cannot be reduced to a single force.

e

Displacement and Change of a Couple The forces forming a cou-
ple may be moved about and their magnitude and direction changed,
provided they always remain parallel to each other and remain in either
the original plane or one parallel to it, and provided the product of one
of the forces and the perpendicular distance between the two is constant
and the direction of rotation remains the same.

Moment of a Couple The moment of a couple is the product of the
magnitude of one of the forces and the perpendicular distance between
the lines of action of the forces. Fa = moment of couple; a = arm of
couple. If the forces are measured in pounds and the distance a in feet,
the unit of rotation moment is the foot-pound. If the forceis measured in
kilograms and the distance in metres, the unit is the metre-kilogram. In
the cgs system the unit of rotation moment is 1 cm-dyne.

Rotation moments of couples acting in the same plane are convention-
ally considered to be positive for counterclockwise moments and nega-
tive for clockwise moments, although it is only necessary to be consis-
tent within a given problem. The magnitude, direction, and sense of
rotation of a couple are completely determined by its moment axis, or
moment vector, which is a line drawn perpendicular to the plane in
which the couple acts, with an arrow indicating the direction from
which the couple will appear to have right-handed rotation; the length
of the line represents the magnitude of the moment of the couple. See

Fig. 3.1.3
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Fig. 3.1.4, in which AB represents the magnitude of the moment of the
couple. Looking along the line in the direction of the arrow, the couple
will have right-handed rotation in any plane perpendicular to the line.

Composition of Couples  Couples may be combined by adding their
moment vectors geometrically, in accordance with the parallelogram
rule, in the same manner in which forces are combined.

Couples lying in the same or parallel planes are added algebraically. Let
+281bf - ft (+ 38N - m), —421bf - ft (— 57 N - m), and + 70 Ibf - ft
(95 N - m) be the moments of three couples in the same or parallel
planes; their resultant isasingle couple lying inthe sameor in aparallel
plane, whose moment isXM = + 28 — 42 + 70 = + 56 Ibf - ft (M =
+38—-57+95=76N"-m).

Fig. 3.1.4 Fig. 3.1.5

If the polygon formed by the moment vectors of several couples closes
itself, the couplesform an equilibrium system. Two coupleswill balance each
other when they lie in the same or paralel planes and have the same
moment in magnitude, but opposite in sign.

Combination of a Couple and a Single Force in the Same Planel(Eig]

ZTE] Given aforce F = 18 Ibf (80 N) acting as shown at distance x
from YY, and a couple whose moment is — 180 Ibf - ft (244 N - m) in
the same or parallel plane, to find the resultant. A couple may be
changed to any other couple in the same or a parallel plane having the
same moment and same sign. Let the couple consist of two forces of
18 Ibf (80 N) each and let the arm be 10 ft (3.05 m). Place the couplein
such a manner that one of its forces is opposed to the given force at p.
This force of the couple and the given force being of the same magni-
tude and opposite in direction will neutralize each other, leaving the
other force of the couple acting at a distance of 10 ft (3.05 m) from p
and parallel and equal to the given force 18 Ibf (80 N).

General Rule The resultant of a couple and a single force lying in
the same or parallel planesisasingle force, equal in magnitude, in the
same direction and parallel to the single force, and acting at a distance
from the line of action of the single force equal to the moment of the
couple divided by the single force. The moment of the resultant force
about any point on the line of action of the given single force must be of
the same sense as that of the couple, positive if the moment of the
coupleis positive, and negative if the moment of the coupleis negative.
If the moment of the couple in Elg—3I.5 had been + instead of —, the
resultant would have been a force of 18 Ibf (80 N) acting in the same
direction and parallel to F, but at a distance of 10 ft (3.05 m) to the left
of it (shown dotted), making the moment of the resultant about any
point on F positive.

To effect a parallel displacement of a single force F over adistance a, a
couple whose moment is Fa must be added to the system. The sense of
the couple will depend upon which way it isdesired to displace force F.

The moment of a force with respect to a point isthe product of the force
F and the perpendicular distance from the point to the line of action of
the force.

The Moment of a Force with Respect to a Straight Line  |f theforce
isresolved into components parallel and perpendicular to thegiven line,
the moment of the force with respect to the line is the product of the
magnitude of the perpendicular component and the distance from its
line of action to the given line.

Forces with Different Points of Application

Composition of Forces If each force F isresolved into components
parallel to three rectangular coordinate axes XX, YY, and ZZ, the magni-
tude of the resultant is R = V(2X)2 + (2Y)2 + (2Z)?, and its line of
action makesangles A, B,, and C, with axes XX, YY, and ZZ, where cos

A = 2XIR, cos B, = 2Y/R, and cos C, = 2Z/R; and there are three
couples which may be combined by their moment vectors into asingle
resultant couple having the moment M, = V(M,)2 + (M,)? + (M,)?,
whose moment vector makes angles of A, B,,, and C,, with axes XX,
YY, and ZZ, such that cos A,, = M,/M;, cos B, = M,/M,, cos C,, =
M,/M; . If this single resulting couple is in the same plane as the single
resulting force at the origin or a plane parallel to it, the system may be
reduced to asingle force R acting at adistance from R equal to M, /R. I
the couple and force are not in the same or parallel planes, it isimpossi-
ble to reduce the system to asingleforce. If R = 0, i.e,, if X, 2V, and
37 al equa zero, the system will reduce to a single couple whose
moment is M. If M, = 0, i.e, if M, M, and M, all equal zero, the
resultant will be asingle force R.

When the forces are all in the same plane, the cosine of one of the
angles A, B,, or C, = 0, say, C, = 90°. Then R = V(ZX)2 + (2Y)?,
M, = VM2 + M, and the final resultant is aforce equal and parallel to
R, acting at a distance from R egua to M,/R.

A system of forcesin the same plane can always be replaced by either
acoupleor asingleforce. If R = 0and M, - 0, theresultant isacouple.
If M, = 0and R > 0, the resultant is a single force.

A rigid body isin equilibrium when acted upon by a system of forces
whenever R = 0 and M, = 0, i.e,, when the following six conditions
hold true: XX = 0, 2Y = 0,2Z = 0, M, = 0, My = 0, and M, = 0.
When the system of forces is in the same plane, equilibrium prevails
when the following three conditions hold true: X = 0, 2Y = 0,
=M = 0.

Forces Applied to Support Rigid Bodies

The external forces in equilibrium acting upon abody may be statically
determinate or indeterminate according to the number of unknown
forces existing. When the forces are al in the same plane and act at a
common point, two unknown forces may be determined if their lines of
action are known, one if unknown.

When the forces are al in the same plane and are parallel, two un-
known forces may be determined if the lines of action are known, oneif
unknown.

When the forces are anywhere in the same plane, three unknown
forces may be determined if their lines of action are known, if they are
not parallel or do not pass through acommon point; if thelines of action
are unknown, only one unknown force can be determined.

If the forces all act at a common point but are in different planes,
three unknown forces can be determined if the lines of action are
known, one if unknown.

If the forces act in different planes but are parallel, three unknown
forces can be determined if their lines of action are known, one if
unknown.

The first step in the solution of problems in statics is the determina-
tion of the supporting forces. The following data are required for the
complete knowledge of supporting forces: magnitude, direction, and
point of application. According to the nature of the problem, none, one,
or two of these quantities are known.

One Fixed Support The point of application, direction, and magni-
tude of the load are known. SedlFig-3.1.6] As the body on which the
forces act is in equilibrium, the supporting force P must be equal in
magnitude and opposite in direction to the resultant of the loads L.

In the case of arolling surface, the point of application of the support
isobtained from the center of the connecting bolt A [Elg—3-1.7), both the
direction and magnitude being unknown. The point of application and

Fig. 3.1.6 Fig. 3.1.7



line of action of the support at B are known, being determined by the
rollers.

When three forces acting in the same plane on the samerigid body are
in equilibrium, their lines of action must pass through the same point O.
Theload L is known in magnitude and direction. The line of action of
the support at B is known on account of the rollers. The point of appli-
cation of the support at A is known. The three forces are in equilibrium
and arein the same plane; therefore, the lines of action must meet at the
point O.

In the case of the rolling surfaces shown in[E[g_3.1.8] the direction of
the support at A is known, the magnitude and point of application un-
known. The line of action and point of application of the supporting

Fig. 3.1.8

Fig. 3.1.9

force at B are known, its magnitude unknown. The lines of action of the
three forces must meet in apoint, and the supporting force at A must be
perpendicular to the plane XX. In the case shown in[Elg—3.19] the
directions and points of application of the supporting forces are known,
and the magnitudes unknown. The lines of action of resultant of sup-
ports A and B, the support at C and load L must meet at apoint. Resolve
the resultant of supports at A and B into components at A and B, their
direction being determined by the rollers.

If amember of atruss or framein equilibrium is pinned at two points
and loaded at these two points only, the line of action of the forces
exerted on the member or by the member at these two points must be
along aline connecting the pins.

If the external forces acting upon arigid body in equilibrium areall in
the same plane, the equations =X = 0, Y = 0, and ZM = 0 must be
satisfied. When trusses, frames, and other structures are under discus-
sion, these eguations are usually used as 2V = 0, ZH = 0, ZM = 0,
where V and H represent vertical and horizontal components, respec-
tively.

The supports are said to be statically determinate when the laws of
equilibrium are sufficient for their determination. When the conditions
are not sufficient for the determination of the supports or other forces,
the structure is said to be statically indeterminate; the unknown forces
can then be determined from considerations involving the deformation
of the material.

When several bodies are so connected to one another asto make up a
rigid structure, the forces at the points of connection must be considered
asinternal forces and are not taken into consideration in the determina-
tion of the supporting forces for the structure as a whole.

The distortion of any practicaly rigid structure under its working
loads is so small as to be negligible when determining supporting
forces. When the forces acting at the different jointsin a built-up struc-
ture cannot be determined by dividing the structure up into parts, the
structure is said to be statically indeterminate internally. A structure may
be statically indeterminate internally and still be statically determinate
externaly.

Fundamental Problems in Graphical Statics

A force may be represented by a straight line in a determined position,
and its magnitude by the length of the straight line. The direction in
which it acts may be indicated by an arrow.

Polygon of Forces The paralelogram of two forces intersecting
each other (sd&EF10S7371.4 and 3.1.5) leads directly to the graphic com-
position by means of the triangle of forces. INIEEIG—=3T10, Riscalled the
closing side, and represents the resultant of the forces F, and F, in mag-
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nitude and direction. Its position is given by the point of application O.
By means of repeated use of the triangle of forces and by omitting the
closing sides of theindividual triangles, the magnitude and direction of
theresultant R of any number of forcesin the same plane and intersect-

F
R
R
0

Fig. 3.1.10

ing at a single point can be found. In[EIg_3.T.TTlthe lines representing
the forces start from point O, and in the force polygon (ElQg—3.1.12) they
are joined in any order, the arrows showing their directions following
around the polygon in the same direction. The magnitude of the result-
ant at the point of application of the forcesis represented by the closing
side R of the force polygon; its direction, as shown by the arrow, is
counter to that in the other sides of the polygon.

If theforces arein equilibrium, R must equal zero, i .€., the for ce polygon
must close.

Fig. 3.1.11 Fig. 3.1.12

If in a closed polygon one of the forces is reversed in direction, this
force becomes the resultant of all the others.

If the forces do not al lie in the same plane, the diagram becomes a
polygon in space. The resultant R of this system may be obtained by
adding the forces in space. The resultant is the vector which closes the
space polygon. The space polygon may be projected onto three coordi-
nate planes, giving three related plane polygons. Any two of these pro-
jections will involve al static equilibrium conditions and will be suffi-
cient for afull description of the force system ( .

Fig. 3.1.13

Determination of Stresses in Members of a
Statically Determinate Plane Structure with
Loads at Rest

1t will be assumed that the loads are applied at thejoints of the structure,
i.e,, at the points where the different members are connected, and that
the connections are pins with no friction. The stresses in the members
must then be aong lines connecting the pins, unless any member is
loaded at more than two points by pin connections. If the members are
straight, the forces exerted on them or by them must coincide with the
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axes of the members, In other words, there shall be no bending stresses
in any of the members of the structure.

Equilibrium In order that the whole structure should be in equilib-
rium, it is necessary that the external forces (loads and supports) shall
form a balanced system. Graphical and analytical methods are both of
service.

Supporting Forces When the supporting forces are to be deter-
mined, it is not necessary to pay any attention to the makeup of the
structure under consideration so long asit is practically rigid; the loads
may be taken as they occur, or the resultant of the loads may be used
instead. When the stresses in the members of the structure are being
determined, the loads must be distributed at the joints where they be-
long.

Method of Joints When al the externa forces have been deter-
mined, any joint at which there are not more than two unknown forces
may be taken and these unknown forces determined by the methods of
the stress polygon, resolution or moments. In let O be the
joint of astructure and F be the only known force; but let O1 and O2 be
two members of the structurejoined at O. Then thelines of action of the
unknown forces are known and their magnitude may be determined (1)
by a stress polygon which, for equilibrium, must close; (2) by resolution
into H and V components, using the condition of equilibrium ZH = 0,
3V = 0; or (3) by moments, using any convenient point on the line of
action of O1 and O2 and the condition of equilibrium =M = 0. No more
than two unknown forces can be determined. In this manner, proceeding
from joint to joint, the stresses in al the members of the truss can
usually be determined if the structure is statically determinate inter-
nally.

F
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Method of Sections The structure may be divided into parts by
passing a section through it cutting some of its members; one part may
then be treated as a rigid body and the external forces acting upon it
determined. Some of these forces will be the stresses in the members
themselves. For example, let xx (Elg_3.1.19) be a section taken through
atruss loaded at P;, P,, and P, and supported on rollers at S. As the
whole truss is in equilibrium, any part of it must be also, and conse-
quently the part shown to the left of xx must bein equilibrium under the
action of the forces acting externally to it. Three of these forces are the
stresses in the members aa, bb, and bc, and are the unknown forcesto be
determined. They can be determined by applying the condition of equi-
librium of forces acting in the same plane but not at the same point.
2H = 0,2V = 0, 2M = 0. Thethree unknown forces can be determined
only if they are not parallel or do not pass through the same point; if,
however, the forces are parallel or meet in a point, two unknown forces
only can be determined. Sections may be passed through a structure
cutting members in any convenient manner, as arule, however, cutting
not more than three members, unless members are unloaded.

For the determination of stressesin framed structures, see Sec. 12.2.

CENTER OF GRAVITY

Consider athree-dimensional body of any size, shape, and weight. If it
is suspended as in[EIg_3-LI6]by a cord from any point A, it will bein
equilibrium under the action of the tension in the cord and the resultant
of the gravity or body forces W. If the experiment is repeated by sus-
pending the body from point B, it will again be in equilibrium. If the
lines of action of the resultant of the body forces were marked in each
case, they would be concurrent at a point G known as the center of

gravity or center of mass. Whenever the density of the body isuniform, it
will be aconstant factor and like geometric shapes of different densities
will have the same center of gravity. The term centroid is used in this
case since the location of the center of gravity is of geometric concern
only. If densities are nonuniform, like geometric shapes will have the
same centroid but different centers of gravity.

Fig. 3.1.16

Centroids of Technically Important Lines,
Areas, and Solids

CENTROIDS OF LINES

Straight Lines  The centroid is at its middle point.

Circular Arc AB Xo = r sincfrad c; yo = 2r sin? ¥=c/rad
c. (rad ¢ = angle ¢ measured in radians.)

Circular Arc AC Xo = rsinclrad c; y, = 0.

A Y
X X
X
C
Fxo™y
(b)
Fig. 3.1.17
Quadrant, AB[[Flg_3.118)] X, = Yo = 2r/7 = 0.6366r.
Semicircumference, AC[(Fig- 3.1.18] Y, = 2r/m = 0.6366r; X, = 0.

Combination of Arcs and Straight Line (Eig. 3.1.19) | AD and BC are
two quadrants of radiusr. y, = {(AB)r + 2[0.57r(r — 0.6366r)]} +
{AB + 2(0.57r)].

X D__}»Y_ C
0
SN
A B
Fig. 3.1.18 Fig. 3.1.19

CENTROIDS OF PLANE AREAS

Triangle Centroid lies at the intersection of the lines joining the
vertices with the midpoints of the sides, and at a distance from any side
equal to one-third of the corresponding altitude.

Parallelogram Centroid lies at the point of intersection of the diag-
onals.

Trapezoid[(Eig_3120)] Centroid lies on the line joining the middle
points m and n of the parallel sides. The distances h, and h, are

h, = h(a+ 2b)/3@@+ b)  h, = h(2a + b)/3(a + b)

Draw BE = a and CF = b; EF will then intersect mn at centroid.

Any Quadrilateral The centroid of any quadrilateral may be deter-
mined by the general rule for areas, or graphically by dividing it into
two sets of triangles by means of the diagonals. Find the centroid of
each of the four triangles and connect the centroids of the triangles
belonging to the same set. The intersection of these lines will be cen-



troid of area. Thus, in[EIg—3.1.21] O, O,, O,, and O are, respectively,
the centroids of the triangles ABD, ABC, BDC, and ACD. Theintersec-
tion of 0,05 with OO, gives the centroids.

B
AC

Fig. 3.1.20 Fig. 3.1.21

Segment of a Circle [(Fig_31.22)] Xo = %ar sin® c/(rad ¢ — cos ¢
sin ¢). A segment may be considered to be asector from which atriangle
is subtracted, and the general rule applied.

Sector of a Circle Xo = 7ar sinclrad c; y, = %3 sin?
Y2clrad c.

Semicircle X, = %sr/m = 0.4244r;y, = 0.

Quadrant (90° sector) Xg = Yo = 43r/7 = 0.4244r.

Fig. 3.1.22 Fig. 3.1.23
Parabolic Half Segmentm Area ABO: Xg = ¥5Xq; Yo =
Y8y
Parabolic Spandre[{Fig 3.1.24)] Area AOC: Xy = Y10Xy; Yo = ¥4ys.
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Fig. 3.1.24

Quadrant of an Ellipsd (Eig 3125 Area OAB: X, = ¥s(a/m); Y, =
¥3(bl ).

The centroid of a figure such as that shown in[El@_3.L.26lmay be
determined as follows: Divide the area OABC into a number of parts by
lines drawn perpendicular to the axis XX, e.g., 11, 22, 33, etc. These
parts will be approximately either triangles, rectangles, or trapezoids.
The area of each division may be obtained by taking the product of its

Y
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Fig. 3.1.25 Fig. 3.1.26

mean height and its base. The centroid of each area may be obtained as
previously shown. The sum of the moments of all the areas about XX
and YY, respectively, divided by the sum of the areaswill give approxi-
mately the distances from the center of gravity of the whole areato the
axes XX and YY. The greater the number of areas taken, the more nearly
exact the result.

CENTER OF GRAVITY 3-7

CENTROIDS OF SOLIDS

Prism or Cylinder with Parallel Bases The centroid lies in the
center of the line connecting the centers of gravity of the bases.

Oblique Frustum of a Right Circular Cylindef{Elg.3.127) Let123
4 be the plane of symmetry. The distance from the baseto the centroidis
¥2h + (r2 tan? c)/8h, where c is the angle of inclination of the oblique
section to the base. The distance of the centroid from the axis of the
cylinder isr2 tan c/4h.

Pyramid or Cone The centroid lies in the line connecting the cen-
troid of the base with the vertex and at a distance of one-fourth of the
altitude above the base.

Truncated Pyramid If histhe height of thetruncated pyramid and A
and B the areas of its bases, the distance of its centroid from the surface
of Ais

h(A + 2VAB + 3B)/4(A + VAB + B)

Truncated Circular Cone If histhe height of the frustum and Rand
r theradii of the bases, the distance from the surface of the base whose
radius is R to the centroid ish(R2 + 2Rr + 3r2)/4(R2 + Rr + r?).

3
Fig. 3.1.27

Fig. 3.1.28

Segment of a Sphere Volume ABC: x, = 3(2r — h)%
4(3r — h).

Hemisphere X, = 3r/8.

Hollow Hemisphere X, = 3(R* — r4)/8(R® — r3), whereRandr are,
respectively, the outer and inner radii.

Sector of a Sphere [Eg3.128) 1 Volume OABCO: xj = %(2r — h).

Ellipsoid, with Semiaxes a, b, and ¢ For each octant, distance from
center of gravity to each of the bounding planes = ¥ X length of
semiaxis perpendicular to the plane considered.

The formulas given for the determination of the centroid of lines and
areas can be used to determine the areas and volumes of surfaces and
solids of revolution, respectively, by employing the theorems of
Pappus, Sec. 2.1.

Determination of Center of Gravity of a Body by Experiment The
center of gravity may be determined by hanging the body up from
different points and plumbing down; the point of intersection of the
plumb lineswill give the center of gravity. It may also be determined as
shown in [Fig-3.1.29] The body is placed on knife-edges which rest
on platform scales. The sum of the weights registered on the two scales
(w; + w,) must equal the weight (w) of the body. Taking amoment axis
at either end (say, O), w,A/w = x, = distance from O to plane contain-
ing the center of gravity.

w, Wy
9 P
5
ol 4]
w [
e — Xo *b‘y

D N

Fig. 3.1.29

Graphical Determination of the Centroids of Plane Areas SedEdl]
ETZm
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MOMENT OF INERTIA

The moment of inertia of a solid body with respect to a given axis is the
limit of the sum of the products of the masses of each of the elementary
particles into which the body may be conceived to be divided and the
square of their distance from the given axis.

If dm = dw/g represents the mass of an elementary particle and y its
distance from an axis, the moment of inertial of the body about thisaxis
will bel = [y2dm = [y2 dw/g.

The moment of inertia may be expressed in weight units (I, = [y?
dw), in which case the moment of inertiain weight units, 1,,, is equal to
the moment of inertiain mass units, |, multiplied by g.

If I = k2m, the quantity kiscalled theradiusof gyration or theradius of
inertia.

If a body is considered to be composed of a number of parts, its
moment of inertia about an axisis equal to the sum of the moments of
inertia of the severa parts about the same axis, or | = 1, + 1, +
g+ -+ 1,

Themoment of inertia of an area with respect to agiven axisisthelimit
of the sum of the products of the elementary areas into which the area
may be conceived to be divided and the square of their distance (y) from
the axisin question. | = [y2 dA = k2A, where k = radius of gyration.

The quantity [y2 dA is more properly referred to as the second mo-
ment of area since it is not a measure of inertia in a true sense.

Formulas for moments of inertiaand radii of gyration of various areas
follow later in this section.

Relation between the Moments of Inertia of an Area and a
Solid The moment of inertia of a solid of elementary thickness about
an axis is equal to the moment of inertia of the area of one face of the
solid about the same axis multiplied by the mass per unit volume of the
solid times the elementary thickness of the solid.

Moments of Inertia about Parallel Axes The moment of inertia of
an area or solid about any given axisis equal to the moment of inertia
about a parallel axis through the center of gravity plus the square of the
distance between the two axes times the area or mass.

In fig. 3.1.30a] the moment of inertiaof the area ABCD about axis YY
isequal to |, (or the moment of inertia about Y,Y, through the center of
gravity of the area and paralel to YY) plus x3A, where A = area of
ABCD. In[Fg._3.1.300 the moment of inertia of the mass m about
YY = Iy + xdm. Y,Y, passes through the centroid of the mass and is
parallel to YY.

Yo Y
A B Yo Y
Al—Txg XOAI
D C ’
Yo Y Yo Y
(a) (b)

Fig. 3.1.30

Polar Moment of Inertia  The polar moment of inertia [FIg—3.1.3T)
istaken about an axis perpendicular to the plane of the area. Referring to
Fig. 3.1.31, if I, and I, are the moments of inertia of the area A about YY
and XX, respectively, then the polar moment of inertial, = I, + I, or
the polar moment of inertiais equal to the sum of the moments of inertia
about any two axes at right angles to each other in the plane of the area
and intersecting at the pole.

Product of Inertia  This quantity will be represented by I, and is
JIxy dy dx, where x and y are the coordinates of any elementary part
into which the area may be conceived to be divided. 1, may be positive
or negative, depending upon the position of the area with respect to the
coordinate axes XX and XY.

Relation between Moments of Inertia about Axes Inclined to Each
Other Referring MEIG—3TB2, let |, and I, be the moments of inertia
of the area A about YY and XX, respectively, I, and I} the moments about
Y'Y and X'X', and |, and I, the products of inertiafor XX and YY, and

X'X"and Y'Y’, respectively. Also, let ¢ be the angle between the respec-
tive pairs of axes, as shown. Then,

Iy =1, co8? ¢ + Ixs§nzc + lysin2c

Iy =Ico?c+ I, sin?c — I, sin2c

=1
ro— X Y o
Iy 5 sin 2c + 1, cos2c

Principal Moments of Inertia In every plane area, a given point
being taken asthe origin, thereis at least one pair of rectangular axesin

Fig. 3.1.31 Fig. 3.1.32
the plane of the area about one of which the moment of inertiais a
maximum, and a minimum about the other. These moments of inertia
are called the principal moments of inertia, and the axes about which they
are taken are the principal axes of inertia. One of the conditions for
principal moments of inertia s that the product of inertial,, shall equal
zero. Axes of symmetry of an area are always principa axes of inertia.
Relation between Products of Inertia and Parallel Axes In[Eigl
BI33, XX, and Y,Y, pass through the center of gravity of the area
parallel to the given axes XX and YY. If I, is the product of inertia for

XXand YY, and I, that for XX, and YoYo, then I, = 1, + abA.

X ot P x,

Fig. 3.1.33

Mohr’s Circle The principal moments of inertia and the location of
the principal axes of inertia for any point of a plane area may be estab-
lished graphically as follows.

Given at any point A of a plane area (EIg—3.1.34), the moments of
inertial, and 1, about axes X and Y, and the product of inertial,, relative
to X and Y. The graph shown in is plotted on rectangular
coordinates with moments of inertia as abscissas and products of inertia

b

AN VAT

" XJ gf
{a) (p)

asordinates. Lay out Oa = |, and ab = I, (upward for positive products
of inertia, downward for negative). Lay out Oc = I, and cd = negative
of 1,,. Draw a circle with bd as diameter. This is Mohr’s circle. The
maximummoment of inertiaisl, = Of; theminimummoment of inertiais
I, = Og. The principal axes of inertia are located as follows. From axis
AX (EHQ3T34h) lay out angular distance 0 = ¥> < bef. This locates
axisAX', oneprincipal axis(l, = Of ). The other principal axisof inertia
is AY’, perpendicular to AX' (I, = Og).

The moment of inertia of any area may be considered to be made up of
the sum or difference of the known moments of inertia of simple fig-

Fig. 3.1.34



ures. For example, the dimensioned figure shown inrepre
sents the section of a rolled shape with hole oprs and may be divided
into the semicircle abc, rectangle edkg, and triangles mfg and hkl, from
which the rectangle oprs is to be subtracted. Referring to axis XX,

|« = 744/8 for semicircle abc = (2 X 113)/3 for rectangle edkg
2[(5 X 38)/36 + 1045 x 3)/2] for the two triangles mfg
and hkl

From the sum of these there is to be subtracted I,, = [(2 X 3?)/
12 + 4%(2 x 3)] for the rectangle oprs.

If the moment of inertia of the
whole area is required about an axis
paralel to XX, but passing through
the center of gravity of the whole
area, |y = | — X3A, where x, = dis-
tance from XX to center of gravity.
The moments of inertia of built-up sec-
tions used in structural work may be
found in the same manner, the mo-
ments of inertia of the different rolled
sections being given in Sec. 12.2.

Moments of Inertia of Solids  For moments of inertia of solids about
paralel axes, I, = 1y + x3m.

Moment of Inertia with Reference to Any Axis Let amass particle
dm of abody have x, y, and z as coordinates, XX, YY, and ZZ being the
coordinate axes and O the origin. Let X' X’ be any axis passing through
the origin and making angles of A, B, and C with XX, YY, and ZZ,
respectively. The moment of inertia with respect to this axis then be-
comes equal to

I, = cos? Af(y2 + z2) dm + cos? Bf(z2 + x2) dm

+ cos? Cf(x2 + y2) dm — 2 cos B cos Cfyz dm
— 2 cos C cos Afzx dm — 2 cos A cos Bfxy dm

Fig. 3.1.35

Let the moment of inertia about XX = I, = [(y2 + z2) dm, about
YY =1, = [(z2 + x2) dm, and about ZZ = |, = [(x2 + y?) dm. Let the
products of inertia about the three coordinate axes be

ly, = Jyzdm ly = Jxydm
Then the moment of inertia |, becomes equal to

Iycos? A+ I,co8? B + 1,082 C — 2I,, cos B cosC — 2l
cosCcosA — 2l,, cos A cos B

I = Jzxdm

The moment of inertia of any solid may be considered to be made up
of the sum or difference of the moments of inertia of simple solids of
which the moments of inertia are known.

Moments of Inertia of Important Solids
(Homogeneous)

m = w/g = mass per unit of volume of the body
M = W/g = total mass of body

r = radius

I = moment of inertia (mass units)
l, = | X g = moment of inertia (weight units)

Solid circular cylinder about its axis. | = #r4ma/2 = Mr?/2.
(a = length of axis of cylinder.)

Solid circular cylinder about an axis through the center of gravity and
perpendicular to axis of cylinder: | = M[r2 + (a?3)]/4.

Hollow circular cylinder about its axis: | = #ma(r$ — r4)/2. (r, and
r, = outer and inner radii; a = length.)

Thin hollow circular cylinder about its axis: | = Mr2.

Solid sphere about a diameter: | = 8marr5/15 = 2Mr /5.

Thin hollow sphere about a diameter: | = 2Mr?/3.

Thick hollow sphere about adiameter: | = 8mar(r3 — r3)/15. (r, andr,
are outer and inner radii.)

Rectangular prism about an axis through center of gravity and perpen-
dicular to aface whose dimensions are a and b: | = M(a2 + b?)/12.

MOMENT OF INERTIA 3-9

Solid right circular cone about an axis through its apex and perpendic-
ular toitsaxis: | = 3M[(r%/4) + h?/5. (h = altitude of cone, r = radius
of base.)

Solid right circular cone about its axis of revolution; | = 3Mr2/10.

Ellipsoid with semiaxes a, b, and c: | about diameter 2c (z axis) =
dmmabc (a? + b?)/15. [Equation of ellipsoid: (x¥a?) + (y3b?) +
(z%c?) = 1]

Ring with Circular Sectionm ly = Yomm?Ra?(4R? +
3a?); |, = mm?RagR? + (5a2/4)].

20, ¥ R
G0 EFR
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Fig. 3.1.36 Fig. 3.1.37

Approximate Moments of Inertia of Solids In order to determine
the moment of inertia of a solid, it is necessary to know all its dimen-
sions. In the case of arod of mass M [EIg—3.1.37) and length I, with
shape and size of the cross section unknown, making the approximation
that the weight isall concentrated along the axis of the rod, the moment

|
of inertia about YY will bel,, = j (M/1)x2 dx = MI? 3.
0
A thin plate may be treated in the same way (EIg—31.39): |, =
|
f (M/1)x2 dx. Here the mass of the plate is assumed concentrated at its

0
middle layer.

Thin Ring, or Cylinder m Assume themass M of thering or
cylinder to be concentrated at a distance r from O. The moment of
inertia about an axis through O perpendicular to plane of ring or along
the axis of the cylinder will be | = Mr?; this will be greater than the
exact moment of inertia, and r is sometimes taken as the distance from
O to the center of gravity of the cross section of the rim.

Y

Fig. 3.1.38 Fig. 3.1.39

Flywheel Effect The moment of inertia of a solid is often called
flywheel effect in the solution of problems dealing with rotating bodies,
and isusually expressed in Ib - ft2 (1,,).

Graphical Determination of the Centroids and Moments of Inertia
of Plane Areas Required to find the center of gravity of the area MNP
and its moment of inertia about any axis XX.

Draw any line SS parallel to XX and at a distance d from it. Draw a
number of lines such as AB and EF across the figure parallel to XX.
From E and F draw ER and FT perpendicular to SS. Select asapole any

Fig. 3.1.40
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point on XX, preferably the point nearest the area, and draw OR and OT,
cutting EF at E’' and F'. If the same construction is repeated, using other
lines parallel to XX, a number of points will be obtained, which, if
connected by a smooth curve, will givetheareaM'N’P’. Project E’ and
F’ onto SShy linesE’'R" and F'T'. Join F" and T" with O, obtaining E”
and F"’; connect the points obtained using other lines parallel to XX and
obtainanareaM”’N"”P"”. TheareaM’'N'P’ X d = moment of area MNP
about theline XX, and the distance from XX to the centroid MNP = area
M'N’P’ X d/areaMNP. Also, areaM”N"P" X d? = moment of inertia
of MNP about XX. TheareasM’N’P’ and M”’N""P"’ can best be obtained
by use of a planimeter.

KINEMATICS

Kinematics is the study of the motion of bodies without reference to the
forces causing that motion or the mass of the bodies.

The displacement of a point is the directed distance that a point has
moved on a geometric path from a convenient origin. It is a vector,
having both magnitude and direction, and is subject to al the laws and
characteristics attributed to vectors. In[Elg—3.T.4T] the displacement of
the point A from the origin O isthe directed distance O to A, symbolized
by the vector s.

The velocity of a point is the time rate of change of displacement, or
v = dd/dt.

The acceleration of a point is the time rate of change of velocity, or
a = dv/dt.

Fig. 3.1.41

The kinematic definitions of velocity and acceleration involve the
four variables, displacement, velocity, acceleration, and time. If we
eliminate the variable of time, a third equation of motion is obtained,
ds/v = dt = dv/a. This differential equation, together with the defini-
tions of velocity and acceleration, make up the three kinematic equa-
tions of mation, v = ds/dt, a = dv/dt, and a ds = v dv. These differential
equations are usualy limited to the scalar form when expressed to-
gether, since the last can only be properly expressed in terms of the
scalar dt. Thefirst two, since they are definitions for velocity and accel-
eration, are vector equations.

A space-time curve offers a convenient means for the study of the
motion of a point. The slope of the curve at any point will represent the
velocity at that time. In EIg—3 1424 the slope is congtant, asthe graphis
a straight line; the velocity is therefore uniform. In[Elg—3142b the
slope of the curve varies from point to point, and the velocity must also
vary. At p and g the slope is zero; therefore, the velocity of the point at
the corresponding times must also be zero.

Space
> Space

Fig. 3.1.42

A velocity-time curve offers a convenient meansfor the study of accel-
eration. The slope of the curve at any point will represent the acceleration
at that time. In the slope is constant; so the acceleration
must be constant. In the case represented by the full line, the accelera-
tion is positive; so the velocity is increasing. The dotted line shows a
negative acceleration and therefore a decreasing velocity. In[Egl

the slope of the curve varies from point to point; so the acceler-
ation must also vary. At p and g the slope is zero; therefore, the acceler-
ation of the point at the corresponding times must also be zero. The area
under the velocity-time curve between any two ordinates such as NL
and HT will represent the distancemoved intimeinterval LT. Inthe case
of the uniformly accelerated motion shown by the full line in[ELd
BT43d, thearea LNHT is ¥%2(NL + HT) X (OT — OL) = mean velocity
multiplied by the time interval = space passed over during this time
interval. In mme mean velocity can be obtained from the
equation of the curve by means of the calculus, or graphically by ap-
proximation of the area.

Z‘Y EY p
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g) N % NP\H
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Fig. 3.1.43

An acceleration-time curvd {Eig_314%) may be constructed by plot-
ting accelerations as ordinates, and times as abscissas. The area under
this curve between any two ordinates will represent the total increasein
velocity during the time interval. The area ABCD represents the total
increase in velocity between time t; and time t,.

General Expressions Showing the Relations
between Space, Time, Velocity, and
Acceleration for Rectilinear Motion

SPECIAL MOTIONS

Uniform Motion If the velocity is constant, the acceleration must be
zero, and the point has uniform motion. The space-time curve becomesa
straight line inclined toward the time axiE{EIg_3.132a). The velocity-
time curve becomes a straight line parallel to the time axis. For this
motiona = 0, v = constant, and s = 5, + MVt

Uniformly Accelerated or Retarded Motion |f the velocity is not
uniform but the acceleration is constant, the point has uniformly acceler-
ated motion; the acceleration may be either positive or negative. The
space-time curve becomes a parabola and the velocity-time curve be-
comes a straight line inclined toward the time axis (EIQ—3.1.434). The
acceleration-time curve becomes a straight line parallel to thetime axis.
For thismotion a = constant, v = v, + at, s = § + Vot + Yzat2

If the point starts from rest, v, = 0. Care should be taken concerning
the sign + or — for acceleration.

Composition and Resolution of Velocities
and Acceleration

Resultant Velocity A velocity issaid to be the resultant of two other
velocitieswhen it is represented by a vector that isthe geometric sum of
the vectors representing the other two velocities. This is the parallelo-
gram of motion. In[Eig—3T45] v is the resultant of v, and v, and is
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represented by the diagonal of a parallelogram of which v, and v, are
the sides; or it is the third side of atriangle of which v, and v, are the
other two sides.

Polygon of Motion The parallelogram of motion may be extended
to the polygon of motion. Let vy, V,, Vg, vV, (BIQ—3.1463) show the
directions of four velocitiesimparted in the same plane to point O. If the
linesv,, Vs, Vg, v, (HIG_3.1.46D) are drawn parallel to and proportional
to the velocities imparted to point O, v will represent the resultant
velocity imparted to O. It will make no difference in what order the
velocities are taken in constructing the motion polygon. Aslong as the
arrows showing the direction of the motion follow each other in order
about the polygon, the resultant velocity of the point will be represented
in magnitude by the closing side of the polygon, but opposite in direc-
tion.

Fig. 3.1.46

Resolution of Velocities Velocitiesmay be resolved into component
velocities in the same plane, as shown by[EIg—3T47] L et the velocity of
point O bev,. ITEg-3T4¥a this velocity is resolved into two compo-
nents in the same plane as v, and at right angles to each other.

Ve = V()2 + (v)?

In[Eg=3T47b the components are in the same plane asv,, but are not at
right angles to each other. In this case,

Vv, = V(vy)?2 + (V,)2 + 2v,v, cos B

If the components v, and v, and angle B are known, the direction of v,
can be determined. sin bOc = (v,/v;) sin B. sin cOa = (v,/v;) sin B.
Where v, and v, are at right angles to each other, sin B = 1.

Fig. 3.1.47

Resultant Acceleration Accelerations may be combined and re-
solved in the same manner as velocities, but in this case the lines or
vectors represent accelerations instead of velocities. If the acceleration
had components of magnitude a, and a,, the magnitude of the resultant
acceleration would be a = V(a,)? + (a,)2 + 2a,a, cos B, where B is
the angle between the vectors a, and a,.

Curvilinear Motion in a Plane

Thelinear velocity v = ds/dt of apointin curvilinear motion isthe same
asfor rectilinear motion. Itsdirection is tangent to the path of the point.
InEQ—3T28a, let P,P,P; be the path of amoving pointand V4, V,, V5
represent its velocity at points Py, P,, P3, respectively. If Oistakenasa
pole[F1a_3:TZ8b) and vectors V4, V,, V3 representing the vel ocities of
the point at P, P,, and P; are drawn, the curve connecting the terminal
points of these vectors is known as the hodograph of the motion. This
velocity diagram is applicable only to motions all in the same plane.
Acceleration Tangents to the clIiETEIG—3.1.48b) indicate the di-
rections of theinstantaneous velocities. The direction of the tangents does
not, as arule, coincide with the direction of the accelerations as repre-
sented by tangents to the path. If the acceleration a at some point in the
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path is resolved by means of a parallelogram into components tangent
and norma to the path, the normal acceleration a, = v2/p, where
p = radius of curvature of the path at the point in question, and the
tangential acceleration a, = dv/dt, where v = velocity tangent to the
path at the same point. a = vaZ + a2 The normal acceleration is con-
stantly directed toward the center of the path.

{a) (b}
Fig. 3.1.48

ExampLE. [Eigure 3.1.49 shows a point moving in a curvilinear path. At p,
the velocity isv, ; at p, thevelocity isv,. If these velocities are drawn from pole O
(Elg31490), Av will be the difference between v, and v,. The acceleration
during travel p,p, will be Av/At, where Atisthe timeinterval. The approximation
becomes closer to instantaneous acceleration as shorter intervals At are employed.

(a) (b)
Fig. 3.1.49

The acceleration Av/At can be resolved into normal and tangential components
leading to &, = Av,,/At, normal to the path, and a, = Av,,/At, tangential to the path.

Velocity and acceleration may be expressed in polar coordinates such

that v = W2+ V2 and a = Va2 + a3.[Eigure 3150Imay be used to
explain the r and 6 coordinates.

EXAMPLE. At P, thevelocity isv,, with componentsv;, inther direction and
Vi, in the 6 direction. At P, the velocity is v,, with components v, in the r
directionand v,,inthe fdirection. It isevident that thedifferenceinvelocitiesv, —
v, = Av will have components Av, and Av,, giving rise to accelerations a, and a,
inatimeinterval At.

In polar coordinates, v, = dr/dt, a, = d?r/dt? — r(dé/dt)?, v, =
r(de/dt), and a, = r(d26/dt?) + 2(dr/dt)(d6/dt).

If a point P moves on a circular path of radius r with an angular
velocity of w and an angular acceleration of «, the linear velocity of the
point Pisv = «r and the two components of the linear acceleration are
a, = Vir = wr =vewanda, = ar.

If the angular velocity is constant, the point P travels equal circular
paths in equal intervals of time. The projected displacement, velocity,
and acceleration of the point P on the x and y axes are sinusoidal func-
tions of time, and the motion is said to be harmonic motion. Angular
velocity is usually expressed in radians per second, and when the num-
ber (N) of revolutions traversed per minute (r/min) by the point P is
known, the angular velocity of theradiusr isw = 277N/60 = 0.10472N.
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Fig. 3.1.50

In[Elg=3TH1 let the angular velocity of the line OP be aconstant w. Let
the point P start at X" and moveto P intimet. Thentheangle 6 = wt. If
OP=r,XA=r—OA=r —rcoswt=s. Thevelocity V of the point A
onthex axiswill equal ds/dt = wr sin wt, and the acceleration a = dv/dt
— w?r cos wt. The period 7 is the time necessary for the point P to
complete one cycle of motion 7 = 2#/w, and it is also equal to the time
necessary for A to complete afull cycle on the x axis from X' to X and
return.

Curvilinear Motion in Space

If three dimensions are used, velocities and accelerations may be
resolved into components not in the same plane by what is known
as the parallelepiped of motion. Three coordinate systems are widely
used, cartesian, cylindrical, and spherical. In cartesian coordinates, v =
W2+ v2+vZ2and a = Va2 + a2 + a2 In cylindrical coordinates, the
radius vector R of displacement liesin therz plane, whichisat an angle
with the xz plane. Referring to (a) of [EIg—3.1.52] the 6 coordinate is
perpendicular to the rz plane. In this system v = V2 + V2 + v2 and
a = Vaz+ a3 + azwhere v, = dr/dt, a, = d?r/dt2 — r(d6/dt)?, v, =
r(de/dt), and a, = r(d26/dt?) + 2(dr/dt)(dé/dt). In spherical coordinates,
the three coordinates are the R coordinate, the 6 coordinate, and the ¢
coordinate as in (b) of [Eig._3.1.52] The velocity and acceleration are
v=Wg+Vvi+Vv3 and a = Vai + aj + a3, where vg = dR/dt,
vy = R(dg/dt), v, = R cos ¢(do/dt), azr = d?R/dt? — R(d¢/dt)? —
R cos? ¢(do/dt)?, a, = R(d?¢/dt?) + R cos ¢ sin ¢ (do/dt)? +
2(dR/dt)(d¢p/dt), and a, = R cos ¢ (d?6/dt?) + 2[(dR/dt) cos ¢ —
Rsin ¢ (d¢/dt)] dé/dt.

X

(b) Spherical
coordinates

(a) Cylindrical
coordinates

Fig. 3.1.52

Motion of Rigid Bodies

A body is said to berigid when the distances between all its particles are
invariable. Theoreticaly, rigid bodies do not exist, but materialsused in
engineering are rigid under most practical working conditions. The mo-
tion of arigid body can be completely described by knowing the angular
motion of aline on therigid body and the linear motion of a point on this

line and relating the motion of all other parts of the rigid body to these
motions. If arigid body moves so that astraight line connecting any two
of its particles remains parallel to its original position at all times, it is
said to have transation. In rectilinear trandation, al points move in
straight lines. In curvilinear trandation, al points move on congruent
curves but without rotation. Rotation is defined as angular motion about
an axis, which may or may not be fixed. Rigid body motion in which the
paths of all particles lie on parallel planesis called plane motion.

Angular Motion

Angular displacement is the change in angular position of agiven line as
measured from a convenient reference line. INE[g—3.1.53] consider the
motion of the line AB as it moves from its original position A'B’. The
angle between lines AB and A’B’ isthe angular displacement of line AB,
symbolized as 6. It is a directed quantity and is a vector. The usual
notation used to designate angular displacement is a vector normal to

z

Fig. 3.1.53

the plane in which the angular displacement occurs. The length of the
vector is proportiona to the magnitude of the angular displacement. For
arigid body moving in three dimensions, the line AB may have angular
motion about any three orthogonal axes. For example, the angular
displacement can be described in cartesian coordinates as 6 =
0+ 6, + 0,, where 6 = V62 + 63 + 62.

Angular velocity is defined as the time rate of change of angular
displacement, » = dé/dt. Angular velocity may also have components
about any three orthogonal axes.

Angular acceleration is defined as the time rate of change of angular
velocity, @ = de/dt = d26dt2. Angular acceleration may also have
components about any three orthogonal axes.

The kinematic equations of angular motion of aline are analogous to
those for the motion of a point. In referring toMANE 311, » = dé/dt
a = do/dt, and « df = w dw. Substitute 6 for s,  for v, and « for a.

Motion of a Rigid Body in a Plane

Plane motion is the motion of a rigid body such that the paths of all
particles of that rigid body lie on parallel planes.




KINEMATICS 3-13
Table 3.1.1
Variables s=f(t) v = f(t) a=f(t) a=f(sv)
t t [t v
Displacement s:so-%-J'vdt s:so-%—ffadtdt s:sg-*-J' (v/a) av
to to Jto Vo
t N S
v:v0+fadt fvdv=f ads
Velocity v = ds/dt to Vo s
Acceleration a = d2/dt? a = dv/dt a = vdv/ds

Instantaneous Axis When the axis about which any body may be
considered to rotate changes its position, any one position is known as
an instantaneous axis, and the line through all positions of the instanta-
neous axis as the centrode.

When the velocity of two points in the same plane of arigid body
having plane motion is known, the instantaneous axis for the body will
be at the intersection of the lines drawn from each point and perpendic-
ular to its velocity. SedFIg-3.1.54, in which A and B are two points on
therod AB, v, and v, representing their velocities. O istheinstantaneous
axisfor AB; therefore point C will have velocity shown in aline perpen-
dicular to OC.

Linear velocities of points in a body rotating about an instantaneous
axis are proportiona to their distances from this axis. In[EQ_3.154]
V;:V,:Vv3 = AO:OB:OC. If the velocities of A and B were parallel, the
lines OA and OB would also be parallel and there would be no instanta-
neous axis. The motion of the rod would be trandation, and all points
would be moving with the same velocity in parallel straight lines.

If a body has plane motion, the components of the velocities of any two
points in the body along the straight line joining them must be equal. AX
must be equal to By and Czin|

EXAMPLE. In m the velocities of points A and B are known—they
are v, and v,, respectively. To find the instantaneous axis of the body, perpendic-
ulars AO and BO are drawn. O, at the intersection of the perpendiculars, is the
instantaneous axis of the body. To find the velocity of any other point, like C,
line OC is drawn and v; erected perpendicular to OC with magnitude equal to v,
(CO/AQ). The angular velocity of the body will be w = v3/AO or v,/BO or v5/CO.
The instantaneous axis of awheel rolling on arack without slipping (EIg—3-L55b)
lies at the point of contact O, which has zero linear velocity. All points of the
wheel will have velocities perpendicular to radii to O and proportional in magni-
tudes to their respective distances from O.

Another way to describe the plane motion of arigid body is with the
use of relative motion. In[EIQ-_3-L.56] the velocity of point Aisv,. The
angular velocity of the line AB isv,/r 5. The velocity of B relativeto A
IS wag X Iag. Point B is considered to be moving on a circular path
around A as a center. The direction of relative velocity of B to A would
be tangent to the circular path in the direction that wag would make B
move. The velocity of B is the vector sum of the velocity A added to the
velocity of B relative to A, vg = Va + Vgja.

The acceleration of B is the vector sum of the acceleration of A added
totheacceleration of Brelativeto A, ag = a, + ag,. Caremust betaken
0Oto include the complete relative acceleration of B to A. If B is consid-
ered to move on acircular path about A, with avelocity relativeto A, it
will have an acceleration relative to A that has both normal and tangen-

tial components: ag;a = (ag/a)n + (@/a):-

Fig. 3.1.54 Fig. 3.1.55

(b) Relative acceleration

Fig. 3.1.56

If Bisapoint on a path which lies on the samerigid body astheline
AB, aparticle P traveling on the path will have avelocity v at the instant
P passes over point B such that Vo = v, + Vga + Vpg, Where the
velocity vpg is the velocity of P relative to path B.

The particle P will have an acceleration a at theinstant P passes over
the point B such that ap = @ + agja + @pg + 2wag X V. Theterm
ap, g isthe acceleration of P relative to the path at point B. The last term
2wpg Vg isfrequently referred to asthe coriolis acceleration. The direc-
tion is always normal to the path in a sense which would rotate the head
of the vector vp,g about itstail in the direction of the angular velocity of
therigid body wpg.

EXAMPLE. Im arm AB isrotating counterclockwise about Awith a
constant angular velocity of 38 r/min or 4 rad/s, and the slider moves outward
with a velocity of 10 ft/s (3.05 m/s). At an instant when the slider P is 30 in
(0.76 m) from the center A, the acceleration of the slider will have two compo-
nents. One component is the normal acceleration directed toward the center A. Its
magnitude is w?r = 4?2 (30/12) = 40 ft/s? [w?r = 4?2 (0.76) = 12.2 m/s¥]. The
second is the coriolis acceleration directed normal to the arm AB, upward and to
theleft. Itsmagnitudeis 2wv = 2(4)(10) = 80 ft/s? [2wv = 2(4)(3.05) = 24.4 m/s7].

N

%:,B =10 fps

(3.05m/s)

Fig. 3.1.57

General Motion of a Rigid Body

The general motion of a point moving in a coordinate system which is
itself in motion is complicated and can best be summarized by using
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vector notation. Referring tdFIg3.1.58] let the point P be displaced a
vector distance R from the origin O of amoving reference framex, y, z
which has avelocity v, and an acceleration a,. If point P has avelocity
and an acceleration relative to the moving reference plane, let these be
v, and a,. The angular velocity of the moving reference fameis w, and

Fig. 3.1.58

the origin of the moving reference frame is displaced a vector distance
R, from the origin of a primary (fixed) reference frame X, Y, Z. The
velocity and accelerationof Parevp = vy + o X R + v, andap = a, +
(do/dt) X R + @ X (0 X R) + 20 X v, + a,.

DYNAMICS OF PARTICLES

Consider a particle of mass m subjected to the action of forces F,, F»,
Fs, . . ., whose vector resultant is R = XF. According to Newton's
first law of motion, if R = 0, the body is acted on by a balanced force
system, and it will either remain at rest or move uniformly in a straight
line. If R # 0, Newton’s second law of motion states that the body will
accelerate in the direction of and proportional to the magnitude of the
resultant R. This may be expressed as XF = ma. If the resultant of the
force system has components in the x, y, and z directions, the resultant
acceleration will have proportional componentsin the x, y, and z direc-
tion so that F, = ma,, F, = ma,, and F, = ma,. If the resultant of the
force system varies with time, the acceleration will also vary with time.

In rectilinear motion, the acceleration and the direction of the unbal-
anced force must be in the direction of motion. Forces must bein balance
and the acceleration equal to zeroin any direction other than the direction of
motion.

EXAMPLE 1. The body in[Fig-3.T59 has a mass of 90 Ibm (40.8 kg) and is
subjected to an external horizontal force of 36 Ibf (160 N) applied in the direction
shown. The coefficient of friction between the body and the inclined planeis 0.1.
Required, the velocity of the body at the end of 5 s, if it starts from rest.

Fig. 3.1.59

First determine al the forces acting externally on the body. These are the ap-
plied force F = 36 Ibf (106 N), the weight W = 90 Ibf (400 N), and the force with
which the plane reacts on the body. The latter force can be resolved into compo-
nent forces, one normal and one parallel to the surface of the plane. Motion will be
downward along the plane since a static analysiswill show that the body will slide
downward unless the static coefficient of friction is greater than 0.269. In the
direction norma to the surface of the plane, the forces must be balanced. The
normal force is (3/5)(36) + (4/5)(90) = 93.6 Ibf (416 N). The frictional forceis
93.6 X 0.1 = 9.36 Ibf (41.6 N). The unbalanced force acting on the body aong the

plane is (3/5)(90) — (4/5)(36) — 9.36 = 15.84Ibf (70.46 N) downward.
F = (W/9) a = (90/g) a; therefore, a = 0.176 g = 56.6 ft/s? (1.725 m/s?). In SI
units, F = ma = 70.46 = 40.8a; and a = 1.725 m/s?. The body is acted upon by

5

constant forces and starts from rest; therefore, v = f adt, and at theend of 5,
0

the velocity would be 28.35 ft/s (8.91 m/s).

ExAMPLE 2. Theforcewith which arope actson abody isequal and opposite
to the force with which the body acts on the rope, and each is equal to thetension
in the rope. In[EIQ—3-L60a, neglecting the weight of the pulley and the rope, the
tension in the cord must be the force of 27 Ibf. For the 18-Ib mass, the unbalanced
forceis 27 — 18 = 9 Ibf in the upward direction, i.e., 27 — 18 = (18/g)a, and
a = 16.1 ft/s? upward. ITEIG_3.L60b the 27-1b force is replaced by a 27-1b mass.
Theunbalanced forceisstill 27 — 18 = 9 Ibf, but it now acts on two masses so that
27 — 18 = (45/g) and a = 6.44 ft/s?. The 18-lb mass is accelerated upward, and
the 27-Ib mass is accelerated downward. The tension in the rope is equal to 18 Ibf
plus the unbalanced force necessary to give it an upward acceleration of g/5 or T
= 18 + (18/g)(9/5) = 21.6 Ibf. The tension is aso equal to 27 Ibf less the unbal-
anced force necessary to give it a downward acceleration of g/5 or T =
27 — (27/g) X (g/5) = 21.6 Ibf.

o ||

{120N)  4g1bm
(816 kg)

271bm 18lbm
(12.24 kg) (8.16 kg)

{a) {b)
Fig. 3.1.60

In SI units, inFig. 3.1.604, the unbalanced force is 120 — 80 = 40 N, in the
upward direction, i.e., 120 — 80 = 8.16a, and a = 4.9 m/s? (16.1 ft/s?). In[Eg]
the unbalanced forceis still 40 N, but it now acts on the two masses so that
120 — 80 = 20.4a and a = 1.96 m/s? (6.44 ft/s?). The tension in the rope is the
weight of the 8.16-kg massin newtons plus the unbalanced force necessary to give
it an upward acceleration of 1.96 m/s?, T = 9.807(8.16) + (8.16)(1.96) = 96 N
(21.6 Ibf).

General Formulas for the Motion of a Body

under the Action of a Constant Unbalanced

Force

Let s = space, ft; a = acceleration, ft/s?; v = velocity, ft/s; v, = initial
velocity, ft/s; h = height, ft; F = force; m = mass;, w = weight;
g = acceleration due to gravity.

Initial velocity = 0
F = ma = (w/g)a

v =at
s = Yat? = Yomt
v =2as

= V2gh (falling freely from rest)

Initial velocity = v
F = ma = (w/g)a
V=\,+at
s= Vot + Y2at2 = Yoyt + Yout

If abody isto be moved in astraight line by aforce, theline of action
of this force must pass through its center of gravity.

General Rule for the Solution of Problems
When the Forces Are Constant in Magnitude
and Direction

Resolve al the forces acting on the body into two components, one in
the direction of the body’s motion and one at right anglesto it. Add the



components in the direction of the body’s motion algebraically and find
the unbalanced force, if any exists.

In curvilinear motion, a particle moves along a curved path, and the
resultant of the unbalanced force system may have components in di-
rections other than the direction of motion. The acceleration in any given
direction is proportional to the component of the resultant in that direction.
It is common to utilize orthogonal coordinate systems such as cartesian
coordinates, polar coordinates, and normal and tangential coordinates in
analyzing forces and accelerations.

EXAMPLE. A conica pendulum consists of aweight suspended from a cord
or light rod and made to rotate in a horizontal circle about a vertical axis with a
constant angular velocity of N r/min. For any given constant speed of rotation, the
angle 6, the radius r, and the height h will have fixed values. Looking at Fig.
3.1.61, we see that the forces in the vertical direction must be balanced, T cos
6 = w. The forces in the direction normal to the circular path of rotation are
unbalanced such that T sin 6 = (w/g)a,, = (W/g)w?r. Substitutingr = | sin §inthis
last equation gives the value of the tension in the cord T = (w/g)l w?. Dividing the
second equation by the first and substituting tan 6 = r/h yields the additiona
relation that h = g/w?.
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Fig. 3.1.61

An unresisted projectile has a motion compounded of the vertical
motion of afalling body, and of the horizontal motion due to the hori-
zontal component of the velocity of projection. In Fig. 3.1.62 the only
force acting after the projectile startsis gravity, which causes an accel-
erating downward. The horizontal component of the original velocity v,
is not changed by gravity. The projectile will rise until the velocity
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Fig. 3.1.62

given to it by gravity is equal to the vertical component of the starting
velocity vy, and the equation v, sin 6 = gt gives the time t required to
reach the highest point in the curve. The same time will be taken in
falling if the surface XX is level, and the projectile will therefore be in
flight 2t s. The distance s = v, cos 6 X 2t, and the maximum height of
ascent h = (v, sin 60)%/2g. The expressions for the coordinates of
any point on the path of the projectile are: x = (v, cos 6)t, and y =
(VoSin B)t — ¥2gt?, givingy = X tan 0 — (gx? 2v3 cos? 6) asthe equation
for the curve of the path. The radius of curvature of the highest point
may be found by using the general expressionv2 = gr and solving for r,
v being taken equal to v, cos 6. -

Simple Pendulum The period of oscillation = = = 27 Vl/g, where |
is the length of the pendulum and the length of the swing is not great
compared to |.

Centrifugal and Centripetal Forces When abody revolves about an
axis, some connection must exist capable of applying force enough to
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the body to constantly deviate it toward the axis. This deviating forceis
known as centripetal force. The equal and opposite resistance offered
by the body to the connection is called the centrifugal force. The accel-
eration toward the axis necessary to keep a particle moving in a circle
about that axis is v/r; therefore, the force necessary is ma = mv/r =
wv3/gr = war2N2r/900g, where N = r/min. This force is constantly
directed toward the axis.

The centrifugal force of a solid body revolving about an axisisthe sameas
if the whole mass of the body were concentrated at its center of gravity.
Centrifugal force = ww2/gr = mv/r = ww?r/g, where w and m are the
weight and mass of the whole body, r is the distance from the axis about
which the body is rotating to the center of gravity of the body, » the
angular velocity of the body about the axis in radians, and v the linear
velocity of the center of gravity of the body.

Balancing

A rotating body is said to be in standing balance when its center of
gravity coincideswith the axis uponwhich it revolves. Standing balance
may be obtained by resting the axis carrying the body upon two hori-
zontal plane surfaces, asin Fig. 3.1.63. If the center of gravity of the
wheel A coincides with the center of the shaft B, there will be no move-
ment, but if the center of gravity does not coincide with the center of the
shaft, the shaft will roll until the center of gravity of the wheel comes

L2 ol

L

Fig. 3.1.63

directly under the center of the shaft. The center of gravity may be
brought to the center of the shaft by adding or taking away weight at
proper points on the diameter passing through the center of gravity and
the center of the shaft. Weights may be added to or subtracted from any
part of the wheel so long asits center of gravity is brought to the center
of the shaft.

A rotating body may be in standing balance and not in dynamic bal-
ance. In Fig. 3.1.64, AA and BB are two disks whose centers of gravity
are at 0 and p, respectively. The shaft and the disks are in standing
balance if the disks are of the same weight and the distances of 0 and p
from the center of the shaft are equal, and o and p lie in the same axia
plane but on opposite sides of the shaft. Let the weight of each disk bew
and the distances of 0 and p from the center of the shaft each be equal to

!

[

o

| —-—r——4—>J >
5

m[e-el———--]m

Fig. 3.1.64

r. The force exerted on the shaft by AA is equal to ww?r/g, where w
istheangular velocity of the shaft. Also, theforce exerted on the shaft by
BB = ww?r/g. These two equal and opposite parallel forces act at a
distance x apart and constitute a couple with a moment tending to rotate
the shaft, as shown by the arrows, of (ww?r/g)x. A couple cannot be
balanced by a single force; so two forces at least must be added to or
subtracted from the system to get dynamic balance.

Systems of Particles The principles of motion for asingle particle
can be extended to cover a system of particles. In this case, the vector
resultant of all external for cesacting on the system of particlesmust equal the
total mass of the system times the acceleration of the mass center, and the
direction of theresultant must be the direction of the acceler ation of the mass
center. Thisis the principle of motion of the mass center.
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Rotation of Solid Bodies in a Plane about
Fixed Axes

For arigid body revolving in a plane about a fixed axis, the resultant
moment about that axis must be equal to the product of the moment of inertia
(about that axis) and theangular acceleration, =M = la. Thisisageneral
statement which includes the particular case of rotation about an axis
that passes through the center of gravity.

Rotation about an Axis Passing through the Center of Gravity The
rotation of a body about its center of gravity can only be caused or
changed by acouple. See Fig. 3.1.65. If asingleforce F isapplied to the
wheel, the axis immediately acts on the wheel with an equal force to
prevent translation, and the result is a couple (moment Fr) acting on the
body and causing rotation about its center of gravity.

Fig. 3.1.65

General formulas for rotation of a body about a fixed axis through the
center of gravity, if a constant unbalanced moment is applied (Fig.
3.1.65).

Let 6 = angular displacement, rad; » = angular velocity, rad/s,
a = angular acceleration, rad/s*, M = unbalanced moment, ft - Ib;
| = moment of inertia (mass); g = acceleration due to gravity; t = time
of application of M.

Initial angular velocity = 0 Initial angular velocity = w,

M= la M= la
0 = Yoat? 0 = wot + Yoat?
o = V2a0 » = Vi + 2a0

General Rule for Rotating Bodies Determineall the external forces
acting and their moments about the axis of rotation. If these moments
are balanced, there will be no change of motion. If the moments are
unbalanced, this unbalanced moment, or torque, will cause an angular
acceleration about the axis.

Rotation about an Axis Not Passing through the Center of Gravity
Theresultant force acting on the body must be proportional to the accelera-
tion of the center of gravity and directed alongitsline of action. If the axis of
rotation does not pass through the center of gravity, the center of gravity
will have a resultant acceleration with a component a, = w?r directed
toward the axis of rotation and a component a, = ar tangentia to its
circular path. The resultant force acting on the body must also have two
components, one directed normal and one directed tangential to the path
of the center of gravity. Theline of action of this resultant does not pass
through the center of gravity because of the unbalanced moment My =
loe but a a point Q, asin Fig. 3.1.66. The point of application of this
resultant is known as the center of percussion and may be defined as the
point of application of the resultant of all the forces tending to cause a
body to rotate about a certain axis. It is the point at which a suspended

Fig. 3.1.66

body may be struck without causing any force on the axis passing
through the point of suspension.

Center of Percussion The distance from the axis of suspension to
the center of percussion is gy = I/mx,, where | = moment of inertia
of the body about its axis of suspension to the center of gravity of the
body.

ExAMmPLES. 1. Find the center of percussion of the homogeneous rod (Fig.
3.1.67) of length L and mass m, suspended at XX.

|

qO:m_XO

L L
I(approx):%f X2 dx X ==
0

2

2. Find the center of percussion of a solid cylinder, of mass m, resting on a
horizontal plane. In Fig. 3.1.68, the instantaneous center of the cylinder is at A.
The center of percussion will therefore be a height above the plane equa to
Qo = I/mxy. Sincel = (mr2/2) + mr2and xq = r, gqq = 3r/2.

2 L
'.qozﬁfo x? dx = 2L/3

X r X

90
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Fig. 3.1.68

Fig. 3.1.67

Wheel or Cylinder Rolling down a Plane In thiscase the component
of the weight along the plane tendsto makeit roll down and istreated as
a force causing rotation. The forces acting on the body should be re-
solved into components along the line of motion and perpendicular to it.
If the forces are all known, their resultant is at the center of percussion.
If oneforceisto be determined (the exact conditions asregards slipping
or not slipping must be known), the center of percussion can be deter-
mined and the unknown force found.

Relation between the Center of Percussion and Radius of Gyra-
tion go = I/mxy = k3%, .". k% = x40, where k = radius of gyration.
Therefore, the radius of gyration is a mean proportional between the
distance from the axis of oscillation to the center of percussion and the
distance from the same axis to the center of gravity.

Interchangeability of Center of Percussion and Axis of Oscilla-
tion If abody is suspended from an axis, the center of percussion for
that axis can be found. If the body is suspended from this center of
percussion as an axis, the original axis of suspension will then become
the center of percussion. The center of percussion is sometimes known
as the center of oscillation.

Period of Oscillation of a Compound Pendulum The length of an
equivalent simple pendulum is the distance from the axis of suspension
to the center of percussion of the body in question. To find the period of
oscillation of a body about a given axis, find the distance g, = 1/mxg
from that axis to the center of percussion of the swinging body. The
length of the simple pendulum that will oscillate in the sametimeisthis
distance q,. The period of oscillation for the equivalent single pen-
dulumis r = 27 Vgo/g.

Determination of Moment of Inertia by Experiment To find the
moment of inertia of a body, suspend it from some axis not passing
through the center of gravity and, by swinging it, determine the period
of one complete oscillation in seconds. The known values will then be
7 = time of one complete oscillation, X, = distance from axis to center
of gravity, and m = mass of body. The length of the equivalent simple
pendulum is gy = |/mxy. Substituting this value of gy in 7 = 27 Vqy/g
gives 7 = 27 VI/mx,g, from which 72 = 4721/mxyg, or | = mx,gr?/
472,
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Plane Motion of a Rigid Body

Plane motion may be considered to be a combination of trandlation and
rotation (see ‘‘Kinematics'’). For trangation, Newton’s second law of
motion must always be satisfied, and the resultant of the external force
system must be equal to the product of the mass times the acceleration
of the center of gravity in any system of coordinates. In rotation, the
body moving in plane motion will not have a fixed axis. When the
methods of relative motion are being used, any point on the body may
be used as a reference axis to which the motion of al other points is
referred.

The sum of the moments of all external forces about the reference axis
must be equal to the vector sum of the centroidal moment of inertiatimesthe
angular acceleration and the amount of the resultant force about the refer-
ence axis.

ExAMPLE. Determine the forces acting on the piston pin A and the crankpin
B of the connecting rod of a reciprocating engine shown in Fig. 3.1.69 for a
position of 30° from TDC. The crankshaft speed is constant at 2,000 r/min. As-
sume that the pressure of expanding gases on the 4-Ibm (1.81-kg) piston at this
point is 145 Ib/in? (106 N/m?). The connecting rod has amass of 5 Ibm (2.27 kg)
and has a centroidal radius of gyration of 3in (0.076 m).

The kinematics of the problem are such that the angular velocity of the crank
IS wog = 209.4 rad/s clockwise, the angular velocity of the connecting rod is
wpg = 45.7 rad/s counterclockwise, and the angular acceleration is axg =
5,263 rad/s? clockwise. The linear acceleration of the piston is 7,274 ft/s? in the
direction of the crank. From the free-body diagram of the piston, the horizontal
component of the piston-pin force is 145 X (w/4)(5%) — P = (4/32.2)(7,274),
P = 1,943 Ibf. The acceleration of the center of gravity G isthe vector sum of the
component accelerations ag = ag + alg + ak;p Where alg = wdg - fgg =
3/12(45.7)2 = 522 ft/s? and ak g = agp * Teg = 3/12(5.263) = 1,316 ft/s2. The
resultant acceleration of the center of gravity is 6,685 ft/s? in the x direction and
2,284 ft/s? in the negative y direction. The resultant of the external force system
will have corresponding components such that mag, = (5/32.2)(6,685) = 1,039
Ibf and mag, = (5/32.2)(2,284) = 355 Ibf. The three remaining unknown forces
can be found from the three equations of motion for the connecting rod.

Taking the sum of the forcesin the x direction, eF = mag,; P — R, = mag,, and
R, = 905.4 Ibf. In the y direction, SF = mag,; R, — N = may,; this has
two unknowns, R, and N. Taking the sum of the moments of the external
forces about the center of mass g, ZMg = |AB; (N)(5) cos (7.18°) — (P)(5) sin
(7.18°) + (R))(3) cos (7.18°) — R, (3) sin (7.18°) — (5/386.4)(3)%(5,263). Solving
for R, and N simultaneously, R, = 494.7 Ibf and N = 140 Ibf. We could have
avoided the solution of two simultaneous algebraic equations by taking the mo-
ment summation about end A, which would determine R, independently, or about
end B, which would determine N independently.

In Sl units, the kinematics would be identical, the linear acceleration of the
piston being 2,217 m/s? (7,274 ft/s?). From the free-body diagram of the piston,
the horizontal component of the piston-pin force is (10%) X (#/4)(0.127)? —
P = (1.81)(2,217), and P = 8,640 N. The components of the acceleration of the
center of gravity G are af,g = 522 ft/s? and af;z = 1,315 ft/s?. The resultant
acceleration of the center of gravity is 2,037.5 m/s? (6,685 ft/s?) in the x direc-
tion and 696.3 m/s? (2,284 ft/s?) in the negative y direction. The resultant of the
external force system will have the corresponding components; mag, = (2.27)
(2,037.5) = 4,620 N; mag, = (2.27)(696.3) = 1579 N. R, = 4,027 N, R, =
2,201 N, force N = 623 newtons.

WORK AND ENERGY

Work When a body is displaced against resistance or accelerated,
work must be done upon it. An increment of work is defined as the
product of an incremental displacement and the component of the force

vector in the direction of the displacement or the product of the compo-
nent of theincremental displacement and the forcein thedirection of the
force. dU = F - ds cos «, where « is the angle between the vector
displacement and the vector force. The increment of work done by a
couple M acting in abody during an increment of angular rotation dé in
the plane of the couple isdU = M d#. In a force-displacement or mo-
ment-angle diagram, called awork diagram (Fig. 3.1.70), forceis plotted
as a function of displacement. The area under the curve represents the

s 0
work done, which is equal to f F ds cos a or f M dé.
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Units of Work When the force of 1 Ib acts through the distance of
1ft, 11b - ft of work is done. In Sl units, a force of 1 newton acting
through 1 metreis 1 joule of work. 1.356 N - m = 11b - ft.

Energy A body is said to possess energy when it can do work. A
body may possess this capacity through its position or condition. When a
body is so held that it can do work, if released, it is said to possess
energy of position or potential energy. When abody is moving with some
velocity, it is said to possess energy of motion or kinetic energy. An
example of potential energy is a body held suspended by a rope; the
position of the body is such that if the rope isremoved work can be done
by the body.

Energy is expressed in the same units as work. The kinetic energy of
a particle is expressed by the formula E = ¥2mv2 = Y¥>(w/g)v2. The
kinetic energy of a rigid body in trandation is also expressed as
E = ¥2mv2 Since al particles of therigid body have the same identical
velocity v, the velocity v is the velocity of the center of gravity. The
kinetic energy of arigid body, rotating about afixed axisisE = ¥21yw?,
where |, is the mass moment of inertia about the axis of rotation. In
plane motion, arigid body has both trang ation and rotation. The kinetic
energy is the algebraic sum of the translating kinetic energy of the
center of gravity and the rotating kinetic energy about the center of
gravity, E = ¥2mv2 + %2102 Here the velocity v is the velocity of the
center of gravity, and the moment of inertia | isthe centroidal moment
of inertia.

If aforce which varies acts through a space on a body of mass m, the

work doneisjS F ds, andif thework isall usedin giving kinetic energy

S

to the body it is equal to ¥2m(v3 — V3) = change in kinetic energy, where
V, and v, are the velocities at distances s, and s, respectively. Thisisa
specific statement of the law of conservation of energy. The principle of
conservation of energy requires that the mechanical energy of a system re-
main unchanged if it is subjected only to forces which depend on position or
configuration.
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Certain problems in which the velocity of abody at any point in its
straight-line path when acted upon by varying forces is required can be
easily solved by the use of awork diagram.

In[EIg—31.70] let abody start from rest at A and be acted upon by a
force that varies in accordance with the diagram AFGBA. Let theresis-
tance to motion be a constant force = x. Find the velocity of the body at
point B. The area AFGBA represents the work done upon the body and
the area AEDBA (= force x X distance AB) represents the work that
must be done to overcome resistance. The difference of these areas, or
EFGDE, will represent work done in excess of that required to over-
come resistance, and consequently is equal to the increase in kinetic
energy. Equating the work represented by the area EFGDE to ¥>wv2/g
and solving for v will givethe required velocity at B. If the body did not
start from rest, this area would represent the change in kinetic energy,
and the velocity could be obtained by the formula: Work = ¥2(w/g)
(v — v3), v, being the required velocity.

General Rule for Rectilinear Motion Resolve each force acting on
the body into components, one of which acts along the line of motion of
the body and the other at right anglesto theline of motion. Take the sum
of al the components acting in the direction of the motion and multiply
this sum by the distance moved through for constant forces. (Take the
average force times distance for forces that vary.) This product will be
the total work done upon the body. If there is no unbalanced compo-
nent, there will be no change in kinetic energy and consequently no
change in velocity. If there is an unbalanced component, the changein
kinetic energy will be this unbalanced component multiplied by the
distance moved through.

The work done by a system of forces acting on a body is equal to the
algebraic sum of the work done by each force taken separately.

Power is the rate at which work is performed, or the number of units
of work performed in unit time. In the English engineering system, the
units of power are the horsepower, or 33,000 Ib - ft/min = 5501b - ft/s,
and the kilowatt = 1.341 hp = 737.55 |b - ft/s. In Sl units, the unit of
power is the watt, which is 1 newton-metre per second or 1 joule per
second.

Friction Brake InFig. 3.1.71 a pulley revolves under the band and
in the direction of the arrow, exerting a pull of T on the spring. The
friction of the band on the rim of the pulley is (T — w), where w is the
weight attached to one end of the band. Let the pulley make N r/min;
then the work done per minute against friction by the rim of the pul-
ley is 2#7RN(T — w), and the horsepower absorbed by brake =
27RN(T — w)/33,000.

Fig. 3.1.71

IMPULSE AND MOMENTUM

The product of force and timeis defined aslinear impulse. Theimpulse of a
constant force over atimeinterval t, — t; isF(t, — t;). If theforceisnot
constant in magnitude but is constant in direction, the impulse is

T
j F dt. The dimensions of linear impulse are (force) X (time) in
t

péund-seconds, or newton-seconds.

Impulse is a vector quantity which has the direction of the resultant
force. Impulses may be added vectorially by means of avector polygon,
or they may be resolved into components by means of a parallelogram.
The moment of alinear impulse may be found in the same manner as the

moment of aforce. The linear impulse is represented by a directed line
segment, and the moment of theimpulseisthe product of the magnitude
of the impulse and the perpendicular distance from the line segment to
the point about which the moment is taken. Angular impulse over atime
interval t, — t; is a product of the sum of applied moments on arigid
body about a reference axis and time. The dimensions for angular im-
pulse are (force) X (time) X (displacement) in foot-pound-seconds or
newton-metre-seconds. Angular impulse and linear impulse cannot be
added.

Momentum is also avector quantity and can be added and resolved in
the same manner as force and impulse. The dimensions of linear mo-
mentum are (force) X (time) in pound-seconds or newton-seconds, and
areidentical to linear impulse. An alternate statement of Newton’s sec-
ond law of motion is that the resultant of an unbalanced force system
must be egua to the time rate of change of linear momentum,
SF = d(mv)/dt.

If avariable force acts for a certain time on a body of mass m, the

t
quantity [ F dt = m(v; — Vv,) = the change of momentum of the body.
t

The moment of momentum can be determined by the same methods as
those used for the moment of a force or moment of an impulse. The
dimensions of the moment of momentum are (force) X (time) X (dis-
placement) in foot-pound-seconds, or newton-metre-seconds.

In plane motion the angular momentum of arigid body about arefer-
ence axis perpendicular to the plane of motion is the sum of the mo-
ments of linear momenta of all particlesin the body about the reference
axes. Specifically, theangular momentum of arigid body in planemotion is
the vector sum of the angular momentum about the reference axis and the
moment of the linear momentum of the center of gravity about thereference
axis, Hg = lpw + d X mv.

In three-dimensional rotation about afixed axis, the angular momen-
tum of arigid body has components along three coordinate axes, which
involve both the moments of inertia about the X, y, and zaxes, Iq_, o, ,
and Io,, and the products of inertia, 1o, o, and I ; Ho — lq, - @, —
lo, "oy = lg - @, Hy = —lg o, + g o —lg, - @, andHy, =
lo, * @ — lo, * @, + lg_ - w,whereHo = Ho_+ Hg, + Ho,.

Impact

The collision between two bodies, where relatively large forces result
over acomparatively short interval of time, is called impact. A straight
line perpendicular to the plane of contact of two colliding bodies is
called the line of impact. If the centers of gravity of thetwo bodieslie on
theline of contact, theimpact is called central impact, in any other case,
eccentric impact. If the linear momenta of the centers of gravity are also
directed along the line of impact, the impact is collinear or direct central
impact. In any other case impact is said to be oblique.

Collinear Impact When two masses m; and m,, having respective
velocities u; and u,, move in the same line, they will collideif u, > u;
(Fig. 3.1.72a). During callision (Fig. 3.1.72b), kinetic energy is ab-

m2 ™
(o)
(b
m m
2oy
i Evz : ; Vi
m m

Fig. 3.1.72



sorbed in the deformation of the bodies. There follows a period of
restoration which may or may not be complete. If complete restoration
of the energy of deformation occurs, the impact is elagtic. If the restora-
tion of energy is incomplete, the impact is referred to asinelastic. After
collision , the bodies continue to move with changed ve-
locities of v, and v,. Since the contact forces on one body are equal to
and opposite the contact forces on the other, the sum of the linear
momenta of the two bodiesis conserved; myu, + myu, = myv; + myv,.

Thelaw of conservation of momentum statesthat the linear momentum of
a system of bodies is unchanged if thereis no resultant external force on the
system.

Coefficient of Restitution The ratio of the velocity of separation
v, — V, to the velocity of approach u, — u, is called the coefficient of
restitution €, € = (v; — V,)/(U, — Uy).

The value of ewill depend on the shape and material properties of the
colliding bodies. In elastic impact, the coefficient of restitution is unity
and thereis no energy loss. A coefficient of restitution of zero indicates
perfectly inelastic or plastic impact, where there is no separation of the
bodies after collision and the energy loss is a maximum. In oblique
impact, the coefficient of restitution applies only to those components of
velocity along the line of impact or normal to the plane of impact. The
coefficient of restitution between two materials can be measured by
making one body many times larger than the other so that m, is infi-
nitely largein comparison to m, . The velocity of m, isunchanged for all
practical purposes during impact and e = v,/u,. For a small ball
dropped from a height H upon an extensive horizontal surface and re-
bounding to a height h, e = vh/H.

Impact of Jet Water on Flat Plate When ajet of water strikes aflat
plate perpendicularly to its surface, the force exerted by the water on the
plateiswv/g, where w is the weight of water striking the plate in a unit
of timeand visthe velocity. When thejet isinclined to the surface by an
angle, A, the pressure is (wv/g) cos A.

Variable Mass

If the mass of abody is variable such that massis being either added or
gjected, an alternate form of Newton's second law of motion must be
used which accounts for changes in mass:
F= mﬂ + dm u

dt dt
The mass mis the instantaneous mass of the body, and dv/dt isthe time
rate of change of the absolute of velocity of mass m. The velocity uis
the velocity of the mass m relative to the added or gected mass, and
dm/dt is the time rate of change of mass. In this case, care must be
exercised in the choice of coordinates and expressionsof sign. If massis
being added, dm/dt is plus, and if mass is gected, dm/dt is minus.

Fields of Force—Attraction

The space within which the action of a physical force comes into play
on bodies lying within its boundaries is called the field of the force.

The strength or intensity of the field at any given point is the relation
between a force F acting on a mass m at that point and the mass.
Intensity of field = i = F/m; F = mi.

The unit of field intensity is the same as the unit of acceleration, i.e.,
1 ft/s? or 1 m/s?. Theintensity of afield of force may be represented by
aline (or vector).

A field of force is said to be homogeneous when the intensity of all
points is uniform and in the same direction.

A field of forceis called acentral field of force with acenter O, if the
direction of the force acting on the mass particle min every point of the
field passes through O and its magnitude is a function only of the
distancer from O to m. A line so drawn through the field of forcethat its
direction coincides at every point with that of theforce prevailing at that
point is called aline of force.

Rotation of Solid Bodies about Any Axis

The general moment eguations for three-dimensional motion are usu-
ally expressed in terms of the angular momentum. For a reference
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axis O, which is either a fixed axis of the center of gravity, My =
(dHg /dt) — Hq, - @, + Ho, - @y, Mg = (dHg /dt) — Ho, - & + Ho, - @,,
and Mo, = (dH /dt) — Ho @, + Hgw,. If the coordinate axes are ori-
ented to coincide with the principal axes of inertia, Io_, o , and lo,, @
similar set of three differential equations results, involving moments,
angular velocity, and angular acceleration; My, = 1o (dw,/dt) + (I, —
lo, )y @, Mg = g (day/dt) + (!Oxx = lp ), * o, and Mg, = |y _(dw,/
dt) + (lg,, — lo,) .y These equations are known asEuler’s equations of
motion and may apply to any rigid body.

GYROSCOPIC MOTION AND THE GYROSCOPE

Gyroscopic motion can be explained in terms of Euler’ sequations. Let 1,
I, and |5 represent the principal moments of inertia of a gyroscope
spinning with a constant angular velocity w, about axis 1, the subscripts
1, 2, and 3 representing a right-hand set of reference axes (Figs. 3.1.73
and 3.1.74). If the gyroscope is precessed about the third axis, a vector
moment results along the second axis such that

M, = |, (dw,/dt) + (I, — I3)wzw,

Where the precession and spin axes are at right angles, the term (dw,/dt)
equals the component of w; X w,; aong axis 2. Because of this, in the
simple case of a body of symmetry, where |, = I3, the gyroscopic
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moment can be reduced to the common expression M = | w{}, where ()
isthe rate of precession, o the rate of spin, and | the moment of inertia
about the spin axis. It is important to realize that these are equations of
motion and relate the applied or resulting gyroscopic moment due to
forceswhich act on therotor, as disclosed by afree-body diagram, to the
resulting motion of the rotor.

Physical insight into the behavior of a steady precessing gyro with
mutually perpendicular moment, spin, and precession axes is gained by
recognizing from Fig. 3.1.74 that the change dH in angular momentum
H is equal to the angular impulse M dt. In time dt, the angular-momen-

Fig. 3.1.74
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tum vector swingsfrom H to H’, owing to the velocity of precession w;.
The vector change dH in angular momentum is in the direction of the
applied moment M. This fact is inherent in the basic moment-momen-
tum equation and can aways be used to establish the correct spatial
relationships between the moment, precessional, and spin vectors. It is
seen, therefore, from that the spin axis always turns toward
the moment axis. Just as the change in direction of the mass-center
velocity is in the same direction as the resultant force, so does the
change in angular momentum follow the direction of the applied mo-
ment.

For example, suppose an airplane is driven by a right-handed pro-
peller (turning like a right-handed screw when moving forward). If a
gust of wind or other force turns the machine to the left, the gyroscopic
action of the propeller will make the forward end of the shaft strive to
rise; if the wing surface is large, this motion will be practically pre-
vented by the resistance of the air, and the gyroscopic forces become
effective merely as internal stresses, whose maximum value can be
computed by the formula above. Similarly, if the airplane is dipped
downward, the gyroscopic action will make the forward end of the shaft
strive to turn to the left.

Modern applications of the gyroscope are based on one of the follow-
ing properties: (1) agyroscope mounted in three gimbal rings so asto be
entirely free angularly in all directions will retain its direction in space
in the absence of outside couples; (2) if the axis of rotation of a gyro-
scope turns or precesses in space, a couple or torque acts on the gyro-
scope (and conversely on its frame).

Devices operating on the first principle are satisfactory only for short
durations, say less than half an hour, because no gyroscope is entirely
without outside couple. The friction couples at the various gimbal bear-
ings, although small, will precess the axis of rotation so that after a
while the axis of rotation will have changed its direction in space. The
chief device based on thefirst principle isthe air plane compass, which is
afreely mounted gyro, keeping its direction in space during fast maneu-

vers of afighting airplane. No magnetic compass will indicate correctly
during such maneuvers. After the planeisback on an even kedl in steady
flight, the magnetic compass once more reads the true magnetic north,
and the gyro compass has to be reset to point north again.

An example of a device operating on the second principle is the
automatic pilot for keeping a vehicle on a given course. This device has
been installed on torpedoes, ships, airplanes. When the ship or plane
turns from the chosen course, acoupleisexerted on the gyro axis, which
makes it precess and this operates electric contacts or hydraulic or
pneumatic valves. These again operate on the rudders, through relays,
and bring the ship back to its course.

Another application is the ship antirolling gyroscope. This very large
gyroscope spins about avertical axisand is mounted in aship so that the
axis can be tipped fore and aft by means of an electric motor, the
precession motor. The gyro can exert a large torque on the ship about
the fore-and-aft axis, which isalong the *‘rolling’’ axis. The sign of the
torque is determined by the direction of rotation of the precession
motor, which in turn is controlled by electric contacts operated by a
small pilot gyroscope on the ship, which feels which way the ship rolls
and gives the signals to apply a countertorque.

The turn indicator for airplanes is a gyro, the frame of which is held
by springs. When the airplane turns, it makes the gyro axisturn withiit,
and the resultant couple is delivered by the springs. Thus the elongation
of the springsisameasure of therate of turn, which issuitably indicated
by a pointer.

The most complicated and ingenious application of the gyroscope is
the marine compass. Thisisapendulously suspended gyroscopewhichis
affected by gravity and also by the earth’ s rotation so that the gyro axis
isin equilibrium only when it points north, i.e., when it liesin the plane
formed by the local vertical and by the earth’s north-south axis. If the
compassis disturbed so that it points away from north, the action of the
earth’s rotation will restore it to the correct north position in a few
hours.

3.2 FRICTION
by Vittorio (Rino) Castelli

REFERENCES: Bowden and Tabor, ‘‘The Friction and Lubrication of Solids,”
Oxford. Fuller, *‘Theory and Practice of Lubrication for Engineers,”” 2nd ed.,
Wiley. Shigley, ‘*Mechanica Design,”” McGraw-Hill. Rabinowicz, ‘* Friction and
Wear of Materials,”” Wiley. Ling, Klaus, and Fein, ‘‘Boundary Lubrication—An
Appraisal of World Literature,”” ASME, 1969. Dowson, ‘‘ History of Tribology,”
Longman, 1979. Petersen and Winer, **Wear Control Handbook,”” ASME, 1980.

Friction is the resistance that is encountered when two solid surfaces
slide or tend to slide over each other. The surfaces may be either dry or
lubricated. In the first case, when the surfaces are free from contaminat-
ing fluids, or films, the resistance is called dry friction. The friction of
brake shoes on the rim of arailroad wheel is an example of dry friction.

When the rubbing surfaces are separated from each other by a very
thin film of lubricant, the friction isthat of boundary (or greasy) lubrica-
tion. The lubrication depends in this case on the strong adhesion of the
lubricant to the material of the rubbing surfaces; the layers of Iubricant
slip over each other instead of the dry surfaces. A journal when starting,
reversing, or turning at very low speed under aheavy load isan example
of the condition that will cause boundary lubrication. Other examples
are gear teeth (especialy hypoid gears), cutting tools, wire-drawing
dies, power screws, bridge trunnions, and the running-in process of
most lubricated surfaces.

When the lubrication is arranged so that the rubbing surfaces are
separated by afluid film, and the load on the surfacesis carried entirely
by the hydrostatic or hydrodynamic pressure in the film, the friction is

that of complete (or viscous) lubrication. In this case, the frictional losses
are due solely to the internal fluid friction in the film. Oil ring bearings,
bearings with forced feed of oil, pivoted shoe-type thrust and journal
bearings, bearings operating in an oil bath, hydrostatic oil pads, ail lifts,
and step bearings are instances of complete lubrication.

Incomplete lubrication or mixed lubrication takes place when the load
on the rubbing surfaces is carried partly by a fluid viscous film and
partly by areas of boundary lubrication. The friction is intermediate
between that of fluid and boundary lubrication. Incomplete lubrication
exists in bearings with drop-feed, waste-packed, or wick-fed lubrica-
tion, or on parallel-surface bearings.

STATIC AND KINETIC COEFFICIENTS
OF FRICTION

In the absence of friction, the resultant of the forces between the sur-
faces of two bodies pressing upon each other is normal to the surface of
contact. With friction, the resultant deviates from the normal.

If one body is pressed against ancther by aforce P, as in[Elg_3.Z.1]
thefirst body will not move, provided the angle a included between the
line of action of the force and a normal to the surfaces in contact does
not exceed a certain value which depends upon the nature of the sur-
faces. The reaction force R has the same magnitude and line of action as
the force P. INEID=3ZTIR is resolved into two components: aforce N



normal to the surfacesin contact and aforce F, parallel to the surfacesin
contact. From the above statement it follows that, for motion not to
occeur,

F. = Ntanay, = Nfy

where f, = tan a, is called the coefficient of friction of rest (or of static
friction) and a, is the angle of friction at rest.
If the normal force N between the sur-
faces is kept constant, and the tangential
P force F, is gradually increased, there will
be no motion while F, < Nf,. A state of
impending motion is reached when F,
90° nears the value of Nfy. If sliding motion
i occurs, a frictional force F resisting the
dﬁ N motion must be overcome. TheforceF is
commonly expressed as F = fN, where f
is the coefficient of dliding friction, or ki-
netic friction. Normally, the coefficients
of diding friction are smaller than the co-
efficients of static friction. With small velocities of diding and very
clean surfaces, the two coefficients do not differ appreciably.
[Tane3 24 demonstrates the typical reduction of sliding coefficients
of friction below corresponding static values[Figure 3.2.21indicates
results of tests on lubricated machine tool ways showing a reduction of
friction coefficient with increasing sliding velocity.

Fig. 3.2.1
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Fig. 3.2.2 Typical relationship between kinetic friction and sliding velocity for
lubricated cast iron on cast iron slideways (load, 20 Ib/in?; upper slider, scraped;
lower dlideway, scraped). (From Birchall, Kearny, and Moss, Intl. J. Machine
Tool Design Research, 1962.)

This behavior is normal with dry friction, some conditions of bound-
ary friction, and with the break-away friction in ball and roller bearings.
This condition is depicted in Fig. 3.2.3, where the friction force de-
creases with relative velocity. This negative slope leads to locally un-
stable equilibrium and self-excited vibrations in systems such as the one
of[F1g—3:Z4. This phenomenon takes place because, for small ampli-
tudes, the oscillatory system displays damping in which the damping

Friction force F

lIA\/

Velocity x
Fig. 3.2.3 Friction force decreases as velocity increases.
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factor is equal to the slope of the friction curve and thus is termed
negative damping. When the slope of the friction force versus dliding
velocity is positive (positive damping) this type of instability is not pos-
sible. This is typical of fluid damping, squeeze films, dash pots, and
fluid film bearings in general.

(B
/ Dry friction

(Y

Roller

(+Y

Roller
Belt

Fig. 3.2.4 Bélt friction apparatus with possible self-excited vibrations.

It isinteresting to note that these self-excited systemsvibrate at close
to their natural frequency over a large range of frictiona levels and
speeds. This symptom is a helpful means of identification. Another
characteristic is that the moving body comes periodically to momentary
relativerest, that is, zero sliding velocity. For this reason, this phenom-
enon is aso caled stick-sip vibration. Common examples are violin
strings, chalk on blackboard, water-lubricated rubber stern tube ship
bearings at low speed, squeaky hinges, and oscillating rolling element
bearings, especidly if they are supporting large flexible structures such
as radar antennas. Control requires the introduction of fluid film bear-
ings, viscous seals, or viscous dampers into the system with sufficient
positive damping to override the effects of negative damping.

Under moderate pressures, the frictional force is proportiona to the
normal load on the rubbing surfaces. It is independent of the pressure
per unit area of the surfaces. The direction of the friction force opposing
the sliding motion islocally exactly opposite to the local relative veloc-
ity. Therefore, it takes very little effort to displace transversaly two
bodies which have a magjor direction of relative sliding. This behavior,
compound dliding, is exploited when easing the extraction of a nail by
simultaneously rotating it about its axis, and accounts for the ease with
which an automobile may skid on the road or with which a plug gage
can be inserted into a hole if it is rotated while being pushed in.

The coefficients of friction for dry surfaces (dry friction) depend on
the materials dliding over each other and on the finished condition of the
surfaces. With greasy (boundary) lubrication, the coefficients depend
both on the materials and conditions of the surfaces and on the lubri-
cants employed.

Coefficients of friction are sensitive to atmospheric dust and humid-
ity, oxide films, surface finish, velocity of diding, temperature, vibra-
tion, and the extent of contamination. In many instances the degree of
contamination is perhaps the most important single variable. For exam-
ple in Table 3.2.1, valuesfor the static coefficient of friction of steel on
steel are listed, and, depending upon the degree of contamination of the
specimens, the coefficient of friction varies effectively from oo (infinity)
to 0.013.

The most effective boundary lubricants are generally those which
react chemically with the solid surface and form an adhering film that is
attached to the surface with a chemical bond. This action depends upon

Table 3.2.1 Coefficients of Static Friction for Steel on Steel

Test condition fo Ref.
Degassed at elevated temp in high o (weld on contact) 1
vacuum
Grease-free in vacuum 0.78 2
Grease-free in air 0.39 3
Clean and coated with oleic acid 0.11 2
Clean and coated with solution of 0.013 4
stearic acid

SOURCES: (1) Bowden and Young, Proc. Roy. Soc., 1951. (2) Campbell, Trans. ASME,
1939. (3) Tomlinson, Phil. Mag., 1929. (4) Hardy and Doubleday, Proc. Roy. Soc., 1923.
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the nature of the lubricant and upon the reactivity of the solid surface.
Table 3.2.2 indicates that a fatty acid, such as found in animal, vegete-
ble, and marine oils, reduces the coefficient of friction markedly only if
it can react effectively with the solid surface. Paraffin oil is amost
completely nonreactive.

Table 3.2.2 Coefficients of Static Friction at Room Temperature

Paraffin oil Degree of
Paraffin plus 1% reactivity
Surfaces Clean oil lauric acid of solid

Nickel 0.7 0.3 0.28 Low
Chromium 0.4 0.3 0.3 Low
Platinum 12 0.28 0.25 Low
Silver 14 0.8 0.7 Low
Glass 0.9 04 Low
Copper 14 0.3 0.08 High
Cadmium 0.5 0.45 0.05 High
Zinc 0.6 0.2 0.04 High
Magnesium 0.6 0.5 0.08 High
Iron 10 0.3 0.2 Mild
Aluminum 14 0.7 0.3 Mild

SouRcE: From Bowden and Tabor, ** The Friction and Lubrication of Solids,”” Oxford.

Values irllTahle 3241 of dliding and static coefficients have been
selected largely from investigations where these variables have been
very carefully controlled. They are representative values for smooth
surfaces. It has been generally observed that sliding friction between
hard materials is smaller than that between softer surfaces.

Effect of Surface Films Campbell observed alowering of the coef-
ficient of friction when oxide or sulfide films were present on metal
surfaces (Trans. ASME, 1939; footnotes tdTanle 3.2.4). The reductions
listed in Table 3.2.3 were obtained with oxide films formed by heating
inair at temperatures from 100 to 500° C, and sulfide films produced by
immersion in a 0.02 percent sodium sulfide solution.

Table 3.2.3 Static Coefficient of Friction f,

Clean and dry Oxide film Sulfide film
Steel-steel 0.78 0.27 0.39
Brass-brass 0.88 0.57
Copper-copper 121 0.76 0.74

Effect of Sliding Velocity It hasgenerally been observed that coeffi-
cients of friction reduce on dry surfaces as sliding velocity increases.
(See results of railway brake-shoe tests below.) Dokos measured this
reduction in friction for mild steel on medium steel. Vaues are for the
average of four tests with high contact pressures (Trans. ASVIE, 1946;

see footnotes td Tanle 3.2.7).

Sliding velocity,
in/s 0.0001 0001 0.1 0.1 1 10 100
f 0.53 048 039 031 023 019 018

Effect of Surface Finish The degree of surface roughness has been
found to influence the coefficient of friction. Burwell evaluated this
effect for conditions of boundary or greasy friction (Jour. SAE, 1942;
see footnotes td_Table 3.2.4). The values listed if Table 3.29 are for
dliding coefficients of friction, hard steel on hard steel. The friction
coefficient and wear rates of polymers against metals are often lowered
by decreasing the surface roughness. This is particularly true of com-
posites such as those with polytetrafluoroethylene (PTFE) which func-
tion through transfer to the counterface.

Solid Lubricants In certain applications solid lubricants are used
successfully. Boyd and Robertson with pressures ranging from 50,000
to 400,000 Ib/in? (344,700 to 2,757,000 kN/m?) found sliding coeffi-

cients of friction f for hard steel on hard steel as follows: powdered
mica, 0.305; powdered soapstone, 0.306; lead iodide, 0.071; silver sul-
fate, 0.054; graphite, 0.058; molybdenum disulfide, 0.033; tungsten di-
sulfide, 0.037; stearic acid, 0.029 (Trans. ASME, 1945; see footnotes to
[Table 3.2.7).

Coefficients of Static Friction for Special Cases

Masonry and Earth Dry masonry on brickwork, 0.6—0.7; timber on
polished stone, 0.40; iron on stone, 0.3 to 0.7; masonry on dry clay,
0.51; masonry on moist clay, 0.33.

Earth on Earth Dry sand, clay, mixed earth, 0.4 to 0.7; damp clay,
1.0; wet clay, 0.31; shingle and gravel, 0.8 to 1.1.

Natural Cork On cork, 0.59; on pine with grain, 0.49; on glass,
0.52; on dry steel, 0.45; on wet steel, 0.69; on hot steel, 0.64; on oiled
steel, 0.45; water-soaked cork on steel, 0.56; oil-soaked cork on steel,
0.42.

Coefficients of Sliding Friction for
Special Cases

Soapy Wood Lesley gives for wood on wood, copiously lubricated
with tallow, stearine, and soft soap (as used in launching practice), a
starting coefficient of friction equal to 0.036, diminishing to an average
vaue of 0.019 for the first 50 ft of motion of the ship. Rennie gives
0.0385 for wood on wood, lubricated with soft soap, under a load of
56 Ib/in?.

Asbestos-Fabric Brake Material The coefficient of sliding friction
f of asbestos fabric against a cast-iron brake drum, according to Taylor
and Holt (NBS, 1940) is 0.35 to 0.40 when at normal temperature. It
drops somewhat with rise in brake temperature up to 300°F (149°C).
With afurther increase in brake temperature from 300 to 500°F (149 to
260°C) the value of f may show an increase caused by disruption of the
brake surface.

Steel Tires on Steel Rails (Galton)

Speed, mi/h Start 6.8 135 273 40.9 54.4 60
Values of f 0242 0088 0072 007 0057 0038 0.027

Railway Brake Shoes on Steel Tires Galton and Westinghouse
give, for cast-iron brakes, the following values for f, which decrease
rapidly with the speed of the rim; the coefficient f decreases also with
time, as the temperature of the shoe increases.

Speed, mi/h 10 20 30 40 50 60

f, when brakeswere applied 032 021 018 013 010 0.06
f, after 5s 021 017 011 010 007 0.5
f, after 12 s 013 010 008 006 005

Schmidt and Schrader confirm the marked decrease in the coefficient
of friction with the increase of rim speed. They also show an irregular
slight decrease in the value of f with higher shoe pressure on the wheel,
but they did not find the drop in friction after a prolonged application of
the brakes. Their observations are as follows:

Speed, mi/h 20 30 40 50 60
Coefficient of friction 0.25 0.23 0.19 0.17 0.16

Friction of Steel on Polymers A useful list of friction coefficients
between steel and various polymersis given i Table 3.2.6]

Grindstones The coefficient of friction between coarse-grained
sandstone and cast ironisf = 0.21 to 0.24; for steel, 0.29; for wrought
iron, 0.41 to 0.46, according as the stone is freshly trued or dull; for
fine-grained sandstone (wet grinding) f = 0.72 for cast iron, 0.94 for
steel, and 1.0 for wrought iron.

Honda and Yamada give f = 0.28 to 0.50 for carbon steel on emery,
depending on the roughness of the wheel.



STATIC AND KINETIC COEFFICIENTS OF FRICTION 3-23

Table 3.2.4 Coefficients of Static and Sliding Friction
(Reference letters indicate the lubricant used; numbers in parentheses give the sources. See footnote.)

Static Sliding
Materials Dry Greasy Dry Greasy
Hard steel on hard steel 0.78 (1) 0.11(1, @) 0.42 (2 0.029 (5, h)
0.23 (1, b) 0.081 (5, c)
0.15(1, ¢) 0.080 (5, i)
0.11(1,d) 0.058 (5, j)
0.0075 (18, p) 0.084 (5, d)
0.0052 (18, h) 0.105 (5, k)
0.096 (5, 1)
0.108 (5, m)
0.12 (5, a)
Mild steel on mild steel 0.74 (19) 0.57 (3) 0.09 (3, @)
0.19 (3, u)
Hard steel on graphite 0.21 (1) 0.09 (1, a)
Hard steel on babbitt (ASTM No. 1) 0.70 (11) 0.23(1, b) 0.33(6) 0.16 (1, b)
0.15 (1, ©) 0.06 (1, ¢)
0.08 (1, d) 0.11 (1, d)
0.085 (1, €)
Hard steel on babbitt (ASTM No. 8) 0.42 (11) 0.17 (1, b) 0.35 (11) 0.14 (1, b)
0.11(1, ©) 0.065 (1, )
0.09 (1, d) 0.07 (1, d)
0.08 (1, €) 0.08 (11, h)
Hard steel on babbitt (ASTM No. 10) 0.25 (1, b) 0.13 (1, b)
0.12 (1, ¢) 0.06 (1, ¢)
0.10 (1, d) 0.055 (1, d)
0.11(1, €
Mild steel on cadmium silver 0.097 (2, f)
Mild steel on phosphor bronze 0.34(3) 0.173 (2, f)
Mild steel on copper lead 0.145 (2, f)
Mild steel on cast iron 0.183 (15, ¢) 0.23(6) 0.133 (2, f)
Mild steel on lead 0.95 (11) 05(1,f) 0.95 (11) 0.3 (11, f)
Nickel on mild steel 0.64 (3) 0.178 (3, x)
Aluminum on mild steel 0.61 (8) 0.47 93)
Magnesium on mild steel 0.42 (3)
Magnesium on magnesium 0.6 (22) 0.08 (22, y)
Teflon on Teflon 0.04 (22) 0.04 (22, f)
Teflon on steel 0.04 (22) 0.04 (22, f)
Tungsten carbide on tungsten carbide 0.2 (22) 0.12 (22, a)
Tungsten carbide on steel 0.5 (22) 0.08 (22, a)
Tungsten carbide on copper 0.35 (23)
Tungsten carbide on iron 0.8 (23)
Bonded carbide on copper 0.35(23)
Bonded carbide on iron 0.8 (23)
Cadmium on mild steel 0.46 (3)
Copper on mild steel 0.53 (8) 0.36 (3) 0.18 (17, a)
Nickel on nickel 1.10 (16) 0.53 (3) 0.12 (3, w)
Brass on mild steel 0.51 (8) 0.44 (6)
Brass on cast iron 0.30 (6)
Zinc on cast iron 0.85 (16) 0.21(7)
Magnesium on cast iron 0.25(7)
Copper on cast iron 1.05 (16) 0.29 (7)
Tin on cast iron 0.32(7)
Lead on cast iron 0.43 (7)
Aluminum on aluminum 1.05 (16) 14(3)
Glass on glass 0.94 (8) 0.01 (10, p) 0.40 (3) 0.09 (3, @)
0.005 (10, q) 0.116 (3, V)
Carbon on glass 0.18 (3)
Garnet on mild steel 0.39 (3)
Glass on nickel 0.78 (8) 0.56 (3)

(a) Oleic acid; (b) Atlantic spindle ail (light mineral); (c) castor oil; (d) lard oil; (€) Atlantic spindle oil plus 2 percent oleic acid; (f)
medium mineral oil; (g) medium mineral oil plus¥2 percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); (j) graphite; (K) turbine oil
plus 1 percent graphite; (1) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium mineral); (n) olive ail; (p) palmitic acid; (q)
ricinoleic acid; (r) dry soap; (s) lard; (t) water; (u) rapeoil; (v) 3-in-1 oil; (w) octyl alcohal; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

SOURCES: (1) Campbell, Trans. ASME, 1939; (2) Clarke, Lincoln, and Sterrett, Proc. API, 1935; (3) Beare and Bowden, Phil. Trans. Roy.
Soc., 1935; (4) Dokos, Trans. ASME, 1946; (5) Boyd and Robertson, Trans. ASME, 1945; (6) Sachs, Zeit f. angew. Math. und Mech., 1924;
(7) Honda and Yamaha, Jour. | of M, 1925; (8) Tomlinson, Phil. Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole,
Trans. ASME, 1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASVIE, 1937; (13) Brazier and
Holland-Bowyer, General Discussion on Lubrication, ASVIE, 1937; (14) Burwell, Jour. SAE., 1942; (15) Stanton, ‘‘Friction,”” Longmans;
(16) Ernst and Merchant, Conference on Friction and Surface Finish, M.1.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish,
M.L.T., 1940; (18) Hardy and Bircumshaw, Proc. Roy. Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Y oung, Proc.
Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, *‘ The Friction and Lubrication of Solids,””
Oxford; (23) Shooter, Research, 4, 1951.
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Table 3.2.4 Coefficients of Static and Sliding Friction (Continued)
(Reference letters indicate the lubricant used; numbers in parentheses give the sources. See footnote.)

Static Sliding
Materias Dry Greasy Dry Greasy
Copper on glass 0.68 (8) 0.53 (3)
Cast iron on cast iron 1.10 (16) 0.15 (9) 0.070 (9, d)
0.064 (9, n)
Bronze on cast iron 0.22 (9) 0.077 (9, n)
Oak on oak (parallel to grain) 0.62 (9) 0.48 (9) 0.164 (9, r)
0.067 (9, 9
Oak on oak (perpendicular) 0.54 (9) 0.32 (9) 0.072 (9, 9)
Leather on oak (parallel) 0.61 (9) 0.52 (9)
Cast iron on oak 0.49 (9) 0.075 (9, n)
Leather on cast iron 0.56 (9) 0.36 (9, t)
0.13 (9, n)
Laminated plastic on steel 0.35(12) 0.05 (12, t)
Fluted rubber bearing on steel 0.05 (13, t)

(a) Oleic acid; (b) Atlantic spindle oil (light mineral); (c) castor ail; (d) lard oil; (e) Atlantic spindle oil plus 2 percent oleic acid; (f)
medium mineral oil; (g) medium mineral oil plus¥2 percent oleic acid; (h) stearic acid; (i) grease (zinc oxide base); (j) graphite; (k) turbine oil
plus 1 percent graphite; (1) turbine oil plus 1 percent stearic acid; (m) turbine oil (medium minera); (n) olive ail; (p) palmitic acid; (q)
ricinoleic acid; (r) dry soap; (s) lard; (t) water; (u) rapeoil; (v) 3-in-1 ail; (w) octyl acohoal; (x) triolein; (y) 1 percent lauric acid in paraffin oil.

SOURCES: (1) Campbell, Trans. ASVIE, 1939; (2) Clarke, Lincoln, and Sterrett, Proc. API, 1935; (3) Beare and Bowden, Phil. Trans. Roy.
Soc., 1935; (4) Dokos, Trans. ASME, 1946; (5) Boyd and Robertson, Trans. ASME, 1945; (6) Sachs, Zeit f. angew. Math. und Mech., 1924;
(7) Honda and Yamaha, Jour. | of M, 1925; (8) Tomlinson, Phil. Mag., 1929; (9) Morin, Acad. Roy. des Sciences, 1838; (10) Claypoole,
Trans. ASME, 1943; (11) Tabor, Jour. Applied Phys., 1945; (12) Eyssen, General Discussion on Lubrication, ASVIE, 1937; (13) Brazier and
Holland-Bowyer, General Discussion on Lubrication, ASVIE, 1937; (14) Burwell, Jour. SAE., 1942; (15) Stanton, ‘‘Friction,” Longmans;
(16) Ernst and Merchant, Conference on Friction and Surface Finish, M.1.T., 1940; (17) Gongwer, Conference on Friction and Surface Finish,
M.I.T., 1940; (18) Hardy and Bircumshaw, Proc. Roy. Soc., 1925; (19) Hardy and Hardy, Phil. Mag., 1919; (20) Bowden and Y oung, Proc.
Roy. Soc., 1951; (21) Hardy and Doubleday, Proc. Roy. Soc., 1923; (22) Bowden and Tabor, ‘‘ The Friction and Lubrication of Solids,"”

Oxford; (23) Shooter, Research, 4, 1951.

Table 3.2.5 Coefficient of Friction of Hard Steel on Hard Steel

Surface
Superfinished Ground Ground Ground Ground Grit-blasted
Roughness, microinches 2 7 20 50 65 55
Minera oil 0.128 0.189 0.360 0.372 0.378 0.212
Mineral oil + 2% oleic acid 0.116 0.170 0.249 0.261 0.230 0.164
Oleic acid 0.099 0.163 0.195 0.222 0.238 0.195
Mineral oil + 2% sulfonated sperm oil 0.095 0.137 0.175 0.251 0.197 0.165
Table 3.2.6 Coefficient of Friction of Steel on Polymers
Room temperature, low speeds. Dry pavement m
- — Inflation pressure, Static Sliding Static Sliding
Material Condition f in2
Ib/in fo f fo f
Nylon Dry 04 40 0.90 0.85 0.74 0.69
Plexiglas Dry 05 60 0.80 0.76 063 056
Polyvinyl chloride (PVC) Dry 0.5
Polystyrene Dry 0.5
'-t‘?\","de"s‘ty (LD) polyethylene, no plas- Dry 04 Tests of the Goodrich Company on wet brick pavement with tires of
icizer ; ; .
LD polyethylene, no plasticizer Wet 01 different treads gave the following values of f:
High-density (HD) polyethylene, no plas- Dry or wet 0.15
ticizer Coefficients of friction
Soft wood Natural 0.25
Lignum vitae Natural 0.1 Static (before Sliding (after
PTFE, low speed Dry or wet 0.06 slipping) slipping)
PTFE, high speed Dry or wet 0.3 -
Filled PTFE (15% glass fiber) Dry 012 Speed, mi/h 5 30 5 30
Filled PTFE (15% graphite) Dry 0.09 SﬂOOth tire ) 0.49 0.28 0.43 0.26
Filled PTFE (60% bronze) Dry 0.09 Circumferential grooves 0.58 0.42 0.52 0.36
Polyurethane rubber Dry 16 Angular grooves at 60° 0.75 0.55 0.70 0.39
1soprene rubber Dry 3-10 Angular grooves at 45° 0.77 0.55 0.68 0.44
Isoprene rubber Wet (water and 2-4
alcohol)

Rubber Tires on Pavement Arnoux gives f = 0.67 for dry mac-
adam, 0.71 for dry asphalt, and 0.17 to 0.06 for soft, slippery roads. For
acord tire on asand-filled brick surfacein fair condition. Agg (Bull. 88,
lowa Sate College Engineering Experiment Sation, 1928) gives the
followina values of f dependina on the inflation of the tire:

Development continues using various manufacturing techniques
(bias ply, belted, radial, studs), tread patterns, and rubber compounds,
so that it is not possible to present average values applicable to present
conditions.

Sleds For unshod wooden runners on smooth wood or stone surfaces,
f = 0.07 (0.15) when tallow (dry soap) is used as a lubricant ( = 0.38
when not lubricated): on snow andice. f = 0.035. For runnerswith metal



shoes on snow andice, f = 0.02. Renniefound for steel onice, f = 0.014.
However, as the temperature falls, the coefficient of friction will get
larger. Bowden cites the following data for brass on ice:

Temperature, °C f
0 0.025
-20 0.085
—40 0.115
- 60 0.14

ROLLING FRICTION

Roalling is substituted frequently for sliding friction, as in the case of
wheels under vehicles, balls or rollers in bearings, rollers under skids
when moving loads; frictional resistance to the rolling motion is sub-
stantially smaller than to sliding motion. Thefact that aresistance arises
torolling motion is dueto severd factors: (1) the contacting surfacesare
elastically deflected, so that, on the finite size of the contact, relative
sliding occurs, (2) the deflected surfaces dissipate energy dueto internal
friction (hysteresis), (3) the surfaces are imperfect so that contact takes
place on asperities ahead of the line of centers, and (4) surface adhesion
phenomena. The coefficient of rolling friction f, = P/L where L isthe
load and P is the frictional resistance.

The frictional resistance P to the rolling of a cylinder under aload L
applied at the center of theroller (EIg_3.25]) isinversely proportional to
theradiusr of theroller; P = (k/r)L. Note that k has the dimensions of
length. Quite often k increases with load, particularly for cases involv-

L/2 Ll' L/2
L P
o o L)} LK
L/2 LK

Fig. 3.2.5

ing plastic deformations. Values of k, in inches, are as follows: hard-
wood on hardwood, 0.02; iron on iron, steel on steel, 0.002; hard pol-
ished steel on hard polished steel, 0.0002 to 0.0004.

Dataon rolling friction are scarce. Noonan and Strange give, for steel
rollers on steel plates and for loads varying from light to those causing a
permanent set of the material, the following values of k, in inches:
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surfaces well finished and clean, 0.0005 to 0.001; surfaces well oiled,
0.001 to 0.002; surfaces covered with silt, 0.003 to 0.005; surfaces
rusty, 0.005 to 0.01.

If aload L is moved on rollers[(EFIg—325) and if k and k' are the
respective coefficients of friction for the lower and upper surfaces, the
frictional force P = (k + k’)L/d.

McKibben and Davidson (Agri. Eng., 1939) give the data in[Tabld

[3Z7ontherolling resistance of various types of wheelsfor typical road
and field conditions. Note that the coefficient f, is the ratio of resistance
force to load.

Moyer found the following average values of f, for pneumatic rubber
tires properly inflated and loaded: hard road, 0.008; dry, firm, and well-
packed gravel, 0.012; wet loose gravel, 0.06.

FRICTION OF MACHINE ELEMENTS

Work of Friction—Efficiency Inasimple machine or assemblage of
two elements, the work done by an applied force P acting through the
distance sis measured by the product Ps. The useful work doneis less
and is measured by the product LI of the resistance L by the distance |
through which it acts. The efficiency e of the machine is the ratio of the
useful work performed to the total work received, or e = LI/Ps. The
work expended in friction W; is the difference between the total work
received and the useful work, or W = Ps — LI. Thelost-work ratio = V
= W/LI,ande = 1/(1 + V).

If amachine consists of atrain of mechanisms having the respective
efficienciese;, e,, €; . . . €, the combined efficiency of the machine
is equal to the product of these efficiencies.

Efficiencies of Machines and Machine Elements The values for
machine elements I TAAE 3 A8 are from *‘ Elements of Machine De-
sign,”’ by Kimball and Barr. Those for machines are from Goodman's
‘*Mechanics Applied to Engineering.”” The quantities given are per-
centage efficiencies.

Fig. 3.2.6

Table 3.2.7 Coefficients of Rolling Friction f, for Wheels with Steel and Pneumatic Tires

L oose snow
Inflation Bluegrass Tilled Loose 10-14in

Wheel press, Ib/in? Load, Ib Concrete sod loam sand deep
2.5 X 36 steel 1,000 0.010 0.087 0.384 0.431 0.106
4 X 24 steel 500 0.034 0.082 0.468 0.504 0.282
4.00-18 4-ply 20 500 0.034 0.058 0.366 0.392 0.210
4 X 36 steel 1,000 0.019 0.074 0.367 0.413
4.00—30 4-ply 36 1,000 0.018 0.057 0.322 0.319
4.00-36 4-ply 36 1,000 0.017 0.050 0.294 0.277
5.00—-16 4-ply 32 1,000 0.031 0.062 0.388 0.460
6 X 28 steel 1,000 0.023 0.094 0.368 0.477 0.156
6.00—-16 4-ply 20 1,000 0.027 0.060 0.319 0.338 0.146
6.00—-16 4-ply* 30 1,000 0.031 0.070 0.401 0.387
7.50-10 4-plyt 20 1,000 0.029 0.061 0.379 0.429
7.50—-16 4-ply 20 1,500 0.023 0.055 0.280 0.322
7.50-28 4-ply 16 1,500 0.026 0.052 0.197 0.205
8 X 48 steel 1,500 0.013 0.065 0.236 0.264 0.118
7.50-36 4-ply 16 1,500 0.018 0.046 0.185 0.177 0.0753
9.00—-10 4-plyt 20 1,000 0.031 0.060 0.331 0.388
9.00-16 6-ply 16 1,500 0.042 0.054 0.249 0.272 0.099

* Skid-ring tractor tire.
T Ribbed tread tractor tire.

All other pneumatic tires with implement-tvoe tread.
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Wedges

Sliding in V Guides If a wedge-shaped slide having an angle 2b is
pressed into aV guide by aforce P [EIg_3.2.6), the total force normal to
the wedge faces will be N = P/sin b. A friction force F, opposing
motion along the longitudinal axis of the wedge, arises by virtue of the
coefficient of friction f between the contacting surface of the wedge and
guides: F = fN = fP/sin b. In these formulas, the fact that the elasticity
of the materials permits an advance of the wedge into the guide under
the load P has been neglected. The common efficiency for V guidesis
e = 0.881t0 0.90.

Taper Keys [MEG3ZV if the key is moved in the direction of the
force P, theforce H must be overcome. The supporting reactions K4, K5,
and K together with the required force P may be obtained by drawing
the force polygon{EIg—32.8). The friction angles of these faces are a,
a,, and a,, respectively. IN[EIg—328) draw AB paralel to H in[Eg]

327 and lay it off to scale to represent H. From the point A, draw AC

Hb,L/

2,

< {!’\K, .

Fig. 3.2.7 Fig. 3.2.8

parallel to K, i.e., making the angle b + a, with AB; from the other
extremity of AB, draw BC parallel to K, in[Elg—32.71 AC and CB then
give the magnitudes of K; and K5, respectively. Now through C draw
CD paralel to K to its intersection with AD which has been drawn
through A parallel to P. The magnitudes of K5 and P are then given by
the lengths of CD and DA.

By calculation,

Ki/H = cosa,/cos (b + a; + a,)
P/K, = sin (b + a, + ag)/cos a5
P/H = cosa, sin (b + a; + ag)/cosag cos (b + a; + a,)

If a;, = a, = a3 = a, then P = H tan (b + 2a), and efficiency e =
tan b/tan (b + 2a). Force required to loosen the key = P, = H tan
(2a — b). In order for the key not to slide out when force P isremoved, it
is necessary that b < (a; + ag), or b < 2a.

The forces acting upon the taper key of FIg—3.2.d may be found in a
similar way (sedFIQ.32.10).

P = 2H cosa sin (b + a)/cos (b + 2a)
=2H tan (b + a)/[1 — tanatan (b + a)]
= 2H tan (b + a) approx
The force to loosen the key is P, = 2H tan (a — b) approx, and the

efficiency e = tan b/tan (b + a). The key will be self-locking when
b < @, or, more generally, when 2b < (a; + a).

Fig. 3.2.9

Screws

Screws with Square ThreadsEG—32TTJ Let r = mean radius of
the thread = ¥z (radius at root + outside radius), and | = pitch (or lead

of asingle-threaded screw), both in inches; b = angle of inclination of
thread to aplane at right anglesto the axis of screw (tanb = 1/27r); and
f = coefficient of sliding friction = tan a. Then for a screw in uniform
motion (friction of the root and outside
surfaces being neglected) there is re-
quired aforce P acting at right anglesto
the axis at the distance r. P =
Ltan(b = a) = L(l £ 2arf)/(27r = fI)
where the upper signs are for motion in a
direction opposed to that of L and the
lower for motion in the same direction as
that of L. When b < a, the screw will not
‘“overhaul’’ (or move under the action of
theload L).

The efficiency for motion opposed to
direction in which L acts = e =
tan b/tan (b + a); for motion in the same
direction in which L acts, e =
tan (b — a)/tan b.

Thevalueof eisamaximumwhenb =
45° — Y»a; e.g., 6 = 0.81for b = 42° and f = 0.1. Since e increases
rapidly for values of b up to 20°, this angle is generally not exceeded,;
for b = 20°, and f; = 0.10, e = 0.74. In presses, where the mechanical
advantageisrequired to be great, b istaken down to 3°, for which value
e = 0.34 with f = 0.10.

Kingsbury found for square-threaded screws running in loose-fitting
nuts, the following coefficients of friction: lard oil, 0.09 to 0.25; heavy
mineral oil, 0.11 to 0.19; heavy oil with graphite, 0.03 to 0.15.

Ham and Ryan give for screws the following values of coefficients of
friction, with medium mineral oil: high-grade materials and workman-
ship, 0.10; average quality materials and workmanship, 0.12; poor
workmanship, 0.15. The use of castor oil as a lubricant lowered f from
0.10 to 0.066. The coefficients of static friction (at starting) were 30
percent higher.[Table 3.Z8lgives representative values of efficiency.

Screws with V ThreaddTEIG3ZT2) Let ¢ = half the angle between
the faces of a thread. Then, using the same notation as for square-
threaded screws, for a screw in motion (neglecting friction of root and
outside surfaces),

P = L(I = 27rf sec d)/(27r = If sec d)

d is the angle between a plane normal to the axis of the screw through
the point of the resultant thread friction, and a plane which istangent to

Fig. 3.2.11

Table 3.2.8 Efficiencies of Machines and Machine Elements

Common bearing (singly) 96-98
Common bearing, long lines of shafting 95
Roller bearings 98
Ball bearings 99
Spur gear, including bearings

Cast teeth 93

Cut teeth 96
Bevel gear, including bearings

Cast teeth 92

Cut teeth 95
Worm gear

Thread angle, 30° 85-95

Thread angle, 15° 75-90
Belting 96-98
Pin-connected chains (bicycle) 95-97
High-grade transmission chains 97-99
Weston pulley block (¥2 ton) 30-47
Epicycloidal pulley block 40-45
1-ton steam hoist or windlass 50-70
Hydraulic windlass 60-80
Hydraulic jack 80-90
Cranes (steam) 60-70
Overhead traveling cranes 30-50
Locomotives (drawbar hp/ihp) 65-75
Hydraulic couplings, max 98




the surface of the thread at the same point (see Groat, Proc. Engs. Soc.
West. Penn, 34). Secd = sec c V1 — (sin b sin ¢)2. For small values of
b thisreduces practically to sec d = sec ¢, and, for all cases the approxi-
mation, P = L(I = 2arf sec ¢)/(2#r = If sec ¢) is within the limits of
probable error in estimating values to be used for f.

(@]

~

Fig. 3.2.12

The efficiencies are: e = tan b(1 — ftan b sec d)/(tan b + f sec d) for
motion opposedto L, and e = (tanb — f sec d)/tan b(1 + ftanb sec d)
for motion with L. If we let tan d’ = f sec d, these equations reduce,
respectively, to e = tan b/tan (b + d') and e = tan (b — d')/tan b.
Negative values in the latter case merely mean that the thread will not
overhaul. Subtract the values from unity for actual efficiency, consider-
ing the external moment and not the load L as being the driver. The
efficiency of aV thread islower than that of a square thread of the same
helix angle, sinced’ > a.

For a V-threaded screw and nut, let r; = outside radius of thread,
r, = radiusat root of thread, r = (r, + r,)/2,tand’ = fsecd, r, = mean
radius of nut seat = 1.5r (approx) and f’ = coefficient of friction
between nut and seat.

To tighten up the nut the turning moment required is M = Pr +
Lrof = Lr[tan (d" + b) + 1.5f']. Toloosen M = Lr[tan (d" — b) + 1.5 ].

The total tension in a bolt due to tightening up with a moment M is
T = 27M/(l + fl secbsecdcosecb + f'3#r). T + areaat root gives
unit pure tensile stress induced, S. There is also a unit torsiona stress:
S 2(M — 15rf'T)/wrd. The equivalent combined stress is
S=0.355 + 0.65VZ+ 4.

Kingsbury, from tests on U.S. standard bolts, finds efficiencies for
tightening up nuts from 0.06 to 0.12, depending upon the roughness of
the contact surfaces and the character of the lubrication.

Toothed and Worm Gearing

The efficiency of spur and bevel gearing depends on the material and the
workmanship of the gears and on the lubricant employed. For high-
speed gears of good quality the efficiency of the gear transmission is 99
percent; with slow-speed gears of average workmanship the efficiency
of 96 percent is common. On the average, efficiencies of 97 to 98
percent can be considered normal.

In helical gears, where considerable transverse sliding of the meshing
teeth on each other takes place, the friction is much greater. If b and ¢
are, respectively, the spiral angles of the teeth of the driving and driven
helical gears (i.e., the angle between the teeth and the axis of rotation),
b + cisthe shaft angle of the two gears, and f = tan aisthe coefficient
of dliding friction of the teeth, the efficiency of the gear transmission is
e = [cos b cos (c + a)]/[cosc cos (b — a)].

Table 3.2.9 Coefficients of Friction for Worm Gears
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In the case of worm gearing when the shafts are normal to each other
(b + ¢ = 90), the efficiency ise = tan c/tan (c + @) = (1 — pf/2zr)/(1
+ 2arflp), where c is the spiral angle of the worm wheel, or the lead
angle of the worm; p the lead, or pitch of the worm thread; and r the
mean radius of the worm. Typical values of f are shown in[[able 3.2.9]

Journals and Bearings

Friction of Journal Bearings |If P = tota load on journal, | = jour-
nal length, and 2r = journal diameter, then p = P/2r] = mean normal
pressure on the projected area of the journal. Also, if f; is the coefficient
of journal friction, the moment of journal friction for acylindrical journal
isM = f,Pr. The work expended in friction at angular velocity w is

W= oM = fPro
For the conical bearing (EIg—32.T3) the mean radiusr,, = (r + R)/2isto

be used.
-

2r

;;E£;3££

Values of Coefficient of Friction For very low velocities of rotation
(e.g., below 10 r/min), high loads, and with good lubrication, the coef-
ficient of friction approaches the value of greasy friction, 0.07 to 0.15
(sedTable 32.4). Thisis also the ‘‘pullout’ coefficient of friction on
starting the journal. With higher velocities, a fluid film is established
between the journal and bearing, and the values of the coefficient of
friction depend on the speed of rotation, the pressure on the bearing, and
the viscosity of the ail. For journals running in complete bearing bush-
ings, with a small clearance, i.e., with the diameter of the bushing
dlightly larger than the diameter of the journal, the experimental data
of McKee give approximate values of the coefficient of friction asin
Fig. 3.2.14.

Fig. 3.2.13
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Fig. 3.2.14 Coefficient of friction of journal.

If dy is the diameter of the bushing in inches, d the diameter of the
journa in inches, then (d; — d) is the diametral clearance and m =
(d, — d)/d is the clearance ratio. The diagram of McKee [FIg—3.2Z14)
gives the coefficient of friction as a function of the characteristic num-

Rubbing speed of worm, ft/min 100 200
(m/min) (30.5) (61)
Phosphor-bronze wheel, pol- 0.054 0.045

ished-steel worm
Single-threaded cast-iron worm 0.060 0.051

and gear

300 500 800 1200
(91.5) (152) (244) (366)
0.039 0.030 0.024 0.020
0.047 0.034 0.025
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ber ZN/p, where N is the speed of rotation in revolutions per minute,
p = P/(dl) isthe average pressure in I1b/in? on the projected area of the
bearing, P isthe load, | is the axial length of the bearing, and Z is the
absolute viscosity of the oil in centipoises. Approximate values of Z at
100 (130)°F are asfollows: light machine oil, 30 (16); medium machine
ail, 60 (25); medium-heavy machine oil, 120 (40); heavy machine ail,
160 (60).

For purposes of design of ordinary machinery with bearing pressures
from 50 to 300 Ib/in? (344.7 to 2,068 kN/m?) and speeds of 100 to
3,000 rpm, values for the coefficient of journa friction can be taken
from 0.008 to 0.020.

Thrust Bearings

Frictional Resistance for Flat Ring Bearing Step bearings or pivots
may be used to resist the end thrust of shafts. Let L = total load in the
direction of the shaft axis and f = coefficient of sliding friction.

For aring-shaped flat step bearing such as that shown in
(or acollar bearing), the moment of thrust friction M = ¥3fL(D3 — d3)/
(D2 — d?). For aflat circular step bearing, d = 0, and M = ¥5fLD.

L

Oil out {hOiI out
|y,

Fig. 3.2.15

The value of the coefficient of sliding frictionis0.08to 0.15 when the
speed of rotation isvery slow. At higher velocitieswhen acollar or step
bearing isused, f = 0.04t0 0.06. If the design providesfor theformation
of aload carrying ail film, asin the case of the Kingsbury thrust bearing,
the coefficient of friction has values f = 0.001 to 0.0025.

Where ail is supplied from an external pump with such pressure asto
separate the surfaces and provide an oil film of thickness h (Blg—3.215),
the frictional moment is

y— Z00% — d9) _ muo(D — d9
67 x 107 h 32h

where D and d arein inches, u isthe absolute viscosity, w isthe angular
velocity, h is the film thickness, in, Z is viscosity of Iubricant in centi-
poises, and n is rotation speed, r/min. With this kind of lubrication the
frictional moment depends upon the speed of rotation of the shaft and
actually approaches zero for zero shaft speeds. The thrust load will be
carried on a film of oil regardless of shaft rotation for as long as the
pump continues to supply the required volume and pressure (see also
Secs. 8 and 14).

EXAMPLE. A hydrostatic thrust bearing carries 101,000 Ib, D is 16 in, d is
10 in, oil-film thickness h is 0.006 in, oil viscosity Z, 30 centipoises at operating
temperature, and n is 750 r/min. Substituting these values, the frictional torque M
is310in - Ib (358 cm - kg). The oil supply pressure was 82.5 |b/in? (569 kN/m?);
the ail flow, 12.2 gal/min (46.2 |/min).

Frictional Forces in Pin Joints of Mechanisms

In the absence of friction, or when the effect of frictionisnegligible, the
force transmitted by the link b from the driver a to the driven link ¢
[Egs—37TH and acts through the centerline OO of the pins
connecting thelink b with links a and c. With friction, thisline of action
shiftstotheline AA, tangent to small circles of diameter d. The diameter

d of thecircle, called thefriction circle, for each individual joint, isequal
to fD, where D is the diameter of the pin and f is the coefficient of
friction between the pin and the link. The choice of the proper disposi-
tion of the tangent AA with respect to the two friction circles is dictated

Driver

Fig. 3.2.16 Fig. 3.2.17

by the consideration that friction always opposes the action of the link-
age. The force f opposes the motion of a; therefore, with friction it acts
on alonger lever than without friction (Elgs3216land B211). On the
other hand, the force F drives the link c; friction hinders its action, and
the equivalent lever is shorter with friction than without friction; the
friction throws the line of action toward the center of rotation of link c.

ExAMPLE. An engine eccentriETEID—321B) is ajoint where the friction loss
may belarge. For the dimensions shown and with atorque of 250in - Ib applied to
the rotating shaft, the resultant horizontal force, with no friction, will act through
the center of the eccentric and be 250/(2.5 sin 60) or 115.5 Ib. With friction
coefficient 0.1, the resultant force (which for along rod remains approximately
horizontal) will be tangent to the friction circle of radius 0.1 X 5, or 0.5 in, and
have a magnitude of 250/(2.5 sin 60 + 0.5), or 93.8 Ib (42.6 kg).

With friction
——

With no friction

Fig.3.2.18 ~~

Tension Elements

Frictional Resistance IMEQ_32.19 let T, and T, be the tensions
with which a rope, belt, chain, or brake band is strained over a drum,
pulley, or sheave, and let the rope or belt be on the point of slipping
from T, toward T, by reason of the difference of tension T, — T,. Then
T, — T, = circumferential force P transferred by friction must be equal

Fig. 3.2.19

to the frictional resistance W of the belt, rope, or band on the drum or
pulley. Also, let a = angle subtending the arc of contact between the
drum and tension element. Then, disregarding centrifugal forces,

T, = TeRand P = (efa — 1)Ty/efa = (efa — T, = W

where e = base of the napierian system of logarithms = 2.178+.



Table 3.2.10 Values of ef
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a°
360° 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1 1.06 11 113 117 121 1.25 1.29 133 1.37
0.2 113 121 1.29 1.37 1.46 1.55 1.65 1.76 1.87
0.3 121 132 1.45 1.60 1.76 1.93 213 2.34 257
0.4 1.29 1.46 1.65 1.87 212 241 2.73 3.10 351
0.425 131 1.49 1.70 1.95 2.23 2.55 291 3.33 3.80
0.45 133 153 1.76 2.03 2.34 2.69 3.10 357 411
0.475 1.35 1.56 1.82 211 245 2.84 3.30 3.83 4.45
0.5 137 1.60 1.87 219 2.57 3.00 3.51 411 4.81
0.525 1.39 1.64 1.93 2.28 2.69 317 3.74 4.41 520
0.55 141 1.68 2.00 2.37 2.82 335 3.98 4.74 5.63
0.6 1.46 1.76 213 2.57 3.10 3.74 4.52 5.45 6.59
0.7 155 1.93 241 3.00 3.74 4.66 5.81 7.24 9.02
0.8 1.65 213 2.73 351 452 5.81 7.47 9.60 12.35
0.9 1.76 234 3.10 411 5.45 7.24 9.60 12.74 16.90
10 1.87 2.57 3.51 481 6.59 9.02 12.35 16.90 2314
15 257 411 6.59 10.55 16.90 27.08 43.38 69.49 111.32
2.0 351 6.59 12.35 23.14 43.38 8131 152.40 285.68 535.49
25 481 10.55 23.14 50.75 111.32 244.15 535.49 1,1745 2,575.9
3.0 6.59 16.90 43.38 111.32 285.68 733.14 1,8815 4,828.5 12,391
35 9.02 27.08 81.31 24415 733.14 2,199.90 6,610.7 19,851 59,608
4.0 12.35 43.38 152.40 535.49 1,8815 6,610.7 23,227 81,610 286,744

NOTE: e = 23.1407, log e™ = 1.3643764.

f is the static coefficient of friction (f,) when there is no dlip of the
belt or band on the drum and the coefficient of kinetic friction (f) when
slip takes place. For ease of computation, the values of the quantity ef2
are tabulated on[Table 3.2.101

Average values of f, for belts, ropes, and brake bands are as follows:
for leather belt on cast-iron pulley, very greasy, 0.12; dlightly greasy,
0.28; moist, 0.38. For hemp rope on cast-iron drum, 0.25; on wooden
drum, 0.40; on rough wood, 0.50; on polished wood, 0.33. For iron
brake bands on cast-iron pulleys, 0.18. For wire ropes, Tichvinsky re-
ports coefficients of static friction, f,, for a ¥s rope (8 X 19) on a
worn-in cast-iron groove: 0.113 (dry); for mylar on auminum, 0.4 to
0.7.

Belt Transmissions; Effects of Belt Compliance

In the configuration of [Elg—3220] pulley A drives a belt at angular
velocity w,. Pulley B, here assumed to be of the sameradiusRas A, is
driven at angular velocity wg. If the belt is extensible and the resistive
torqueM = (T, — T,) Risapplied at B, wg will be smaller than w, and
power will be dissipated at a rate W = M(w, — wg). Likewise, the
surface velocity V; of the more stretched belt will be larger than V,. No
slip will take place over thewraps At-Agand B;-Bg. Thedlip anglesa,

and ag can be calculated from
an = [In(Ty/T))/fa ag = [In(Ty/T))/fs

where f, and fg are the coefficients of friction on pulleys A and B,
respectively. To calculate the above values, it is necessary to know the
mean tension of the belt, T = (T, + T,)/2. Then, T/T, = [T +
M/(2R)]/[T — M/(2R)]. In this configuration, when the dlip angles be-
come equal to 7 (180°), complete slip occurs.

It is interesting to note that torque is transmitted only over the slip
arcs a, and ag since there is no tension variation in the arcs A-Agand
B+-Bs where the belt is in a uniform state of stretch.

w, A
D
As

Fig. 3.2.20 Pulley transmission with extensible belt.
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3.3 MECHANICS OF FLUIDS
by J. W. Murdock
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Notation 7= 314159 . . . , dimensionless ratio
p = density

a = acceleration, area, exponent .
o = surface tension

v unit shear stress
¢ = velocity of sound = :
C = coefficient w = rotational speed

C = Cauchy number
C,, = pressure coefficient
d = diameter, distance
E = bulk modulus of elasticity, modulus of elasticity (Young's
modulus), velocity of approach factor, specific energy

FLUIDS AND OTHER SUBSTANCES

Substances may be classified by their response when at rest to the impo-
sition of a shear force. Consider the two very large plates, one moving,

E = Euler number

f = frequency, friction factor

F = dimension of force, force

F = Froude number

g = acceleration due to gravity
g. = proportionality constant = 32.1740 Imb/(Ibf ) (ft/s?)
G = mass velocity

h = head, vertical distance below a liquid surface
H = geopotential atitude
i = ided
moment of inertia
= mechanical equivalent of heat, 778.169 ft - |bf
= isentropic exponent, ratio of specific heats

K = constant, resistant coefficient, weir coefficient
K = flow coefficient

L = dimension of length, length

m = mass, |Ibm

m = mass rate of flow, Ibm/s

M = dimension of mass, mass (slugs)

M = mass rate of flow, slugs/s
M = Mach number

n = exponent for a polytropic process, roughness factor
N = dimensionless number

i
|

J
k

p = pressure
P = perimeter, power
g = heat added

g = flow rate per unit width
Q = volumetric flow rate
r = pressure ratio, radius
R = gas constant, reactive force
R = Reynolds number
R, = hydraulic radius
s = distance, second

sp. gr. = specific gravity

S = scale reading, slope of a channel
S = Strouhal number
t=time
T = dimension of time, absolute temperature
u = interna energy
U = stream-tube velocity
v = specific volume
V = one-dimensional velocity, volume
V = velocity ratio
W = work done by fluid
W = Weber number
x = abscissa
y = ordinate
Y = expansion factor
z = height above a datum
Z = compressibility factor, crest height
a = angle, kinetic energy correction factor
B = ratio of primary element diameter to pipe diameter
v = specific weight
& = boundary-layer thickness
& = absolute surface roughness
0 = angle
= dynamic viscosity
v = kinematic viscosity

the other stationary, separated by a small distance y as shown in[Eg]

[33T The space between these plates is filled with a substance whose
surfaces adhere to these plates in such a manner that its upper surface
moves at the same velocity as the upper plate and the lower surface is
stationary. The upper surface of the substance attains a velocity of U as
the result of the application of shear force F,. As'y approaches dy, U
approaches dU, and the rate of deformation of the substance becomes
dU/dy. Theunit shear stressisdefined by = F /A, where Ajisthe shear
or surface area. The deformation characteristics of various substances
are shown in[Elg—337]

Moving plate
Fo —» —»
| T
y dy
B
l U Siationary plate
( 1

Fig. 3.3.1 Flow of a substance between parallel plates.

An idea or edastic solid will resist the shear force, and its rate of
deformation will be zero regardless of loading and hence is coincident
with the ordinate of (ElG—33A A plastic will resist the shear until its
yield stress is attained, and the application of additional loading will
cause it to deform continuously, or flow. If the deformation rate is
directly proportional to the flow, it is called an ideal plastic.

1
4 Eigstic solid
Ideal
- plastic
[13]
[
2
=
[12]
O
2 Non-Newtonian
r fluid
—
c
>
153
3
@®
L
®
° Newtonian fluid
]
>
J, Ideal fluid

»

0

Rate of deformation dU/dy
Fig. 3.3.2 Deformation characteristics of substances.



If the substance is unable to resist even the slightest amount of shear
without flowing, it is afluid. Anideal fluid has no internal friction, and
hence its deformation rate coincides with the abscissa ofFIg.3.3.2 All
real fluids have interna friction so that their rate of deformation is
proportional to the applied shear stress. If it isdirectly proportiona, itis
called a Newtonian fluid; if not, a non-Newtonian fluid.

Two kinds of fluids are considered in this section, incompressible and
compressible. A liquid except at very high pressures and/or temperatures
may be considered incompressible. Gases and vapors are compressible
fluids, but only ideal gases (those that follow the ideal-gas laws) are
considered in this section. All others are covered in Secs. 4.1 and 4.2.

FLUID PROPERTIES

The density p of a fluid is its mass per unit volume. Its dimensions
are M/L3. In fluid mechanics, the units are slugs/ft3 and |bf - s?/ft4)
(515.3788 kg/m3), but in thermodynamics (Sec. 4.1), the units are lbm/
ft3 (16.01846 kg/m3). Numerical values of densitiesfor selected liquids
are shown in The temperature change at 68°F (20°C) re-
quired to produce a 1 percent change in density varies from 12°F
(6.7°C) for kerosene to 99°F (55°C) for mercury.

The specific volume v of afluid isits volume per unit mass. Itsdimen-
sions are L3/M. The units are ft3/Ibm. Specific volume is related to
density by v = 1 /pg., where g, isthe proportionality constant [32.1740
(Ibm/Ibf )(ft/s?)]. Specific volumes of ideal gases may be computed
from the equation of state: v = RT/p, where R is the gas constant in
ft-1bf/(Ibm)(°R) (see Sec. 4.1), T is the temperature in degrees Ran-
kine (°F + 459.67), and p is the pressure in Ibf/ft? abs.

The specific weight y of afluid is its weight per unit volume and has
dimensions of F/L3 or M/(L?)(T?). The units are Ibf/ft3 or slugs/(ft?)(s?)
(157.087 N/m3). Specific weight is related to density by y = pg, where
g is the acceleration of gravity.

The specific gravity (sp. gr.) of asubstance is a dimensionless ratio of
the density of afluid to that of a reference fluid. Water is used as the
reference fluid for solids and liquids, and air is used for gases. Since the
density of liquids changes with temperature for a precise definition of
specific gravity, the temperature of the fluid and the reference fluid
should be stated, for example, 60/60°F, where the upper temperature
pertains to the liquid and the lower to water. If no temperatures are
stated, reference is made to water at its maximum density, which occurs
at 3.98°C and atmospheric pressure. The maximum density of water is
1.9403 dlugs/ft3 (999.973 kg/m3). See Sec. 1.2 for conversion factors
for API and Baumé hydrometers. For gases, it iscommon practiceto use
theratio of the molecular weight of the gasto that of air (28.9644), thus
eliminating the necessity of stating the pressure and temperature for
ideal gases.
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The bulk modulus of elagticity E of afluid is the ratio of the pressure
stress to the volumetric strain. Its dimensions are F/L2. The units are
Ibf/in? or Ibf/ft2. E depends upon the thermodynamic process causing
the change of state so that E, = — v(ap/av),, where x isthe process. For
ideal gases, E; = p for an isotherma process and E; = kp for an
isentropic processwhere k istheratio of specific heats. Vaues of E; and
Es for liquids are given in[Taple 3:3.Z] For liquids, a mean value is
used by integrating the equation over a finite interval, or E,, =
= Vi(AP/AV), = Vi(p2 — PD/(V1 — Vo).

ExAMPLE. What pressure must be applied to ethyl alcohol at 68°F (20°C) to
produce a 1 percent decrease in volume at constant temperature?

Ap = — Eq(Av/v) = — (130,000)(— 0.01)
= 1,300 Ibf/in? (9 X 10° N/m?)

In a like manner, the pressure required to produce a 1 percent decrease in the
volume of mercury is found to be 35,900 Ibf/in? (248 X 10° N/m?). For most
engineering purposes, liquids may be considered as incompressible fluids.

The acoustic velocity, or velocity of sound in afluid, is given by ¢ = VE¢/p. For
an ideal gas ¢ = Vkp/p = vkg.pv = Vkg RT. Values of the speed of sound in
liquids are given inTaE332]

ExAmMPLE. Check the value of the velocity of sound in benzene at 68°F
(20°C) given in[TAE=3321using the isentropic bulk modulus. ¢ = VE¢/p =
V144 X 223,000/1.705 = 4,340 ft/s (1,320 m/s). Additiona information on the
velocity of sound is given in Secs. 4, 11, and 12.

Application of shear stress to a fluid results in the continua and
permanent distortion known as flow. Viscosity isthe resistance of afluid
to shear motion—its internal friction. This resistance is due to two
phenomena: (1) cohesion of the molecules and (2) molecular transfer
from one layer to another, setting up a tangential or shear stress. In
liquids, cohesion predominates, and since cohesion decreases with in-
creasing temperature, the viscosity of liquids does likewise. Cohesionis
relatively weak in gases; hence increased molecular activity with in-
creasing temperature causes an increase in molecular transfer with
corresponding increase in viscosity.

The dynamic viscosity p of afluid is the ratio of the shearing stressto
the rate of deformation. From[EQ—3:3.1] n = 7/(dU/dy). Itsdimensions
are (F)(T)/L2 or M/(L)(T). The units are Ibf-s/ft> or slugs/(ft)(s)
[47.88026(N - s)/m?].

In the cgs system, the unit of dynamic viscosity is the poise,
2,089 X 10-6 (Ibf-s)/ft2 [0.1 (N-s)/m?], but for convenience the
centipoise (1/100 poise) is widely used. The dynamic viscosity of water
at 68°F (20°C) is approximately 1 centipoise.

[Tanle 33 3gives values of dynamic viscosity for selected liquids at
atmospheric pressure. Values of viscosity for fuels and lubricants are
given in Sec. 6. The effect of pressure on liquid viscosity is generally

Table 3.3.1 Density of Liquids at Atmospheric Pressure

Temp:
°C 0 20 40 60 80 100
°F 32 68 104 140 176 212
Liquid p, slugs/ft® (515.4 kg/md)
Alcohol, ethylf 1.564 1532 1.498 1.463
BenzenerP 1.746 1.705 1.663 1.621 1.579
Carbon tetrachloride2? 3.168 3.093 3.017 2.940 2.857
Gasoline,® sp. gr. 0.68 1.345 1.310 1.275 1.239
Glycerinab 2472 2.447 2423 2.398 2.372 2.346
Kerosene® sp. gr. 0.81 1.630 1.564 1.536 1.508 1.480
Mercury® 26.379 26.283 26.188 26.094 26.000 25.906
Qil, machine, sp. gr. 0.907 1.778 1.752 1.727 1.702 1.677 1.651
Water, freshd 1.940 1.937 1.925 1.908 1.885 1.859
Water, salt® 1.995 1.988 1.975

SOURCES: Computed from data given in:

2 ““Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber Company, 1971-1972.

b **Smithsonian Physical Tables,”” 9threv. ed., 1954.
¢ ASTM-IP, ‘‘ Petroleum Measurement Tables.’
d‘‘Steam Tables,” ASME, 1967.

€ ‘“ American Institute of Physics Handbook,'’ 3d ed., McGraw-Hill, 1972.

f““International Critical Tables,”” McGraw-Hill.
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Table 3.3.2 Bulk Modulus of Elasticity, Ratio of Specific Heats of Liquids and Velocity of
Sound at One Atmosphere and 68°F (20°C)

E in Ibf/in? (6,895 N/m?2)

k= cinft/s
Liquid Isothermal E; Isentropic Eg clc, (0.3048 m/s)
Alcohol, ethylae 130,000 155,000 119 3,810
Benzenef 154,000 223,000 1.45 4,340
Carbon tetrachloridea? 139,000 204,000 1.47 3,080
Glycerinf 654,000 719,000 110 6,510
Kerosene®¢ sp. gr. 0.81 188,000 209,000 111 4,390
Mercury® 3,590,000 4,150,000 1.16 4,770
Qil, machine,’ sp. gr. 0.907 189,000 219,000 113 4,240
Water, fresh? 316,000 319,000 1.01 4,860
Water, saltae 339,000 344,000 1.01 4,990
SouRces: Computed from data given in:
a‘‘Handbook of Chemistry and Physics,” 52d ed., Chemical Rubber Company, 1971-1972.
b *“Smithsonian Physical Tables,”” 9th rev. ed., 1954.
¢ ASTM-IP, ‘‘ Petroleum Measurement Tables.”
d Steam Tables,” ASME, 1967.
¢ **American Institute of Physics Handbook,'" 3d ed., McGraw-Hill, 1972.
f*““International Critical Tables,”” McGraw-Hill.
Table 3.3.3 Dynamic Viscosity of Liquids at Atmospheric Pressure
Temp:
°C 0 20 40 60 80 100
°F 32 68 104 140 176 212
Liquid w, (Ibf - 9)/(ft2) [47.88 (N - s)/(m?)] X 106
Alcohal, ethylae 37.02 25.06 17.42 12.36 9.028
Benzene? 19.05 13.62 10.51 8.187 6.871
Carbon tetrachloride® 28.12 20.28 15.41 12.17 9.884
Gasoline sp. gr. 0.68 7.28 5.98 4.93 4.28
Glycerind 252,000 29,500 5,931 1,695 666.2 309.1
Kerosene, sp. gr. 0.81 61.8 38.1 26.8 20.3 16.3
Mercury? 35.19 32.46 30.28 28.55 27.11 25.90
Oil, machine2 sp. gr. 0.907
‘““Light” 7,380 1.810 647 299 164 102
‘“Heavy”’ 66,100 9,470 2,320 812 371 200
Water, fresh® 36.61 20.92 13.61 9.672 7.331 5.827
Water, saltd 39.40 22.61 18.20
SouRces: Computed from data given in:
a‘“Handbook of Chemistry and Physics,’’ 52d ed., Chemical Rubber Company, 1971-1972.
b “Smithsonian Physical Tables,’’ 9threv. ed., 1954.
¢ ‘*Steam Tables,”” ASME, 1967.
d** American Institute of Physics Handbook,” 3d ed., McGraw-Hill, 1972.
e *‘International Critical Tables,”” McGraw-Hill.
Table 3.3.4 Viscosity of Gases at One Atmosphere
Temp:
°C 0 20 60 100 200 400 600 800 1000
°F 32 68 140 212 392 752 1112 1472 1832
Gas w, (Ibf - s)/(ft?) [47.88(N - s)/(m?)] X 108
Air* 35.67 39.16 41.79 45.95 53.15 70.42 80.72 91.75 100.8
Carbon dioxide* 29.03 30.91 35.00 38.99 47.77 62.92 74.96 87.56 97.71
Carbon monoxidet 34.60 36.97 4157 45.96 52.39 66.92 79.68 91.49 102.2
Helium* 38.85 40.54 44.23 47.64 55.80 71.27 84.97 97.43
Hydrogen* -1 17.43 18.27 20.95 21.57 25.29 32.02 38.17 43.92 49.20
Methane* 21.42 22.70 26.50 27.80 33.49 43.21
Nitrogen*-t 34.67 36.51 40.14 43.55 51.47 65.02 76.47 86.38 95.40
Oxygent 40.08 42.33 46.66 50.74 60.16 76.60 90.87 104.3 116.7
Steamt 18.49 21.89 25.29 33.79 50.79 67.79 84.79

SOURCES: Computed from data given in:

* **Handbook of Chemistry and Physics,”” 52d ed., Chemical Rubber Company, 1971-1972.
1 *“Tables of Thermal Properties of Gases,”” NBS Circular 564, 1955.

} *‘Steam Tables,” ASME, 1967.



unimportant in fluid mechanics except in lubricants (Sec. 6). The vis-
cosity of water changes little at pressures up to 15,000 Ibf/in2, but for
animal and vegetable oilsit increases about 350 percent and for mineral
oils about 1,600 percent at 15,000 |bf/in? pressure.

The dynamic viscosity of gases is primarily a temperature function
and essentialy independent of pressure.[Table 3.3 4] gives values of
dynamic viscosity of selected gases.

The kinematic viscosity v of afluid isitsdynamic viscosity divided by
its density, or v = w/p. Its dimensions are L2/T. The units are ft?/s
(9.290304 X 102 m?/s).

In the cgs system, the unit of kinematic viscosity is the stoke
(1 X 104 m?#/s?), but for convenience, the centistoke (1/100 stoke) is
widely used. The kinematic viscosity of water at 68°F (20°C) is approx-
imately 1 centistoke.

The standard device for experimental deter mination of kinematic viscos-
ity in the United States is the Saybolt Universal viscometer. It consists
essentially of ametal tube and an orifice built to rigid specifications and
calibrated. The time required for a gravity flow of 60 cubic centimeters
is called the SSU (Saybolt seconds Universal). Approximate conver-
sions of SSU to stokes may be made as follows:

32 < SSU < 100 seconds, stokes = 0.00226 (SSU) — 1.95/(SSU)
SSU > 100 seconds, stokes = 0.00220 (SSU) — 1.35/(SSU)

For viscous ails, the Saybolt Furol viscometer is used. Approximate
conversions of SSF (saybolt seconds Furol) may be made as follows:

25 < SSF < 40 seconds, stokes = 0.0224 (SSF) — 1.84/(SSF)
SSF > 40 seconds, stokes = 0.0216 (SSF) — 0.60/(SSF)

For exact conversions of Saybolt viscosities, see ASTM D445-71 and
Sec. 6.11.

The surface tension o of a fluid is the work done in extending the
surface of aliquid one unit of area or work per unit area. Its dimensions
are F/L. The units are Ibf/ft (14.5930 N/m).

Values of ¢ for various interfaces are given in[Ianle 3.3.5] Surface
tension decreases with increasing temperature. Surface tension is of
importance in the formation of bubbles and in problemsinvolving atom-
ization.

Table 3.3.5 Surface Tension of Liquids at One
Atmosphere and 68°F (20°C)

&, Ibf/ft (14.59 N/m) x 10°

Liquid In vapor Inair In water
Alcohol, ethyl* 1.56 153
Benzene* 2.00 1.98 2.40
Carbon tetrachloride* 1.85 1.83 3.08
Gasoline,* sp. gr. 0.68 13-16 2.7-3.6
Glycerin* 4.30 4.35
Kerosene* sp. gr. 0.81 16-2.2
Mercury* 32.68 328 25.7
Oil, machine, sp. gr. 0.907 25 2.6 2.3-37
Water, fresht 4,99
Water, saltf 5.04

SoURCES: Computed from data given in:

* “‘International Critical Tables,”” McGraw-Hill.

1T ASTM-IP, *‘ Petroleum Measurement Tables."”

F **American Institute of Physics Handbook,”” 3d ed., McGraw-Hill, 1972.
§ In vacuum.

Capillary action is due to surface tension, cohesion of the liquid mole-
cules, and the adhesion of the molecules on the surface of a solid. This
action is of importance in fluid mechanics because of the formation of a
meniscus (curved section) in atube. When the adhesion is greater than
the cohesion, aliquid ‘‘wets’ the solid surface, and the liquid will rise
in the tube and conversely will fall if the reverse[EIgure 33 3illustrates
this effect on manometer tubes. In the reading of a manometer, all data
should be taken at the center of the meniscus.
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The vapor pressure pv of afluid isthe pressure at which itsliquid and
vapor are in equilibrium at a given temperature. See Secs. 4.1 and 4.2
for further definitions and values.
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Fig. 3.3.3 Capillarity in circular glass tubes.

FLUID STATICS

Pressure p is the force per unit area exerted on or by a fluid and has
dimensions of F/L2. In fluid mechanics and in thermodynamic equa-
tions, the units are Ibf/ft? (47.88026 N/m?), but engineering practice is
to use units of Ibf/in2 (6,894.757 N/m3).

The relationship between absolute pressure, gage pressure, and vacuum
is shown iRFIg—3.3K¥. Mot fluid-mechanics equations and all thermo-
dynamic equations require the use of absolute pressure, and unless other-
wise designated, a pressure should be understood to be absolute pressure.
Common practice is to denote absolute pressure as |bf/ft? abs, or psfa,
Ibf/in2 abs or psia; and in a like manner for gage pressure Ibf/ft2 g,
Ibf/in? g, and psig.

p Standard atmospheric pressure is
4 14696 Ibf in™ or 29.92 in Hg atm
at sea level

l Go‘ge {Ac‘ruol atmospheric pressure

Absolute
l Afmosphemc

{Negative goge) Vacuum

Absolute
¥

Fig. 3.3.4 Pressure relations.

According to Pascal’s principle, the pressure in a static fluid is the
samein all directions.

The basic equation of fluid staticsis obtained by consideration of afluid
particle at rest with respect to other fluid particles, all being subjected to
body-force accelerations of a,, a,, and a, opposite the directions of X, y,
and z, respectively, and the acceleration of gravity in the z direction,
resulting in the following:

dp = —pla,dx + a,dy + (a, + g) dZ

Pressure-Height Relations For a fluid at rest and subject only to
the gravitational force, a,, a,, and a, are zero and the basic equation for
fluid staticsreducesto dp = — pg dz = y dz

Liquids (Incompressible Fluids) The pressure-height equation inte-
gratesto (py — P2) = p9(z, — 1) = ¥( — z)) = Ap = yh, wherehis
measured from the liquid surface [EIg—3.35).

EXAMPLE. A large closed tank is partly filled with 68°F (20°C) benzene. If
the pressure on the surface is 10 Ib/in?, what is the pressure in the benzene at a
depth of 11 ft below the liquid surface?

1.705 X 32.17 X 11

= tp, = ——_—
p. = pgh + p, 122 10

= 14.19 Ibf/ir? (9.784 X 10* N/m?)
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Ideal Gases (Compressible Fluids) For problems involving the
upper atmosphere, it is necessary to take into account the variation of
gravity with atitude. For this purpose, the geopotential altitude H is used,
defined by H = Z/(1 + z/r), where r isthe radius of the earth (=~ 21 X

P2 T T 'gti.lqutlcig ce

Fig. 3.3.5 Pressure equivalence.

106 ft ~ 6.4 X 10° m) and zis the height above sealevel. The integra-
tion of the pressure-height equation depends upon the thermodynamic
process. For an isothermal process p,/p; = €~ (H=~HJ/RT and for apolytro-
pic process (N # 1)

P2 _ [1 _ (= D(H, - Ho]m"*l)
Py nRT,

Temperature-height relations for a polytropic process (n # 1) are
given by

n H, — H;

1-n RT,-Ty)
Substituting in the pressure-altitude equation,
p./p, = (TZ/Tl)(Hz —H)+R(M—T)

ExAMPLE. The U.S. Standard Atmosphere 1962 (Sec. 11) is defined as hav-
ing a sealevel temperature of 59°F (15°C) and a pressure of 2,116.22 |bf/ft2.
From sea level to a geopotential atitude of 36,089 ft (11,000 m) the temperature
decreases linearly with altitude to — 69.70°F (— 56.5°C). Check the value of pres-
sure ratio at this altitude given in the standard table.

Noting that T, = 59 + 459.67 = 518.67, T, = — 69.70 + 459.67 = 389.97,
and R = 53.34 ft- Ibf/(Ibm)(°R),

Palpy = (T, Ty)He = HIRT: =T
= (389.97/518.67)(36.089-0)/53.34(518.67 — 389.97)
= 0.2233 vs. tabulated value of 0.2234

Pressure-Sensing Devices Thetwo principal devicesusing liquids
are the barometer and the manometer. The barometer senses absolute
pressure and the manometer senses pressure differential. For discussion
of the barometer and other pressure-sensing devices, refer to Sec. 16.

Manometers are a direct application of the basic equation of fluid
statics and serve as a pressure standard in the range of %10 in of water to
100 Ibf/in2. The most familiar type of manometer isthe U tube shownin
Fig. 3.3.6a. Because of the necessity of observing both legs simulta-
neously, the well or cistern type (EIg—33.60) is sometimes used. The
inclined manometef (FIg.3.3.6¢) is a specia form of the well-type ma-
nometer designed to enhance the readability of small pressure differen-
tials. Application of the basic equation of fluid statics to each of the
types results in the following equations. For the U tube, p; — p, =
(vm — 1), where vy,, and v; are the specific weights of the manometer
and sensed fluids, respectively, and h is the vertical distance between
the liquid interfaces. For the well type, p; — P> = (Ym — ()
X (1 + Ay/A,), where A; and A, are as shown i F1g.3.3.8b and z, isthe
vertical distance from the fill line to the upper interface. Commercial
manufacturers of well-type manometers correct for the area ratios so
that p; — P> = (¥m — 1)S Where Sisthe scale reading and is equal to
z,(1 + A,/A,)). For this reason, scales should not be interchanged be-
tween U type or well type or between well types without consulting the
manufacturer. For inclined manometers,

P1 = P2 = (Ym — M(AAL + sin O)R

where R is the distance aong the inclined tube. Commercial inclined

manometers also have specia scales so that p; — P, = (Ym — WS
where S = (A,/A; + sin )R
Cl‘ Tz _—Area Az
Ye—Ah | ¥ —zf
S —t_Fillline
2
_¥
Area A4 e
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‘ reg Ag
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Fig. 3.3.6 (&) U-tube manometer; (b) well or cistern-type manometer; (c) in-
clined manometer.

ExAMPLE. A U-tube manometer containing mercury is used to sense the
difference in water pressure. If the height between the interfacesis 10 in and the
temperature is 68°F (20°C), what is the pressure differential?

P1 = P2 = (¥m — Wh = g(pm — p)h
= 32.17(26.283 — 1.937)(10/12)
= 652.7 Ibf/ft? (3.152 X 10* N/m?)

Liquid Forces The force exerted by aliquid on a plane submerged
surface (033 Z)isgivenby F = [pdA = yfh - dA= yh, A, whereh,
is the distance from the liquid surface to the center of gravity of the
surface, and Aisthe areaof the surface. Thelocation of the center of this
forceis given by

S =5 t+ Ig/SA

where s: istheinclined distance from the liquid surface to the center of
force, s, theinclined distance to the center of gravity of the surface, and
I the moment of inertia around its center of gravity. Values of I are
givenin Sec. 5.2. Seealso Sec. 3.1. FrorhFIig.33Y, h = Rsin 6, so that
the vertical center of force becomes

he = he + Ig(sin 6)2/h.A



ExampPLE. Determine the force and its location acting on a rectangular gate
3 ft wideand 5 ft high at the bottom of atank containing 68°F (20°C) water, 12 ft
deep, (1) if the gate is vertical, and (2) if it isinclined 30° from horizontal .

1. Vertical gate
F = ygh.A = pgh,A
= 1.937 X 32.17(12 — 5/2)(5 X 3)
= 8,800 I (3.914 X 10* N)
he = he + Ig(sin 6)2/h A, from Sec. 5.2, I for arectangle = (width)(height)3/12
he = (12 — 5/2) + (3 X 53/12)(sin 90°)2/(12 — 5/2)(3 X 5)
he = 9.719 ft (2.962 m)

2. Inclined gate
F = yh.A = pgh.A
= 1.937 X 32.17(12 — 5/2sin 30°)(5 X 3)
= 10,048 Ibf (4.470 X 10* N)
he = he + Ig(sin 6)2/h.A
= (12 — 5/2sin 30°) + (3 X 5%12)(sin 30°)?/(12 — 5/2 sin 30°)(3 X 5)
= 10.80 ft (3.291 m)

/™A

Liquid surface

Center of
gravity

Section"A-A"

Fig. 3.3.7 Notation for liquid force on submerged surfaces.

Forceson irregular surfacesmay be obtained by considering their hori-
zontal and vertical components. The vertical component F, equals the
weight of liquid above the surface and acts through the centroid of the
volume of the liquid above the surface. The horizontal component F,
equals the force on a vertical projection of the irregular surface. This
force may be calculated by F, = yh,A,, where h, isthe distance from
the surface center of gravity of the horizontal projection, and A, is the
projected area. The forces may be combined by F = VF2 + F2.

When fluid masses are accelerated without relative motion between
fluid particles, the basic equation of fluid statics may be applied. For
trandation of aliquid mass due to uniform acceleration, the basic equa-
tion integrates to

P2 — P = —pl(% — xPa, + (Y2 — Y&y + (z — z)(a, + 9)]

ExAMPLE. An open tank partly filled with aliquid is being accelerated up an
inclined plane as shown i LE[@-3.38. The uniform acceleration is 20 ft/s? and the
angle of the incline is 30°. What is the angle of the free surface of the liquid?
Noting that on the free surface p, = p, and that the acceleration in the y direction
is zero, the basic equation reduces to

(X2 —x)a, +(z—z)(a,+9 =0
Solving for tan 6,

tan 0 4 -2 & écosa
X — X az+g asma+g
= (20 cos 30°)/(20 sin 30° + 32.17) = 0.4107
0= 22°20'
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For rotation of liquid masses with uniform rotational acceleration, the
basic equation integrates to

2
P2=P1=p I:?(X%_X%) _g(zz_zl):l

where w istherotational speed inrad/sand x istheradial distance from
the axis of rotation.

, ax

Q

[}

Fig. 3.3.8 Notation for translation example.

EXAMPLE. Theclosed cylindrical tank shown [IEG_3.3P is4 ft in diameter
and 10 ft high and is filled with 104°F (40°C) benzene. The tank is rotated at
250 r/min about an axis 3 ft from its centerline. Compute the maximum pressure
differential in the tank. Analysis of the rotation equation indicates that the maxi-
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Xo 27

Fig. 3.3.9 Notation for rotation example.

mum pressure will occur at the maximum rotational radius and the minimum
elevation and, conversely, the minimum at the minimum rotational radius and
maximum elevation. Frol , X, =3 —4/2=1ft,x, =1+ 4 = 5ft,
2, — zy = —10ft, and the rotational speed w = 277N/60 = 27(250)/60 =
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26.18 rad/s. Substituting into the rotational equation,
0)2
P2 —PL1=p [7 (X2 —x) —9(z — Zl):l

_ 1663 [ (26.18)2
144 2
= 98.70 Ibf/in? (6.805 X 105 N/m?)

(82 — 12) — 32.17(— 10)]

Buoyancy Archimedes' principle states that a body immersed in a
fluid is buoyed up by aforce equal to the weight of the fluid displaced.
If an objectimmersed in afluidis heavier than thefluid displaced, it will
sink to the bottom, and if lighter, it will rise. From the free-body dia-
gram of Eig—3.3710 it is seen that for vertical equilibrium,

SF,=0=Fs— Fy— Fp

where Fg isthe buoyant force, F, the gravity force (weight of body), and
Fp the force required to prevent the body from rising. The buoyant force

Fs
Object
Fq Fo

Fig. 3.3.10 Free body diagram of an immersed object.

being the weight of the displaced liquid, the equilibrium equation may
be written as

Fo=Fg — Fg =W =%V =%V
where ; is the specific weight of the fluid, vy, is the specific weight of
the object, and V is the volume of the object.

EXAMPLE. An airship has avolume of 3,700,000 ft3 and is filled with hydro-
gen. What is its gross lift in air at 59°F (15°C) and 14.696 psia? Noting that
v = p/RT,

(e — (PP
Fo = (% — nV (RaT RHZT> \

v ( 11

T \R: Ry,
144 X 14696 X 3,700,000 /1 1 )
- 59 + 459.7 5334 7668

= 263,300 Ibf (1.171 X 10° N)

Flotation is a special case of buoyancy where Fy = 0, and hence
Fg = Fg.

EXAMPLE. A crude hydrometer consists of a cylinder of ¥z in diameter and
2 inlength surmounted by acylinder of ¥s in diameter and 10 inlong. Lead shot is
added to the hydrometer until itstotal weight is0.32 oz. To what depth would this
hydrometer float in 104°F (40°C) glycerin? For flotation, Fg = Fy = %V = pgV
or V = Fg/pig = (0.32/16)/(2.423 X 32.17) = 2.566 X 10~* ft3. Volume of
cylindrical portion of hydrometer = V, = #D2L/4 = 7(0.5/12)%(2/12)/4 =
2.273 X 10~* ft3. Volume of stem immersed = Vg = V — V. = 2.566 X 10 4 —
2.273 X 104 = 2.930 = 105 ft3. Length of immersed stem = Lg = 4 Vg/7D2 =
(4 X 2.930 X 1079)/77(0.125/12)2 = 0.3438 ft = 0.3438 X 12 = 4.126 in. Tota
immersion = L + Lg = 2 + 4.126 = 6.126 in (0.156 m).

Static Stability A body isin static equilibrium when the imposition
of asmall displacement bringsinto action forces that tend to restore the
body to itsoriginal position. For completely submerged bodies, the center
of buoyancy and the center of gravity must lie on the same vertical line
and the center of buoyancy must be located above the center of gravity.

[Figare 3.3 TTa shows aballoon and its basket inits normal position with

the center of buoyancy B above and on the same vertical line as the
center of gravity G.[EIgure 3.3.1Tb shows the balloon displaced fromits
normal position. In this position, there is a couple Fyx which tends to
restore the balloon and its basket to its original position. For floating
bodies, the center of gravity and the center of buoyancy must lie on the

Fe
Fg
'y
\/ B
G
[ [ ]
Fo 5
’G—X-——
(a) (b)

Fig. 3.3.11 Stability of an immersed body.

same vertical line, but the center of buoyancy may be below the center
of gravity, asis common practice in surface-ship design. It is required
that when displaced, the line of action of the buoyant force intersect the
centerline above the center of gravity [Eigure 3312k shows a floating
body in its normal position with its center of gravity G on the same
vertical line and above the center of buoyancy B. shows
the object displaced. Theintersection of the line of action of the buoyant
force with the centerline of the body at M is called the metacenter. As
shown, this above the center of buoyancy and sets up arestoring couple.
When the metacenter is below the center of gravity, the object will
capsize (see Sec. 11.3).

Fq

4B

(a) (b)
Fig. 3.3.12 Stahility of afloating body.

FLUID KINEMATICS

Steady and Unsteady Flow If a every point in the fluid stream,
none of the local fluid properties changes with time, the flow is said to
be steady. The mathematical conditions for steady flow are met when
d(fluid properties)/at = 0. While flow is generally unsteady by nature,
many real cases of unsteady flow may be treated as steady flow by using
average properties or by changing the space reference. The amount of
error produced by the averaging technique depends upon the nature of
the unsteady flow, but the latter technique is error-free when it can be
applied.

Streamlines and Stream Tubes Velocity has both magnitude and
direction and hence is a vector. A streamline is a line which gives the
direction of the velocity of a fluid particle at each point in the flow
stream. When streamlines are connected by a closed curve in steady
flow, they will form aboundary through which the fluid particles cannot



pass. The space between the streamlines becomes a stream tube. The
stream-tube concept broadens the application of fluid-flow principles;
for example, it allows treating the flow inside a pipe and the flow around
an object with the same laws. A stream tube of decreasing size ap-
proachesits own axis, acentral streamline; thus equations devel oped for
a stream tube may also be applied to a streamline.

Velocity and Acceleration Inthe most general case of fluid motion,
the resultant velocity U along astreamline isafunction of both distance s
andtimet, or U = f(s, t). In differential form,

U= s g
as ot

An expression for acceleration may be obtained by dividing the velocity
equation by dt, resulting in

du_auds, au

dt ds dt at
for steady flow gU/ot = 0.

Velocity Profile Intheflow of real fluids, the individual streamlines
will have different velocities past a section[Fgure 3.3.13]shows the
steady flow of afluid past asection (A-A) of acircular pipe. The velocity
profile is obtained by plotting the velocity U of each streamline as it
passes A-A. The stream tube that is formed by the space between the
streamlinesis the annulus whose areais dA, as shown in[EIG—3=3 T3 for

a‘ Section"A-A"
fa—V/

A
Fig. 3.3.13 Velocity profile.

the stream tube whose velocity is U. The volumetric rate of flow Q for
the flow past section A-AisQ = fU dA. All flows take place between
boundaries that are three-dimensional. The terms one-dimensional, two-
dimensional, and three-dimensional flow refer to the number of dimen-
sions required to describe the velocity profile. For three-dimensional
flow, a volume (L3) is required; for example, the flow of a fluid in
acircular pipe. For two-dimensional flow, an area (L?) is necessary; for
example, theflow between two parallel plates. For one-dimensional flow,
a line (L) describes the profile. In cases of two- or three-dimensional
flow, fU dA can beintegrated either mathematicaly if the equations are
known or graphicaly if velocity-measurement data are available. In
many engineering applications, the average velocity V may be used
where V = Q/A = (VA)fU dA.

The continuity equation isaspecial case of the general physical law of
the conservation of mass. It may be simply stated for a control volume:

Mass rate entering = mass rate of storage + mass rate leaving
This may be expressed mathematically as

U dA = [%(pdAds)] + [pU dA+aiS(pu dA) ds]

where ds is an incremental distance along the control volume. For
steady flow, /ot (p dAds) = 0, the genera equation reduces to
d(pU dA) = 0. Integrating the steady-flow continuity equation for the
average velocity along a flow passage:

= pVeA = M

where M is the mass flow rate in slugs/s (14.5939 kg/s). In many engi-
neering applications, the flow rate in pounds mass per second is desired,

pVA = aconstant = p,V,A; = p,V,A, =
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so that
_ViAL VoA, VoA
v v C v,
where mis the flow rate in Ibm/s (0.4535924 kg/s).

EXAMPLE. Air discharges from a 12-in-diameter duct through a 4-in-
diameter nozzle into the atmosphere. The pressure in the duct is 20 Ibf/in?, and
atmospheric pressure is 14.7 Ibf/in?. The temperature of the air in the duct just
upstream of the nozzle is 150°F, and the temperature in the jet is 147°F. If the
velocity in the duct is 18 ft/s, compute (1) the mass flow rate in Ibm/s and (2) the
velocity in the nozzle jet. From the equation of state

v = RT/p
Vp = RTp/pp = 53.34 (150 + 459.7)/(144 X 20)
= 11.29 ft3/lbm
v; = RTy/p; = 53.34 (147 + 459.7)/(144 X 14.7)
= 15.29 ft3/lbm
(1) M = VpAp/Vp = 18 [(7/4)(12/12)7/11.29
my = 1.252 Ibm/s (0.5680 kg/s)
(2) VI = mvy/A = (1.252)(15.29)/[(14)(4/12)7]
v, = 219.2 ft/s (66.82 m/s)

FLUID DYNAMICS

Equation of Motion For steady one-dimensional flow, considera-
tion of forces acting on a fluid element of length dL, flow area dA,
boundary perimeter in fluid contact dP, and change in elevation dz with
aunit shear stress 7 moving at a velocity of V resultsin

vdv g (dP)
+—=dz+vr| o~ )dL=0
O G dA

Substituting v = g/g.y and simplifying,
@ Vav
Y

where dh; = (7/y)(dP/dA) dL = 7 dL/yR,.

The expression 1/(dP/dA) is the hydraulic radius R, and equals the
flow area divided by the perimeter of the solid boundary in contact with
the fluid. This perimeter is usually called the ‘‘wetted’’ perimeter. The
hydraulic radius of apipeflowing full is (7D?4)/7D = D/4.Vauesfor
other configurations are given il Tahle 338 Integration of the equation
of motion for an incompreﬁ ble fluid resultsin

P P2

y+Zg+Zl S +29+22+h1f2
Each term of the equation isin feet and is equivalent to the height the
fluid would rise in a tube if its energy were converted into potential
energy. For this reason, in hydraulic practice, each type of energy is
referred to as ahead. The static pressure head is p/y. The velocity head is
V2/2g, and the potential head is z. The energy loss between sections h, ;,
is called the lost head or friction head. The energy grade line at any point
3(ply + V& 2g + 2), and thehydraulic gradelineis 2(p/y + z) asshown
inl

4+ dz+dn=0

EXAMPLE. A 12-in pipe (11.938 in inside diameter) reduces to a 6-in pipe
(6.065 in inside diameter). Benzene at 68°F (20°C) flows steadily through this
system. At section 1, the 12-in pipe centerline is 10 ft above the datum, and at
section 2, the 6-in pipe centerline is 15 ft above the datum. The pressure at sec-
tion 1 is 20 Ibf/in? and the velocity is 4 ft/s. If the head loss due to friction is
0.05 V3/2g, compute the pressure at section 2. Assumeg = g, v = pg = 1.705 X
32.17 = 54.85 Ibf/ft3. From the continuity equation,

M = PiAVL = AV, (PL=p2)
V, = V,(AJA,) = Vy(wD3)/4)/(wD3/4) =
V, = 4(11.938/6.065)2 = 15.50 ft/s

From the equation of motion,

Vi(D4/D,)?

2 2
&:&+ﬁ+zl—(ﬁ+zz+hl,2>
Yy v A 2

VZ — V3 — 0.05V3
Po_Pu VA V5~ OOVE 0052+21722
Y v 2g
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Table 3.3.6 Values of Flow Area A and Hydraulic Radius R, for Various Cross Sections

Cross section Condition Equations
— ——r Flowing full h/D =1 A=aD%4 R,=D/4
} b cos (6/2) = (2h/D — 1)
f Upper half 05<hD<1 A= [m(360 — 6) + 180 sin 6](D2/1,440)
I | partly full R, = [1 + (180 sin §)/(w6)] (D/4)
h/D = 0.8128 A = 0.6839 D2 R, max = 0.3043D
N f h/D = 05 A= 7D¥8 R,max = h/2
Lower half
+ D el cos (612) = (1 — 2h/D)
partly .
v I 0<hiD<05 A= (w0 — 180 sin 6) (D?/1,440)
— R, = [1 — (180 sin §)/(w6)](D/4)
f Fowing fl hD =1 A=DbD R,=bD/2(b + D)
_hf_ = D Squareb = D A=D? R,=D/4
A
K ‘ hD<1 A=bh R,=bh/(2h+ b)
Partly full hib = 05 A=Db%2 R,max = h/2
je——b ——» b— o, h— 0 R, — h (wide shallow stream)
R, max = h/2
a#* P A = [b + 1/2h(cot a + cot B)]h
R, = A/[b + h(csc a + csc B)]
h_1 _ opoan A= (b+ 2h)h
2732 o= 26734 R, = (b + 2R)hi(b + 4.472h)
N\ / h_R - A=(b+ 1732h)h
KD = | a 3 @ R, = (b + 1.732h)h/(b + 4h)
h A
{1 B! h_2 o« = 34 A=(b+ 15hh
T 5 a 3 R, = (b + 15h)h/(b + 3.606h)
—'io b lc a=p [ s A=(b+Hhh
a «= R, = (b + h)h/(b + 2.828h)
h 3  evorar A= (b+ 0.6667h)h
2732 @ = 5619 R, = (b + 0.6667h)hi(b + 2.404h)
h_ e A= (b+ 05774h)h
PR a=60 R, = (b + 0.5774h)hi(b + 2.309h)
0 = any angle A =tan (6/2)h> R, = sin(0/2)h/2
T 0=730 A=02679n2 R,=0.1294h
h 9 =145 A=04142h? R, = 01913h
=60 A=05774h2 R, = 0.2500h
9=90 A=h2 R,=03536h

, 144 X 20 = 42 — 1.05(15.50)?

kel

2 _ + + 10— 15
Y~ T5aes 2x 3217
P2 _ pag3tt
Y
54.88 X 43.83
P = ———— = 16,70 Ibf/in? (L.15L x 10° N/

Energy Equation Application of the principles of conservation of
energy to a control volume for one-dimensiona flow results in the
following for steady flow:

Vdv
Jdg = dW+g—+ggdz+Jdu+ d(pv)

C [

where J is the mechanical equivalent of heat, 778.169 ft- Ibf/Btu; q is
the heat added, Btu/lbm (2,326 Jkg); W is the steady-flow shaft work

9, = Wo +

done by the fluid; and u isthe internal energy. Btu/Ibm (2,326 Jkg). If
the energy equation is integrated for an incompressible fluid,

—+g§(zz—z1)+J(u2—u1)+v(p2—p1)

The equation of motion does not consider thermal energy or steady-flow

work; the energy equation has no terms for friction. Subtracting the
differential equation of motion from the energy equation and solving for
friction resultsin

dh; = (dW + J du + p dv — J dg)(g./g)
Integrating for an incompressible fluid (dv = 0),
hiro = [Ws + J(uz — uy) — d1d.](9:/9)

In the absence of steady-flow work in the system, the effect of frictionis
to increase the internal energy and/or to transfer heat from the system.



For steady frictionless, incompressible flow, both the equation of
motion and the energy equation reduce to

\V, V3
&+_1+Zl=&+_2
Yy 2 Yy 2

which is known as the Bernoulli equation.

+2z

T T ———__Ere ade line
\\Ey\gr\ in A
v¥r2q B o e
+— =~ — __ Hydraulicgrade line vi/2q
~H—t
p1/7 pz/‘)/

7

77
Fig. 3.3.14 Energy relations.

Area-Velocity Relations  The continuity equation may be written as
loge M = log. V + loge A + log, p, which when differentiated becomes

dA  dv  dp

A \% p
For incompressible fluids, dp = 0, so

A _av
A \%

Examination of this equation indicates
1. If the area increases, the velocity decreases.
2. If the area is constant, the velocity is constant.
3. There are no critical values.
For the frictionless flow of compressible fluids, it can be demonstrated

that
el
AV c

Analysis of the above equation indicates:

1. Subsonic velocity V < c. If the area increases, the velocity de-
creases. Same as for incompressible flow.

2. Sonic velocity V = c. Sonic velocity can exist only where the
changein areais zero, i.e., at the end of a convergent passage or at the
exit of a constant-area duct.

3. Supersonic velocity V > c. If area increases, the velocity in-
creases, the reverse of incompressible flow. Also, supersonic velocity
can exist only in the expanding portion of a passage after a constriction
where sonic velocity existed.

Frictionless adiabatic compressible flow of an ideal gasin a horizontal
passage must satisfy the following requirements:
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1. Conservation of mass. As expressed by the continuity equation
M = pAV; = _Pzszz- )
2. Conservation of energy. As expressed by the energy equation

V2 V2 V3
— +Ju+pv=—+Ju; + pvy = == + Ju, + p,V.
20, p 20, L T PiVi 20, > T P2V

3. Process relationship. For an ideal gas undergoing a frictionless
adiabatic (isentropic) process,

pvk = pyvk = povk
4. |deal-gaslaw. The equation of state for an ideal gas
pv=RT

In an expanding supersonic flow, a compression shock wave will be
formed if the requirements for the conservation of mass and energy are
not satisfied. Thistype of waveis associated with large and sudden rises
in pressure, density, temperature, and entropy. The shock wave is so
thin that for computation purposes it may be considered asasingleline.
For compressible flow of gases and vaporsin passages, refer to Sec. 4.1;
for steam-turbine passages, Sec. 9.4; for compressible flow around im-
mersed objects, see Sec. 11.4.

The impulse-momentum equation is an application of the principle of
conservation of momentum and is derived from Newton’s second law.
Itisused to calcul ate the forces exerted on asolid boundary by amoving
stream. Because velocity and force have both magnitude and direction,
they are vectors. The impulse-momentum equation may be written for
all three directions:

EFX = M(sz - Vxl)
2R, = M(V,e — V)
3F, = M(V, — V)

[Figire 3.3 T5]shows a free-body diagram of a control volume. The
pressure forces shown are those imposed by the boundaries on the fluid
and on the atmosphere. The reactive force R is that imposed by the
downstream boundary on the fluid for equilibrium. Application of the
impulse-momentum equation yields

SF = (Fyy + Fap) = (Fa + Fo + R) = M(V, — V)
Solving for R,
R= (1~ PJAI — (P2 — PJA, = M(V, = V)
The impulse-momentum equation is often used in conjunction with the
continuity and energy equations to solve engineering problems. Be-

cause of the wide variety of possible applications, some examples are
given to illustrate the methods of attack.

Fp1= P1A1 —— le——— Fq1 = pady

Control volume l¢—nr R

Faz2 = Pa Ag ——m [ Fpz2 = p2A2

Fig. 3.3.15 Notation for impulse momentum.

EXAMPLE. CompressibleFluid in a Duct. Nitrogen flows steadily through a6-in
(5.761 in inside diameter) straight, horizontal pipe at a mass rate of 25 lbm/s. At
section 1, the pressure is 120 Ibf/in? and the temperature is 100°F. At section 2,
the pressure is 80 Ibf/in? and the temperature is 110°F. Find the friction force
opposing the motion. From the equation of state,

v = RT/p
v, = 55.16 (459.7 + 100)/(144 X 120) = 1.787 ft3/Ibm
Vv, = 55.16 (459.7 + 110)/(144 X 80) = 2.728 ft3/Ibm
Flow area of pipe X 7D?%4 = 7(5.761/12)%/4 = 0.1810 ft2
From the continuity equation,

v = mV/A
V, = (25 X 1.787)/0.1810 = 246.8 ft/s
V, = (25 X 2.728)/0.1810 = 376.8 ft/s
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Applymg the free-body equation for impulse momentum (A = A, = A,),
=(P1 = Pa) Ar — (P2 — )Asz(sz Vi)
= (py — P2) A — M(V, — V) = 144 (120 — 80) 0.1810
—(25/32.17)(376.8 — 246.8) = 941.5 |bf (4.188 X 10° N)

EXAMPLE. Water Flow through a Nozzle. Water at 68°F (20°C) flowsthrough a
horizontal 12- by 6-in-diameter nozzle discharging into the atmosphere. The pres-
sure at the nozzleinlet is 65 Ibf/in? and barometric pressureis 14.7 Ibf/in2. Deter-
mine the force exerted by the water on the nozzle.

A = 7D¥4
A, = 7(12/12)%/4 = 0.7854 ft?
A, = w(6/12)%/4 = 0.1963 ft?

y = pg = 1.937 X 32.17 = 62.31 Ibf/ft3

From the continuity equation p;A;V; = p,AV, for pp = py, Vo = VIAJA, =
(0.7854/0.1963)V, = 4V,. From Bernoulli’s equation (z, = z,).

puly + V329 = poly + V329 = p,ly + (4V)% 29
or V1 = v29(p, — p2)/15y

=2 X 3217 X 144 (65 — 14.7)/15 X 62.31 = 22.33 ft/s
V, = 4 X 22.33 = 89.32 ft/s

Again from the equation of continuity
M = pAV; = 1.937 X 0.7854 X 22.33 = 33.97 dugs/s
Applying the free-body equation for impulse momentum,
=(Pr=P) AL — (P2~ P) A _M(Vz -V
= 144 (65 — 14.7) 0.7854 — 144 (14.7 — 14.7) 0.1963

= (33.97) (89.32 — 22.33)
= 3,413 Ibf (1.518 X 104 N)

EXAMPLE. Incompressible Flow through a Reducing Bend. Carbon tetrachloride
flows steadily without friction at 68°F (20°C) through a 90° horizontal reducing
bend. The mass flow rate is 4 slugs/s, the inlet diameter is 6 in, and the outlet is
3in. Theinlet pressure is 50 Ibf/in? and the barometric pressure is 14.7 1bf/in?.
Compute the magnitude and direction of the force required to ‘‘anchor’’ thisbend.

A = 7D%4
A, = (74)(6/12)2 = 0.1963 ft2
A, = (m4)(3/12)2 = 0.04909 ft2

From continuity,
V = M/pA
V, = 4/(3.093)(0.1963) = 6.588 ft/s
V, = 4/(3.093)(0.04909) = 26.35 ft/s
From the Bernoulli equation (z, = z,),

2 2 X 588)2 — (26.35)2
Pa_ P VP VB__ 144X50 (65892 (6357 ...
y vy 29 2g 3093x 3217 2 X 3217

_ (3.093 X 32.17)(62.24)
2 144

= 43.01 Ibf/in?

— Pa)A; cos a — M(V, cos a — V,)
- (p2 P)Azsina + R, = M(Vzsina — 0)

P — P)A SN + MV, sina

144 (50 — 14.7) 0.1963 — 144 (43.01 — 14.7)(cos 90°)
— 4 (26.35 cos 90° — 6.588)

1,024 Ibf

144 (43.01 — 14.7)(0.04909) sin 90° + 4(26.35)(sin 90°)
= 305.5 Ibf

R= VR + R = V(1,024 + (305.5)
= 1,068 Ibf(4.753 X 102 N)

0 = tan~1 (F,/F,) = tan~* (305.5/1,024)
= 16°37'

Forces on Blades and Deflectors Theforcesimposed on afluid jet
whose velocity is V, by ablade moving at a speed of V, away from the
jet are shown in [Elg—33I7The following equations were devel oped
from the application of the impul se-momentum equation for an open jet
(p, = py) and for frictionless flow:

Fe = pA(V; — V)41 — cos @)
Fy = pA(V; — V)2 sina
F = 20A(V; — V)2 €in (af2)

EXAMPLE. In the nozzle-blade system dEFIQ- 3311, water at 68°F (20°C)
enters a 3- by 1¥%2-in-diameter horizontal nozzle with a pressure 23 Ibf/in? and
discharges at 14.7 1bf/in? (atmospheric pressure). The blade moves away from the
nozzle at avelocity of 10 ft/s and deflects the stream through an angle of 80°. For

/(pZ_pO)AZ

(Py-pglA Q
!
Rx
y Gl
Ry R

X

Fig. 3.3.16 Forces on abend.

frictionless flow, calculate the total force exerted by the jet on the blade. Assume
g = g.; then y = pg. Fromthe continuity equation ( p, = py), p AV, = p;AV5, V, =

(AJA)V,,
7TD2/4
Vo= o Vo = ( )VJ

= (1.5/3)2V; = Vy/4
From the Bernoulli equatlon (z = z),
vi_ Vvt I S
29 2 P9
V3 — (Vy/4)? _ (P —py)
2 P9
2(16/15)(p, —
vy = _\/ ( ) (P — Py

= 36.28 ft/s

__\/2>< 16/15) 144 (23 — 14.7
1.937

Thetota force F = 2pAy(V; — V)2 sin (a/2)

F = 2 X 1.937 (/4)(15/12)3(36.28 — 10)2 sin (80/2)
= 21.11 Ibf (93.90 N)

vy -Vﬁvyf(w-vb) sina
V2 ={\Vj-Vp) cos a

Fig. 3.3.17 Notation for blade study.

Impulse Turbine Inaturbine, the total of the separate forces acting
simultaneously on each blade equals that caused by the combined mass
flow rate M discharged by the nozzle or

SP = SFV, = M(V; — W)(L — cos a)V,,

The maximum value of power P is found by differentiating P with
respect to V,, and setting the result equal to zero. Solving for V, yields
V,, = V,/2, so that maximum power occurs when the velocity of the jet
is equal to twice the velocity of the blade. Examination of the power
equation also indicates that the angle « for a maximum power results



when cos § = — 1 or « = 180°. For theoretical maximum power of a
blade, 2V, = V; and « = 180°. It should be noted that in any practical
impulse-turbine application, « cannot be 180° because the discharge
interferes with the next set of blades. Substituting V, = Vy/2, a« = 180°
in the power equation,

SPoa =MV, — V)/2)[1 — (— D]Vy2 = MV3/2 =riV3/ 2g,

or the maximum power per unit mass is equal to the total power of
the jet. Application of the Bernoulli equation between the surface of
a reservoir and the discharge of the turbine shows that =Py, =
Mv2g(z, — z,). For design details, see Sec. 9.9.

Flow in a Curved Path When afluid flows through abend, it isalso
rotated around an axis and the energy required to produce rotation must
be supplied from the energy already in the fluid mass. Thisfluid rotation
is called afree vortex because it is free of outside energy. Consider the
fluid mass p(r, — r;) dA of Elg_33T8being rotated asit flowsthrough a
bend of outer radiusr,, inner radiusr;, with avelocity of V. Application
of Newton’s second law to this mass resultsin

dF = p, dA — p dA = [p(r, — r;) dAI[VZ/(r, + 1;)/2]
which reduces to
P — B = 2, — 1)pV2(r + 1)
Because of the difference in fluid pressure between the inner and outer
walls of the bend, secondary flows are set up, and this is the primary

cause of friction loss of bends. These secondary flows set up turbulence
that require 50 or more straight pipe diameters downstream to dissipate.

=~

Fig. 3.3.18 Notation for flow in a curved path.

Thus this loss does not take place in the bend, but in the downstream
system. These losses may be reduced by the use of splitter plates which

help minimize the secondary flows by reducing r, — r; and hence
Po — B
EXAMPLE. 104°F (40°C) benzene flows at arate of 8 ft¥/s in a square hori-

zontal duct. This duct makes a 90° turn with an inner radius of 1 ft and an outer
radius of 2 ft. Calculate the difference between the walls of this bend. The area of
this duct is (r, — ;)2 = (2 — 1)2 = 1ft2 From the continuity equation V =
Q/A = 8/1 = 8 ft/s. The pressure difference
Po — P = 2(ro — 1)pV2(r + 1)
=2(2 — 1) 1.663 (8)2/(2 + 1) = 70.95 Ibf/ft2
= 70.95/144 = 0.4927 1bf/in? (3.397 X 10° N/m?)

DIMENSIONLESS PARAMETERS

Modern engineering practice is based on a combination of theoretical
analysis and experimental data. Often the engineer is faced with the
necessity of obtaining practical results in situations where for various
reasons, physical phenomena cannot be described mathematically and
experimental datamust be considered. The generation and use of dimen-
sionless parameters provides a powerful and useful tool in (1) reducing
the number of variables required for an experimental program, (2) es-
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tablishing the principles of model design and testing, (3) developing
equations, and (4) converting data from one system of units to another.
Dimensionless parameters may be generated from (1) physical equations,
(2) the principles of similarity, and (3) dimensional analysis. All physical
equations must be dimensionally correct so that a dimensionless param-
eter may be generated by simply dividing one side of the equation by the
other. A minimum of two dimensionless parameterswill be formed, one
being the inverse of the other.

EXAMPLE. It is desired to generate a series of dimensionless parameters to
describe theratios of static pressure head, velocity head, and potential head to total
head for frictionless incompressible flow. From the Bernoulli equation,

p

V2
— + — + z = Zh = total head
Yy 2
p/«/+V2/29+z ply VZ3/2g z
N, = ——— == ==+ ——=N,+ Ny +N
1T =h Sh ' Tsh Sho P VTR
>h
or N, = =Nt

poly + V329 + z

N, and N, are total energy ratios and N,, Ny, and N, are the ratios of the static
pressure head, velocity head, and potential head, respectively, to the total head.

Models versus Prototypes There are times when for economic or
other reasonsit is desirable to determine the performance of a structure
or machine by testing another structure or machine. This type of testing
is called model testing. The equipment being tested is called a model,
and the equipment whose performance is to be predicted is caled a
prototype. A model may be smaller than, the same size as, or larger than
the prototype. Model experiments on aircraft, rockets, missiles, pipes,
ships, canals, turbines, pumps, and other structures and machines have
resulted in savings that more than justified the expenditure of funds for
the design, construction, and testing of the model. In some situations,
the model and the prototype may be the same piece of equipment, for
example, the laboratory calibration of aflowmeter with water to predict
its performance with other fluids. Many manufacturers of fluid ma-
chinery have test facilities that are limited to one or two fluids and are
forced to test with what they have available in order to predict perfor-
mance with nonavailable fluids. For towing-tank testing of ship models
and for wind-tunnel testing of aircraft and aircraft-component models,
see Secs. 11.4 and 11.5.

Similarity Requirements For complete similarity between a model
and its prototype, it is necessary to have geometric, kinematic, and dy-
namic similarity. Geometric similarity exists between model and proto-
type when the ratios of al corresponding dimensions of the model and
prototype are equal. These ratios may be written as follows:

Length: L"Ddd/l—pro[mype = Lratio
=L/l =L,
Area L%‘Dddll-rz)rmmype = Lo
=L3/L3=1L2
Volume: L3 ode/Lirorotype = Liatio
— 1303 13

Kinematic similarity exists between model and prototype when their
streamlines are geometrically similar. The kinematic ratios resulting
from this condition are

Acceleration: a, = aypla, = L2/l T2
=L,/T2

Velocity: Vi = VilV, = LTt Tt
=L /T

Volume flow rate: Q, = Qm/Qp L3TLYLET, !
=L3T 1

Dynamic similarity exists between model and prototype having geo-
metric and kinematic similarity when the ratios of all forces are the
same. Consider the model /prototype relations for the flow around
the object shown iMEIg—33TP. For geometric similarity Dy,/D,
Lm/Lp =L, and for kinematic similarity Upyn/Up, = Ugm/Ugp = \/r =
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L, T; 1. Next consider the three forces acting on point C of [FIg—3.3.19]
without specifying their nature. From the geometric similarity of their
vector polygons and Newton's law, for dynamic similarity Fyy,/Fy, =
Fon/Fop = Fam/F3 = Mp@cm/Mgac, = F. For dynamic similarity,
these force ratios must be maintained on all corresponding fluid parti-

Un

F3

F3 F
Fig. 3.3.19 Notation for dynamic similarity.

cles throughout the flow pattern. From the force polygon of [Eg—337T9]
itisevident that F, + — F, + — F3; = Ma,. For total model /prototype
force ratio, comparisons of force polygons yield
_ Muacm

Mpan

Fluid Forces The fluid forces that are considered here are those
acting on afluid element whose mass = pL 3, area = L2, length = L, and
velocity = L/T.

Inertia force

_Fmt =P+ = Fay
Fip + — Fap + — Fyp

F

F; = (mass)(acceleration)
= (pLY(LIT?) = pL(LHT?)
= plL2v2

Table 3.3.7 Standard Numbers

Viscous force F, = (viscous shear stress)(shear ared)
= 712 = p(dU/dy)L? = u(V/L)L?
= uLVv

Gravity force Fy = (mass)(acceleration due to gravity)
= (pL3)(9) = pL%g

Pressure force F, = (pressure)(area) = pL2

Centrifugal force F, = (mass)(acceleration)
= (pL)(LIT?)
= (pL)(Le?) = pLiw?

Elastic force Fe = (modulus of elasticity)(area)
= EL2

Surface-tension force F, = (surface tension)(length) = oL
Vibratory force F = (mass)(acceleration)

= (pL3)(L/T?)

= (pL)(T~?9) = pLif2

If al fluid forces were acting on a fluid element,

Fum + = Fgn + = Fom + = Fum + = Fenn + = For + = Fiy
Fupt 2 Fgpt = Fp+ 2 Fupt >Fg+ 2> F+ —Fy
Fim

Fir

Examination of the above equation and the force polygon offlEIlg—3=3T9
lead to the conclusion that dynamic similarity can be characterized by
an equality of force ratios one less than the total number involved. Any
force ratio may be eliminated, depending upon the quantities which are
desired. Fortunately, in most practical engineering problems, not all of
the eight forces are involved because some may not be acting, may be of
negligible magnitude, or may be in opposition to each other in such a
way as to compensate. In each application of similarity, a good under-
standing of the fluid phenomenainvolved is necessary to eliminate the
irrelevant, trivial, or compensating forces. When the flow phenomenon
istoo complex to bereadily analyzed, or is not known, only experimen-
ta verification with the prototype of results from a model test will
determine what forces should be considered in future model testing.
Standard Numbers With eight fluid forces that can act in flow situ-
ations, the number of dimensionless parametersthat can beformed from

Fo=

Conventional practice

Force ratio Equations Result Form Symbol Name
Inertia Fi L2v2 LV LV
- RN =Y =T R Reynolds
Viscous F. ukV I I
Inerti F, plL2v2 V2 v
BULLLY = F — — F Froude
Gravity F, pl3% Lg vLg
2
- M E Euler
Inertia F pl2v2 pV?2 p
Pressure o pL? p 2Ap N
— Cp Pressure coefficient
pV2
Inertia F plAv2 V2 \' . )
_— —= — —_— \% Velocity ratio
Centrifugal T R (a2 DN Y
pV2
. — C Cauch
Inertia F_plave V2 E v
Elastic Fe EL? E v
= M Mach
VE/p
Inertia F pLav? pLVv?2 pLv2
_— L= w w
Surface tension F, ot o o eber
Inertia F  pL2v? V2 Lf
—_— == —= — S Strouhal
Vibration © plAf2 L2f2 \%

SouRcE: Computed from data given in Murdock, *‘Fluid Mechanics and Its Applications,” Houghton Mifflin, 1976.



their ratios is 56. However, conventional practice is to ratio the inertia
force to the other fluid forces, usualy by division because the inertia
force is the vector sum of all the other forces involved in a given flow
situation. Results obtained by dividing the inertia force by each of the
other forces are shown il Table 3.3]7 compared with the standard num-
bers that are used in conventional practice.

DYNAMIC SIMILARITY

Vibration In the flow of fluids around objects and in the motion of
bodiesimmersed in fluids, vibration may occur because of the formation
of awake caused by alternate shedding of eddiesin aperiodic fashion or
by the vibration of the object or the body. The Strouhal number Sisthe
ratio of the velocity of vibration Lf to the velocity of the fluid V. Since
the vibration may be fluid-induced or structure-induced, two frequen-
cies must be considered, the wake frequency fw and the natural fre-
quency of the structure f,,. Fluid-induced forces are usually of small
magnitude, but as the wake frequency approaches the natural frequency
of the structure, the vibratory forces increase very rapidly. When
fw = f,, the structure will go into resonance and fail. This imposes on
the model designer the requirement of matching to scale the natural-fre-
guency characteristics of the prototype. This subject is treated later
under Wake Frequency. All further discussions of model /prototype re-
lations are made under the assumption that either vibratory forces are
absent or they are taken care of in the design of the model or in the test
program.

Incompressible Flow Considered in this category are the flow of
fluids around an object, motion of bodies immersed in incompressible
fluids, and the flow of incompressible fluidsin conduits. It includes, for
example, a submarine traveling under water but not partly submerged,
and liquids flowing in pipes and passages when the liquid completely
fills them, but not when partly full as in open-channel flow. It aso
includes aircraft moving in atmospheres that may be considered incom-
pressible. Incompressible flow in rotating machinery is considered sep-
arately.

In these situations the gravity force, although acting on all fluid parti-
cles, does not affect the flow pattern. Excluding rotating machinery,
centrifugal forces are absent. By definition of an incompressible fluid,
elastic forces are zero, and since there is no liquid-gas interface, sur-
face-tension forces are absent.

The only forces now remaining for consideration are the inertia,
viscous, and pressure. Using standard numbers, the parameters are
Reynolds number and pressure coefficient. The Reynolds number may be
converted into akinematic ratio by noting that by definitionv = w/p and
substitutingin R = pLV/u = LV/v. Inthisform, Reynolds number isthe
ratio of the fluid velocity V and the ‘‘shear velocity’’ v/L. For this
reason, Reynolds number is used to characterize the velocity profile.
Forces and pressure losses are then determined by the pressure coeffi-
cient.

ExXAMPLE. A submarineisto move submerged through 32°F (0°C) seawater
at a speed of 10 knots. (1) At what speed should a 1: 20 model be towed in 68°F
(20°C) fresh water? (2) If the thrust on the model is found to be 42,500 Ibf, what
horsepower will be required to propel the submarine?

1. Speed of model for Reynolds-number similarity

e (2) - (),

Vin = Vp(pp/pm)(Lp/Lm)(H’m/H’p)
Vi, = (10)(1.995/1.937)(20/1)(20.92 X 10-6/39.40 X 10-6)
= 109.4 knots (56.27 m/s)

2. Prototype horsepower
_ (2Ap\ _ [ 2Ap
pm W v/,
2 = —
F = ApL? Ap = —, so that ( V2L2> (pV2L2>m

Frn(pp!pm) (Vo! Vm)z(Lp/ Lm)?
= 42,500 (1.995/1.937)(10/109.4)2(20/1)2 = 146,300 Ibf
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146,300 10 X 6,076
P=Fv= ( 550 )( 3,600

= 4,490 hp (3.35 X 105 W)

Compressible Flow Considered in this category are the flow of
compressible fluids under the conditions specified for incompressible
flow in the preceding paragraphs. In addition to the forces involved in
incompressible flow, the elastic force must be added. Conventional
practiceisto use the square root of theinertia/elastic forceratio or Mach
number.

Mach number istheratio of thefluid velocity to its speed of sound and
may bewritten M = V/c = VVEJ/p. For anideal gas, M = V/VkgRT. In
compressible-flow problems, practice is to use the Mach number to
characterize the velocity or kinematic similarity, the Reynolds number
for dynamic similarity, and the pressure coefficient for force or pres-
sure-loss determination.

ExAMPLE. Anairplaneisto fly at 500 mi/h in an atmosphere whose temper-
ature is 32°F (0°C) and pressure is 12 Ibf/in2. A 1:20 mode is tested in awind
tunnel where a supply of air at 392°F (200°C) and variable pressure is available.
At (1) what speed and (2) what pressure should the model be tested for dynamic

Si iIaJily?
>m ( kVR )
vl e P

1. Speed for Mach-number similarity

o (32), (), (2
VElp/ m VElp/ p Vkg.RT
Vin = VoKl Kp)Y2(Renf Ro) V2Tl Tp) V2
For the same gas ky, = k,, R, = R,, and
Vin = V, VT/T, = 500 V(851.7/491.7) = 658.1 mi/h
2. Pressure for Reynolds-number similarity

(pVL> (pVL>
=R,=(&=) =(=
M m I p

Pm = ppwplvm)(l—p“—m)(l“mlﬂ'p)

Since p = p/g.RT

(g 2-) - (g%m) (Vo Vid (L L) e )

nn BT/ Tp) (V! Vi) (Lp/ L) (e )
— 12(851.7/491.7)(500/658.1)(20/1)(53.15 X 10-%/35.67 X 10-9)
pnn 470.6 Ibf/in? (3.245 X 10° N/m?)

For information about wind-tunnel testing and its limitations, refer to Sec. 11.4.

Centrifugal Machinery This category includes the flow of fluidsin
such centrifugal machinery as compressors, fans, and pumps. In addi-
tion to the inertia, pressure, viscous, and elastic forces, centrifugal
forces must now be considered. Since centrifugal force is really a spe-
cia case of the inertia force, their ratio as shown in[Table 3.3.71is
velocity ratio and is the ratio of the fluid velocity to the machine tangen-
tial velocity. In model /prototype relations for centrifugal machinery,
DN (D = diameter, ft, N = rotational speed) is substituted for the
velocity V, and D for L, which results in the following:

M = DN/VkgcRT R = pD2N/p  C, = 2Ap/pD?N?

EXAMPLE. A centrifugal compressor operating at 100 r/min is to compress
methane delivered to it a 50 Ibf/in? and 68°F (20°C). It is proposed to test this
compressor with air from a source at 140°F (60°C) and 100 Ibf/in?. Determine
compressor speed and inlet-air pressure required for dynamic similarity.

Find speed for Mach-number similarity:
Mm = M, = (DN/Vkg.RT),, = (DN/VkgRT),
Nin = Np(Dp/ Do) V(K ko) (Ren Ro) (Tin/ Ty)
= 100 (1) v(1.40/1.32)(53.34/96.33)(599.7/527.7)
= 81.70 r/min

Find pressure for Reynolds-number similarity:

D2N D2N
R’":Rp:<pn ) :<p#
m
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For an ideal gas p = p/g.RT, so that

(pDZN/gcRT/J*)m = (pDZN/gcRTIJ‘)p
Prn = Po(Dp/ D) N/ Neo) (Ren/ Ro) (Ton! o) (ke 1)
= BO(1)2(100/81 70)(53.34/ 86.33)(509.7/527.7) X (4179
X 10-8/22.70 X 10-8) = 70.90 Ibf/in? (4.888 X 105 N/m?)

See Sec. 14 for specific information on pump and compressor simi-
larity.

Liquid Surfaces Considered in this category are ships, seaplanes
during takeoff, submarines partly submerged, piers, dams, rivers, open-
channel flow, spillways, harbors, etc. Resistance at liquid surfaces is
due to surface tension and wave action. Since wave action is due to
gravity, the gravity force and surface-tension force are now added to the
forcesthat were considered in the last paragraph. These are expressed as
the square root of the inertia/gravity force ratio or Froude number F =
V/VLg and as the inertia/surface tension force ratio or Weber number
W = pLVZg. On the other hand, elastic and pressure forces are now
absent. Surface tension is a minor property in fluid mechanics and it
normally exerts a negligible effect on wave formation except when the
waves are small, say less than 1 in. Thus the effects of surface tension
on the model might be considerable, but negligible on the prototype.
This type of *‘scale effect’”” must be avoided. For accurate results, the
inertia/surface tension force ratio or Weber number should be consid-
ered. It is never possible to have complete dynamic similarity of liquid
surfaces unless the model and prototype are the same size, as shown in
the following example.

ExAMPLE. An ocean vessel 500 ft long isto travel at a speed of 15 knots. A
1:25 model of this ship is to be tested in a towing tank using seawater at design
temperature. Determine the model speed required for (1) wave-resistance similar-
ity, (2) viscous or skin-friction similarity, (3) surface-tension similarity, and
(4) the model size required for complete dynamic similarity.

1. Speed for Froude-number similarity

Fm = Fp = (VIVLg)m = (VIVLQ),
or Vi = V, VLy/L, = 15V1/25 = 3 knots
2. Speed for Reynolds-number similarity
Ry = Rp = (pLVIW)m = (pLV/Vv)p

Vin = Vi(po! o) (Lp/ L) (ki )
Vi, = 15(1)(25/1)(1) = 375 knots

3. Speed for Weber-number similarity
Wp, = W, = (pLVZ0)y, = (pLVZ0),
Vin = Vo Vo o) G L) (0l )
Vi = 15 V(1)(25)(1) = 75 knots
4. Model size for complete similarity. First try Reynolds and Froude similar-
ity; let
Vin = Vp(pp/pm)(l—p“—m)(:“*m/:“*p) =V ’Lm/Lp
which reduces to
Lm/Lp = (pp/pm)2/3(Hm/l’4u)2l3
Next try Weber and Froude similarity; let
Vin = Vo V(o pr) (Lo L) (0l o) = VpVLi/L,
which reduces to
I—m“—p = (Pp/pm)l/z((fm/(rp)uz

For the same fluid at the same temperature, either of the above solvesfor L, = Ly,
or the model must be the same size as the prototype. For use of different fluids
and/or the same fluid at different temperatures.

Lm/Lp = (pplpm)2/3(le/ILp)2l3 = (pp/pm)l/z((rm/a'p):u2
which reduces to
(u¥po®)m = (1*po®),

No practica way has been found to model for complete similarity.
Marine engineering practice is to model for wave resistance and correct
for skin-friction resistance. See Sec. 11.3.

DIMENSIONAL ANALYSIS

Dimensional analysis is the mathematics of dimensions and quantities
and provides procedural techniques whereby the variables that are as-
sumed to be significant in a problem can be formed into dimensionless
parameters, the number of parameters being less than the number of
variables. This is a great advantage, because fewer experimental runs
are then required to establish arelationship between the parameters than
between the variables. While the user is not presumed to have any
knowledge of the fundamental physical equations, the more knowl-
edgeable the user, the better the results. If any significant variable or
variables are omitted, the relationship obtained from dimensional anal-
ysiswill not apply to the physical problem. On the other hand, inclusion
of al possible variables will result in losing the principal advantage of
dimensional analysis, i.e., the reduction of the amount of experimental
data required to establish relationships. Two forma methods of dimen-
sional analysisare used, the method of Lord Rayleigh and Buckingham’s|1
theorem.

Dimensions used in mechanics are mass M, length L, time T, and force
F. Corresponding units for these dimensions are the slug (kilogram), the
foot (metre), the second (second), and the pound force (newton). Any
system in mechanics can be defined by three fundamental dimensions.
Two systems are used, the force (FLT) and the mass (MLT). Intheforce
system, mass is a derived quantity and in the mass system, forceis a
derived quantity. Force and mass are related by Newton's law: F =
MLT-2 and M = FL~1T2[Tahle 3.3.8] shows common variables and
their dimensions and units.

Lord Rayleigh's method uses algebra to determine interrelationships
among variables. While this method may be used for any number of
variables, it becomes relatively complex and is not generally used for
more than four. This method is most easily described by example.

EXAMPLE.  In laminar flow, the unit shear stress 7 is some function of the
fluid dynamic viscosity u, the velocity difference dU between adjacent laminae
separated by the distance dy. Develop a relationship.

1. Write afunctional relationship of the variables:

7= f(u, dU, dy)

Assume 7 = K(uadUbdy©).
2. Write adimensional equation in either FLT or MLT system:

(FL=2) = K(FL=2T)3(LT Yb(L)°
3. Solve the dimensional equation for exponents:
T w du dy

Force |F 1= at+0+ 0
Length|L —2=—-2a+b+ c
Time | T 0= a—-b+ 0

Solution:a=1,b=1c= -1

4. Insert exponents in the functional equation: 7 = K(uadUPdyc) =
K(utduldy—1), or K = (udU/rdy). This was based on the assumption of 7 =
K(u2dUPdy©). The general relationship is K = f (udU/7dy). The functional rela-
tionship cannot be obtained from dimensional analysis. Only physical analysis
and/or experiments can determine this. From both physical analysis and experi-
mental data,

7= duidy

The Buckingham |1 theorem Serves the same purpose as the method of
Lord Rayleigh for deriving equations expressing one variable in terms
of its dependent variables. The Il theorem is preferred when the number
of variables exceeds four. Application of the Il theorem results in the
formation of dimensionless parameters called = ratios. These 7 ratios
have no relation to 3.14159. . . . The Il theorem will be illustrated in
the following example.

ExAMPLE. Experiments are to be conducted with gas bubblesrising in a still
liquid. Consider a gas bubble of diameter D rising in aliquid whose density is p,
surface tension o, viscosity w, rising with avelocity of Vin agravitational field of
g. Find a set of parameters for organizing experimental results.

1. Listall the physical variables considered according to type: geometric, kine-
matic, or dynamic.
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Table 3.3.8 Dimensions and Units of Common Variables

Dimensions Units
Symbol Variable MLT FLT uscs* Sl

Geometric

L Length L ft m

A Area L2 ft? m?

\Y Volume L3 ft3 m3
Kinematic

t Time T s s

® Angular velocity T2 s1 51

f Frequency

\% Velocity LT ft/s m/s

v Kinematic viscosity LT ft?ls m?/s

Q Volume flow rate L3T-1 ft3/s md/s

a Angular acceleration T2 s2 s2

a Acceleration LT-2 ft/s—2 m/s?
Dynamic

p Density ML—3 FL—4T2 slug/ftd kg/m3

M Mass M FL-1T? slugs kg

| Moment of inertia ML? FLT? slug - ft? kg - m?

" Dynamic viscosity ML-1T-1 FL=2T slug/ft - s kg/m - s

M Mass flow rate MT-1 FL-1T-1 slug/s kgls

MV Momentum MLT-* FT Ibf - s N-s

Ft Impulse

Mo Angular momentum ML2T-* FLT slug - ft/s kg - m?/s

y Specific weight ML~2T2 FL—3 Ibf/ft3 N/m3

p Pressure

T Unit shear stress ML-1T-2 FL-2 Ibf /ft2 N/m?2

E Modulus of elasticity

o Surface tension MT 2 FL? Ibf /t N/m

F Force MLT-2 F | bf N

E Energy

w Work ML2T—2 FL Ibf - ft J

FL Torque

P Power ML2T—3 FLT-* Ibf - ft/s w

v Specific volume M-1L3 F1L4T-2 t3/1bm m3/ kg

*United States Customary System.

2. Choose either the FLT or MLT system of dimensions.
3. Select a‘‘basic group’’ of variables characteristic of the flow as follows:

a. Bg, ageometric variable
b. By, akinematic variable
¢. By, adynamic variable (if three dimensions are used)

4. Assign A numbers to the remaining variables starting with A, .

Type Symbol Description Dimensions Number
Geometric D Bubble diameter L Bg
Kinematic \% Bubble velocity LT-1 B«

g Acceleration of LT-2 AL
gravity
Dynamic p Liquid density ML—3 By
o Surface tension MT-2 A,
" Liquid viscosity ML-1T-1 Ag

5. Write the basic equation for each = ratio as follows:

™ = (Ba)*(Bk)*(Bo) (A1)
™ = (Ba)?(Bk)(Bp)2(A) - . . m = (Bs)"(Bk)™(Bp)™(An)

Note that the number of 7 ratios is equal to the number of A numbers and thus
equal to the number of variables less the number of fundamental dimensionsin a
problem.

6. Write the dimensional equations and use the algebraic method to determine
the value of exponents x, y, and z for each 7 ratio. Note that for al = ratios, the
sum of the exponents of a given dimension is zero.

m = (Be)(By)*(Bp)(Ay) = (D)(V)*(p)?(9)
(MOLOTO) = (LA)(LYT¥)(MAL~32)(LT~2)

Solution: Xx=1Ly,=-22=0

m = DWV250g = Dg/V2

™ = (Bs)?(By)**(Bp) #(A2) = (D)*(V)¥*(p)*(0)
(M OLOT 0) (LXZ)(LVZTfyZ)(M2L73ﬁ)(MT* 2)
Solution: Xo=—LY,=-22=-1
D-W-2p~1g = d/DV?p

3 = (Bg)*(Bk)**(Bp)=(As) = (D)3(V)**(p)=(u)
(MOLOTO) = (L®)(LYST-¥3)(MZBL~3B)(ML~ 1T~ 1)
Xz = —Llys=—-12z=-1
w3 = D" W 1p 1y = u/DVp

7. Convert 7 ratios to conventional practice. One statement of the Buckingham

11 theorem isthat any # ratio may be taken as a function of all the others, or (7,
Ty, W3, . . ., ) = 0. Thisequation is mathematical shorthand for a functional
statement. It could be written, for example, as m, = f(my, 73, . . ., ). This
equation states that 7, is some function of m, and 5 through r,, but is not a
statement of what function 7, is of the other 7 ratios. This can be determined only
by physical and/or experimental analysis. Thus we are free to substitute any func-
tion in the equation; for example, 7, may be replaced with 2711 or m,, with anrb.

m2

Solution:

The procedures set forth in this example are designed to produce 7
ratios containing the same terms as those resulting from the application
of the principles of similarity so that the physical significance may be
understood. However, any other combinations might have been used.
The only real requirement for a ‘‘basic group’’ is that it contain the
same number of terms as there are dimensions in a problem and that
each of these dimensions be represented in it.

The 7 ratios derived for this example may be converted into conven-
tional practice as follows:

m, = Dg/V?
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is recognized as the inverse of the square root of the Froude number F

m, = d/DV%p
is the inverse of the Weber number W

m = pu/DVp
isthe inverse of the Reynolds number R
Let m = f(m,, m3)
Then V = K(Dg)!+2
where K=fW,R)

This agrees with the results of the dynamic-similarity anaysis of liquid
surfaces. This also permits a reduction in the experimental program
from variations of six variables to three dimensionless parameters.

FORCES OF IMMERSED OBJECTS

Drag and Lift When afluid impinges on an object as shown in[Egl
[3:320, the undisturbed fluid pressure p and the velocity V change. Writ-
ing Bernoulli’ s equation for two points on the surface of the object, the
point Sbeing the most forward point and point A being any other point,
we have, for horizontal flow,

p+ pV2 = ps+ pVY2 = p, + pV2/2
Atpoint S, Vs = 0, sothat ps = p + pV#2. Thisiscalled the stagnation
point, and psisthe stagnation pressure. Since point A is any other point,

the result of the fluid impingement is to create a pressure p, = p +
p(V2 — V3)/2 acting normal to every point on the surface of the object.

R,Resultant
force

FL, Lift force

p

Fig. 3.3.20 Notation for drag and lift.

In addition, africtional force F; = 7oA tangential to the surface area A
opposes the motion. The sum of these forces gives the resultant force R
acting on the body. The resultant force R is resolved into the drag
component Fy, paralel to the flow and lift component F, perpendicular
to the fluid motion. Depending upon the shape of the object, a wake
may be formed which sheds eddieswith afrequency of f. Theangle ais
called the angle of attack. (See Secs. 11.4 and 11.5.)

From dimensiona analysis or dynamic similarity,

f(Cp R, M,S) =0

The formation of a wake depends upon the Reynolds number, or
S = f(R). This reduces the functiona relation to f(C,, R, M) = 0.

Since the drag and lift forces may be considered independently,
Fp = CppV3(A)/2

where Cy = f(R, M), and A = characteristic area.
F_ = CpV3(A)/2

where C_ = f(R, M).

It is evident fronTEQg33.20 that Cp and C, are also functions of the
angle of attack. Since the drag force arises from two sources, the pres-
sure or shape drag F, and the skin-friction drag F due to wall shear
stress 7y, the drag coefficient is made up of two parts:

Fo = F, + K = CppAVZ2 = C,pAVZ 2 + CipANV?/2
or Co =C, + GAJA
where C, is the coefficient of pressure, C; the skin-friction coefficient,

and A, the characteristic area for shear.

Skin-Friction Drag CEIgUre 33271 shows a fluid approaching a
smooth flat plate with a uniform velocity profile of V. As the fluid
passes over the plate, the velocity at the plate surface is zero and in-
creases to V at some distance 6 from the surface. The region in which
the velocity varies from 0 to V is called the boundary layer. For some

\ vV

/r""

Turbulent

|. . 3

e -

| Laminar ~

! B
!

- Ty .o

———————— X

ke— Laminar A+7Tronsiﬂon —————sle——Turbulent —»

Fig. 3.3.21 Boundary layer along a smooth flat plate.

distance along the plate, the flow within the boundary layer is laminar,
with viscous forces predominating, but in the transition zone as the
inertia forces become larger, a turbulent layer begins to form and in-
creases as the laminar layer decreases.

Boundary-layer thickness and skin-friction drag for incompressible
flow over smooth flat plates may be calculated from the following
equations, where Ry = pVX/u:

Laminar

8/X = 520 Ry V2 0 < Ry <5X10%
C; = 1.328 R ¥/2 0 < Ry <5X10%
Turbulent

8/X = 0.377 Ry V5

8/X = 0.220 Ry V6

C; = 0.0735 Ry V5

C; = 0.455 (log,gRx) 258 107 < Ry < 108

C; = 0.05863 (10g9;oC¢Ry) 2 108 < R, < 10°

Transition The Reynolds number at which the boundary layer
changes depends upon the roughness of the plate and degree of turbu-
lence. The generally accepted number is 500,000, but the transition can
take place at Reynolds numbers higher or lower. (Refer to Secs. 11.4
and 11.5.) For transition at any Reynolds number Ry,

C; = 0.455 (log,gR,) 258 — (0.0735 R#¥5 — 1.328 8 RY¥2) Rx!
For R, = 5 X 105, C; = 0.455 (l0g,oRy) 2% — 1,725 Ry 1.

5 X 104 < Ry < 108
108 < Ry < 5 X 108
2 X 105 < Ry < 107



Pressure Drag Experiments with sharp-edged objects placed per-
pendicular to the flow stream indicate that their drag coefficients are
essentially constant at Reynolds numbers over 1,000. This means that
thedrag for Ry > 103 is pressure drag. VValues of Cy, for various shapes
are given in Sec. 11 along with the effects of Mach number.

Wake Frequency An object in afluid stream may be subject to the
downstream periodic shedding of vortices from first one side and then
the other. The frequency of the resulting transverse (lift) force is a
function of the stream Strouhal number. As the wake frequency ap-
proaches the natural frequency of the structure, the periodic lift force
increases asymptotically in magnitude, and when resonance occurs, the
structure fails. Neglecting to take this phenomenon into account in de-
sign has been responsible for failures of electric transmission lines,
submarine periscopes, smokestacks, bridges, and thermometer wells.
The wake-frequency characteristics of cylinders are shown in[Eigl
[3322. At aReynolds number of about 20, vortices begin to shed alter-
nately. Behind the cylinder is astaggered stable arrangement of vortices
known as the ‘‘Karman vortex trail.”” At a Reynolds number of about
105, the flow changes from laminar to turbulent. At the end of the
transition zone (R ~ 3.5 X 105), the flow becomes turbulent, the alter-
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Fig. 3.3.22 Fow around acylinder. (FromMurdock, *‘ Fluid Mechanicsand Its
Applications,”” Houghton Mifflin, 1976.)

nate shedding stops, and the wake is aperiodic. At the end of the super-
critical zone (R ~ 3.5 X 106), the wake continues to be turbulent, but
the shedding again becomes alternate and periodic.

The dternating lift force is given by

FL(t) = C_pV2 Asin (2mft)/2

where t isthe time. For an analysis of this force in the subcritical zone,
see Belvins (Murdock, ‘‘Fluid Mechanics and Its Applications,”
Houghton Mifflin, 1976). For design of steel stacks, Staley and Graven
(ASME 72PET/30) recommend C, = 0.8 for 10* < R < 105 C, =
2.8 — 0.41log,y R for R = 105t0 106, and C, = 0.4 for 10° < R < 107.

The Strouhal number is nearly constant to R = 105, and a nominal
design value of 0.2 isgenerally used. Above R = 105, datafrom differ-
ent experimenters vary widely, asindicated by the crosshatched zone of
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Fig. 3.3.22. Thiswide zone is due to experimental and/or measurement
difficulties and the dependence on surface roughness to ‘‘trigger’’ the
boundary layer. Examination of FIg_3.3.22lindicates an inverserelation
of Strouhal number to drag coefficient.

Observation of actua structures shows that they vibrate at their natu-
ral frequency and with a mode shape associated with their fundamental
(first) mode during vortex excitation. Based on observations of actual
stacks and wind-tunnel tests, Staley and Graven recommend a constant
Strouhal number of 0.2 for all ranges of Reynolds number. The ASME
recommends S = 0.22 for thermowell design (‘‘ Temperature Measure-
ment,”’” PTC 19.3). Until such time as the value of the Strouhal number
above R = 105 has been firmly established, designers of structuresin
this area should proceed with caution.

FLOW IN PIPES

Parameters for Pipe Flow The forces acting on a fluid flowing
through and completely filling a horizontal pipe are inertia, viscous,
pressure, and elastic. If the surface roughness of the pipe is &, either
similarity or dimensional analysis leads to C, = f(R, M, L/D, &/D),
which may be written for incompressible fluids as Ap = C V%2 =
KpV?/ 2, where K is the resistance coefficient and /D the relative rough-
ness of the pipe surface, and the resistance coefficient K = f(R, L/D,
e/D). The pressure loss may be converted to the terms of lost head:
h; = Ap/y = KV?/2g. Conventional practiceisto usethefriction factor f,
defined as f = KD/L or hy = KV2/2g = (fL/D)V?2g, where f =
f(R, &/D). When afluid flows into a pipe, the boundary layer starts at
the entrance, as shown in and grows continuously until it
fills the pipe. From the equation of motion dh; = 7dL/yR, and for
circular ducts R,, = D/4. Comparing wall shear stress 7, with friction
factor results in the following: 7, = fpV2/8.

Boundary layer

—
—
—o
| D
|
— 8

P

]

le—— x —4 Fully developed
le—— | = 0.0280R laminar velocity

profile

(a)

Laminar R> 2,000

! R = 30,000
R = 300,000

<—V——J
(b)

Fig. 3.3.23 Velocity profilesin pipes.

Laminar Flow In thistype of flow, the resistance is due to viscous
forces only so that it is independent of the pipe surface roughness, or
7, = p dU/dy. Application of this equation to the equation of motion
and the friction factor yields f = 64/R. Experiments show that it is
possible to maintain laminar flow to very high Reynolds numbersif care
istaken to increase the flow gradually, but normally the slightest distur-
bance will destroy the laminar boundary layer if the value of Reynolds
number is greater than 4,000. In a like manner, flow initially turbulent
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Values of (VD) for water at 60 F (velocity in fps X diameterininches)
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Fig. 3.3.24 Friction factors for flow in pipes.
can be maintained with care to very low Reynolds numbers, but the Table 3.3.9 Values of Absolute Roughness, New Clean
slightest upset will result in laminar flow if the Reynolds number isless Commercial Pipes
than 2,000. The Reynolds-number range between 2,000 and 4,000 is Probable max
called the critical zone [EIG—3324). Flow in the zone is unstable, and & ft (0.3048 m) X 10°° variation of f
designers of piping systems must take this into account. Type of pipe or tubing Range Design from design, %
] EXAMPLE. Glycerin at 68°F (20°C) flows through a horizontal pipe 1inin Asphalted cast iron 400 400 _5to+5
diameter and 20 ft long at arate of 0.090 Ibm/s. ;Nhat is the pressure loss? From Brass and copper 5 5 —5t0+5
the continuity equation V = Q/A = (m/pg)/(wD?/4) = [0.090/(2.447 X 32.17)]/ Concrete 1,000 10,000 4,000 — 351050
[(77/4)(1]12)2] = 0.2096 ft/s. Thee Reynolds number R = pVD/u = Cast iron 850 850 —10to + 15
(2.447)(0.2096)(1/12)/(29,500 X 10-%) = 1.449. R < 2,000; therefore, flow is |  Gajvanized iron 500 500 0to +10
laminar and f = 64/R = 64/1.449 = 44.17. K = fL/D = 4417 X 20(1/12) = | \rought iron 150 150 51010
10600. Ap = KpVZ/2 = 10600 x 2447(02096/2 = 569.8 bf/fe’ = Stee! 150 150 51010
Turbulent Flow Thefriction factor for Reynolds number over 4,000 Wood stave 600 3000 2,000 —351020

is computed using the Colebrook equation:

e/D 251

=-2lo —_—t —

%o ( 37 RV
[Figare 33271is a graphical presentation of this equation (Moody,
Trans ASME, 1944, pp. 671-684). Examination of the Colebrook
equation indicates that if the value of surface roughness ¢ is small
compared with the pipe diameter (¢/D — 0), the friction factor is a
function of Reynolds number only. A smooth pipe is one in which the
ratio (/D)/3.7 is small compared with 2.51/R Vf. On the other hand,
as the Reynolds number increases so that 2.51/R vf — 0, the friction
factor becomes a function of relative roughness only and the pipe is
called arough pipe. Thus the same pipe may be smooth under one flow
condition, and rough under another. The reason for this is that as the
Reynolds number increases, the thickness of the laminar sublayer de-
creases as shown in[EIG—337T] exposing the surface roughnessto flow.
Values of absolute roughness ¢ are given il Table33d. The variation

SouRcke: Compiled from data given in ‘‘ Pipe Friction Manual,” Hydraulic Institute, 3d ed.,
1961.

of friction factor shown in[EIg—3:39J s for new, clean pipes. The change
of friction factor with age depends upon the chemical properties of the
fluid and the piping material. Published data for flow of water through
wrought-iron or cast-iron pipes show as much as 20 percent increase
after a few months to 500 percent after 20 years. When necessary to
allow for service life, a study of specific conditions is recommended.
The calculation of friction factor to four significant figuresin the exam-
ples to follow is only for numerical comparison and should not be
construed to mean accuracy.

Engineering Calculations Engineering pipe computations usually
fall into one of the following classes:

1. Determine pressure loss Ap when Q, L, and D are known.

2. Determine flow rate Q when L, D, and Ap are known.

3. Determine pipe diameter D when Q, L, and Ap are known.


/knovel2/view_hotlink.jsp?hotlink_id=414433200

Pressure-loss computations may be made to engineering accu-
racy using an expanded version of[Fig_3.3.24] Greater precision may
be obtained by using a combination[of_Tale 33.9 and the Cole-
brook equation, as will be shown in the example to follow. Flow rate
may be determined by direct solution of the Colebrook equation. Com-
putation of pipe diameter necessitates the trial-and-error method of so-
lution.

ExAMPLE. Case 1: 2,000 gal/min of 68°F (20°C) water flow through 500 ft
of cast-iron pipe having an internal diameter of 10 in. At point 1 the pressure is
10 Ibf/in? and the elevation 150 ft, and at point 2 the elevation is 100 ft. Find p,.

From continuity V = Q/A = [2,000 X (231/1,728)/60]/[(7/4)(10/12)?] = 8.170
ft/s. Reynolds number R = pVD/u = (1.937)(8.170)(10/12)/(20.92 X 10-6) =
6.304 X 105 R > 4,000 .". flow is turbulent. &/D = (850 X 10-9)/
(10/12) = 1.020 X 10-3,

Determine f: fronFIg—3.3.24 by interpolation f = 0.02. Substituting this value
on the right-hand side of the Colebrook equation,

1 e/D 251
—=-2logyy | — +—
Vi 37 R
1.020 X 10-3 251
= —21lo0g, + —
37 (6.305 x 105) v0.02

i_ = 7.035 f = 0.02021
vf

. X
Resistance coefficient K = f—L = M

D 10/12

K = 1213
huro = KV2/2g = 12.13 X (8.170)2/2 X 32.17
hyrp = 12.58 ft

Equation of motion: p,/y + V%/2g + z, = p,/y + V3/29 + z, + hy;,. Noting
that V, = V, = V and solving for p,,

P2 =P+ ¥(@ — 2% — o)
= 144 x 10 + (1937 X 32.17)(150 — 100 — 12.58)
P, = 3,772 Ibf/ft2 = 3,772/144 = 26.20 Ibf/in (1.806 X 105 N/m?)

ExAMPLE. Case 2: Gasoline (sp. gr. 0.68) at 68°F (20°C) flows through a
6-in schedule 40 (1D = 0.5054 ft) welded steel pipewith ahead lossof 10 ftin 500
ft. Determine the flow. This problem may be solved directly by deriving equations
that do not contain the flow rate Q.

2
From h; = (%) \2/_g

From R = pVD/p,

V= (2gh D)V¥(fL)v2

V = Rul/pD
Equating the above and solving,
RVf = (pD/u)(2gh; D/L)¥?

= (1.310 X 0.5054/5.98 X 10-6)
X (2 X 32.17 x 10 X 0.5054/500)¥2 = 89,285

which is now in aform that may be used directly in the Colebrook equation:
&/D = 150 X 10-6/0.5054 = 2.968 X 104

From the Colebrook equation,

1 eD 251
o 2log, (2422
T R+
i (26Bx10°4 251
- Sho 37 89,285
1
227931 f=001500
T

R = 89,285/Vf = 89,285 X 7.93 = 7.08 X 105
R > 4,000 . . flow is turbulent
V = Ru/pD = (7.08 X 105 X 5.98
X 1079)/(1.310 X 0.5054) = 6.396 ft/s
Q = AV = (71/4)(0.5054)%(6.396)
Q = 1.283 ft3/s (3.633 X 10~2 md/st)
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EXAMPLE. Case 3; Water at 68°F (20°C) is to flow at a rate of 500 ft3/s
through a concrete pipe 5,000 ft long with a head loss not to exceed 50 ft. Deter-
mine the diameter of the pipe. This problem may be solved by trial and error using
methods of the preceding example. First trial: Assume any diameter (say 1 ft).

RVf = (pD/u)(2gh; D/L)V2

(1.937D/20.92 X 10-6) X (2 X 32.17 X 50D/5,000)+2
= 74,269D%2 = 74,269(1)%2 = 74,269

&/D; = 4,000 X 10-¢/D = 4,000 X 10-¢/(1) = 4,000 X 10-6

1 e/D; 251
— = —2logy +—
A 37 RVf,

o (4,000 x10°¢ 251 )
Gio 37 74,269

[~

= 5.906 f, = 0.02867

N

R, = 74,269/, = 74,269 X 5.906 = 438,600

V, = Ru/pD; = (438,600 = 20.92 X 10-6)/(1.937 X 1)
V, = 4737 ftls

Q. = AV, = [m(1)2/4]4.737 = 3.720 ft¥s

For the same loss and friction factor,
D, = D,(Q/Qp?%* = (1)(500/3.720)%5 = 7.102 ft

For the second trial use D, = 7.102, which resultsin Q = 502.2 ft3/s. Since the
nearest standard size would be used, additional trias are unnecessary.

Velocity Profile[FIgure 3.3.23a shows the formation of a laminar
velocity profile. Asthe fluid enters the pipe, the boundary layer starts at
the entrance and grows continuously until it fills the pipe. The flow
while the boundary is growing is caled generating flow. When the
boundary layer completely fills the pipe, the flow is called established
flow. The distance required for establishing laminar flow is L/D ~
0.028 R. For turbulent flow, the distance is much shorter because of the
turbulence and not dependent upon Reynolds number, L/D being from
25 to 50.

Examination of [E10_3:3:Z3b indicates that as the Reynolds number
increases, the velocity distribution becomes ‘‘flatter’” and the flow ap-
proaches one-dimensional. The velocity profile for laminar flow is para-
bolic, U/V = 2[1 — (r/r,)?] and for turbulent flow, logarithmic (except for
the very thin laminar boundary layer), U/V = 1 + 1.43 vf + 2.15Vf
l0gy0 (1 — r/r,). The use of the average velocity produces an error inthe
computation of kinetic energy. If « isthekinetic-energy correction factor,
the true kinetic-energy change per unit mass between two points on a
flow system AKE = a,V%4/29, — a,V3/2g,, where a = (JAV3) fU3dA.
For laminar flow, & = 2 and for turbulent flow, a ~ 1 + 2.7f. Of interest
is the pipe factor V/U,p; for laminar flow, V/U,,, = 1/2 and for turbu-
lent flow, V/U,,, = 1 + 1.43 Vf. Thelocation at which the local velocity
equals the average velocity for laminar flow isU = V at r/r, = 0.7071
and for turbulent flow isU = V at r/r, = 0.7838.

Compressible Flow At the present time, there are no true analytical
solutions for the computation of actual characteristics of compressible
fluids flowing in pipes. In thereal flow of acompressiblefluid in apipe,
the amount of heat transferred and its direction are dependent upon the
amount of insulation, the temperature gradient between the fluid and
ambient temperatures, and the heat-transfer coefficient. Each condition
requires an individual application of the principles of thermodynamics
and heat transfer for its solution.

Conventional engineering practice is to use one of the following
methods for flow computation.

1. Assume adiabatic flow. This approximates the flow of compress-
ible fluids in short, insulated pipelines.

2. Assume isothermal flow. This approximates the flow of gasesin
long, uninsulated pipelines where the fluid and ambient temperatures
are nearly equal.

Adiabatic Flow If the Mach number is less than ¥4, results within
normal engineering-accuracy requirements may be obtained by consid-
ering the fluid to be incompressible. A detailed discussion of and meth-
ods for the solution of compressible adiabatic flow are beyond the scope
of this section, and any standard gas-dynamicstext should be consulted.
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Isothermal Flow The equation of motion for a horizontal piping
system may be written as follows:
dp + pVdV + ydh =0

noting, from the continuity equation, that pV =M/A = G, where G isthe
mass velocity in slugs/(ft?)(s), and that y dh; = [(f/D)pVZ2]dL = [(f/
D)GV/2]dL. Substituting in the above equation of motion and dividing

by GV/2 resultsin
() a-o

2p dp 2dV
Integrating for an isothermal process (p/p = C) and assuming f is a

Ty ] () b

Noting that A, = Ay, VLIV, = pilp, =

p1/p,, and solving for G,

G { p1pall — (Polp)Y | 2
2log, (p1/p,) + fL/D
The Reynolds number may be written as
R=EL_SD 44 G-rE
M M D

Thevalue of R vf may be obtained from the simultaneous solution of the
two equations for G, assuming that 2 log, p1/p, issmall compared with

U el @)

ExAMPLE. Air at 68°F (20°C) is flowing isothermally through a horizontal
straight standard 1-in steel pipe (inside diameter = 1.049 in). The pipe is 200 ft
long, the pressure at the pipeinlet is 74.7 1bf/in?, and the pressure drop through the
pipe is 5 Ibf/in2. Find the flow rate in Ibm/s. From the equation of state p, =
p/g.RT = (144 X 74.7)/(32.17 X 53.34 X 527.7) = 0.01188 slugs/fts.

RVF = {[(D3p1pa/w2L)I[L — (P2/py)?} V2 = {[(L.049/12)%(0.01188)
X (144 X 74.7)/(39.16 X 10-8)2(200)[1 — (69.7/74.7)7} V2
= 18,977
For steel pipe ¢ = 150 X 1076 ft, /D =
10-3. From the Colebrook equation,

(150 X 10-9)/(1.049/12) = 1.716 X

S/D 2.51
= —2logy \ — =
3.7 R\/f
= 2logy [(1.716 X 10-33.7) + (2.51)/(18,977)] = 6.449
f = 0.02404

= (RVE)(U/Vf) = (18,953)(6.449) = 122,200
R > 4,000.". flow is turbulent
_ { p1Pafl — (P2/p)? v
210ge (p1/p2) + fL/D
_ { (0.01188)(144 X 74.7)[1 — (69.7/74.7)3 vz
2 log, (74.7/69.7) + (0.02404)(200)/(1.049/12)
= 0.5476 dlug/(ft?)(s)
m = g.AG = (32.17)(/4)(1.049/12)(0.5476)
m = 0.1057 Ibm/s (47.94 X 10-3 kg/s)

Noncircular Pipes For the flow of fluids in noncircular pipes, the
hydraulic diameter Dy, is used. From the definition of hydraulic radius,
the diameter of a circular pipe was shown to be four times its hydraulic
radius, thus D}, = 4R,. The Reynolds number thus may be written as
R = pVDy/u = GDy/p, the relative roughness as ¢/Dy,, and the resis-
tance coefficient K = fL/D,,. With the above maodifications, flows
through noncircular pipes may be computed in the same manner as for
circular pipes.

EXAMPLE. Air at 68°F (20°C) and 100 Ibf/in? enters a rectangular duct 1 by
3 ft at a rate of 720 Ibm/s. The duct is horizontal, 100 ft long, and made of
galvanized iron. Assuming isothermal flow, estimate the pressure loss due to

friction in this line. From the equation of state, p; = p,/g.RT, = (144
100)/(32.17)(53.34)(527.7) = 0.01590 slug/ft®. FromTabe—3367 R,
bD/2(b + D) = 3 X Y/2(3 + 1) = 0375 ft, and D, = 4R, = 4 X 0375 =
1.5 ft. For galvanlzed iron, /Dy, = 500 X 10-¢/1.5 = 3.333 X 104
= (Vg )/A = (720/32.17)/(1 X 3) = 7.460 slugs/(ft3)(s)
R = GDy/u = (7.460)(1.5)/(39.16 X 10~8)
= 28,580,000 > 4,000 .". flow is turbulent

FronEIG—=324 f ~ 0.015

1 (s/Dh 251
— = —210g;0 +—
v 37 Rvf

3333 x 104 251
= —2logy 3 + —
-7 28,580,0000.015

|1 X

f = 0.01530
Solving the isothermal equation for p,/ps,

i Gl sl

For first trlal, assume 2 logg(pa/p.) is small compared with fL/D:
p2/p1 = {1 — [(7.460)%/(0.01590)(144 X 100)][0 + (0.01530)(100)/1.5]} ¥2
0.8672

Second trial using first-trial values results in 0.8263. Subsequent trials result in
a balance at p,/p, = 0.8036, p, = 100 X 0.8036 = 80.36 Ibf/in? (5.541 X
105 N/m?).

PIPING SYSTEMS

Resistance Parameters Theresistanceto flow of apiping systemis
similar to the resistance of an object immersed in a flow stream and is
made up of pressure (inertia) or shape drag and skin-friction (viscous)
drag. For long, straight pipes the pressure drag is characterized by the
relative roughness /D and the skin friction by the Reynolds number R.
For other piping components, two parameters are used to describe the
resistance to flow, the resistance coefficient K = fL/D and the equivalent
length L/D = K/f. The resistance-coefficient method assumes that the
component lossis all due to pressure drag and that the flow through the
component is completely turbulent and independent of Reynold’'s num-
ber. The equivalent-length method assumes that resistance of the com-
ponent varies in the same manner as does a straight pipe. The basic
assumption then is that its pressure drag is the same as that for the
relative roughness &/D of the pipe and that the friction drag varies with
the Reynolds number R in the same manner as the straight pipe. Both
methods have the inherent advantage of simplicity in application, but
neither is correct except in the fully developed turbulent region. Two
excellent sources of information on the resistance of piping-system
components are the Hydraulic Institute ** Pipe Friction Manual,’”” which
uses the resistance-coefficient method, and the Crane Company Tech-
nical Paper 410 (‘' Fluid Meters,”’ 6th ed. ASME, 1971), which usesthe
equivalent-length concept.

For valves, branch flow through tees, and the type of components
listed in[Table 3.3.10] the pressure drag is predominant, is ‘‘rougher’’
than the pipe to which it is attached, and will extend the completely
turbulent region to lower values of Reynolds number. For bends and
elbows, the loss is made up of pressure drag due to the change of
direction and the consequent secondary flowswhich are dissipated in 50
diameters or more downstream piping. For this reason, loss through
adjacent bends will not be twice that of a single bend.

In long pipelines, the effect of bends, valves, and fittings is usualy
negligible, but in systems where thereisllittle straight pipe, they arethe
controlling factor. Under-design will result in the failure of the system
to deliver the required capacity. Over-design will result in inefficient
operation because it will be necessary to ‘‘throttle’” one or more of the
valves. For estimating purposes[ Tables 3.3.10 and B2T1 may be used
as shown in the examples. When available, the manufacturers’ data
should be used, particularly for valves, because of the wide variety of
designs for the same type. (See also Sec. 12.4.)



Table 3.3.10 Representative Values of Resistance
Coefficient K

Rounded inlet

—

V —» K=0.05

—

Sharp-edged intet | Inward projecting

pipe
.

vV =—>> K=10

T

Sudden contraction

V—= K=05

—

[07a]1.5 Teo o.50[3.0 [35 [40 |

oV td [ x Jo-28]o326[0.40[0.42]0.44[0.45]

Gradual reduction
K=0.05

b v—s ld
4

Sudden enlargement

v—ld D Kk:[-@/0R

Gradual enlargement
K=K'[t-(d/D)?]?

[(p-a)/21]0.085[0.10]o.20]030]040]0.50[0.80]

[« Jo.1afo2o]047]o76]095]1.05]1.10]

~

d] V—» D

Exit loss =(sharp edged, projecting ,Rounded }, K=1.0

SOURCE: Compiled from data given in ‘‘Pipe Friction Manual,”” 3d ed., Hy-
draulic Institute, 1961.

Table 3.3.11 Representative
Equivalent Length in Pipe Diameters
(L/D) of Various Valves and Fittings

Globe valves, fully open 450
Angle valves, fully open 200
Gate valves, fully open 13
¥4 open 35
> open 160
¥a open 900
Swing check valves, fully open 135
In line, ball check valves, fully open 150
Butterfly valves, 6 in and larger, fully open 20
90° standard el bow 30
45° standard elbow 16
90° long-radius elbow 20
90° street elbow 50
45° street elbow 26
Standard tee:
Flow through run 20
Flow through branch 60

SOURCE: Compiled from data given in ‘‘Flow of Fluids,’
Crane Company Technical Paper 410, ASME, 1971.

Series Systems  Inasingle piping system made of various sizes, the
practice is to group al of one size together and apply the continuity
equation, as shown in the following example.

ExAMPLE. Water at 68°F (20°C) leaves an open tank whose surface eleva-
tion is 180 ft and enters a 2-in schedule 40 steel pipe via a sharp-edged entrance.
After 50 ft of straight 2-in pipe that contains a 2-in globe valve, the line enlarges
suddenly to an 8-in schedule 40 steel pipe which consists of 100 ft of straight 8-in
pipe, two standard 90° elbows and one 8-in angle valve. The 8-in line discharges
below the surface of another open tank whose surface elevation is 100 ft. Deter-
mine the volumetric flow rate.

D, = 2.067/12 = 0.1723 ft and D, = 7.981/12 = 0.6651 ft
&/D; = 150 X 10-¢/0.1723 = 8.706 X 10-4
elD, = 150 X 10~¢/0.6651 = 2.255 X 10~*

For turbulent flow,

1 e/D
— = —2logy, ( —
A 37
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—4
L 2 logyg (M> f, = 0.01899
A 37
—4
i_ = —2logy (M> f, = 0.01407
Vfy 37
1. 2-in components K
Entrance loss, sharp-edged = 05
50 ft straight pipe = f; (50/0.1723) = 290.2f,
Globe valve = f, (L/D) = 450.0f,
Sudden enlargement k = [— (D/D,)?]?
= [1 - (2.067/7.981)72 = 087
3K, = 1.37 + 740.2f,
2. 8-in components K
100 ft of straight pipe f, (100/0.6651) = 150.4f,
2 standard 90° elbows 2 X 30 f, = 60 f,
1 angle valve 200 f, =200 f,
Exit loss = 1

3K, = 1 + 410.4f,
3. Apply equation of motion

V% V3
hio =2 — 2 = (2Ky 2_g1 + (2K3) 2_92

From continuity, p;A;V, = p,AV, for p, = p,

Vo = Vi(A/A;) = Vy(Dy/D,)?
N = 2y — 2, = [EK; + 2Ky(D,/D,)*V3/ 29
Vi = {[29(z — R)I/[ZK; + ZK,(D,/D,)}¥2

v 2 X 32,17 X (180 — 100) ]ﬂz
7 | (@37 + 7402, + (1 + 410.41,)(2.067/7.981)"
v, 7174

T (1374 + 7402f, + 1.846f,)V?
4. For first trial assume f; and f, for complete turbulence

7174
V, =
17 (1374 + 740.2 X 0.01899 + 1.846 X 0.01407)V2

V, = 18.25 ft/s

V, = 18.25 (2.067/7.981)2 = 1.224 ft/s

R; = p,ViD,/p = (1.937)(18.25)(0.1723)/(20.92 X 10-6)
R; = 291,100 > 4,000 .". flow is turbulent

R, = p,V,Dolp, = (1.937)(1.224)(0.6651)/(20.92 X 10-6)
R, = 75,420 > 4,000 .". flow is turbulent

5. For second trial usefirst trial V; and V,. From EIgZ33223nd the Colebrook

equation,
1 8.706 X 104 251
— = —2logy +
Vi 37 291,100 V0.020
f, = 0.02008
2.255 X 1074 251
— = —2log,o +
A 37 75,420 v0.020
f, = 0,02008
v — 7174
1 (1374 + 740.2 X 0.02008 + 1.864 X 0.02008)Y2
V, = 17.78

A third trial results in V = 17.77 ft/sor Q = AV, = (@/4)(0.1723)3(17.77) =
0.4143 ft%/s (1.173 X 10-2 md/s).

Parallel Systems In solution of problems involving two or more
parallel pipes, the head loss for all of the pipesisthe same as shown in
the following example.

EXAMPLE. Benzene at 68°F (20°C) flows at a rate of 0.5 ft¥/s through two
parallel straight, horizontal pipes connecting two pressurized tanks. The pipes are
both schedule 40 steel, one being 1 in, the other 2 in. They both are 100 ft long and
have connections that project inwardly in the supply tank. If the pressure in the
supply tank is maintained at 100 |bf/in?, what pressure should be maintained on
the receiving tank?

D, = 1L.049/12 = 0.08742ft  and D, = 2.067/12 = 0.1723 t
&/D; = 150 X 10-6/0.08742 = 1.716 x 103
&/D; = 150 X 10-6/0.1723 = 8.706 X 10~
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For turbulent flow,

o ()

40 pipeto aY branch connection (K = 0.5) where 100 ft of 2-in pipe goes to tank
B, which is maintained at 80 Ibf/in2 and 50 ft of 2-in pipe to tank C, whichisalso
maintained at 80 Ibf/in2. All tank connections are flush and sharp-edged and are at

7 the same elevation. Estimate the flow rate to each tank.
1 1.716 X 103 D = 2.067/12 = 0.1723 ft
T 2% (7) f, = 002249 &/D = 850 X 10-5/0.1723 = 4.933 X 103
A .
1 e/lD
1 8.706 X 10~4 For turbulent flow, — = — 2 log (—)
—=-2I _ f, = 0.0 " 10
. 0010 ( 27 ) , = 0.01899 Vi 37
1 4933 X 10-3
1. 1-in. components K — = —2logy (—) f = 0.03025
Entrance loss, inward projection = 10 h Vi -~ Iog = 14:27100 80)/(1532 X 32.17) = 58.44
100 ft straight pipe f; (100/0.08742) = 1,1441, fare = (P — Pe) 9 L (10 o )I(L. 17) = 58.
Exit loss - 10 arc = (Pa = Pc)/pg = hag = 58
SK, = 2.0 + 1,1441, Let point X be just before the Y; then
. 1. Fromtank Ato Y K
2 Z-EZSOag&OP::stSi nward projection 1.0 Entrance loss, sharp-edged : 05
- . 200 ft straight pipe = fax(200/0.1723 =1161f
100 ft straight pipe f, (100/0.1723) = 5804f, raight pipe = fi( ) fniiall
Exit loss = 10 SKax = 0.5 + 1,161 foq
SK, = 2.0 + 580.4f, 2. FromYtotank B
Y branch = 05
hy = =K, V3/2g = =K, V3/2g 100 ft straight pipe = fyg(100/0.1723) = 580.4 fyg
From the continuity equation, Q = AV Exit loss = 10

SKyg = 1.5 + 580.4 fyg

$Ky -8 = vk, -2
12g9M 2 20A3 3. From Y to tank C
) Y branch = 05
Solving for Q,/Q., 50 ft straight pipe = fyc(50/0.1723) = 290.2 fyc
Q_A 5K _ ( ) _\/EK27< ) _\/20+5804f2 Exit loss =_10
Q. A V3K, K, 20+ 1,144, 2Ky = 15+ 2902 fxc
For first trial assume flow is completely turbulent, Balance of flows:
Qax = Qxg + Q
Q _ (008742 /2.0 T 5804 X 0.01899 . e T e
Qz = 01723 -\/2 0+ 1144 X 0.02249 and from continuity, (Aaxx = Axg = Axc)s Vax = Vxg + Vic; then
Vax Vis
81—01764 Q=Q, +Q,=01764Q, + Q, hate = ZKiox 5% + Thop 5 2
2
2
05000 = 1.1764Q,  Q, = 0.4250 hare = SKax Vax SKye Ve
Q, = 0.5000 — 0.4250 = 0.0750 2 2
for th dtrial first-trial val For first trial assume completely turbulent flow
or the second trial use first-trial values,
(05 + 1,161 fu)V3x , (L5 + 5804 fxe)V5e
V, = Qy/A, = 0.0750/(m/4)(0.08742)2 = 12.50 P = 2 2
V, = Q,/A, = 0.4250/(/4)(0.1723)? = 18.23
R = paluDy/is — (1.705)(12.50)(0.08742)/(13.62 X 10-9) sgag _ (05 + 1161 X 0.03025)VE, (L5 + 5804 x 0.03025)V5e
R, = 136,800 > 4,000 .". flow is turbulent 2X 3217 2X 3217

R, = p,V,Dylp, = (1.705)(18.23)(0.1723)/(13.62 X 10-6)
R, = 393,200 > 4,000 .". flow is turbulent

Using the Colebrook equation and FIg—3:322]

1 1.716 X 103 251
—2logyo +

Vi 37 136,800 v0.024
f, = 0.02389

1 8.706 X 104 251

— = —2l0gy + ——

Vi, 37 393,200 v0.020
f, = 0.01981

_ Vi _ i
= 3Ky 5= 2K 5

SK\V2/2g = (2.0 + 1,144 x 0.02389)(12.50)2/(2 X 32.17) = 71.23
SK,V3/2g = (2.0 + 580.4 x 0.01981)(18.23)2/(2 X 32.17) = 69.80

58.44 = 0.5536 V2, + 0.2962 Vg
and in alike manner
hac = 58.44 = 05536 V2. + 0.1598 V3
Equating hag = hagc,
0.5536 V2, + 0.2962 V25 = 0.5536 V2, + 0.1598

or Vyc = 1.3615 Vg and since Vax = Vg + Vxc
Vax = Vg + 1.3615 Vyg = 2.3615 Vyg
S0 that has = 58.44 = 0.5536(2.3615 V4g) + 0.2962 Vg
Vyg = 4.156

Vie = 1.3615(4.156) = 5.658
Vg = 4.156 + 5.658 = 9.814

Second trial,

VD 1532 X 9.814 X 0.1723
Rax = =

w 25.06 X 10-6

71.23 = 69.80; further trials not justifiable because of accuracy of f, K, Rax = 103,400 > 4,000 .". flow is turbulent
L/D. Use average or 70.52, so that Ap = pgh; = (1.705 X 32.17 X 70.52)/144 =
26.86 Ibf/ir2 = p; — p, = 100 — p,, p, = 100 — 26.86 = 73.40 Ibf/in?

(5.061 X 105 N/m?). Rys = 43780  Ryc = 59,600
Using the Colebrook equation anf g 3.324
4.933 X 103 " 251

1
— = —2logye <
ExAmPLE. Ethyl acohol at 68°F (20°C) flows from tank A, which is main- Vax 37 103,400v0.031
tained at a constant nressure of 100 Ib/in? throuah 200 ft of 2-in cast-iron schedule f.. = 00R11A

In alike manner,

Branch Flow Problems of a single line feeding severa points may
be solved as shown in the following example.




In alike manner,

fig = 003231 fyc = 0.03179
b _ 05+ 1161 X 003116V, (L5 + 5804 x 0.03231)V5e
B 2 X 3217 2 X 3217

has = 0.5700 V2, + 0.3148 Vg
(1.5 + 290.2 X 0.03179V3c
2% 3217
harc + 0.5700 V3, + 0.1667 V3¢
0.3148 V2, = 0.1667 V3¢
Vie = 1.374 Vi
Vax = Vig + 1.374 Vg = 2.374 Vyg

hare = 0.5700 V2, +

so that

has = 58.44 = 0.5700 (2.374 Vig)? + 0.3148 Vg
Vig = 4070 Voo = 5592 Vi = 9.663

Further trials are not justified.

A = 7D%4 = (m/4)(0.1723)2 = 002332 ft2
Qas = VagA = 4.070 X 0.02332 = 0.09491 ftYs (2.686 X 10~ mYs)
Que = VA = 5,592 X 0.02332 = 0.1304 ft¥/s (3.693 X 10-3 m?¥s)

Siphons are arrangements of hose or pipe which cause liquids to flow
from one level A in[E[g_3:325lto alower level C over an intermediate
summit B. Performance of siphons may be evaluated from the equation
of motion between points A and B:

2
&.t,.ﬁ.g. _&4,.2

+ 273+ h
Y 29 Y 9 Z IAfe

Noting that on the surface V,, = 0 and the minimum pressure that can
exist at point B isthe vapor pressure pv, the maximum elevation of point
Bis

V2
ZB*ZA:p_;*<%+—B+hAfB>

The friction loss h; = 2K ,gV3/2g, and let Vz = V; then

Pa — By vz
—zn=——— — (1 - ZKpg) —

Z5 A o9 ( AB) 29

Flow under this maximum condition will be uncertain. The air pump or
gjector used for priming the pipe (flow will not take place unless the
siphon is full of water) might have to be operated occasionaly to re-
move accumulated air and vapor. Vaues of zz — z, less than those
calculated by the above equation should be used.

Fig. 3.3.25 Siphon.

ExAMPLE. The siphon shown iREQ3.32% is composed of 2,000 ft of 6-in
schedule 40 cast-iron pipe. Reservoir A is at elevation 800 ft and C at 600 ft.
Estimate the maximum height for zz — z, if the water temperature may reach
104°F (40°C), and the amount of straight pipe from A to B is 100 ft. For the
first bend L/D = 25 and the second (at B) L/D = 50. Atmospheric pressure
is 14.70 Ibf/in2. For 6-in schedule 40 pipe D = 6.065/12 = 0.5054 ft, ¢/D =
850 X 106/0.5054 = 1.682 X 10-3. Turbulent friction factor

WVF = — 2100n (SI—D\ = —2loa. (1.682 X 10-%/3.7) = 0.02238
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1. ComponentsfromA to B. (Note lossin second bend takes place in downstream
piping.) K

Entrance (inward projection) = 10
100 ft straight pipe f (100/0.5054) =197.9f
First bend = 25 f

SKpg = 1.0 + 227.9f
2. Components fromA to C

SKas =10+ 2229 f
1,900 ft of straight pipe f (1,900/0.5054) = 37594 f
Second bend = 50f

Exit loss =1

SKac = 2.0 + 4,032 f

First trial assume complete turbulence. Writing the equation of motion between A
and C.

2
p—y"+2—g+ A—p—;+2—g+zC+EKAC\2/g
Ve = 0, and py = pc = 14.7 1bf/in2,
v \/29(4 —2) __[20@-2)
SKac 2.0 + 4,032f
B \/m
2.0 + 4,032 f
_ 113.44
V2.0 + 4,032 X 0.02238
=11.81

Noting V, =

Second trial, use first-trial values,
pVD
R = = (1.925)(11.81)(0.5054)/(13.61 < 10~6)
y73
R = 846,200 > 4,000 .". flow is turbulent

FromElg—3:324land the Colebrook equation,

1 1.682 X 103 251
— = —2logyo +
Vi 37 844,200 V0.023
f = 0.02263
113.44
V= L — 11.75 (close check)

V2.0 + 4,032 x 0.02263
From Sec. 4.2 steam tables at 104°F, p, = 1.070 Ibf/in2, the maximum height

_ . V2
@7ZA:M7 (1 + 2Kag) o~

e 2

144(14.70 — 1.070)
= (1+ 1+ 227
1.925 X 32.17 (+1+2219
(11.75)2
X ——= = 16. .
0. 02262) NETET 16.58 ft (5.053 m)

Note that if a = 10 percent error exists in calculation of pressure loss, maximum
height should be limited to ~ 15 ft (5 m).

ASME PIPELINE FLOWMETERS

Parameters Dimensiona analysis of the flow of an incompressible
fluid flowing in a pipe of diameter D, surface roughness ¢, through a
primary element (venturi, nozzle or orifice) whose diameter isd with a
velocity of V, producing a pressure drop of Ap sensed by pressure taps
located adistance L apart resultsin f(C,, Ry, &/D, d/D) = 0, which may
be written as Ap = CppV?/2. Conventional practice is to express the
relations as V = K v2Aplp, where K is the flow coefficient, K = 1/VC,
and K = f(Ry, L/D, &/d, d/D). Theratio of the diameter of the primary
element to meter tube (pipe) diameter D is known as the beta ratio,
where B8 = d/D. Application of the continuity equation leadsto Q =
KA, V2Ap/p, where A, is the area of the primary element.

Conventiona practice is to base flowmeter computations on the as-
sumption of one-dimensional frictionless flow of an incompressible
fluid in a horizontal meter tube and to correct for actual conditions by
the use of a coefficient for viscous effects and a factor for elastic ef-
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fects. Application of the Bernoulli equation for horizontal flow from sec-
tion 1 (inlet tap) to section 2 (outlet tap) results in pi/pg + V2/2g =
p./pg + V3/2g or (p, — p.)/p = V3 — V% = Aplp. From the equation
of continuity, Q; = AV, = AV,, where Q, istheideal flow rate. Substitut-
ing, 2Ap/p = Q#A? — Qf/A3, and solving for Q;, Q; = A,V2Ap/p/
V1 — (A,/A)? noting that A,/JA, = (d/D)2 = B2 Q = A,V2Apl/p/
V1 — B4 The discharge coefficient C is defined as the ratio of the
actual flow Q to the ideal flow Q;, or C = Q/Q;, so that Q = CQ; =
CA,V2Ap/p/V1 — B4 It is customary to write the volumetric-flow
equation as Q = CEA,V2Ap/p, where E = 1/V1 — B4 Eiscaled the
velocity-of-approach factor because it accounts for the one-dimensional
kinetic energy at the upstream tap. Comparing the equation from
dimensional analysis with the modified Bernoulli equation, Q =
KA,V2Ap/p = CEA,V2Ap/p, or K = CE and C = f(Ry, L/D, B).

For compressible fluids, the incompressible equation is modified by
the expansion factor Y, where Y is defined as the ratio of the flow of a
compressible fluid to that of an incompressible fluid at the same value
of Reynolds number. Calculations are then based on inlet-tap-fluid
properties, and the compressible equation becomes

Q. = KYA,V2Aplp, = CEYA,V2Apip,

where Y = f(L/D, &/D, B, M). Reynolds number Ry is also based on
inlet-fluid properties, but on the primary-element diameter or

Ry = p1Vol/py = py(Qu/A)d/py = 4p,Qif 7 dpy

Caution The numerical values of coefficients for flowmeters given
in the paragraphs to follow are based on experimental data obtained
with long, straight pipes where the velocity profile approaching the
primary element was fully developed. The presence of valves, bends,
and fittings upstream of the primary element can cause serious errors.
For approach and discharge, straight-pipe requirements, ‘‘Fluid
Meters,”” (6th ed., ASME, 1971) should be consulted.

Venturi Tubes [Elgure 3.3.26shows atypical venturi tube consisting
of acylindrical inlet, convergent cone, throat, and divergent cone. The
convergent entrance has an included angle of about 21° and the diver-
gent cone 7 to 8°. The purpose of the divergent cone is to reduce the

Chambers

Cylindrical
inlet

Fig. 3.3.26 Venturi tube.

Convergent cone

overall pressure loss of the meter; its removal will have no effect on the
coefficient of discharge. Pressure is sensed through a series of holesin
theinlet and throat . These holes|ead to an annular chamber, and the two

chambers are connected to a pressure-differential sensor. Discharge co-
efficients for venturi tubes as established by the American Society of
Mechanical Engineers are giver[ln Table 3.3.12. Coefficients of dis-
charge outside the tabulated limits must be determined by individual
calibrations.

EXAMPLE. Benzene at 68°F (20°C) flows through a machined-inlet venturi
tube whose inlet diameter is 8 in and whose throat diameter is 3.5 in. The differ-
ential pressure is sensed by a U-tube manometer. The manometer contains mer-
cury under the benzene, and the level of the mercury in the throat leg is 4 in.
Compute the volumetric flow rate. Noting that D = 8in (0.6667 ft) and B =
3.5/8 = 0.4375 are within the limits of TER[E 3312 ]Jassume C = 0.995, and then
check Ry to verify if itiswithin limits. For aU-tube manometer (EIg=330m), p, —
p1 = (ym — wh = Ap and Aplp; = (pnd — pON/pr = d(pwlps — Dh =
32.17(26.283/1.705 — 1)(4/12) = 154.6. For aliquid, Y = 1 (incompressiblefluid),
E = UVl- B%= 1VI— (0.4375)% = 1.019.

Q, = CEY A, V2Apip;
= (0.995)(1.019)(/4)(3.5/12)2 VZ X 154.6
= 1.192 ft¥/s (3.373 X 10-3 mé/g)

Ry = 4p,Qq/7 du, = 4(1.705)(1.192)/77(3.5/12)(13.62 X 1079)
Ry = 651,400, which lies between 200,000 and 1,000,000 of(Tznd
[3XTZT°. solution is valid.

Flow Nozzles_Figure 3.3.29 shows an ASME flow nozzle. This
nozzle is built to rigid specifications, and pressure differential may be
sensed by either throat taps or pipe-wall taps. Taps are located one pipe
diameter upstream and one-half diameter downstream from the nozzle
inlet. Discharge coefficients for ASME flow nozzles may be computed
from C = 0.9975 — 0.00653 (109/Ry)?, wherea = 1/2 for Ry < 10% and
a = 1/5for Ry > 108. Most of the data were obtained for D between 2
and 15.75 in, R4 between 10* and 106, and beta between 0.15 and 0.75.
For values of C within these ranges, a tolerance of 2 percent may be
anticipated, and outside these limits, the tolerance may be greater than 2
percent. Because slight variationsin form or dimension of either pipe or
nozzle may affect the observed pressures, and thus cause the exponent a
and the slope term (— 0.00653) to vary considerably, nozzles should be
individually calibrated.

ExAMPLE. An ASME flow nozzle is to be designed to measure the flow of
400 gal/min of 68°F (20°C) water in a 6-in schedule 40 (inside diameter =
6.065 in) steel pipe. The pressure differential across the nozzle is not to exceed
75 in of water. What should be the throat diameter of the nozzle? Ap = hp,g,
Aplp, = hg = (75/12)(32.17) = 201.1, Q = (400/60)(231/1,728) = 0.8912 ft3/s.
A trid-and-error solution is necessary to establish the values of C and E because
they are dependent upon B and Ry, both of which require that d be known. Since
K = CE =~ 1, assume for first trial that CE = 1. Since a liquid is involved,
Y =1, A, = Q/(CE)(Y) V2Ap/p, = (0.8912)/(1)(1) v2 X 201.1 = 0.04444 ft2,
d = VAA,Im = VA(0.04444)[7 = 0.2379 ftor d = 0.2379 X 12 = 2.854in, B =
d/D = 2.854/6.065 = 0.4706.

For second trial use first-trial value:

E = UvI— % = UvI — (0.4706) = 1.025

Ry = 4p1Qy/mdu, = 4(1.937)(0.8912)/7(0.2379)(20.92 X 10~ 6) = 442,600 <
10°.".a = 12 and C = 0.9975 — 0.00653(10%Rgy)V2. C = 0.9975 —
0.00653(10%/442,600)V2 = 0.9877. A, = (0.8912)/(0.9877 X 1.025)v2 X 201.1 =
0.04389,d, = V4 X (0.04389/7) = 0.2364, d, = 0.2364 X 12 = 2.837 in(7.205 X
10-2 m). Further trials are not necessary in view of the =+ 2 percent tolerance of C.

Table 3.3.12 ASME Coefficients for Venturi Tubes
Inlet diam D in
Type of inlet Reynolds number Ry (2.54 X 102 m) B Tolerance,
cone Min Max Min Max Min Max C %
Machined 1% 108 2 10 0.75 0.995 *1.0
Rough welced 5 x 105 ) 100 8 48 04 0.70 0.985 +15
Rough cast 4 32 0.3 0.75 0.984 +0.7

SOURCE: Compiled from data given in ‘‘Fluid Meters,”” 6th ed., ASME, 1971.
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Fig. 3.3.27 ASME flow nozzle.

Compressible Flow—Venturi Tubes and Flow Nozzles The ex-
pansion factor Y is computed based on the assumption of a frictionless
adiabatic (isentropic) expansion of an ideal gas from the inlet to the
throat of the primary element, resulting in (see Sec. 4.1)

kr2/(1 — rk=DK)(1 — p4) | v2
[(l — Nk =1 - gk

wherer = p,/p;.
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Maximum flow is obtained when the critical pressureratio isreached.
The critical pressure ratio r, may be calculated from
k-1 k+1
r@—Kik 4+ ap2ik =
2 B 2

gives selected values of Y, and r...

EXAMPLE. A piping system consists of a compressor, a horizontal straight
length of 2-in-inside-diameter pipe, and a 1-in-throat-diameter ASME flow nozzle
attached to the end of the pipe, discharging into the atmosphere. The compressor is
operated to maintain aflow of air with 115 Ibf/in? and 140°F (60°C) conditionsin
the pipe just one pipe diameter before the nozzle inlet. Barometric pressure is
14.7 1bf/in?. Estimate the flow rate of the air in Ibm/s.

From the equation of state, p, = p,/g.RT; = (144 X 115)/(32.17)(53.34)
(140 + 459.7) = 0.01609 slug/ft3, B = d/D = Y2 = 05,E = UVl — B4 =
1/V1 - (0.5)* = 1.033,r = p,/p; = 14.7/115 = 0.1278, but fronl Tabe33 T3 at
B=05k=14,r.=0.5362 and Y, = 0.6973, so that because of critical flow the
throat pressure p. = 115 X 0.5362 = 61.66 Ibf/in2. Ap/p, = 144(115 —
61.66)/0.01609 = 477,375. A trial-and-error solution is necessary to obtain C. For
the first trial assume 108/Ry = 0 or C = 0.9975. Then Q, = CEY A, V2Ap/p, =
(0.9975)(1.033)(0.6973)(7/4)(1.12)2 V2 X 477,375 = 3.829 ft3/s, Ry = 4p,Q/
7 duy = (4)(0.01609)(3.828)/7(1/12)(41.79 X 10-8) = 2,252,000.

Second trial, use first-trial values:

R > 105 a = 115, C = 0.9975 — (0.00653)(10%/2,252,000)15
C = 0.9919, Q, = 3.828(0.9919/0.9975) = 3.806 ft3/s

Further trials are not necessary in view of = 2 percent tolerance on C.
m = Q,p,g = 3.806 X 0.01609 X 32.17 = 1.970 |Ibm/s (0.8935 kg/s)

Orifice Meters When a fluid flows through a sguare-edged thin-
plate orifice, the minimum-flow area is found to occur downstream
from the orifice plate. This minimum areais called the vena contracta,
and its location is a function of beta ratio [Figure 3.3.28] shows the
relative pressure difference due to the presence of the orifice plate.
Because the location of the pressure taps is vital, it is necessary to
specify the exact position of the downstream pressure tap. The jet con-

Table 3.3.13 Expansion Factors and Critical Pressure Ratios for Venturi Tubes

and Flow Nozzles

Critical values Expansion factor Y

B k re Y. r =0.60 r=0.70 r = 0.80 r =090
1.10 0.5846 0.6894 0.7021 0.7820 0.8579 0.9304

0 1.20 0.5644 0.6948 0.7228 0.7981 0.8689 0.9360
1.30 0.5457 0.7000 0.7409 0.8119 0.8783 0.9408

1.40 0.5282 0.7049 0.7568 0.8240 0.8864 0.9449

1.10 0.5848 0.6892 0.7017 0.7817 0.8577 0.9303

0.20 1.20 0.5546 0.6946 0.7225 0.7978 0.8687 0.9359
) 1.30 0.5459 0.6998 0.7406 0.8117 0.8781 0.9407
1.40 0.5284 0.7047 0.7576 0.8237 0.8862 0.9448

1.10 0.5921 0.6817 0.6883 0.7699 0.8485 0.9250

050 1.20 0.5721 0.6872 0.7094 0.7864 0.8600 0.9310
’ 1.30 0.5535 0.6923 0.7248 0.8007 0.8699 0.9361
1.40 0.5362 0.6973 0.7440 0.8133 0.8785 0.9405

1.10 0.6006 0.6729 0.7556 0.8374 0.9186

0.60 1.20 0.5808 0.6784 0.6939 0.7727 0.8495 0.9250
’ 1.30 0.5625 0.6836 0.7126 0.7875 0.8599 0.9305
1.40 0.5454 0.6885 0.7292 0.8006 0.8689 0.9352

1.10 0.6160 0.6570 0.7290 0.8160 0.9058

0.70 1.20 0.5967 0.6624 0.6651 0.7469 0.8292 0.9131
) 1.30 0.5788 0.6676 0.6844 0.7626 0.8405 0.9193
1.40 0.5621 0.6726 0.7015 0.7765 0.8505 0.9247

1.10 0.6441 0.6277 0.6778 0.7731 0.8788

0.80 1.20 0.6238 0.6331 0.6970 0.7881 0.8877
’ 1.30 0.6087 0.6383 0.7140 0.8012 0.8954
1.40 0.5926 0.6433 0.6491 0.7292 0.8182 0.9021

SouURCE: Murdock, ‘‘Fluid Mechanics and Its Applications,”” Houghton Mifflin, 1976.
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traction amounts to about 60 percent of the orifice area; so orifice coef-
ficients are in the order of 0.6 compared with the nearly unity obtained
with venturi tubes and flow nozzles.

Three pressure-differential-measuring tap locations are specified by
the ASME. These are the flange, vena contracta, andthe1 D and 1/2 D.
In the flange tap, the location is aways 1 in from either face of the

Vena contracta

L

1 0 2 3 4 5
Pipe diameters from orifice inlet face

o

100

Percent of maximum
pressure difference
o
O

Fig. 3.3.28 Relative-pressure changes due to flow through an orifice.

orifice plate regardless of the size of the pipe. In the vena contracta tap,
the upstream tap is located one pipe diameter from the inlet face of the
orifice plate and the downstream tap at the location of the vena con-
tracta. Inthe 1 D and 1/2 D tap, the upstream tap is located one pipe
diameter from the inlet face of the orifice plate and downstream one-
half pipe diameter from the inlet face of the orifice plate.

Flange taps are used because they can be prefabricated, and flanges
with holes drilled at the correct locations may be purchased as off-the-
shelf items, thus saving the cost of field fabrication. The disadvantage
of flange taps is that they are not symmetrical with respect to pipe size.
Because of this, coefficients of discharge for flange taps vary greatly
with pipe size.

Vena contracta taps are used because they give the maximum differ-
ential for any given flow. The disadvantage of the vena contractatap is

Table 3.3.14 Values of C, and AC for Use in Orifice Coefficient Equation

that if the orifice sizeis changed, anew downstream tap must be drilled.
The 1 D and 1/2 D taps incorporate the best features of the vena con-
tracta taps and are symmetrical with respect to pipe size.

Discharge coefficients for orifices may be calculated from

C=C,+ACRj0  (Ry> 10%

where C, and AC are obtained from[Table 3.3.14]
Tolerances for uncaibrated orifice meters are in the order of =1 to
+ 2 percent depending upon B, D, and Ry.
Compressible Flow through ASME Orifices As shown in[EQl]
[3:3228] the minimum flow area for an orifice is at the vena contracta
located downstream of the orifice. The stream of compressible fluid is
not restrained as it leaves the orifice throat and is free to expand trans-
versely and longitudinally to the point of minimum-flow area. Thusthe
contraction of the jet will be less for a compressible fluid than for a
liquid. Because of this, the theoretical-expansion-factor equation may
not be used with orifices. Neither may the critical-pressure-ratio equa-
tion be used, as the phenomenon of critical flow has not been observed
during testing of orifice meters.
For orifice meters, the following equation, which is based on experi-
mental data, is used:

Y =1 - (041 + 0.358%(Ap/py)k

EXAMPLE. Air at 68°F (20°C) and 150 Ibf/in? flows in a 2-in schedule 40
pipe (inside diameter = 2.067 in) at a volumetric rate of 15 ft3/min. A 0.5500-in
ASME orifice equipped with flange taps is used to meter this flow. What deflec-
tion in inches could be expected on a U-tube manometer filled with 60°F water?
From the equation of state, p; = p,/g.RT, = (144 X 150)/(32.17)(53.34)
(68 + 459.7) = 0.02385 slug/ft3, B = 0.5500/2.067 = 0.2661. Q, = 15/60 =
0.25 ft3/s, A, = (w/4)(0.5500/12)2 = 1.650 X 10-3 2. E = UV1— B% = 1/
V1 - (0.2661)* = 1.003. Ry = 4p,Qi/mdu, = 4(0.02385)(0.25)/7(0.5500/
12)(39.16 X 10-8). Ry = 423,000.

FronTTaDE3313 at B = 0.2661, D = 2.067-in flange taps, by interpolation,
C, = 0.5977, AC = 9.087, from orifice-coefficient equation C = C, + ACR%7.
C = 0.5977 + (9.087)(423,000)~°75 = 0.5982. A trid-and-error solution is re-
quired because the pressure loss is needed in order to compute Y. For thefirst trial,
assume Y = 1, Ap = (Q,/CEYA,)?(p,/2) = [(0.25)/(0.5982)(1.003)(Y)(1.650 X
10-9)]%(0.02385/2) = 760.5/Y? = 760.5/(1)? = 760.5 Ibf/ft2.

PipelD, in 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70
AC, all taps
All 5.486 8.106 11.153 14.606 18.451 22.675 27.266 32.215 37.513 45.153 49.129
C,, vena contracta and 1D and ¥2D taps
All 0.5969 0.5975 0.5983 0.5992 0.6003 0.6016 0.6031 0.6045 0.6059 0.6068 0.6069
C,, flange taps
20 0.5969 0.5975 0.5982 0.5992 0.6003 0.6016 0.6030 0.6044 0.6056 0.6065 0.6066
25 0.5969 0.5975 0.5983 0.5993 0.6004 0.6017 0.6032 0.6046 0.6059 0.6068 0.6068
3.0 0.5969 0.5975 0.5983 0.5993 0.6004 0.6017 0.6031 0.6044 0.6055 0.6061 0.6057
35 0.5969 0.5975 0.5983 0.5993 0.6004 0.6016 0.6030 0.6042 0.6052 0.6056 0.6049
4.0 0.5969 0.5976 0.5983 0.5993 0.6004 0.6016 0.6029 0.6041 0.6050 0.6052 0.6043
50 0.5969 0.5976 0.5983 0.5993 0.6004 0.6016 0.6028 0.6039 0.6047 0.6047 0.6034
6.0 0.5969 0.5976 0.5983 0.5993 0.6004 0.6016 0.6028 0.6038 0.6045 0.6044 0.6029
8.0 0.5969 0.5976 0.5984 0.5993 0.6004 0.6015 0.6027 0.6037 0.6042 0.6040 0.6022
10.0 0.5969 0.5976 0.5984 0.5993 0.6004 0.6015 0.6026 0.6036 0.6041 0.6037 0.6017
12.0 0.5970 0.5976 0.5984 0.5993 0.6004 0.6015 0.6026 0.6035 0.6040 0.6035 0.6015
16.0 0.5970 0.5976 0.5984 0.5993 0.6003 0.6015 0.6026 0.6035 0.6039 0.6033 0.6011
24.0 0.5970 0.5976 0.5984 0.5993 0.6003 0.6015 0.6025 0.6034 0.6037 0.6031 0.6007
48.0 0.5970 0.5976 0.5984 0.5993 0.6003 0.6014 0.6025 0.6033 0.6036 0.6029 0.6004
© 0.5970 0.5976 0.5984 0.5993 0.6003 0.6014 0.6025 0.6032 0.6035 0.6027 0.6000

Sourcke: Compiled from data given in ASME Standard MFC-3M-1984 ** Measurement of Fluid Flow in Pipes Using Orifice, Nozzle and Venturi.”’



For the second trial we use first-trial values.

Y=1- (041 + 03584 #

760.5/144 X 1!
=1 - [0.41 + 0.35(0.2661)4] w = 0.9896
760.5 760.5
Ap = —— = ———— = 776.1 Ibf/ft2
P=37 ~ 00800y
For the third trial we use second-tria vaues.
776.1/144 X 1!
Y =1 - [0.41 + 0.35(0.2661)] w =0.9894
776.1
= = 2
Ap = Gggoap ~ 7983 bttt

Resubstitution does not produce any further change in Y. From the U-tube-mano-
meter equation:

Ap Ap
h= =—"F
Y =%  Glom— p)
7933

= =22 (1.937 — 0,02385) = 12.89 f
5 15 (1937 — 0.02385) 89 ft

= 1289 X 12 = 154.7 in (3.929 m)

PITOT TUBES

Definition A Pitot tube is a device that is shaped in such a manner
that it senses stagnation pressure. The name ‘‘Pitot tube’’ has been
applied to two general classifications of instruments, the first being a
tube that measures the impact or stagnation pressures only, and the
second a combined tube that measures both impact and static pressures
with a single primary instrument. The combined sensor is called a
Pitot-static tube.

Tube Coefficient From[EQ_3.329]it is evident that the Pitot tube
can sense only the stagnation pressure resulting from the local stream-
tube velocity U. The local ideal velocity U, for an incompressible fluid
isobtained by the application of the Bernoulli equation (zs= 2), U7 2g +
p/pg = U%2g + pdpg. Solving for U; and noting that by definition

T :
Ps —»

LU

— Unm

— O

Lp

A

Fig. 3.3.29 Notation for Pitot tube study.

Ug = 0, U; = v2(ps — p)/p. Conventiona practice is to define the tube
coefficient Cr as the ratio of the actual stream-tube velocity to the ideal
stream-tube velocity, or C; = U/U; and U = C;U; = C;V2Ap/p. The
numerical value of C; depends primarily upon its geometry. The value
of C; may be established (1) by calibration with a uniform velocity, (2)
from published data for similar geometry, or (3) in the absence of other
information, may be assumed to be unity.

Pipe Coefficient For the calculation of volumetric flow rate, it is
necessary to integrate the continuity equation, Q = f U da = AV. The
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pipe coefficient Cp, is defined as the ratio of the average velocity to the
stream-tube velocity, or Cp = V/U, and Q = CpAV = C.Cr A, V2Ap/p.
The numerical value of Cp is dependent upon the location of the tube
and the velocity profile. The values of C, may be established by (1)
making a‘‘traverse’’ by taking data at various pointsin the flow stream
and determining the velocity profile experimentally (see ‘‘Fluid
Meters,”” 6th ed., ASME, 1971, for locations of traverse points), (2)
using standard velocity profiles, (3) locating the Pitot tube at a point
where U =V, and (4) assuming one-dimensional flow of C, = Lonly in
the absence of other data.

Compressible Flow For compressible flow, the compression factor Z
is based on the assumption of africtionless adiabatic (isentropic) com-
pression of an ideal gas from the moving stream tube to the stagnation
point (see Sec. 4.1), which resultsin

_ k  (pgp)lc ik — 172
z [k,l (pg) — 1 ]

and the volumetric flow rate becomes
Q = CpCrZA, V2Aplp

EXAMPLE. Carbon dioxide flows at 68°F (20°C) and 20 Ibf/in? in an 8-in
schedule 40 galvanized-iron pipe. A Pitot tube located on the pipe centerline
indicates a pressure differential of 6.986 Ibf/in?. Estimate the mass flow rate. For
8-in schedule 40 pipe D = 7.981/12 = 0.6651, ¢/D = 500 X 10-%/0.6651 =
7.518 X 104, A, = wD%4 = (w/4)(0.6651)? = 0.3474 ft?>, ps = p + Ap =
20 + 6.986 = 26.986 Ibf/in2. From the equation of state, p = p/g.RT, =
(20 X 144)/(32.17)(35.11)(68 + 459.7) = 0.004832,

5 [ k (ps/p)(k—l)/k _ 1] v2
S Lk=1 (pdp) -1
B 3 (26.986/20)13- 113 — 17 V2
B {[1'3/(1'3 DI X (26.986/20) — 1 }

In the absence of other data, C; may be assumed to be unity. A trial-and-error
solution is necessary to determine Cp, since f requires flow rate. For the first trial
assume complete turbulence.

U+vE= —2logy (7.518 X 10-43.7)  Vf = 0.1354
Cp = VIU = VIUpo = 1(1 + 1.43VF) = 1/(1 + 1.43 X 0.1354) = 0.8378
V = CxC;ZV2Aplp = (0.8378)(1)(0.9423)vV2 X 144(6.987)/(0.004832)
V = 5004 ft/s
R = pVD/u = (0.004832)(509.4)(0.6651)/(30.91 X 10-18)
R = 5,296,000 > 4,000 .". flow is turbulent

From the Colebrook equation and FIg_3.3.24]

1 (7.518 X 10-4 251 )
— = —2logy + —
Vi 3.7 5,296,000/0.018

=0.9423

Vvf = 0.1357
Cp = 1(1 + 1.43 X 0.1357) = 0.8375
V = 509.4(0.8375/8378) = 509.2 ft/s

From the continuity equation, m = pA;Vg. = (0.004832)(0.3474)(509.2)
(32.17) = 27.50 Ibm/s (12.47 kg/s).

(close check)

ASME WEIRS

Definitions A weir is a dam over which liquids are forced to flow.
Weirs are used to measure the flow of liquids in open channels or in
conduits which do not flow full; i.e., thereisafreeliquid surface. Weirs
are almost exclusively used for measuring water flow, although small
ones have been used for metering other liquids. Weirs are classified
according to their notch or opening as follows: (1) rectangular notch
(original form); (2) V or triangular notch; (3) trapezoidal notch, which
when designed with end slopes one horizontal to four vertical is called
the Cipolletti weir; (4) the hyperbolic weir designed to give a constant
coefficient of discharge; and (5) the parabolic weir designed to give a
linear relationship of head to flow. As shown ifFQ._3:3:30 the top of
theweir isthe crest and the distance from theliquid surfaceto thecrest h
is called the head.

The sheet of liquid flowing over the weir crest is called the nappe.
When the nappe falls downstream of the weir plate, it is said to be free,
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or aerated. When the width of the approach channel L isgreater than the
crest length L,,, the nappe will contract so that it will have a minimum
width less than the crest length. For this reason, the weir is known as a
contracted weir. For the special case wherelL,, = L., the contractions do
not take place, and such weirs are known as suppressed weirs.

Liquid surface % Weir plate
/4
== 4 Nappe
h Head !
Crest
r4
NN SN SNNNN

Fig. 3.3.30 Notation for weir study.

Parameters The forces acting on a liquid flowing over a weir are
inertia, viscous, surface tension, and gravity. If the weir head produced
by the flow is h, the characteristic length of the weir is L,,, and the
channel width is L., either similarity or dimensional analysis leads to
f(F,W, R, L,/L.) = 0, which may bewritten asV = K v2gh, whereK is
the weir coefficient and K = f(W, R, L,/L.). Since the weir has been
almost exclusively used for metering water flow over limited tempera-
ture ranges, the effects of surface tension and viscosity have not been
adequately established by experiment.

Caution Thenumerical values of coefficientsfor weirs are based on
experimental data obtained from calibration of weirs with long ap-
proaches of straight channels. Head measurement should be made at a
distance at least three or four times the expected maximum head h.
Screens and baffles should be used as necessary to ensure steady uni-
form flow without waves or local eddy currents. The approach channel
should be relatively wide and deep.

Rectangular Weird_Figure 3.3.31 shows a rectangular weir whose
crest width is L,,. The volumetric flow rate may be computed from the
continuity equation: Q = AV = (L,h)(Kv2gh) = KL,,v2g h¥2. The
ASME ‘‘Fluid Meters”’ report recommends the following equation for
rectangular weirs: Q = (%3)CL,V2g h¥2, where C is the coefficient of
discharge C = f(L, /L., h/Z), L, isthe adjusted crest lengthL, = L, +
AL, and h, isthe adjusted weir head h, = h + 0.003 ft. Vauesof C and
AL may be obtained fronf Table 3.3.18. To avoid the possibility that the
liquid drag along the sides of the channel will affect side contractions,
L. — L, should be at least 4h. The minimum crest length should be
0.5 ft to prevent mutual interference of the end contractions. The mini-
mum head for free flow of the nappe should be 0.1 ft.

ExamPLE. Water flows in a channel whose width is 40 ft. At the end of the
channel is arectangular weir whose crest width is 10 ft and whose crest height is
4 ft. The water flows over the weir at a height of 3 ft above the crest of the welir.
Estimate the volumetric flow rate. L,,/L. = 10/40 = 0.25, h/Z = 3/4 = 0.75, from

[Tane 3310 (interpolated), C = 0.589, AL = 0.008, L, = L, + AL = 10 +
0.008 = 10.008 ft, h, = h + 0.003 = 3 + 0.003 = 3.003ft, Q = (2/3)
CL,V2g h¥2, Q = (2/3)(0.589)(10.008)(2 X 32.17)Y2(3.003)¥2 Q = 164.0 ft/s
(4.644 m3/s).

[¢———————— Channel width, L ~——————#{

I-—Cresf |engfn,|_w-’

Liquid surface

Head,h

Crest height, Z

Fig. 3.3.31 Rectangular weir.

Triangular Weirs CEIQOre 33371 shows a triangular weir whose
notch angle is 6. The volumetric flow rate may be computed from the
continuity equation Q = AV = (h2 tan 6/2)(Kv2gh) = K tan (6/2) v2g
h52, The ASME ‘‘Fluid Meters’ report recommends the following
for triangular weirs: Q = (8/15) C tan (6/2)v2g (h + Ah)5'2, where C
isthe coefficient of discharge C = f(6) and Ahisthe correction for head/
crest ratio Ah = f(6). Values of C and Ah may be obtained from [[z0ld

33761

EXAMPLE. It is desired to maintain a flow of 167 ft3/s in an open channel
whose width is 20 ft at a height of 7 ft by locating a triangular weir at the end of
the channel. The weir has a crest height of 2 ft. What notch angle is required to
maintain these conditions? A trial-and-error solution is required. For thefirst trial
assume 6 = 60° (mean value 20 to 100°); then C = 0.576 and Ah = 0.004.

h+Z=7=h+2-h=5
Q = (8/15) C tan (6/2) v2g (h + Ah)52

167 = (8/15)(0.576) tan (6/2) V2 X 32.17 (5 + 0.004)5'2, tan—1 (6/2) = 1.20993,
6 = 100°51".

Second trial, using 6 = 100, C = 0.581, Ah = 0.003, 167 = (8/15)(0.581)
tan (9/2) V2 X 32.17 (5 + 0.003)52, tan~! (6/2) = 1.20012, 6 = 100°39’
(close check).

Table 3.3.15 Values of C and AL for Use in Rectangular-Weir Equation

Crest length/channel width = L,/L

h/z 0 0.2 0.4 0.6

0.7 0.8 0.9 1.0

Coefficient of discharge C

0 0.587 0.589 0.591 0.593 0.595 0.597 0.599 0.603
05 0.586 0.588 0.594 0.602 0.610 0.620 0.631 0.640
10 0.586 0.587 0.597 0.611 0.625 0.642 0.663 0.676
15 0.584 0.586 0.600 0.620 0.640 0.664 0.695 0.715
2.0 0.583 0.586 0.603 0.629 0.655 0.687 0.726 0.753
25 0.582 0.585 0.608 0.637 0.671 0.710 0.760 0.790
3.0 0.580 0.584 0.610 0.647 0.687 0.733 0.793 0.827
Adjustment for crest length AL, ft
Any 0.007 0.008 0.009 0.012 0.013 0.014 0.013 —0.005

Source: Compiled from data given in ‘Fluid Meters,”” ASME, 1971.
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Fig. 3.3.32 Triangular weir.

Table 3.3.16 Values of C and Ah for Use in Triangular-Weir Equation

Weir notch angle 6, deg

Item 20 30 45 60 75 90 100
C 0.592 0.586 0.580 0.576 0.576 0.579 0.581
Ah, ft 0.010 0.007 0.005 0.004 0.003 0.003 0.003

SouURCE: Compiled from data given in *‘Fluid Meters,”” ASME, 1971.

OPEN-CHANNEL FLOW

Definitions An open channel is a conduit in which a liquid flows
with a free surface subjected to a constant pressure. Flows of water in
natural streams, artificial canals, irrigation ditches, sewers, and flumes
are examples where the water surface is subjected to atmospheric pres-
sure. The flow of any liquid in apipe where thereisafreeliquid surface
is an example of open-channel flow where the liquid surface will be
subjected to the pressure existing in the pipe. The sope Sof achannel is
the changein elevation per unit of horizontal distance. For small slopes,
this is equivalent to dividing the change in elevation by the distance L
measured along the channel bottom between two sections. For steady
uniform flow, the velocity distribution is the same at al sections of the
channel, so that the energy grade line has the same angle as the bottom
of the channel, thus:

S=hlL

The distance between the liquid surface and the bottom of the channel is
sometimes called the stage and is denoted by the symbol yi
When the stages between the sections are not uniform, that is, y; # y, or
the cross section of the channel changes, or both, the flow is said to be
varied. When a liquid flows in a channel of uniform cross section and
the slope of the surface is the same as the slope of the bottom of the
channel (y; =y = y,), the flow is said to be uniform.

1 2
L] — — — _Energy grade line
vZ/2q —— hifz
Liquid surface (hydraulic Tt
grade line) v2/2q .
£ Va/2g
Y1 —
Bottom of channel y2
'\z
2+ /y ,’\ L l 22+ Pp/y

D —"

Fig. 3.3.33 Notation for open channel flow.

Datum
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Parameters The forces acting on aliquid flowing in an open chan-
nel areinertia, viscous, surface tension, and gravity. If the channel hasa
surface roughness of &, a hydraulic radius of R,, and aslope of S either
similarity or dimensional analysisleadstof(F, W, R, ¢/4R,) = 0, which
may bewritten asV = CVR,S where C = f(W, R, &/4R,) andisknown
as the Chézy coefficient. The relationship between the Chézy coefficient
C and the friction factor may be determined by equating

V = V8Rhg/fL = CVR,S = CV(R )L

or C = (8g/f)¥2. Although this establishes a relationship between the
Chézy coefficient and the friction factor, it should be noted that f =
f(R, ¢/4R,) and C = f(W,R,e/4R,), because in open-channel flow,
pressure forces are absent and in pipe flow, surface-tension and gravity
forces are absent. For these reasons, data obtained in pipe flow should
not be applied to open-channel flow.

Roughness Factors For open-channel flow, the Chézy coefficient
is calculated by the Manning equation, which was developed from ex-
amination of experimental results of water tests. The Manning relation is
stated as

1486

C=
n

R%JG

where n is a roughness factor and should be a function of Reynolds
number, Weber number, and relative roughness. Since only water-test
data obtained at ordinary temperatures support these values, it must be
assumed that n is the value for turbulent flow only. Since surface ten-
sion is a weak property, the effects of Weber-number variation are
negligible, leaving n to be some function of surface roughness. Design
values of n are given in [aEe33T7] Maximum flow for a given slope
will take place when R, isamaximum, and values of R, aregivenin
[Table 3.3.61

Table 3.3.17 Values of Roughness Factor n for Use in
Manning Equation

Surface n Surface n

Brick 0.015 Earth, with stones 0.035

Cast iron 0.015 and weeds

Concrete, finished 0.012 Gravel 0.029

Concrete, unfinished 0.015 Riveted steel 0.017

Brass pipe 0.010 Rubble 0.025

Earth 0.025 Wood, planed 0.012
Wood, unplaned 0.013

SouRce: Compiled from data given in R. Horton, Engineering News, 75, 373, 1916.

EXAMPLE. Itisnecessary to carry 150 ft3/s of water in arectangular unplaned
timber flume whose width is to be twice the depth of water. What are the required
dimensions for various slopes of the flume? FronfTAEI3IA/ A = b%/2and R, =
h/2 = b/4. From@I3EAEZZT7In = 0.013 for unplaned wood. From Manning's
equation, C = 1.486/n, RY® = (1.486/0.013)(bY5/(4)¥¢ = 90.73 b¥6. From the
continuity equation, V = Q/A = 150/(b?/2), V = 300/b2. From the Chézy equa-
tion, V = CVR,S = 300/b2 = 90.73bY8 V(b/4)S; solving for b, b = 2.0308/S¥6,

Assumed S 1 X 10711 X 10721 X 10731 X 10741 X 1051 X 10-6 ft/ft
Required b: 3.127  4.816 7.416 11.42 17.59 27.08 ft

EXAMPLE. A rubble-lined trapezoidal cana with 45° sides is to carry 360
ft3/s of water at a depth of 4 ft. If the slope is 9 X 104 ft/ft, what should be
the dimensions of the canal? FronI2p[e 3.3.14 n = 0.025 for rubble. From

[Tane 33 for a = 45°, A= (b + h)h = 4(b + 4), and R, = (b + h)h/(b +
2.828h) = 4(b + 4)/(b + 11.312). From the Manning relation, C = (1.486/n)
(RY®) = (1.486/0.025)RY® = 59.44 RY. For the first trial, assume Ry = Ry =
h2 = 4/2 = 2; then C = 59.44(2)¥¢ = 66.72 and V = CVR,S = 66.72
V2 X 9X 104 = 283l From the continuity equation, A = Q/V =
360/2.831 = 127.2 = 4(b + 4); b = 27.79 ft. Second trial, use the first trial,
R, = 4(27.79 + 4)/(27.79 + 11.312), R, = 3.252, V = 59.44(3.252)V6
V3.252 X 9 X 10~ = 3.914. From the equation of continuity, Q/V =
360/3.914 = 91.97 = 4(b + 4), b = 18.99. Subsequent trial-and-error solutions
result in abalance at b = 19.93 ft (6.075 m).
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Specific Energy  Specific energy is defined as the energy of thefluid
referred to the bottom of the channel as the datum. Thus the specific
energy E at any section isgiven by E = y + V2/2g; from the continuity
equation V = Q/A or E = y + (Q/A)32g. For a rectangular channel
whose width isb, A = by; and if q is defined as the flow rate per unit
width, g = Q/band E = y + (gb/by)¥2g =y + (g/y)%2g.

Critical Values For rectangular channels, if the specific-energy
equation is differentiated and set equal to zero, critical values are
obtained; thus dE/dy = d/dy [y + (q/y)¥2g] = 0= 1 — g3y3gor g2 =
y3g. Substituting in the specific-energy equation, E =y, + y3g/2gy2 =
3/2y.. Elgure 33334 shows the relation between depth and specific
energy for a constant flow rate. If the depth is greater than critical, the
flow is subcritical; at critical depth it is critical and at depths below
critical the flow is supercritical . For a given specific energy, thereisa
maximum unit flow rate that can exist.

Potential energyv/

'y /
s
je——— E 4 /
2
Vc/zgl / (y+V2/29)=E
£Q <—%Ec 7
D
o
2 / Subcritical flow
c — Critical flow
2 T Supercritical flow
o /
Ye
A
+ E

Specific energy
Fig. 3.3.34 Specific energy diagram, constant flow rate.

The Froude number F = V/vgy, when substituted in the specific-
energy equation, yields E = y + (F2gy)/2g = y(1 + F%2) or Ely =
1 + F2/2. For critical flow, E./y, = 3/2. Substituting E./y, = 3/2 =
1+ F2/2,0orF =1,

F<i1 Flow is subcritical
F=1 Flow is critical
F>1 Flow is supercritical

It is seen that for open-channel flow the Froude number determines
the type of flow in the same manner as Mach number for compressible
flow.

ExAMPLE. Water flows at a ate of 600 ft¥/s in a rectangular channel 10 ft
wide at a depth of 4 ft. Determine (1) specific energy and (2) type of flow.
1. from the continuity equation,
V = Q/A = 600/(10 X 4) = 15ft/s
E=y+ V229 =4+ (153%2(2 X 32.17) = 7.497 ft

2. F = V/Vgy = 15/V3217 X 4 = 1.322; F > 1 .. flow is supercritical.

FLOW OF LIQUIDS FROM TANK OPENINGS

Steady State Consider the jet whose velocity isV discharging from

an open tank through an opening whose area is a, as shown in[EQl]

The liquid height above the centerline is h, and the cross-sec-
tional areaof thetank at hisA. Theideal velocity of thejetisV; = v2gh.

Theratio of the actual velocity V to theideal velocity V, isthe coefficient

of velocity Cv, or V = CV; = C, v2gh. Theratio of the actua opening a

to the minimum area of the jet a. is the coefficient of contraction C., or

a = Ca.. The ratio of the actual discharge Q to the ideal discharge

Q is the coefficient of discharge C, or Q = CQ, = C,V, = C.C,a v2gh,
and C = C.C,. Nominal values of coefficients for various openings are

giveni
\\ A(Tankareaath)

Qin
Liquid surface \

/[ N N
=
dh

h

a(areaof

opening)

*Qout
—

a¢ (Jet area ot
vena contracta)

Fig. 3.3.35 Notation for tank flow.

Unsteady State If therate of liquid entering the tank Q;, is different
from that leaving, the level h in the tank will change because of the
change in storage. For liquids, the conservation-of-mass equation may
bewritten as Q;,, — Quut = Qgorea; fOr atimeinterval dt, (Q;,, — Q) dt =

T Coefficient
yee c Ce Cv

Sharp- '\ —_—

edged —— 0.61 0.62 0.98
orifice ——

Rounded- -

edged D —— 0.98 1.00 0.98
orifice

Short I___. 080 | 100 | 080

— 051 | 052 | osgs

Fig. 3.3.36  Nomina coefficients of orifices.



A dh, neglecting fluid acceleration,
Qo Ot = Ca‘/z_gh dt, or (Qi, — Ca\/m) dt

“advor [Cg - [M A
ty hy Qin - Qout

j he Adh
h Q, — Cav2gh

ExAMPLE. Anopen cylindrical tank is6 ftin diameter and isfilled with water
to adepth of 10 ft. A 4-in-diameter sharp-edged orifice isinstalled on the bottom
of the tank. A pipe on the top of the tank supplies water at the rate of 1 ft3/s.
Estimate (1) the steady-state level of this tank, (2) the time required to reduce the
tank level by 2 ft.

1. Steady-state level. Fr , C = 0.61 for a sharp-edged orifice,
a = (m4)d? = (m4)(4/12)2 = 0.08727 ft2. For steady state, Qi, = Qou =
Cav2gh = 1 = (0.61)(0.08727)(2 X 32.17h)V2; h = 5.484 ft.

2. Timerequired to lower level 2 ft, A = (w/4)D? = (m/4)(6)? = 28.27 ft2

j e Adh

b-t= | ————

n Qi — Cav2gh

This equation may be integrated by letting Q = Ca v2g h¥2; then dh = 2Q dQ/

(Cav2g)?; then
_2A Qin — Q1> ]
= — | —<in__ <1 —
=ty (Cav29)y I:Qm 0Qe 0, -0, + Q- Q

Atty: Q = 0.61 X 0.08727 v2 X 32.17 X 10 = 1.350 ft%/s
Att,: Q, = 0.61 X 0.08727 V2 X 32.17 X 8 = 1.208 ft¥/s

B 2% 2827
' (061 X 0.08727 V2 X 32.07)2

1- 1350
x [(1) Ioge(m> +1.350 — 1.208]

t

t,—t; =2054s

WATER HAMMER

Equations Water hammer is the series of shocks, sounding like
hammer blows, produced by suddenly reducing the flow of a fluid in a
pipe. Consider a fluid flowing frictionlessly in arigid pipe of uniform
area A with avelocity V. The pipe has alength L, and inlet pressure p,;
and apressure p, a L. At length L, there is a valve which can suddenly
reducethevelocity at L to V — AV. The equivalent massrate of flow of a
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pressure wave traveling at sonic velocity ¢, M = pAc. From the im-
pulse-momentum equation, M(V, — V,) = p,A, — p,A;; for this appli-
cation, (pAc)(V — AV — V) = p,A — p,A, or the increase in pressure
Ap = — pcAV. When the liquid is flowing in an elastic pipe, the equa-
tion for pressure rise must be modified to account for the expansion of
the pipe; thus

-y E
¢~ Vi + &/E)D, + D), - D)]

where p = mass density of the fluid, Eg = bulk modulus of elasticity of
the fluid, E;, = modulus of elagticity of the pipe material, D, = outside
diameter of pipe, and D; = inside diameter of pipe.

Time of Closure Thetimefor apressure waveto travel thelength of
pipeL and returnist = 2L/c. If the time of closuret. < t, the approxi-
mate pressure rise Ap =~ — 2 pV(L/t;). When it is not feasible to close
thevalve slowly, air chambers or surge tanks may be used to absorb all or
most of the pressure rise. Water hammer can be very dangerous. See
Sec. 9.9.

ExAMPLE. Water flows at 68°F (20°C) in a 3-in steel schedule 40 pipe at a
velocity of 10 ft/s. A valve located 200 ft downstream is suddenly closed. Deter-
mine (1) the increase in pressure considering pipe to be rigid, (2) the increase
considering pipe to be elastic, and (3) the maximum time of valve closure to be
considered ‘‘sudden.”

For water, p = — 1.937 dugs/ft® = 1.937 |b - sec?/ft% E; = 319,000 Ib/in?
E, = 28.5 X 10°Ib/in? (Secs. 5.1and 6); ¢ = 4,860ft/s; from Sec. 8.7, D, = 3.5 in,
D, = 3.0681in.

1. Inelastic pipe

Ap = — pcAV = — (1.937)(4,860)(— 10) = 94,138 Ibf/ft2
= 04,138/144 = 653.8 Ibf/in? (4.507 X 106 N/m?)

2. Elastic pipe

c= -\/ =
V[l + (EJE)D, + D)I(D, — D]
319,000 X 144

N (319,000/28.5 X 106)(3.500 + 3.067)
. +
-\/1 937 [1 (3500 — 3.067)

4,504
— (1.937)(4,504)(— 10)
= 87,242 Ibf/ft2 = 605.9 Ibf/in? (4.177 X 10° N/m?)

3. Maximum time for closure
t = 2L/c = 2 X 200/4,860 = 0.08230 s or lessthan 1/10 s

Ap

3.4 Vibration

by Leonard Meirovitch

REFERENCES. Harris, ‘* Shock and Vibration Handbook,'* 3d ed., McGraw-Hill.
Thomson, ** Theory of Vibration with Applications,’” 4th ed., Prentice Hall. Meir-
ovitch, ‘‘Elements of Vibration Analysis,”’ 2d ed., McGraw-Hill. Meirovitch,
‘“‘Principles and Techniques of Vibrations,’” Prentice-Hall.

SINGLE-DEGREE-OF-FREEDOM SYSTEMS

Discrete System Components A system is defined as an aggrega-
tion of components acting together as one entity. The components of a
vibratory mechanical system are of three different types, and they relate
forces to displacements, velocities, and accelerations. The component
relating forces to displacementsis known as a spring (EEg—3ZTh). For a
linear spring theforce Fis proportional to the elongation 6 = x, — Xy, or

Fo = ké = k(X; — X)) (341

where k represents the spring constant, or the spring stiffness, and x, and
X, are the displacements of the end points. The component relating

forcesto velocitiesis called a viscous damper or a dashpot (EIQ—3.Z1D).
It consists of a piston fitting loosely in a cylinder filled with liquid so
that the liquid can flow around the piston when it moves relative to the
cylinder. The relation between the damper force and the velocity of the
piston relative to the cylinder is

Fy=cl% — X,) (3.4.2)
in which c is the coefficient of viscous damping; note that dots denote
derivatives with respect to time. Finally, the relation between forces and
accelerations is given by Newton's second law of motion:

Fmn = mX

where mis the mass (Elg_34.1¢).

The spring constant k, coefficient of viscous damping ¢, and mass m
represent physical properties of the components and are the system pa-
rameters. By implication, these properties are concentrated at points,

(3.4.3)
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thus they are lumped, or discrete, parameters. Note that springs
and dampers are assumed to be massless and masses are assumed to be
rigid.

Springs can be arranged in parallel and in series. Then, the propor-
tionality constant between the forces and the end pointsis known as an

i 2
F F
@

(F
Fy c Fy
(b)
¥

Fm
m | —

Fig. 3.4.1

equivalent spring constant and is denoted by ke, asshownin
Certain elastic components, although distributed over a given line seg-
ment, can be regarded as lumped with an equivalent spring constant
given by ko, = F/8, where § is the deflection at the point of application
of the force F. A similar relation can be given for springs in torsion.

lists the equivalent spring constants for a variety of compo-
nents.

Equation of Motion The dynamic behavior of many engineering
systems can be approximated with good accuracy by the mass-damper-
spring model shown MEG—34.2. Using Newton's second law in con-
junction with Egs. (3.4.1) to (3.4.3) and measuring the displacement x(t)
from the static equilibrium position, we obtain the differential equation
of motion

mX(t) + cx(t) + kx(t) = F(t) (3.4.4)
which is subject to the initial conditions x(0) = Xo, X(0) = V,, where
X and Vv, are the initial displacement and initial velocity, respectively.
Equation (3.4.4) is in terms of a single coordinate, namely x(t); the
system o FIg—322 is therefore said to be a single-degree-of-freedom
system.

Free Vibration of Undamped Systems Assuming zero damping and
external forces and dividing Eq. (3.4.4) through by m, we obtain

X+ w2x=0  w,=vkim (3.45)
In this case, the vibration is caused by the initial excitations alone. The
solution of Eq. (3.4.5) is

X(t) = Acos (ot — ¢) (3.4.6)
which represents smple sinusoidal, or simple harmonic oscillation with
amplitude A, phase angle ¢, and frequency

w,=Vkim  radls (34.7)
Systems described by equations of the type (3.4.5) are called har-
monic oscillators. Because the frequency of oscillation represents an in-
herent property of the system, independent of the initial excitation, w,
is called the natural frequency. On the other hand, the amplitude and

Table 3.4.1 Equivalent Spring Constants

EA

/a | ————— >k EA

K - 3E1 L L

eq L3

«— L —»[ A= crocs-sectionai area
Glp
)k
a_—___—L'—_> feq” L

I,=poiar moment of inertia
of cross section
_mdé
3

I = moment of inertia of
cross - sectional
areq

il

L = total tength

fo—ou b+ s
keq—ozbz
L

Helico! spring ¥

_ Gt ]
Keq™ BanR3 Ki
—elied 2RF keg K1+ k2
n=no turns
G = shear modulus k2
% String )
Z tension T W keq_ T,
.41 " 2 K K
sk T b

phase angle do depend on the initial displacement and velocity, as
follows:
A= VX5 + (Volw,)?

¢ = tan~ 1 vy/Xw, (3.4.8)

The time necessary to complete one cycle of motion defines the period

T = 27w, seconds (3.4.9)

The reciprocal of the period provides another definition of the natural
frequency, namely,

=20y (3.4.10)

where Hz denotes hertz [1 Hz = 1 cycle per second (cps)].

A large variety of vibratory systems behave like harmonic oscillators,
many of them when restricted to small amplitudes[Table 3.2.2 shows a
variety of harmonic oscillators together with their respective natura
frequency.

Free Vibration of Damped Systems Let F(f) = 0 and divide
through by m. Then, Eq. (3.4.4) reduces to

K(t) + 2w X(t) + w2X() = 0
{ = c/2mw,

(34.12)

where (34.12)

is the damping factor, a nondimensiona quantity. The nature of

the motion depends on ¢. The most important case is that in which
o<¢<1l

U

F)
m —

c o0

Fig. 3.4.2



Table 3.4.2 Harmonic Oscillators and Natural Frequencies
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Inthis case, the systemis said to be under damped and the solution of Eq.
(34.11)is

X(t) = Ae™ ¢t cos(wgt — o) (3.4.13)

where wg = (1 — {A)V2w, (3.4.14)
is the frequency of damped free vibration and

T = 27wy (3.4.15)

is the period of damped oscillation. The amplitude and phase angle de-
pend on the initial displacement and velocity, as follows:

A=VX3 + (LoXy + Vo) w3 ¢ = tan 1 ({wXy + Vo) Xowy (3.4.16)

The motion described by Eq. (3.4.13) represents decaying oscillation,
where the term Ae~ ¢»nt can be regarded as atime-dependent amplitude,
providing an envelope bounding the harmonic oscillation.

When ¢ = 1, the solution represents aperiodic decay. Thecase { = 1
represents critical damping, and

C. = 2Mw, (3.4.17)

isthe critical damping coefficient, although there is nothing critical about
it. It merely represents the borderline between oscillatory decay and
aperiodic decay. Infact, c. isthe smallest damping coefficient for which
the motion is aperiodic. When ¢ > 1, the system is said to be over-
damped.

Logarithmic Decrement Quite often the damping factor is not
known and must be determined experimentally. In the casein which the
system is underdamped, this can be done conveniently by plotting x(t)
versus t [E1g_3.2.3)] and measuring the response at two different times

X
| _2m |
T-2m

Xl

X
0 /\:2\ !
tl tZ
Fig. 3.4.3

separated by a complete period. Let thetimesbet, andt, + T, introduce
the notation x(t;) = Xy, X(t; + T) = X,, and use Eq. (3.4.13) to obtain
X Ae ot cos (wgt; — @)
Xy Ae et cos [wy(ty + T) — ¢]

where cos [wy(t; + T) — ¢] = cos (w4t; — ¢ + 2m) = cos (wgqt; — ¢).
Equation (3.4.18) yields the logarithmic decrement

= gt (34.18)

5=1In2 = o T = 27 (3.4.19)
Xz V1-—¢2
which can be used to obtain the damping factor
- (3.4.20)
V2R + &

For small damping, the logarithmic decrement is also small, and the
damping factor can be approximated by

B
(=~ (34.21)
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Response to Harmonic Excitations Consider the case in which the
excitation force F(t) in Eq. (3.4.4) is harmonic. For convenience, ex-
press F(t) in the form kA cos wt, where k is the spring constant, Aisan
amplitude with units of displacement and w is the excitation frequency.
When divided through by m, Eq. (3.4.4) has the form

X + 2{wX + wiX = w2A cos wt (3.4.22)
The solution of Eq. (3.4.22) can be expressed as
X(t) = A|G(w)| cos (wt — ¢) (3.4.23)
where
|G(w)| = L (3.4.24)
V[1 = (0 wp)? + (2Ll w,)?
is a nondimensional magnitude factor* and
2{wlw,
H(w) = tan*%:)/w”n)2 (3.4.25)

is the phase angle; note that both the magnitude factor and phase angle
depend on the excitation frequency w.

Equation (3.4.23) shows that the response to harmonic excitation is
aso harmonic and has the same frequency as the excitation, but differ-
ent amplitude A|G(w) | and phase angle ¢(w). Not much can be learned
by plotting the response as a function of time, but agreat dea of infor-
mation can be gained by plotting |G| versus w/w, and ¢ versus ol w,.
They are shown ifEig. 3.4.4ffor various values of the damping factor ¢.

INEG=3Z2] for low values of w/w,, the nondimensional magnitude
factor |G(w)| approaches unity and the phase angle ¢(w) approaches
zero. For large values of w/w,, the magnitude approaches zero (see
accompanying footnote about magnification factor) and the phase angle
approaches 180°. The magnitude experiences peaks for w/w, =

* The term |G(w)| is often referred to as magnification factor, but this is a
misnomer, as we shall see shortly.

V1 — 272, provided { < 1N2. The peak values are |G(®)|nx =
1/2{V1 — £2. For small ¢, the peaks occur approximately at w/w, = 1
and have the approximate values |G(w) |nax = Q = 12¢, where Q is
known as the quality factor. In such cases, the phase angle tends to 90°.
Clearly, for small { the system experiences large-amplitude vibration, a
condition known as resonance. The points P, and P,, where |G| falls to
QN2, are caled half-power points. The increment of frequency asso-
ciated with the half-power points P, and P, represents the bandwidth A w
of the system. For small damping, it has the value

Aw = w, — 0, =~ 2w, (3.4.26)

Thecase { = 0 deserves special attention. Inthiscase, referring to Eq.
(3.4.22), the response is simply

Cos wt

X(t) = (3.4.27)

A
1 — (olw,)?
For w/w, < 1, the displacement isin the same direction as the force, so
that the phase angle is zero; the response is in phase with the excitation.
For wl/w, > 1, the displacement is in the direction opposite to the force,
so that the phase angle is 180° out of phase with the excitation. Finaly,
when w = w, the response is
A .
x(t) = ) wpt SN wpt (3.4.28)
Thisistypical of the resonance condition, when the response increases
without bounds as time increases. Of course, at a certain time the dis-
placement becomes so large that the spring ceases to be linear, thus
violating the original assumption and invalidating the solution. In prac-
tical terms, unless the excitation frequency varies, passing quickly
through o = w,, the system can break down.
When the excitation is F(t) = kA sin wt, the response is

X(t) = A|G(w)| Sin (ot — &) (3.4.29)
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Fig. 3.4.4 Frequency response plots.



One concludes that in harmonic response, time plays a secondary role to
the frequency. In fact, the only significant information is extracted from
the magnitude and phase angle plots of FIg—3.ZZ] They are referred to
as frequency-response plots.

Since time plays no particular role, the harmonic response is called
steady-state response. |n general, for linear systemswith constant param-
eters, such as the mass-damper-spring system under consideration, the
response to theinitial excitations is added to the response to the excita-
tion forces. The response to initial excitations, however, represents
transient response. This is due to the fact that every system possesses
some amount of damping, so that the response to initial excitations
disappears with time. In contrast, steady-state response persists with
time. Hence, in the case of harmonic excitations, it is meaningless to
add the response to initial excitations to the harmonic response.

Vibration Isolation A problem of great interest is the magnitude of
the force transmitted to the base by a system of the type shown in[Eig]

[BZZkubjected to harmonic excitation. This force is a combination of
the spring force kx and the dashpot force cX. Recaling Eg. (3.4.23),
write

kx = kA|G]| cos (ot — ¢)
X = — CwA|G|sin (ot — ¢)
= cwA|G]| cos (wt — ¢+ 7—2T>
so that the dashpot force is 90° out of phase with the spring force.
Hence, the magnitude of the force is

Fy = V(KA[G])Z + (CwA|G])? = KA|G|VT + (CalK)?
= KA|G|V1 + (2lwlw,)? (34.31)

Let the magnitude of the harmonic excitation be F, = kA, the force
transmitted to the base is then

Fn

(3.4.30)

T=—=—=|GN1 + (2lw/w,)?

7_\/ 1+ (2{wlwn)?
~ V1= (072 + (2fwlw,)?

which represents a nondimensional ratio called transmissibility. [Figurd
323 plots F, /R, versus ol w, for various values of ¢.

(34.32)
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The transmissibility is less than 1 for w/w, > V2, and decreases as
wlw, increases. Hence, for an isolator to perform well, its natural fre-
quency must be much smaller than the excitation frequency. However,
for very low natural frequencies, difficulties can be encountered in iso-
lator design. Indeed, the natural frequency is related to the static deflec-
tion 84 by w,, = vk/Im = Vg/84, where g isthe gravitational constant. For
the natural frequency to be sufficiently small, the static deflection may
have to be impracticaly large. The relation between the excitation fre-
quency f measured in rotations per minute and the static deflection 8
measured in inchesis

2—-R
f= 187.7'\/— rpm
aa-Rr ™
where R = 1 — T represents the percent reduction in vibration.[EIgurd
[B4.6]shows a logarithmic plot of f versus 6, with R as a parameter.

(3.4.33)
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Fig. 3.4.6

[Figure 3. 71depicts two types of isolators. IN[FIQ-3.474, isolationis
accomplished by means of springs and iTEIT_3Z-4b by rubber rings
supporting the bearings. Isolators of all shapes and sizes are available
commercialy.

Fig. 3.4.7

Rotating Unbalanced Masses Many appliances, machines, etc., in-
volve components spinning relative to a main body. A typical example
is the clothes dryer. Under certain circumstances, the mass of the spin-
ning component is not symmetric relative to the center of rotation, as
when the clothes are not spread uniformly in the spinning drum, giving
rise to harmonic excitation. The behavior of such systems can be smu-
lated adequately by the single-degree-of-freedom model shown in[Egl]

which consists of amain mass M — m, supported by two springs
of combined stiffness k and a dashpot with coefficient of viscous damp-
ing ¢, and two eccentric masses m/ 2 rotating in opposite sense with the
constant angular velocity w. Although there are three masses, the mo-
tion of the eccentric masses relative to the main mass is prescribed, so
that there is only one degree of freedom. The equation of motion for the
system is

MX + cX + kx = mlw2sin wt

lx(t)

(34.34)

mi2 m/2

Lot At

Fig. 3.4.8
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Using the analogy with Eq. (3.4.29), the solution of Eq. (3.4.34) is
2 k
X(t) = mI (2) |G(w)| sin (wt — @) wi=— (3439
M Wy, M
The magnitude factor in this case is (w/w,)?|G(w)|, where |G(w)]| is

given by Eq. (3.4.24); it is plotted il FIg-3.49. On the other hand, the
phase angle remains as inEIg_3.4.4]
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Whirling of Rotating Shafts Many mechanical systemsinvolve ro-
tating shafts carrying disks. If the disk has some eccentricity, then the
centrifugal forces cause the shaft to bend, as shown in[EIg_3:Z104&. The
rotation of the plane containing the bent shaft about the bearing axisis
called whirling. [EIgIre 3ZT0D shows a disk with the body axes x,y
rotating about the origin O with the angular velocity . The geometrical

il

@ (b)

Fig. 3.4.10

center of the disk isdenoted by Sand the mass center by C. Thedistance
between the two points isthe eccentricity e. The shaft is massless and of
stiffness ky, and the disk isrigid and of mass m. The x and y components
of the displacement of Srelative to O are independent from one another
and, for no damping, satisfy the equations of motion

X + w3x = ew? cos wt y + w3y = ew? sin wt 0% = keg/m

(3.4.36)

where, assuming that the shaft is simply supported (see[Table 3.4.7},
Keq = 48EI/L3, in which E is the modulus of elasticity, | the cross-sec-
tional areamoment of inertia, and L the length of the shaft. By analogy
with Eq. (3.4.27), Egs. (3.4.36) have the solution

e(wlwp)? e(wlw,)?
1 — (0lw,)? 1 — (0lw,)?
Clearly, resonance occurs when the whirling angular velocity coincides

with the natural frequency. In terms of rotations per minute, it has the
value

x(t) = coSs wt y(t) = snwt (34.37)

48El
mL3

60 60

27 2n

where f; is called the critical speed.

Structural Damping Experience shows that energy is dissipated in
all real systems, including those assumed to be undamped. For example,
because of internal friction, energy is dissipated in real springs under-
going cyclic stress. Thistype of damping is called structural damping or
hyster etic damping because the energy dissipated in one cycle of stressis
equal to the area inside the hysteresis loop. Systems possessing struc-
tural damping and subjected to harmonic excitation with the frequency
w can betreated asif they possess viscous damping with the equivalent
coefficient

fo = rpm (3.4.38)

Coq = T (34.39)

where a is amaterial constant. In this case, the equation of motion is

MX + — X + kx = KA c0S ot (3.4.40)

Tw

The solution of Eq. (3.4.40) is
X(t) = A|G| cos (wt — ¢) (34.41)

where this time the magnitude factor and phase angle have the values

1 Yoi

G=—— ¢ =tan ! ———  (34.42)
V[1 — (wlw,)?3? + y2 o[l — (wlw,)]
in which
v=— (3.4.43)

is known as the structural damping factor. One word of caution is in
order: the analogy between structural and viscous damping is valid only for
harmonic excitation.

Balancing of Rotating Machines Machines such as electric motors
and generators, turbines, compressors, etc. contain rotors with journals
supported by bearings. In many cases, the rotors rotate relative to the
bearings at very high rates, reaching into tens of thousands of revolu-
tions per minute. Ideally the rotor isrigid and the axis of rotation coin-
cides with one of its principa axes; by implication, the rotor center of
mass lies on the axis of rotation. Such arotor does not wobble and the
only forces exerted on the bearings are due to the weight of the rotor.
Such arotor is said to be perfectly balanced. These ideal conditions are
seldom realized, and in practice the mass center lies at a distance e
(eccentricity) from the axis of rotation, so that there is a net centrifugal
force F = mew? acting on the rotor, where mis the mass of therotor and
w istherotational speed. This centrifugal force is balanced by reaction
forces in the bearings, which tend to wear out the bearings with time.

The rotor unbalance can be divided into two types, static and dy-
namic. Static unbalance can be detected by placing the rotor on apair of
paralle rails. Then, the mass center will settlein thelowest positionina
vertical plane through the rotation axis and below this axis. To balance
therotor statically, it isnecessary to add amassm’ inthe same planeat a
distance r from the rotation axis and above this axis, where m’ and r
must be such that m'r = me. In this manner, the net centrifugal forceon
the rotor is zero. The net result of static balancing is to cause the mass
center to coincide with the rotation axis, so that the rotor will remainin



any position placed on the rails. However, unless the mass m’ is placed
on aline containing m and at right angles with the bearings axis, the
centrifugal forces on mand m’ will form a couple (FIg—3.4.1T]. Static
balancing is suitable when the rotor is in the form of a thin disk, in
which case the couple tends to be small. Automobile tires are at times
balanced statically (seems), although strictly speaking they are neither
thin nor rigid.

LLLLLL m’ -rL LLLLLL
* mew?
Fig. 3.4.11

In general, for practical reasons, the mass m’ cannot be placed on an
axis containing m and perpendicular to the bearing axis. Hence, al-
though in static balancing the mass center lies on the rotation axis, the
rotor principal axis does not coincide with the bearing axis, asshownin
Fig. 3.4.12, causing the rotor to wobble during rotation. In this case, the
rotor is said to be dynamically unbalanced. Clearly, it is highly desirable
to place the mass m’ so that the rotor is both statically and dynamically
balanced. In thisregard, note that the end planes of the rotor are conve-

Principal axis

Fig. 3.4.12

nient locations to place correcting masses. IMEIQ 3413 if the mass
center is at a distance a from the right end, then dynamic balance can be
achieved by placing masses m’a/L and m’(L — a)/L on the intersection
of the plane of unbalance and the rotor left end plane and right end
plane, respectively. In this manner, the resultant centrifugal forceiszero

a L—
Lm’r[a)2 4m'I’Taa)2
/a ,L-a
m'L mC
LLLLLL LLLLLL
(- F—— —_ e ——-
T7777T T7777T
*mew2
| L-a |«—a—>]

Fig. 3.4.13

and the two couples thus created are equal in valueto m'a(L — a) w?/L
and opposite in sense, so that they cancel each other. This resultsin a
rotor completely balanced, i.e., balanced statically and dynamically.

The task of determining the magnitude and position of the unbalance
iscarried out by means of abalancing machine provided with elastically
supported bearings permitting the rotor to spin (EIg—3.2:14). The unbal-
ance causes the bearings to oscillate laterally so that electrical pickups
and stroboflash light can measure the amplitude and phase of the rotor
with respect to an arbitrary rotor.

In cases in which the rotor is very long and flexible, the position of
the unbalance depends on the el astic configuration of therotor, whichin
turn depends on the speed of rotation, temperature, etc. In such cases, it
is necessary to balance the rotor under normal operating conditions by
means of a portable balancing instrument.
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Inertial Unbalance of Reciprocating Engines The crank-piston
mechanism of a reciprocating engine produces dynamic forces capable
of causing undesirable vibrations. Rotating parts, such as the crank-

g%

shaft, can be balanced. However, translating parts, such as the piston,
cannot be easily balanced, and the same can be said about the connect-
ing rod, which executes a more complex motion of combined rotation
and trandation.

In the calculation of the unbalanced forces in a single-cylinder en-
gine, the mass of the moving parts is divided into a reciprocating mass
and arotating mass. This is done by apportioning some of the mass of
the connecting rod to the piston and some to the crank end. In general,
this division of the connecting rod into two lumped masses tends to
cause errors in the moment of inertia, and hence in the torque equation.
On the other hand, the force equation can be regarded as being accurate.
(See also Sec. 8.2)

Assuming that the rotating massis counterbalanced, only the recipro-
cating mass is of concern, and the inertia force for a single-cylinder
engineis

Fig. 3.4.14

2
F = Myl 0? oS wt + My rr ? cos 2wt (3.4.44)
where m,. is the reciprocating mass, r the radius of the crank, o the
angular velocity of the crank, and L the length of the connecting rod.
The first component on the right side, which alternates once per revolu-
tion, is denoted by X; and referred to as the primary force, and the
second component, which issmaller and alternates twice per revolution,
is denoted by X, and is called the secondary force.

In addition to the inertia force, there is an unbalanced torque about
the crankshaft axis due to the reciprocating mass. However, this torque
is considered together with the torque created by the power stroke, and
the torsional oscillations resulting from these excitations can be miti-
gated by means of a pendulum-type absorber (see *‘ Centrifugal Pendu-
lum Vibration Absorbers’” below) or atorsional damper.

The analysis for the single-cylinder engine can be extended to multi-
cylinder in-line and V-block engines by superposition. For the in-line
engine or one block of the V engine, the inertia force becomes

n
F = melw? > cos(wt + ¢))
j=1

2 n
+ m,ecrT 0 S cos2(wt + ¢) (34.45)
j=1
where ¢; is a phase angle corresponding to the crank position associated
with cylinder j and n is the number of cylinders. The vibration’s force
can be eliminated by proper spacing of the angular positions ¢; (j =
1,2 ...,n.

Even if F = 0, there can be pitching and yawing moments due to the
spacing of the cylindersCTanle323 gives the inertial unbalance and
pitching of the primary and secondary forces for various crank-angle
arrangements of n-cylinder engines.

Centrifugal Pendulum Vibration Absorbers For arotating system,
such as the crank mechanism just discussed, the exciting torques are
proportional to the rotational speed w, which varies over awide range.
Hence, for a vibration absorber to be effective, its natural frequency
must be proportional to w. The centrifugal pendulum shown in[Egl

[EZTRisideally suited to thistask. Strictly speaking, the system of[Figl

[ZZ T represents a two-degree-of -freedom nonlinear system. However,
assuming that the motion of the wheel consists of a steady rotation
and a small harmonic oscillation at the frequency (2, or

o(t) = wt + 6, sin Ot (3.4.46)
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Table 3.4.3 Inertial Unbalance of Four-Stroke-per-Cycle Engines
Unbalanced pitching
Unbalanced forces moments about 1st cylinder
No. n of
cylinders Crank phase angle ¢, Primary Secondary Primary Secondary
1 X1 X, — —
2 0-180° 0 2X, Xy 20X,
4 0-180°-180°-0 0 4X, 0 60X,
4 0-90°-270°-180° 0 0 XVl + 3 0
6 0-120°-240°— 0 0 0 0
240°-120°-0
8 0-180°-90°-270°— 0 0 0 0
270°-90°-180°-0
90° V-8 0-90°-270°-180° 0 0 Rotating primary couple of
constant magnitude v10¢X,
which may be completely
counterbalanced

Fig. 3.4.15

and that the pendulum angle ¢ is relatively small, then the equation of
motion of the pendulum reduces to the linear single-degree-of-freedom
system

. R+
b+ wfp=—

w, = wVRIT (3.4.48)

is the natural frequency of the pendulum. The torque exerted by the
pendulum on the wheel is

;
026, sin Ot

(3.4.47)

where

m(R + r)?2
1 - rQ%Rw?

so that the system behaves like awheel with the effective mass moment
of inertia

T=_ (3.4.49)

m(R + r)?

Jat 1 - rQ?Rw? (34.50)
which becomes infinite when () is equal to the natural frequency w,,. To
suppress disturbing torques of frequency () several timeslarger than the
rotational speed w, the ratio r/R must be very small, which requires a
short pendulum. The bifilar pendulum depicted i HQ_3.2.16] which
consists of a U-shaped counterweight that fits loosely and rolls on two
pins of radiusr, within two larger holes of equal radiusr,, represents a
suitable design whereby the effective pendulum length isr = ry — r,.

Fig. 3.4.16

Response to Periodic Excitations A problem of interest in me-
chanical vibrations concerns the response x(t) of the cam and follower
system shown iMEQ._3.4.14 As the cam rotates at a constant angular
rate, the follower undergoes the periodic displacement y(t), where y(t)
has the period T. The equation of motion is

Mm% + (kK + ko)X = Koy (3.4.51)

Fig. 3.4.17

Any periodic function can be expanded in a series of harmonic compo-
nents in the form of the Fourier series

y(t) = %ao + > (8, cos wot + by sinpagt) @ =27T (3.4.52)
p=1

where w, is called the fundamental harmonic and pwy (p=1,2, . . .)
are called higher harmonics, in which p is an integer. The coefficients
have the expressions

ap=$LTy(t)cosprt p=012 ...
5 (T (3.4.53)
bp:—f y(t) sin pagt p=12 ...
TJo
Note that the limits of integration can be changed, as long as the inte-

gration covers one complete period. From Eq. (3.4.27), and a compan-
ion equation for the sine counterpart, the response is

K, 1 = 1
ty=—=— | —a, + R —
XO=17% [2 % El 1= (pwglwn)?
X (@, cos pwgt + by Sin pegt) (3.4.54)
where wp = V(K + ky)/m (3.4.55)



is the natural frequency of the system. Equation (3.5.54) describes a
steady-state response, so that a description in terms of time is not very
informative. More significant information can be extracted by plotting
the amplitudes of the harmonic components versus the harmonic num-
ber. Such plots are called frequency spectra, and there is one for the
excitation and one for the response. Equation (3.4.54) leads to the con-
clusion that resonance occurs for pwg = wp,.

As an example, consider the periodic excitation shown inEQ_34.13|
and use Egs. (3.4.53) to obtain the coefficients

_ _ _ ) 4Blpm p odd

a,=2Aa,=0,b, = {o D even (3.4.56)
y@®

\‘ A+B r

A..

rA—B
+ + + + + ¢
-3 0 3 T g 2T

Fig. 3.4.18 Example of periodic excitation.

The excitation and response frequency spectra are displayed in[Eigsl
[(3ZTJa and b, the latter for the case in which w,, = 4w,
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Fig. 3.4.19 (a) Excitation frequency spectrum; (b) response frequency spec-
trum for the periodic excitation of

Unit Impulse and Impulse Response Harmonic and periodic forces
represent steady-state excitations and persist indefinitely. The response to
such forces is also steady state. An entirely different class of forces
consists of arbitrary, or transient, forces. The term transient is not en-
tirely appropriate, as some of these forces can aso persist indefinitely.
Concepts pivotal to the response to arbitrary forces are the unit impulse
and the impulse response. The unit impulse, denoted by §(t — a), repre-
sents a function of very high amplitude and defined over a very small
time interval at t = a such that the area enclosed is equal to 1 [EIQ1

[3Z20). Theimpulseresponse, denoted by g(t), is defined asthe response
of asystem to aunit impulse applied at t = O, with the initial conditions
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being equal to zero. For the mass-damper-spring system o Fig. 3.4.2]
the impulse response is
t>0

1
gt) = o e ot sin wgt (3.4.57)

8(t—a)

LYY

0~—a—|5|<—

Fig. 3.4.20

Convolution Integral  An arbitrary force F(t) as shown ifElg_3.227]
can be regarded as a superposition of impulses of magnitude F(7) drand
applied at t = 7. Hence, the response to an arbitrary force can be re-

garded as a superposition of impulse responses g(t — 7) of magnitude
F(7) dr, or

x(t) = £F(T)g(t - 7)dr

1 [t .
= — | F(ne =7 sinwyt — 7)dr (3.4.58a)
Mwy Jo

whichiscalled the convolution integral or the superposition integral; it can
also be written in the form

X(t) = ft F(t — 7)g(7) dr
0

1 |t .
=—— | F(t— ne ¢sinwgrdr (3.4.58b)
Moy Jo

F(t)

_—~—

Fig. 3.4.21

Shock Spectrum Many systems are subjected on occasionsto large
forces applied suddenly and over periods of time that are short com-
pared to the natural period. Such forces are capable of inflicting serious
damage on a system and are referred to as shocks. The severity of a
shock is commonly measured in terms of the maximum value of the
response of amass-spring system. The plot of the peak response versus
the natural frequency is called the shock spectrum or response spectrum.

A shock F(t) ischaracterized by itsmaximum value R, itsduration T,
and its shape. It is common to approximate the force by the half-sine

pulse
_ JRsnowt
F(t) - {0

Using the convolution integral, Eq. (3.4.58b) with { = 0, the response of
amass-spring system during the duration of the pulseis

for0<t<T=17nlow

fort<Oandt>T (3.4.59)

. w .
x(t) = snwt——smwnt)

F (
K1 - (ol wy)] oN

0<t<ao (3.4.60)
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The maximum response is obtained when X = 0 and has the value

_ Fo sn 2im
K1 — wlw,) 1+ oo
1
=12 ... <—(1+ﬂ) (3.4.61)
2 ®
On the other hand, the response after the termination of the pulseis
Fowilw
t) = ———— t+ t—T 3.4.62
XO = {7 (o [0S et T s n(t ~ T (3462

which has the maximum value

2Rywy/w T,
=_— 0" cos—= 3.4.63
Xmax = 1 de)] O 20 (34.63)
The shock spectrum is the plot X, Versus w,/w. For , < o, the
maximum response is given by Eq. (3.4.63) and for w, > o by Eq.
(3.4.61). The shock spectrum is shown iRFIg- 3422 in the form of the
nondimensional plot X .k/F, versus w,/w.

225

Fig. 3.4.22

MULTI-DEGREE-OF-FREEDOM SYSTEMS

Equations of Motion Many vibrating systems require more elabo-
rate models than a single-degree-of-freedom system, such as the multi-
degree-of-freedom system shown in[Elg3423. By using Newton'’s sec-
ond law for each of thenmassesm (i = 1,2, . . . , n), theeguations of
motion can be written in the form

mE® + X X0 + X kx® = R
=t = i=1,2....n (3469

wherex; (t) isthe displacement of massm;, F;(t) istheforce acting on m,
and ¢; and k;; are damping and stiffness coefficients, respectively. The
matrix form of Egs. (3.4.64) is

MX(t) + Cx(t) + Kx(t) = F(t) (3.4.65)

in which x(t) is the n-dimensional displacement vector, F(t) the corre-
sponding force vector, M the mass matrix, C the damping matrix, and K

the stiffness matrix, all three symmetric matrices. (In the present case the
mass matrix is diagonal, but in general it is not, although it is sym-
metric.)

Response of Undamped Systems to Harmonic Excitations Let the
harmonic excitation have the form

F(t) = Fosin wt (3.4.66)

where F is a constant vector and o is the excitation, or driving fre-
quency. The response to the harmonic excitation is a steady-state re-
sponse and can be expressed as

() = Z-Y(w)Fo sin ot (3.4.67)

where Z~Y(w) istheinverse of theimpedance matrix Z(w). Inthe absence
of damping, the impedance matrix is

Z(w) = K — @M (3.4.69)

Undamped Vibration Absorbers When amass-spring system m, k;
is subjected to a harmonic force with the frequency equal to the natural
frequency, resonance occurs. In this case, it is possible to add a second
mass-spring system m,,k, so designed as to produce a two-degree-of-
freedom system with the response of m, equal to zero. Werefer tom,, k;
as the main system and to m,,k, as the vibration absorber. The resulting
two-degree-of-freedom system is shown in Elg_3.2.241and has the im-
pedance matrix

k, + k, — w?m, -k, ]
Z(w) = 4.
(@) [ -k, k, — w?m, (34.69)

I I F, sin wt
ml

Fig. 3.4.24

Inserting Eq. (3.4.69) into Eq. (3.4.67), together with F(t) = F, sin wt,
F,(t) = 0, write the steady-state response in the form

> x,(t) > X;_4(8)
kl

r/arne s

X1(t) = Xy(w) sin wt (3.4.70a)
Xy(t) = Xy(w) sin ot (3.4.70b)

F@® Fi® Fi(t) Fia® > F®

> X(t) > Xi4() > X, (0) N
Kisy Kpy1
A
m T Misa 7{ my, -
0 c. OO0 o0 ¢

Ein 2122




where the amplitudes are given by

X.(@) = [1 — (w0,
BT wwalon? — (@lo) AL — (0107 — plwglon)?
(3.4.71a)
Xo(w) = - = ,
[1 + /-L(wa/wn) - (w/wn)zl[l - (w/wa)zl - M(wa/wn)
(3.4.71b)
in which
w, = Vk,/m; = the natural frequency of the main system alone
w, = VK,/m, = the natural frequency of the absorber alone
Xg = Fy/k; = the static deflection of the main system

= m,/m, = theratio of the absorber mass to the main mass

From Egs. (3.4.70a) and (3.4.71a), we conclude that if we choose m,
and k, such that w, = o, the response x,(t) of the main mass is zero.
Moreover, from Egs. (3.4.70b) and (3.4.71b),

Xo(t) = — ( ) —snot = IE sin wt (34.72)
s0 that the force in the absorber spring is
koXo(t) = — Fy sin wt (3.4.73)

Hence, the absorber exerts a force on the main mass balancing exactly
the applied force F; sin wt.

A vibration absorber designed for a given operating frequency » can
perform satisfactorily for operating frequencies that vary dightly from
w. Inthis case, the motion of m, isnot zero, but its amplitude tendsto be
very small, as can be verified from a frequency response plot X, (w)/xy
versus o/ w,,; EI0=3Z28 shows such aplot for w = 0.2and w, = w,. The
shaded area indicates the range in which the performance can be re-
garded as satisfactory. Note that the thin line in[Elg—3.425]represents
the frequency response of the main system aone. Also note that the
system resulting from the combination of the main system and the ab-
sorber has two resonance frequencies, but they are removed from the
operating frequency o = @, = w,.

L]

=

£
i
£

Fig. 3.4.25
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Natural Modes of Vibration In the absence of damping and external
forces, Eq. (3.4.65) reduces to the free-vibration equation

MX(t) + Kx(t) = 0 (3.4.74)
which has the harmonic solution
X(t) = u cos (wt — ¢) (3.4.75)

where u isaconstant vector, w afrequency of oscillation, and ¢ aphase
angle. Introduction of Eg. (3.4.75) into Eq. (3.4.74) and division
through by cos (wt — ¢) resultsin

Ku = w2Mu (3.4.76)

which represents a set of n simultaneous algebraic equations known as
the eigenvalue problem. It has n solutions consisting of the eigenvalues
w?; the sguare roots represent the natural frequencies o, (r = 1,
2, ..., n). Moreover, to each natural frequency o, there corresponds
avectoru, (r = 1,2, ... ,n) caled eigenvector, or modal vector, or
natural mode. The modal vectors possess the orthogonality property, or

ulMu, = 0 (3.4.77a)
ulkKu, = 0 (3.4.77b)
(forr,s=1,2, ..., n; r # s),inwhich u! isthetranspose of ug, arow

vector. It is convenient to adjust the magnitude of the modal vectors so
as to satisfy
uMu, = 1
u'Ku, = w?

(3.4.7843)
(3.4.78b)

(forr = 1,2, ... ,n), aprocess known as normalization, in which
case u, are caled normal modes. Note that the normalization process
involves Eq. (3.4.78a) alone, as Eq. (3.4.78b) follows automatically.
The solution of the eigenvalue problem can be obtained by a large
variety of computational agorithms (Meirovitch, ‘‘Principles and
Techniques of Vibrations,” Prentice-Hall). Commercially, they are
available in software packages for numerical computations, such as
MATLAB.

The actual solution of Eq. (3.4.74) is obtained below in the context of
the transient response.

Transient Response of Undamped Systems From Eq. (3.4.65), the
vibration of undamped systems satisfies the equation

MX(t) + Kx(t) = F(t) (34.79)

where F(t) isan arbitrary force vector. In addition, the displacement and
velocity vectors must satisfy theinitial conditions x(0) = Xg, X(0) = V.
The solution of Eq. (3.4.79) has the form

X = 3 U,

r=1

(3.4.80)

in which u, are the modal vectors and q,(t) are associated modal coor di-
nates. Inserting Eq. (3.4.80) into Eq. (3.4.79), premultiplying the result
by ul, and using Egs. (3.4.77) and (3.4.78) we obtain the modal equa-
tions
a.(t) + wfa (t) = Q1) (34.81)
where
Q.(t) = uTF (1) r=1,2...,n (3.4.82)

are modal forces. Equations (3.4.81) resemble the equation of single-
degree-of-freedom system and have the solution

a(t) = f Q,(t — 7) sin w7 dr + ¢,(0) cos w, t + ——= qr( ) n ot
r=212 ..., n (34.83)
where
(0) = ufMxq (3.4.84a)
4:(0) = ufMv, (3.4.84b)
(forr = 1,2, ..., n) areinitial modal displacements and velocities,
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respectively. The solution to both external forces and initial excitations
is obtained by inserting Egs. (3.4.83) into Eq. (3.4.80).

Systems with Proportional Damping When the system is damped,
the response does not in general have the form of Eq. (3.4.80), and a
more involved approach is necessary (Meirovitch, ** Elements of Vibra-
tion Analysis,”’ 2d ed., McGraw-Hill). In the special case in which the
damping matrix C is proportional to the mass matrix M or the stiffness
matrix K, or isalinear combination of M and K, the preceding approach
yields the modal equations

6t + 25 w0 (1) + P ) = Q1) ,n (34.85)
where ¢, are modal damping factors. Equations (3.4.85) have the solution

r=1,2 ...

1 [t .
q.(t) = —f Q/(t — e~ &7 sin wy T dr
Wgr Jo

+ %O e 4ot cos (wgt — ) + —— 4(0) Sin wy t
\/1 - g,z Wgr
r=12...,n (3486)
in which
wg=0V1—22 r=12...,n (3.4.87)
is the damped frequency in the rth mode and
U = tan*IL r=21,2...,n (3.4.88)
V1 -2

is a phase angle associated with the rth mode. The quantities Q,(t),
g,(0), and q,(0) remain as defined by Egs. (3.4.82), (3.4.84a), and
(3.4.84b), respectively.

DISTRIBUTED-PARAMETER SYSTEMS

Vibration of Rods, Shafts, and Strings Theaxial vibration of rodsis
described by the equation

ad au(x, t) d2u(x, t)
Y {EA(X) T} + m(x) 2 f(x, t)

0<x<L (3489)

where u(x, t) is the axial displacement, f(x, t) the axial force per unit
length, E the modulus of elasticity, A(X) the cross-sectional area, and
m(x) the mass per unit length. The solution u(x, t) is subject to one
boundary condition at each end.

Before attempting to solve Eq. (3.4.89), consider the free vibration
problem, f(x, t) = 0. The solution of the latter problem is harmonic and
can be expressed as

u(x, t) = U(x) cos (wt — ) (3.4.90)

where U(x) isthe amplitude, » the frequency, and ¢ an inconsequential
phase angle. Inserting Eq. (3.4.90) into Eq. (3.4.89) with f(x, t) = 0 and
dividing through by cos (wt — ¢), we conclude that U(x) and o must
satisfy the eigenvalue problem

- {EA( X) ——2 dU( )l _ wemgug 0<x<L (3491

where U(x) must satisfy one boundary condition at each end. At afixed
end the displacement U must be zero and at a free end the axia force
EA dU/dx is zero.

Exact solutions of the eigenvalue problem are possible in only afew
cases, mostly for uniform rods, in which case Eq. (3.4.91) reduces to

2,
d:'(zx) LUK =0  pr- %‘ 0<x<L (349

whose solution is

U(x) = Asin Bx + B cos Bx (3.4.93)

where A and B are constants of integration, determined from specified
boundary conditions. In the case of afixed-free rod, the boundary condi-
tions are
U@ =0 (3.4.94a)

a

dx [x=1
Condition (3.4.94a) gives B = 0 and condition (3.4.94b) yields the
characteristic equation

-0 (3.4.94b)

cospBL =0 (3.4.95)
which has the infinity of solutions
BL :@T r=12 ... (3.4.96)

where S, represent the eigenvalues; they are related to the natural fre-
quencies w, by

EA _(2r—Dm B
B,'\/ 3 mL2 r=12 ... (3497
From Eg. (3.4.93), the normal modes are
U (x) = \/ 2 M r=12 ... (3499

For a fixed-fixed rod, the natural frequencies and normal modes are

EA _2 . rax
o=rmag U0 =y
r=212 ... (3499
and for afreefree rod they are
1
=0 =1/— 3.4.100x
o -\/il‘ ( a)
2 r X
w, = rw'\/mLz U(x) —LCOST
r=12 (3.4.100b)

Note that U, represents a rigid-body mode, with zero natural frequency.
In every case the modes are orthogonal, satisfying the conditions
L
mU(x)U,(x) dx = 0
du, (x)

0
—ILU(X)E [&;
o 7 dx dx

(3.4.101a)

] dx=0  (3.4.101b)

(forr,s=0,1,2, . . . ,r # s) and have been normalized to satisfy the
relations

L

mUZ(x) dx = 1 (3.4.102a)
o)

ot d du,(x) o,
J; Ui(x) ™ [EA ™ dx=w?  (3.4.102b)
(forr =0,1,2, . . .). Notethat the orthogonality of the normal modes

extends to the rigid-body mode.
The response of the rod has the form

ux )= 3 UG (34.103)
r=1

Introducing Eg. (3.4.103) into Eq. (3.4.89), multiplying through by

U4(x), integrating over the length of the rod, and using Egs. (3.4.101)
and (3.4.102) we obtain the modal equations

a0 +efg®=Q® r=12 ...

Q) = J’L U, (x)f(x, t) dx r=1212 ...
0

(3.4.104)

where (3.4.105)



Table 3.4.4 Analogous Quantities for Rods, Shafts, and Strings
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Rods Shafts Strings
Displacement Axia—u(x, t) Torsional — 6(x, t) Transverse—w(X, t)
Inertia (per Mass—m(x) Mass polar moment Mass— p(X)
unit length) of inertia—1(x)
Stiffness Axia —EA(x) Torsional —GJ(x) Tension—T(x)
E = Young's modulus G = shear modulus
A(X) = cross-sectional J(x) = areapolar
area moment of inertia
Load (per unit Force—f(x, t) Moment—m(x, t) Force—f(x, t)
length)

are the modal forces. Equations (3.4.104) resemble Egs. (3.4.81) en-
tirely; their solution is given by Egs. (3.4.83). The displacement of the
rod is obtained by inserting Egs. (3.4.83) into Eq. (3.4.103).

As an example, consider the response of a uniform fixed-free rod to
the uniformly distributed impulsive force

f(x, t) = fod(t) (3.4.106)

Inserting Egs. (3.4.98) and (3.4.106) into Eq. (3.4.105), we obtain the
modal forces

QW = /= f

/2L -
=———[—f =12 ...
@r - 1)77 \/ m 000 r=12
so that, from Egs. (3.4.83), the modal displacements are

2
a( = m

[(Zr - 1)77] \/ L3 A (Zr 3 1)7 \/ml_2t

r=1,2 ...
Finally, from Eg. (3.4.103), the response is

8foL 1 Z 1 . (2r = I)mx
1) = — sin
ut 9 = =3 \/mEA 21 2r — 12 2L
wgn@r— D7 JEA
2 mL2

The torsional vibration of shafts and the transverse vibration of
strings are described by the same differential equation and boundary
conditions as the axial vibration of rods, except that the nature of the
displacement, inertia and stiffness parameters, and external excitations
differs, asindicated iTable 3.4.4]

Bending Vibration of Beams The procedure for evaluating the re-
sponse of beams in transverse vibration is similar to that for rods, the
main difference arising in the stiffness term. The differential equation
for beamsin bending is

I:EI( %) a W(Xt)] T mix) 92wW(x, 1)

1)” fo3(t) dx

(3.4.107)

ZL
f 8(t — 7) Sin w,d7
0

(3.4.108)

(3.4.109)

at2
= f(x, 1)

0<x<L (34.110)

in which w(x, t) isthe transverse displacement, f(x, t) the force per unit
length, I(x) the cross-sectional area moment of inertia, and m(x) the
mass per unit length. The solution w(X, t) must satisfy two boundary
conditions at each end.

The eigenvalue problem is described by the differential equation

d I:EI( = W(X)] = MWK 0<x<L (34111)

and two boundary conditions at each end, depending on the type of
support. Some possible boundary conditions are given i Taple 3.4.5]
The solution of the eigenvalue problem consists of the natural frequen-
cies w, and natural modes W/(x) (r = . .). Thefirst five normal-
ized natural frequencies of uniform beams with six different boundary
conditions are listed ilcTaAlEe 3 4. The norma modes for the hinged-
hinged beam are
2 . rwXx
W(x) = — sin T

The normal modes for the remaining beam types are more involved and
they involve both trigonometric and hyperbolic functions (Meirovitch,
‘‘Elements of Vibration Analysis,”’ 2d ed.) The modes for every beam
type are orthogonal and can be used to obtain the response w(x, t) in the
form of a series similar to Eqg. (3.4.103).

r=12 ... (34112

Table 3.4.5 Quantities Equal to Zero at Boundary

Bending
Boundary Displacement Slope moment Shearing force
type w dwW/dx Eld2W/dx? d(Eld2W/dx?)/dx
Hinged I I
Clamped I v
Free I I

Vibration of Membranes A membraneis avery thin sheet of mate-
ria stretched over a two-dimensional domain enclosed by one or two
nonintersecting boundaries. It can be regarded as the two-dimensional
counterpart of the string. Like a string, it derives the ability to resist
transverse displacements from tension, which acts in all directions in
the plane of the membrane and at all its points. It is commonly assumed
that the tension is uniform and does not change as the membrane de-

Table 3.4.6 Normalized Natural Frequencies for Various Beams

Beam type wVMLAET wMLAET wzVMLAED w/mLAEl wsVMLZ/ET
Hinged—hinged 2 A2 92 1672 2572
Clamped—free 1.875? 4.694? 7.8552 10.996? 14.137%
Free—free 0 0 (L506m)2 (2.500m)2 (3.500m)2
Clamped—clamped | (1.5067)2 (2.5007)2 (3.500m)? (450072 (5.5007)?
Clamped—hinged 3.9272 7.0692 10.210? 13.3522 16.493?
Hinged—free 0 3.9272 7.0692 10.2102 13.3522
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flects. The general procedure for cal culating the response of membranes
remains the same as for rods and beams, but there is one significant new
factor, namely, the shape of the boundary, which dictates the type of
coordinates to be used. For rectangular membranes cartesian coordi-
nates must be used, and for circular membranes polar coordinates are
indicated.
Thedifferential equation for the transverse vibration of membranesis
92w
— 2 _— =
TV2w + p e f (34.113)
which must be satisfied at every interior point of the membrane, where
w is the transverse displacement, f the transverse force per unit area, T
the tension, and p the mass per unit area. Moreover, V2isthe Laplacian
operator, whose expression depends on the coordinates used. The solu-
tion w must satisfy one boundary condition at every boundary point.
Using the established procedure, the eigenval ue problem is described by
the differential equation

—TV2W = w2 pW (3.4.114)

where W is the displacement amplitude; it must satisfy one boundary
condition at every point of the boundary.

Consider a rectangular membrane fixed at X = 0,aandy = 0, b, in
which case the Laplacian operator in terms of the cartesian coordinates
x and y has the form

92 92
2 = —_—
e | ayz (3.4.115)
The boundary conditions are W(0, y) = W(a, y) = W(x, 0) =
W(x, b) = 0. The natural frequencies are
RMIONONF
a b p
n=12 ... (34116)
and the normal modes are
2 maxX . nwy
(X, y) = —sn——sin—- mn=12 ... (34117
W Vpab  a b
The modes satisfy the orthogonality conditions
a (b
f f PWin(X, Y)W(X, y) dx dy = O,
0 Jo
m# rand/orn#s (3.4.118a)
a (b
- j f Wmn(xi y)TVZWs(X- y) dx dy =0,
0 Jo
m# rand/orn#s (3.4.118b)

and have been normalized so that [3 [§ pW3,(%, y) dxdy = 1(m,n = 1,
2, . . .). Note that, because the problem is two-dimensional, it is nec-
essary to identify the natural frequencies and modes by two subscripts.
With this exception, the procedure for obtaining the response is the
same as for rods and beams.
Next, consider auniform circular membranefixed at r = a. Inthiscase,
the Laplacian operator in terms of the polar coordinatesr and 6 is
92 19 1 92
2 — —_— —_—
v o2 + e + 290 (3.4.119)
The natural modes for circular membranes are appreciably more in-
volved than for rectangular membranes. They are products of Bessel
functions of w,,,r and trigonometric functions of me, wherem = 0, 1,
2,...andn=12.... The modes are given in Meirovitch,
“‘Principles and Techniques of Vibrations,”” Prentice-Hall [Table 3.4.7]
gives the normalized natural frequencies w¥,, = (! 2m)Vpa?T corre-
spondingtom = 0, 1, 2and n = 1, 2, 3. The modes satisfy the orthogo-
nality relations

a (2m
f f PWn(r, )W, (r, 6)r dr d6 = 0
0 Jo

m# r and/orn# s (3.4.120a)

Table 3.4.7 Circular Membrane Normalized Natural Frequencies

W = (0l 2)Vpa?l T

n
m 1 2 3
0 0.3827 0.8786 1.3773
1 0.6099 1.1165 1.6192
2 0.8174 1.3397 1.8494

27
—faf Wor(F, O TY2W(r, 6)r dr df = 0
0 Jo

m# rand/orn #s (3.4.120b)

The response of circular membranes is obtained in the usual manner.

Bending Vibration of Plates Consider plates whose behavior is gov-
erned by the elementary plate theory, which is based on the following
assumptions: (1) deflections are small compared to the plate thickness;
(2) the normal stresses in the direction transverse to the plate are negli-
gible; (3) thereisno force resultant on the cross-sectional area of aplate
differential element: the middle plane of the plate does not undergo
deformations and represents a neutral plane, and (4) any straight line
normal to the middle plane remains so during bending. Under these
assumptions, the differential equation for the bending vibration of
platesis

2
DV4w + m(jTW =t (3.4.121)

and isto be satisfied at every interior point of the plate, where w is the
transverse displacement, f the transverse force per unit area, mthe mass
per unit area, D = Eh3/12(1 — v?) the plate flexura rigidity, E Young's
modulus, h the plate thickness, and v Poisson’s ratio. Moreover, V4 is
the biharmonic operator. The solution w must satisfy two boundary
conditions at every point of the boundary. The eigenvalue problem is
defined by the differential equation

DVAW = @?mW

and corresponding boundary conditions.

Consider arectangular plate simply supported at X = 0,aandy = O, b.
Because of the shape of the plate, we must use cartesian coordinates, in
which case the biharmonic operator has the expression

) (e )

34
=t 2+ —
dx“ ax29y2 9yt

(34.122)

V4 =V2y2 =

(3.4.123)

Moreover, the boundary conditionsare W = 0 and 92W/dx2 = Ofor x =
0,aand W = 0 and 92W/ay2 = 0O for y = 0, b. The natura frequencies

ONMONT
= 77-2 —_ + _ .J_
a b m
mn=12 ... (34129
and no confusion should arise because the same symbol is used for one

of the subscripts and for the mass per unit area. The corresponding
normal modes are

. mmxX . nmw
sin—— sm—y mn=12 ...
b

W%, ¥) = — (3.4.125)

n
and they are recogni zed as being the same as for rectangular membranes
fixed at all boundaries.
A circular plate requires use of polar coordinates, so that the bihar-
monic operator has the form
1 92 )
TR

92 1 92
V4 =V2y2 = —+
arz . rar r2 802>(ar2 Tar
(R412R)



Table 3.4.8 Circular Plate Normalized Natural Frequencies

iy = (ogm(@/m?m/D

n
m 1 2 3
0 1.015? 2.007? 3.000?
1 1.468? 24832 3.4902
2 1.879? 2.9922 4.0002

Consider aplate clamped at r = a, in which case the boundary conditions
are W(r, 6) = 0 and oW(r, 6)/dr = O a r = a. In addition, the solution
must be finite at every interior point in the plate, and in particular
a r = 0. The natura modes have involved expressions; they are
given in Meirovitch, *‘ Principles and Techniques of Vibrations,”” Pren-
tice-Hall (Tane=3Z ] lists the normalized natural frequencies wf,, =
wm(@/m?2Vm/D correspondingtom=0,1,2andn = 1,2, 3.

The natural modes of the plates are orthogonal and can be used to
obtain the response to both initial and external excitations.

APPROXIMATE METHODS FOR
DISTRIBUTED SYSTEMS

Rayleigh’s Energy Method The eigenvalue problem contains vital
information concerning vibrating systems, namely, the natural frequen-
ciesand modes. In the majority of practical cases, exact solutionsto the
eigenvalue problem for distributed systems are not possible, so that the
interest lies in approximate solutions. This is often the case when the
mass and stiffness are distributed nonuniformly and/or the boundary
conditions cannot be satisfied, the latter in particular for two-dimen-
sional systems with irregularly shaped boundaries.

When the objective is to estimate the lowest natural frequency, Ray-
leigh’s energy method has few equals. As discussed earlier, free vibra-
tion of undamped systems is harmonic and can be expressed as

w(X, t) = W(X) cos (et — ¢) (3.4.127)

where W(x) is the displacement amplitude, w the free vibration fre-
guency, and ¢ an inconsequential phase angle. The kinetic energy rep-
resents an integra involving the velocity squared. Hence, using Eq.
(3.4.127), the kinetic energy can be written in the form

(M) == f m(x) [aw(’: t)] X = 2T W0t — &) (3.4.128)
0

1 (L
where Tt = 3 f m(x)W2(x) dx (3.4.129)
0
is called the reference kinetic energy. The form of the potential energy is
system-dependent, but in general is an integral involving the square of
the displacement and of its derivatives with respect to the spatial coor-

dinates (sedTale 3.49). It can be expressed as

V(t) = Vi COSH(wt — ¢) (3.4.130)
where V., isthe maximum potential energy, which can be obtained by
simply replacing w(x, t) by W(x) in V(t). Using the principle of conser-
vation of energy in conjunction with Egs. (3.4.128) and (3.4.130), we
can write

E=T+V=Txt+0=0+ V, (3.4.131)
in which Trax = ©%T g (3.4.132)
It follows that
V,
w2 = —= (3.4.133)
Tref

Equation (3.4.133) represents Rayleigh’s quatient, which has the remark-
able property that it has aminimum value for W(x) = W;(x), the mini-
mum value being w%. Rayleigh’s energy method amounts to selecting a
trial function W(x) reasonably close to the lowest natural mode W;(x),

inserting this function into Rayleigh’s quotient, and carrying out the
indicated intearations. Then. w?will be one order of maanitude closer to
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the lowest eigenvalue w? than W(x) is to W;(x), thus providing a good
estimate w of the lowest natural frequency w,. Quite often, the static
deformation of the system acted on by loads proportional to the mass
distribution is a good choice. In some cases, the lowest mode of a
related simpler system can yield good results.

As an example, estimate the lowest natural frequency of a uniform
bar in axial vibration with amass M attached at x = L for
the threetrial functions (1) U(x) = x/L; (2) U(x) = (1 + M/mL)(x/L) —
(x/L)?/ 2, representing the static deformation; and (3) U(x) = sin wx/2L,
representing the lowest mode of the bar without the mass M. The Ray-
leigh quotient for this bar is

JL EA(X)[dU(x)/dX]2 dx
0

= (34.134)
f m)U2(x) dx + MU2(L)
0

f
X
4" 1—m, EA
L
U(x)
[m ]
Fig. 3.4.26
The results are:
L
EA(L/L)2 dx
1 o? ‘L = EA
(M + mL/3)L

L
f m(x/L)? dx + M
0]

L
f EA(L + M/mL — x/L)2(U/L)2 dx
2. 0

L
f m[(1 + M/mL)(x/L) — (x/L)%2]2dx + M(1 + 2M/mL)?/4
0
( M )2 M 1
— ) +—+=
mL 3 E
E( ) £+E(E+M)2W
f (ZL) cos2 —_— dx 2 EA

1 M mL2
o TX +M =+ —
J;msm oL dx 8(2 mL)

Table 3.4.9 Potential Energy for Various Systems

System Potential energy* V(t)
Rods (also shafts 1(t ]
and strings) > fo EA(X)[du(x, t)/ax]2dx
1 L
Beams §j EI(X)[92w(x, t)/ax?]2dx
0

Beams with axial % j " LEIL02W(x, /X2 + P[0 wlx, 1/ax]2dx

force

Membranes % J T{[ow(X, y, t)/ax]? + [ow(x, Y, t)/ay]?} dx dy
Area

Plates % f D{VAW(X, y, )2 + 2(1 — W[AA(x, ¥, )/ox ay}2
Area

— (02w(X, Y, )/ax?)(o2w(X, y, t)/ay?)]} dx dy

* |f the distributed svstem has a sorina at the boundarv point a. then add a term kw?(a. t/2.
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For comparison purposes, let M = mL, which yields the following
estimates for the lowest natural frequency:

EA

1 = 08660 \/—
@ mL2

EA

2 ©=08629~/—~
@ -\/mLZ

EA
2. = 09069 \/ﬁ

The best estimate is the lowest one, which corresponds to case 2, with
the trial function in the form of the static displacement. Note that the
estimate obtained in case 1 is al'so quite good. It corresponds to the first
case in[Tale 3.47] representing a mass-spring system in which the
mass of the spring is included.

Rayleigh-Ritz Method Rayleigh’s quotient, Eq. (3.4.133), corre-
sponding to any trial function W(x) is aways larger than the lowest
eigenvalue w%, and it takes the minimum value of w% when W(x) coin-
cides with the lowest natura mode W,(x). However, this possibility
must be ruled out by virtue of the assumption that W; is not available.
The Rayleigh-Ritz method isa procedure for minimizing Rayleigh’s quo-
tient by means of a sequence of approximate solutions converging to the
actual solution of the eigenvalue problem. The minimizing sequence
has the form

W(X) = a;¢i(x)

W(X) = ay1(X) + ad(X)

(3.4.136)

2
B 21 340 (3.4.137)

n
W(X) = ara(x) + @xdp(X) + - = = + aadn(X) = > g ¢(x)
j=1

where g are undetermined coefficients and ¢;(x) are suitable trial func-
tions satisfying all, or at least the geometric boundary conditions. The
coefficients g(j = 1, 2, . . ., n) are determined so that Rayleigh's
quotient has a minimum. With Egs. (3.4.137) inserted into Eq.
(3.4.133), Rayleigh’s quotient becomes

n n
2 2 kjag
02 = i—1i-1 (3.4.138)
n n
E_Emiaiai n=12 ...
i=1j=1
where k; = k; andm; = m; (i,j = 1, 2 , N) are symmetric

stiffness and mass coefficients whose nature depends on the potential
energy and kinetic energy, respectively. The special caseinwhichn= 1
represents Rayleigh’s energy method. For n = 2, minimization of Ray-
leigh’s quotient leads to the solution of the eigenvalue problem

> kg =023 m
j=1 j=1

i=12 ...,mn=23 ... (34139

Equations (3.4.139) can be written in the matrix form
Ka = (2Ma (3.4.140)
inwhich K = [k;] isthe symmetric stiffness matrix and M = [m] isthe

symmetric mass matrix. Equation (3.4.140) resembles the eigenvalue
problem for multi-degree-of-freedom systems, Eq. (3.4.76), and its solu-
tions possess the same properties. The eigenvalues ()2 provide approxi-

mations to the actual eigenvalues w2, and approach them from aboveasn

increases. Moreover, the egenvectors a =[a;a,...a,"canbe
used to obtain the approximate natural modes by writing
W(X) = 8r11(X) + 820o(X) + - - - + 8nda(¥) = D &gy (X)
j=1
r=1,2...,n;n=23 ... (34.141)

As an illustration, consider the same rod in axia vibration used to
demonstrate Rayleigh’s energy method. Insert Egs. (3.4.137) with W(x)
replaced by U(x) into the numerator and denominator of Eq. (3.4.134)
to obtain

L du(x) |2
J;EA(X) [_dx ] dx

& [ epn 9609 dbi(%) )
2121 I: fo EA(X) i i dx ) aa (3.4.142a)

fL m(x)U2(x) dx + MU?Z(L)
0

n n L
=>2> [ fo m(x)i(X)¢; () dx + M¢’i(L)¢j(L)] ag (34.142b)

i=1j=1
so that the stiffness and mass coefficients are

f EA(X )d“b')((x) 950 4 ij=12 . ..n (34143
m; = J; m(x) i (X);(X) dx + Mcyi(L) (L)
i,j=1,2,...,n (34.143b)
respectively. Astrial functions, use
¢(X) = (x/L)} =12 ...,n (3.4.144)

which are zero at x = 0, thus satisfying the geometric boundary condi-
tion. Hence, the stiffness and mass coefficients are

CBAL Y g EA
Ki_Liﬂfox S
i,j=1,2...,n (3.4.1453)
- Lxxldx+M— mL +M
M= T i)+ 1
i,j=212 ...,n (34.145h)
so that the stiffness and mass matrices are
1 1 1 ce - 1
Eal l 4/3 3/2 <+ 2n/(n + 1)
K= T 1 3/2 9/5 3n/(n + 2)
1 2n/(n+1) 3n/(n+2) n?(2n — 1)
(3.4.1463)
13 V4 15 Un+2)
14 15 /6 Un+ 3)
M = mL 1/5 16 7 Uin+ 4)
Un+2) Un+3) 1Un+4) U@2n + 1)
111 1
111 1
+M[1 11 1| (34.146b)
111 1

For comparison purposes, consider the casein whichM = mL. Then,
for n = 2, the eigenvalue problem is

[1 1][a1] _)\[4/3 5/4] [al]
1 43]|a | 5/4 65 || a,

mL2
A=02— (3414
= (34147)
which has the solutions
A, = 0.7407 =[1 -0.1667]T
Ay = 12,0000 =[1 —10976]" (3.4.148)



Hence, the computed natural frequencies and modes are

X X\ 2
=—-01667 ( -
U,(x) L 0.166 (L)

EA
Q, = 0.8607 -\/—
1= 08607 \[—
X X\ ?
UZ(X) = E — 1.0976 (E)

EA
0, = 34641 -\/ o~
Comparing Egs. (3.4.149) with the estimates obtained by Rayleigh's
energy method, Egs. (3.4.136), note that the Rayleigh-Ritz method has
produced a more accurate approximation for the lowest natural fre-
guency. In addition, it has produced afirst approximation for the second
lowest natural frequency, as well as approximations for the two lowest
modes, which Rayleigh's energy method is unable to produce. The
approximate solutions can be improved by letting n = 3, 4,

Finite Element Method In the Rayleigh-Ritz method, thetrlal func—
tions extend over the entire domain of the system and tend to be compli-
cated and difficult to work with. More importantly, they often cannot be
produced, particularly for two-dimensional problems. Another version
of the Rayleigh-Ritz method, the finite element method, does not suffer
from these drawbacks. Indeed, the tria functions extending only over
small subdomains, referred to as finite elements, are known low-degree
polynomials and permit easy computer coding. Asin the Rayleigh-Ritz
method, a solution is assumed in the form of a linear combination of
trial functions, known as interpolation functions, multiplied by undeter-
mined coefficients. In the finite element method the coefficients have
physical meaning, as they represent ‘‘nodal’’ displacements, where
‘‘nodes’’ are boundary points between finite elements. The computation
of the stiffness and mass matricesis carried out for each of the elements
separately and then the element stiffness and mass matrices are assem-
bled into global stiffness and mass matrices. One disadvantage of the
finite element method is that it requires a large number of degrees of
freedom.

To illustrate the method, and for easy visudization, consider the
transverse vibration of a string fixed at x = 0 and with a spring of
stiffness K attached at x = L [FQ-3.2.Z7) and divide thelength L into n
elements of width h, so that nh = L. Denote the displacements of the
nodal points x, by a, and assume that the string displacement is linear
between any two nodal pointsCEgIre 3 Z28shows atypical element e.

(3.4.149)
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Introducing Eq. (3.4.151) into Egs. (3.4.152) and considering the
boundary conditions, we obtain the element stiffness and mass matrices

EA EA[ 1 -1

Kl—T Ke_Tl:fl l:l e=23 ...,n—-1
EA[ 1 -1 hm

K"*T[—l Kh/EA] M=
hm|2 1

Mef?[l 2] e=23 ....n (34153)

where K; and M, are realy scalars, because the left end of the first
element isfixed, so that the displacement is zero. Then, since the nodal

\\ azh,
\

\]V

a,_ g Sa
e 1¢'1 I I\
I X

(e=Dh

Fig. 3.4.28

displacement @, is shared by elementseande + 1(e= 1,2, . . .,
n — 2), the element stiffness and mass matrices can be assembled into
the global stiffness and mass matrices

w(x)
4
A i aT K 1
[ a. nt n
t al i az : : * * : Il L ¢ X
h 2h (e—1)h eh (n—1)h nh=L
Fig. 3.4.27
The process can be simplified greatly by introducing the nondimen- 2 -1 0 0 0
-1 2 -1 0 0
K = EA 0 -1 2 0 0
sional local coordinate ¢ = j — x/h. Then, considering the two linear (1
interpolation functions 0 0 0 2 -1
0 0 0 —1 Kh/EA
GO =& sO=1-¢ (34.150) (34.154)
the displacement at point ¢ can be expressed as
(&) = 8e_101(8) + acPa(8) (34.151)
where a,_, and a, arethe nodal displacementsfor element e. Using Egs.
(3.4.143) and changing variables from x to &, we can write the element 4 1 0 00
stiffness and mass coefficients 1 4 1 00
hm| o 1 4 00
dd)l dd’] fl M=—
kg == | EA— dé¢ =h| meeds 6 | -
f d¢ dé e o M 000 41
i,j=12 (34152 00O 1 2
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For beams in bending, the displacements consist of one translation
and one rotation per node; the interpolation functions are the Hermite
cubics

$1(§) = 362 — 283, py(é) = &2 — &°
B3€) =1 — 32+ 283 p(§) = — &+ 282 - &3

and the element stiffness and mass coefficients are
1 (1 _ d2¢; d2¢y 1
ke = 1 f B d¢  my=h f s gy dé
0 0
i,j=1,234 (34.156)

dgz d¢z2
yielding typical element stiffness and mass matrices

2 6 -12 6
El 6 4 -6 2
| -12 -6 12 -6
6 2 -6 4

(3.4.155)

Ke =

156 22 54 -13
M. = Jm 2 4 13 -3
¢~ 420 54 13 156 —22

-13 -3 -2 4

The treatment of two-dimensional problems, such as for membranes
and plates, is considerably more complex (see Meirovitch, ‘* Principles
and Techniques of Vibration,”” Prentice-Hall) than for one-dimensional
problems.

The various steps involved in the finite element method lend them-
selves to ready computer programming. There are many computer
codes available commercially; one widely used is NASTRAN.

(3.4.157)

VIBRATION-MEASURING INSTRUMENTS

Typical quantities to be measured include acceleration, velocity, dis-
placement, frequency, damping, and stress. Vibration implies motion,
so that thereisagreat deal of interest in transducers capable of measur-
ing motion relative to the inertial space. The basic transducer of many
vibration-measuring instruments is a mass-damper-spring enclosed in a
case together with a device, generally electrical, for measuring the dis-
placement of the mass relative to the case, as shown in m The
equation for the displacement z(t) of the mass relative to the case is

mz(t) + cz(t) + kz(t) = — my(t) (3.4.158)
wherey(t) isthe displacement of the caserelativeto theinertial space. If
this displacement is harmonic, y(t) = Y sin wt, then by analogy with Eq.
(3.4.35) the response is

W 2
) =Y (—) [G(w)| sin (ot — ¢)
w,
! = Z(w) sin (ot — ¢) (3.4.159)

so that the magnitude factor Z(w)/Y = (wlwy)? |G(w)| is as plotted in
Fig. 3.4.9 and the phase angle ¢ is as in Fig. 3.4.4] The plot Z(w)/Y

x(t) ‘

z(t)_¢_ ]

y(®

N N
77

77

Fig. 3.4.29

versus wl, is shown again ilElg_32.30lon a scale more suited to our
purposes.

Accelerometer s are high-natural-frequency instruments. Their useful-
ness is limited to a frequency range well below resonance. Indeed, for
small values of w/w,, Eq. (3.4.159) yields the approximation

Z(w) ~ iz Y (3.4.160)
wn
so that the signal amplitude is proportional to the amplitude of the
acceleration of the case relative to the inertial space. For { = 0.7, the
accelerometer can be used in therange 0 = w/w, = 0.4 with lessthan 1
percent error, and the range can be extended to w/w, = 0.7 if proper
corrections, based on instrument calibration, are made.

Commonly used accel erometers are the compression-type piezoelec-
tric accelerometers. They consist of a mass resting on a piezoelectric
ceramic crystal, such as quartz, tourmaline, or ferroelectric ceramic,
with the crystal acting both as spring and sensor. Piezoel ectric actuators
have negligible damping, so that their range must be smaller, such as
0 < wlw, < 0.2. Inview of the fact, however, that the natural frequency
is very high, about 30,000 Hz, this is a respectable range.

Displacement-Measuring Instruments These are low-natural-
frequency devices and their usefulness is limited to a frequency range
well above resonance. For w/w, >> 1, Eq. (3.4.159) yields the approxi-
mation

Z(w) ~ Y (3.4.161)

so that the signal amplitude is proportional to the amplitude of the case
displacement. Instruments with low natural frequency compared to the
excitation frequency are known as seismometers. They are commonly
used to measure ground motions, such as those caused by earthquakes
or underground nuclear explosions. The requirement of low natural
frequency dictates that the mass, referred to as seismic mass, be very
large and the spring very soft, so that essentially the mass remains

2.5

T I
L (&)
20 ~__/ i
X{ =0.25
15 7
%w) / {=0.50
1.0 / —
4
05 // ¢ =1.00
7z
0 1 2 3 4 5

Fig. 3.4.30



stationary in an inertial space while the case attached to the ground
moves relative to the mass.

Seismometers tend to be considerably larger in size than acceler-
ometers. If a large-size instrument is undesirable, or even if size is
not an issue, displacements in harmonic motion, as well as velocities,
can be obtained from accelerometer signals by means of electronic inte-
grators.

Some other transducers, not mass-damper-spring transducers, are as
follows (Harris, ** Shock and Vibration Handbook,” 3d ed., McGraw-
Hill):
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Differential-transformer pickups: They consist of a core of magnetic
material attached to the vibrating structure, a primary coil, and two
secondary coils. As the core moves, both the inductance and induced
voltage of one secondary coil increase while those of the other decrease.
The output voltage is proportiona to the displacement over a wide
range. Such pickups are used for very low frequencies, up to 60 Hz.

Strain gages: They consist of a grid of fine wires which exhibit a
change in electrical resistance proportiona to the strain experienced.
Their flimsiness requires that strain gages be either mounted on or
bonded to some carrier material.
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