EXAMPLES

STATICS

EXAMPLE | 1.1

Convert 2 km/h to m/s How many ft/s is this?

SOLUTION
Since 1 km = 1000 m and 1 h = 3600 s, the factors of conversion are
arranged in the following order, so that a cancellation of the units can

be applied:
2 km [ 1000 m lh’)
2 -
s ( et )(3600;

2000 m
= (.556 :
v 556 m/s Ans

From Table 1-2, 1 ft = 0.3048 m. Thus,

. 055%6m\/ 1h
0.556 m/s =
s ( - )(03048 ai)

= 182 ft/s Ans

NOTE: Remember to round off the final answer to three significant
figures.

awpEllz

Convert the quantities 300 Ib - s and 52 slug/ft’ to appropriate SI units

SOLUTION
Using Table 1-2.11b = 44482 N.
4448 N
Ib:s =300 M-s
300 s s s( T )
= 13345N.s = 133kN:s Ans.

Since | slug = 145938 kgand 1 ft = 0.304 8 m, then
szdug(m.so kg)( 1 & )3
3 =
S2shug/l ==\ Tag /\03048m
= 26.8(10°) kg/m’
= 26.8 Mg/m’ Ans.




EXAMPLE | 2.1

The screw eye in Fig. 2-11a is subjected to two forces, Fy and F.
Determine the magnitude and dircction of the resultant force.

SOLUTION

Parallelogram Law. The parallclogram is formed by drawing a line
from the head of F; that is parallel to F;, and another line from the
head of F; that is parallel to Fi. The resultant force Fg extends to where
these lines intersect at point A, Fig. 2-115. The two unknowns are the
magnitude of Fg and the angle @ (theta).

Trigonometry. From the parallclogram, the vector tnangle is
constructed, Fig. 2-11¢. Using the law of cosines

Fg= V(100N) + (150 N© — 2(100 N)(150 N) cos 115°
= V10000 + 22 500 — 30 000(—0.4226) = 2126 N
=213N

Ans.

Applying the law of sines to determine 8,

IS0N  2126N 150N
sin  sin 1157 2126N

# = 39.8°

(sin 115%)

sin @ =

Thus, the direction ¢ (phi) of Fg, measured from the horizontal, is
@ = 30.8° + 15.0° = 548°

Ans

NOTE: The results scem reasonable, since Fig. 2-115 shows Fg to have

a magnitude larger than its components and a dircction that is
between them.

A
150N
15 65"
10
Fg
m A

299 s

2

\o\ 100N
15°
X — 25° = 65°

(b)

(c)

Fg. 2-11




EXAMPLE | 2.11

Two forces act on the hook shown in Fig, 2-32a. Specify the magnitude
of F; and its coordinate direction angles of F; that the resultant force
Fp acts along the positive y axis and has a magnitude of 800 N.

y SOLUTION
To solve this problem, the resultant force Fy and its two components,
F, and F;, will cach be expressed in Cartesian vector form. Then, as
shown in Fig. 2-33a, it is nccessary that Fp = F; + F,.
Applying Eq. 2-9,
(a) F, = Fycos aji + Fj cos B1j + Fy cos vk
= 300 cos 4571 + 300 cos 60° j + 300 cos 1207k
= {212.1i + 150§ — 150k} N
E=hRit+ Bj+ Bk
Since Fy has a magnitude of 800 N and acts in the +j direction,

Fr = (800 N)(+j) = {800} N

-
-

We require
FE=70N Fp=F + F
800§ = 212.1i + 150§ — 150k + R,i + B,j + Kk

Fa” SON 00 = (2121 + Bi + (150 + F)j + (—150 + Bk

To satisfy this cquation the i, j, k components of Fg must be equal to
the corresponding i, j, k components of (F; + F;). Henee,

x 0=2121+ F;, Fp,=-2121IN
(b) 800 = 150 + F, Fp, = 650N
Fig. 2-33 ==-150 + F;; Fp,=150N
The magnitude of F; is thus
F; = V(-2121N)* + (650 N)* + (150 Ny’
=THON Ans
We can use Eq.2-9 to determine a2, 8 3, ¥ 2.
-212.1
cos ay = —=pn—1 a = 108° Ans.
650
cos By = 0" B> =218° Ans.
150 °
cos Yy = 700 =716 Ans

These results are shown in Fig. 2-32b.




EXAMPLE | 2.12

/ 6]

7
- ;4'_12'31 m

[~-3i)m

(b)

r-=7m

&
-

y = 310"

- 734"
a~ 115 A

>‘
-

(c)

Fig. 2-37

An clastic rubber band is attached to points A and B as shown in
Fig. 2-37a. Determine its length and its direction measured from A
toward B.

SOLUTION

We first establish a position vector from A to B, Fig. 2-37b. In
accordance with Eq.2-11, the coordinates of the tail A(1 m,0,-3 m) are
subtracted from the coordinates of the head B(-2 m. 2 m. 3 m), which
yiclds

r=2m-1mji+2m-0]j+ [3m - (-3m)lk
={-3i+2j + 6k} m

These components of r can also be determined directly by realizing
that they represent the direction and distance one must travel along
cach axis in order to move from A to B, i.e., along the x axis [-3i} m,
along the y axis [2j] m, and finally along the 7 axis {6k} m.

The length of the rubber band is therefore

r=V(-3m)i+ (2m)+ (6m)*=Tm Ans.

Formulating a unit vector in the direction of r, we have

u=-’-=-2i+-2—'+£k
r 7 ST

The components of this unit vector give the coordinate direction
angles

a= cos_l(—-;) = 115° Ans.
st o | 2 i o
= cos 7 =734 Ans.
46
y=cos (3] =310° Ans

NOTE: These angles arc measured from the positive axes of a localized
coordinate system placed at the tail of r, as shown in Fig. 2-37c.




EXAMPLE | 2.17

The frame shown in Fig. 2-45a is subjected to a horizontal force
F = [300j). Determine the magnitude of the components of this
force parallel and perpendicular to member AB.

-
-

“

B F=[POOjN
3m
A — ¥
y
|
P
/_Gm
k
(a) (b)
Fig 2-45

SOLUTION

The magnitude of the component of F along AB is equal to the dot

product of F and the unit vector ug, which defines the direction of AB,
Fig. 2-44b. Since

ry 2 + 6§ + 3k

nB T —

T V(Q2) + (6) + (3

= 0.286i + 0.857j + 0.429k

then
Fap = Fcos = Frug = (300§) - (0.286i + 0.857) + 0.429k)
= (0)(0.286) + (300)(0.857) + (0)(0.429)

=257.1N Ans.
Since the result is a positive scalar, F4 g has the same sense of direction
as up, Fig. 2-45b.

Expressing F 5 in Cartesian vector form, we have
Fap = Fapug = (257.1 N)(0.286i + 0.857) + 0.42%)
= {73.5i + 2205 + 110k}N Ans.
The perpendicular component, Fig. 2-45b, is therefore
F, =F — Fyp = 300§ — (73.5i + 220§ + 110k)
= {-735i + 80§ — 110k} N
Its magnitude can be determined cither from this vector or by using
the Pythagorcan theorem, Fig. 2-456:
F, = VF - Fay = V30ON) — 257.1N)?
=155N Ans.




EXAMPLE |3.2

Determine the tension in cables BA and BC necessary to support the
60-kg cylinder in Fig. 3-6a.

Tgp = 60 (981) N

60 (9.81) N
(b)

()

SOLUTION

Free-Body Diagram. Duc to equilibrium, the weight of the cylinder
causcs the tension in cable BD to be Typ = 60(9.81) N, Fig. 3-6b. The
forces in cables BA and BC can be determined by investigating
the equilibrium of ring B. Its free-body diagram is shown in Fig. 3-6¢. The
magnitudes of T4 and T¢ arc unknown, but their directions arc known.

Equations of Equilibrium. Applying the equations of cquilibrium
along the x and y axes, we have ¥

LIF =0 Tecos45° — (3)Ty =0 (1) - Te

+ 13F, = 0; Tesind5° + (3)T4 — 60(981)N =0 @) N a
A x
Equation (1) can be written as T4 = 0.88307 .. Substituting this into : b (]

Eq. (2) yiclds
T sin45° + (3)(0.88397¢) — 60(9.81) N = 0
So that (c)
T- = 47566 N = 476 N Ans. Fig. 36
Substituting this result into cither Eq. (1) or Eq. (2), we get
T4 =420N Ans.

NOTE: The accuracy of these results, of course, depends on the
accuracy of the data, i.c., measurements of geometry and loads. For
most engincering work involving a problem such as this, the data as
measurcd to three significant figures would be sufficicnt.

Y Tgp = 60 (981) N




EXAMPLE | 3.6

The 10-kg lamp in Fig. 3-11a is suspended from the three equal-length
cords. Determine its smallest vertical distance s from the ceiling if the
force developed in any cord is not allowed to exceed 50N

I{9.81)} N ¥

(a) (k)
Fig. 3-11

SOLUTION

Free-Body Diagram. Duc to symmetry. Fig. 3-115, the distance
DA = DB = DC =600 mm. It follows that from XF, =0 and
2 F, = 0, the tension T'in cach cord will be the same. Also, the angle
between cach cord and the z axis s y.

Equation of Equilibrium. Applying the equilibrium cquation along
the z axis, with T = 50 N, we have

SF, =0 3[(50 N) cos y] — 10(9.81)N = 0

Y= cos"% = 49.16°

From the shaded triangle shown in Fig. 3-115,

tan 49.16° = SO0 s

s =519 mm Ans.




EXAMPLE |4.3

Determine the moment produced by the force F in Fig, 4-14a about
point O. Express the result as a Cartesian vector.

SOLUTION

As shown in Fig. 4-14a, cither ry or rp can be used to determine the
moment about point . These position vectors are

ry={12k}jm and ry= {4i+ 12j} m

Force F expressed as a Cartesian vector is

{4i + 12§ - 12k} m
F = Fuyy = 2kN

V(4m)* + (12m)* + (—12m)*
= {0.4588i + 1.376j — 1.376k} kN

(=) Thus
i 3 k
04588 1376 -1376
= [0(=1.376) — 12(1.376)]i — [0(~1376) — 12(0.4588)] j
+ [0(1.376) — 0(0.4588)k

= [~165i + 551j} kN°m Ans
or
i j k
Mog=mpxF= - 12 0
04588 1376 -1.376

= [12(—1376) — (1.376)fi — [4(—1.376) — O(0.4588)]j
+ [4(1.376) — 12(0.4588)k
= {~16.5i + 551} kN'm Ans

NOTE: As shown in Fig. 4-14b, M acts perpendicular to the plane

(b) that contains F,ry andry. Had this problem been worked using
Mg = Fd, notice the difficulty that would anse in obtaining the
Fig. 4-14 momenl arm 4.




EXAMPLE |4.5

Determine the moment of the force in Fig. 4-18a about point 0.

V

—d, =~ 3:m30'm—|
F, = {5kN)cos 45"

d,-Jsin)(Ym

ur Fy = (5 kN) sin 45"

X

(b)

SOLUTION |
The moment arm d in Fig. 4-18a can be found from trigonometry.

d=(3m)sin75° = 2898 m
Thus,
Mg = Fd = (SkN)(2898 m) = 145kN m) Ans.
Since the force tends to rotate or orbit clockwise about point O, the

moment is directed into the page.

SOLUTION II

The x and y components of the force are indicated in Fig. 4-185b.
Considering counterclockwise moments as positive, and applying the
principle of moments, we have

C+Mop= —Fd, - Fyd,
= —(5 cos 45° kN){3 sin 30° m) — (5 sin 45° kN})(3 cos 30° m)
= —145kN‘m = 145kN'm) Ans. F, = (5 kN) gin 75"
x
SOLUTION Il :

The xand y axcs can be set paralkel and perpendicular to the rod’s axis
as shown in Fig. 4-18¢. Here F, produces no moment about point O
since its line of action passes through this point. Therefore,

M F, = (5kN)sin 75’

(, o r Mo = —F,d,
= —(55in75°kN)(3 m) (c)
= —145kN:m = [45kN-m) Ans. Fig. 4-18




EXAMPLE |4.14

Replace the force and couple system shown in Fig. 4-37a by an
cquivalent resultant force and couple moment acting at point O.

(3 kN sin 30"

e
|
|

=
|

(@ Fig. 4-37
SOLUTION

Force Summation. The 3 kN and 5 kN forces are resolved into their
x and y components as shown in Fig. 4-37b. We have

£ (Fp). = EF; (Fg), = (3kN)cos 30° + (3) (SkN) = 5598 kN —

+1(Fg), = SF,; (Fg), = (3kN)sin 30° — ($) (5kN) — 4kN = —6.50kN = 6.50kN}
Using the Pythagorcan theorem, Fig. 4-37¢, the magnitude of Fy is

By = V() + (Fp)y = V5S98KN)T + (650kN)” = 858kN  Ans

Its dircction @ is
(Fk)y 6.50 kN
L -1 = .| (Emccmindie bl
9= ((FR),) = (5598 kN
Moment Summation. The moments of 3 kN and 5 kN about
point O will be determined using their x and y components. Referring
to Fig. 4-37b, we have
G+ (Mglo = EMo;
(Mg)o = (3 kN)sin 30°(0.2 m) — (3 kN)cos 30°(0.1 m) + (%) (5kN) (0.1 m)
— (3) (GkN) (0.5 m) — (4 kN)(0.2 m)
= -246kN:m = 246kN-m) Ans

) = 40.3° Ans

{Mg)o =~ 246 kN -m

This clockwisc moment is shown in Fig. 4-37c.

NOTE: Realize that the resultant force and couple moment in
Fig. 4-37¢ will produce the same external effects or reactions at the
supports as those produced by the force system, Fig 4-37a. (c)

(Fi)y = 650 kN

10



EXAMPLE |5.5

Determine the horizontal and vertical components of reaction on the
beam caused by the pin at B and the rocker at A as shown in Fig. 5-12a.
Neglect the weight of the beam.

¥
0N 200N 6(lem45"N |

20N
45" { 0'2"' 600:0545" N

'r:.n!,.,trt T

100N 100 l\
(a) (b)
Fig. 512

SOLUTION
Free-Body Diagram. Identify cach of the forces shown on the free-
body diagram of the beam, Fig. 5-12b. (See Examplke 5.1.) For

simplicity, the 60-N force is represented by its x and y components as
shown in Fig. 5-12b.

'J

Equations of Equillbrium. Summing forces in the x direction yiclds
SH3F, =0 600 cos45°N — B, =0
B, = 424N Ans.

A direct solution for Ay can be obtained by applying the moment
cquation ZMy = () about point B.

C+EMp=0; 100N(2m) + (600sin45° N)(5 m)
= (600 cos 45° N)(0.2m) — A (Tm) = 0
A, =319N Ans.
Summing forces in the y direction, using this result, gives
+1ZF,=0; 319N - 600sin45°N — 100N - 200N + B, =0

B, = 405N Ans.

NOTE: We can check this result by summing moments about point A.

C+EIM4=0; —(600 sin 457 N)(2 m) — (600 cos 457 N)(0.2 m)
—(100N)(5m) — (200 N){(7m) + By(Tm) =0

B, = 405N Ans.

11



EXAMPLE |6.14

Determine the horizontal and vertical components of force which the
pin at C exerts on member BC of the frame in Fig. 6-26a.
SOLUTION |

Free-Body Diagrams. By inspection it can be scen that AB is a
two-force member. The free-body diagrams are shown in Fig. 6-265.

Equations of Equilibrium. The three unknowns can be determined
by applying the three equations of equilibrium to member CB.

C+EMe = 0; 2000N(2 m)—(Fygsin 60°)(4 m) =0 Fpg=11547N
LIF, =0; 11547 cos60°N-C, =0 C,=5TIN Ans.
+fZF_, = () 1154.7sin60°N—20(K)N+C,=0 C_,= 1000 N Ans.

SOLUTION II

Free-Body Diagrams. If onc docs not recognize that AB is a two-

force member, then more work is involved in solving this problem.
Fap The free-body diagrams arc shown in Fig. 6-26¢.

Equations of Equilibrium. The six unknowns are determined by

'/ applying the three equations of equilibrium to cach member.

// Member AB

7 C+EMy=10; B,(3sin60°m) — B,(3cos60°m) =0 (1)

/"' HIF,=0; A, -B,=0 2)

Fip o +132F,=0; A,-B,=0 (3)
‘ Member BC

2000 N (+IMc=0; 2000N(2m) — B,(4m) = 0 @)

L L3F,=0; B,-C,=0 (5)

B, ‘<& +1ZF,=0; B,—2000N+C,=0 (6)

i[ s | . The results for C, and C; can be determined by solving these
Byt P cquations in the following sequence: 4, 1,5, then 6. The results are

B, = 1000N
B, 2
{ B, B, =57IN
]\/ C,=57IN Ans.
Im//
\/ /1 Cy=1000N Ans
AG_U ' By comparison, Solution | is simpler since the requircment that Fyp in
IS & Fig. 6-26b be equal, opposite, and collincar at the ends of member AB
automatically satisfics Egs 1.2, and 3 above and therefore climinates
A the need to write these equations. As a result, save yourself some time
(©) and effort by always identifying the two-force members before starting
Fig. 6-26 the analysis!

12



EXAMPLE |5.17

The boom is used to support the 75-Ib flowerpot in Fig. 5-30a.
Determine the tension developed in wires AB and AC.

SOLUTION

Free-Body Dilagram. The free-body diagram of the boom is shown in
Fig. 5-30b.

Equations of Equilibrium. We will use a vector analysis.

{2i — 6§ + 3k} f
FAB — &F(rAB) - &8( 7 ¥ 2)
A 2 2ty + (—60)° + (3ft)

=g~ FEpd + 3 Fak

{-2i—6f + 3k} ft

e ) |
AT M N/ M\ (—2np + (—6NP + G RY

= —3Eud — $Faci + TFack

We can climinate the force reaction at O by writing the moment
equation of equilibrium about point 0.

IMp =0 rAx(FAB+F,,c+W)=0

(ﬁ)x[(%w — % Eyj + %M)»r(—%&a' ~$ Bej + %&ck)ﬂ—vsn] =0

o~

(l;‘-pw + By — 450)i - (—#F,.,, - l,’-r,.c)k =0

SM,=0; BEg+$Ec-450=0 (1)
M, =0 0=0
M, =0; ~F g+ FFe =0 )

Solving Egs. (1) and (2) simultancously,

Fap= Fapc =815 Ans.

(b)

13



EXAMPLE |6.1

SN

NILIN

A ok :‘f;g" C
SN SONAR sonN

(e)

Fig. 6-8

Determine the force in cach member of the truss shown in Fig. 6-8a
and indicate whether the members are in tension or compression.

SOLUTION

Since we should have no more than two unknown forces at the joint
and at lcast one known force acting there, we will begin our analysis at
joint B.

Joint B. 'The free-body diagram of the joint at B is shown in Fig. 6-8b.
Applying the equations of equilibrium, we have

H3F, =0; 500N - Fpesind5® =0 Fye = T07.1N (C) Ans

+13F,=0; Fpecos45° — Fgy=0 Fgqy=500N(T) Ans

Since the force in member BC has been calculated, we can proceed to
analyze joint C to determine the force in member CA and the support
reaction at the rocker.

Joint C. From the free-body diagram of joint C, Fig. 6-8c, we have

BIF, =0; —Fpy + 071 cos45°N =0  Fpy = S00N(T) Ans
+13F,=0; C,—7071sind45°N=0 C,=50N  Ans

Joint A. Although it is not nccessary, we can determine the
components of the support reactions at joint A using the results of
Fcpand F gy From the free-body diagram, Fig. 6-84, we have

S3F, =0
+1ZF, =0;

SOON - A, =0 A, =500N
SION - A, =0 A,=S0ON

NOTE: The results of the analysis are summarized in Fig. 6-8e. Note
that the free-body diagram of cach joint (or pin) shows the effects of
all the connected members and external forces applied to the joint,
whereas the free-body diagram of cach member shows only the
effects of the end joints on the member.

14




EXAMPLE |6.5

Determine the force in members GE, GC, and BC of the truss shown G
in Fig. 6-16a. Indicatc whether the members are in tension or

a
T A<
compression. im ;1 .
_1_4,_ A5 LEM L '\3 <

SOLUTION "E g | ~ J-
Section aa in Fig, 6-16a has been chosen since it cuts through the three che : m—; -
N

members whose forces are to be determined. In order to use the 12
method of sections, however, it s first necessary to determine the (a)
external reactions at A or D.Why? A free-body diagram of the entire

truss is shown in Fig. 6-165. Applying the equations of equilibrium,

we have
LIF, =0 400N - A, =0 A, = 400N T - 400N
C+ZMy=0; —1200N(8m)—400N(3m) + Dy(12m) =0 3m ‘ \
D.=90N ] ' D
y A 3
+13F,=0; A, — 1200N +90N=0 A, = 300N _ s
‘ A l’&lN‘ %

Free-Body Diagram. For the analysis the free-body diagram of the
left portion of the sectioned truss will be used, since it involves the
least number of forces, Fig. 6-16c.

Equations of Equillbrium. Summing moments about point G
climinates Fgp and Fge and yiclds a direct solution for Fye.

C+IMg=0; —300N(4m)— 400N(3m) + Fpc(3m) = 0
Fyc = 800N (T) o

In the same manner, by summing moments about point C we obtain a
direct solution for Fp.

C+EIMc =10, —300N(8m) + Fge(3m) =0
Fge = 80N (C) Ans.

Since Fye and Fgp have no vertical components, summing forces in
the y direction dircctly vields For, Le.,

+12F,=0;: 300N -3Fgc=10
Foe =500N (T) Ans.

NOTE: Here it is possible to tell, by inspection, the proper direction
for cach unknown member force. For example, EM¢ = () requires

Fer to be compressive because it must balance the moment of the
300-N force about C.

15



EXAMPLE |8.1

The uniform crate shown in Fig. 8-7a has a mass of 20 kg, If a force
P = 80 N is applied to the crate, determine if it remains in equilibrium.
The coefficient of static friction is p, = 0.3,

| 0.8 m |

g

- ,ﬂl' ' «ll[‘

02 ‘_ '

{a)
Fig. 8-7
1962 N
SOLUTION
P= 8N A 0.4
Free-Body Diagram. As shown in Fig. 8-Tb, the resultant normal [=fiam m_-]l
force Ni- must act a distance x from the crate's center line in order to 30° 2
counteract the tipping cffect caused by P. There arc three unknowns, . ' i
F, Np, and x, which can be determined strictly from the three °2l"' - Al |
equations of equilibrium. - ¥
Equations of Equilibrium. |
BIE=0; 80cos 30°N — F =0 Ne
+TZI-}=0; —80sin30°N + N- — 192N =0 (&)

C+ZMg=0; 80sin30° N(0.4 m) — 80 cos 30° N(0.2 m) + Ng{x) =0

Solving,
F=693N
Ne =236N
x=—000008m = —9.08 mm

Since x is negative it indicates the resultant normal force acts (slightly)
to the left of the crate’s center line. No tipping will occur since
x << 0.4 m. Also, the maximum frictional force which can be developed
at the surface of contact is Koy = pNe = 03(236 N) = 708 N.
Since F = 693 N < 70.8 N, the crate will not slip, although it is very
close to doing so.

16



EXAMPLE |8.3

The uniform 10-kg ladder in Fig. 8-9a rests against the smooth wall at
B, and the end A rests on the rough honizontal planc for which the
cocfficient of static friction is p, = 0.3. Determine the angle of
inclination @ of the ladder and the normal reaction at B if the ladder is
on the verge of slipping,

Ny

(4 m)xind

Nyl (2m)cos® " (2m)cos@

(a)

Fig. 89

SOLUTION
Free-Body Diagram.  As shown on the free-body diagram, Fig. 8-9b,
the frictional force Fy must act to the right since impending motion at A
15 to the left.

Equations of Equilibrium and Friction. Since the ladder is on the
verge of slipping, then Fy = p, Ny = 0.3N,. By inspection, N4 can be
obtained dircctly.

+13F, =0, Ny — 1{981)N = 0 Ny= 981N

Using this result, £y = 0.3(98.1 N) = 29.43 N. Now Nj can be found.
S3F =0 203N - Ng=10

Np =2943N = 294N Ans.
Finally, the angle # can be determined by summing moments about
point A.
C+EMy=10; (2943N)(4m)sinf — [10(981) N|(2m)cosf = 0

smg = tan # = 1.6667

cos
# = 59.04" = 59.0° Ans.

17




KINEMATICS

EXAMPLE |12.3

During a test a rocket travels upward at 75 m/s, and when it is 40 m
from the ground its engine fails. Determine the maximum height s,
reached by the rocket and its speed just before it hits the ground.
Whiie in motion the rocket is subjected to a constant downward
acceleration of 9.81 m/s® duc to gravity. Neglect the effect of air
resistance.

SOLUTION
Coordinate System. The origin O for the position coordinate s is
taken at ground level with positive upward, Fig. 12-4.

Maximum Height. Since the rocket s traveling upward,
v4 = +75m/s whent = 0. At the maximum height 5 = 55 the velocity

vy =10 vy = 0. For the entire motion, the acceleration is a, = —9.81 m/s?
&_ B _ (ncgative since it acts in the opposite sense to positive veloaty or
) positive displacement). Since a, s constant the rocket’s position may

be related to its velocity at the two points A and B on the path by using
'
Eq. 12-6, namely,

(+1) v = 04 + 2a(sg — 54)
| 0= (T5m/s) + 2(—9.81 m/s*)(sg — 40 m)
sy =32Tm Ans.

| Velocity. To obtain the velocity of the rocket just before it hits the
ground. we can apply Eq. 12-6 between points B and C, Fig, 12-4.

Ta=T15mfs
-—J 8 (+1) % = v + 2asc — 1)
=0 + 2(—9.81 m/s?)(0 — 327 m)
5,=40m
13’ T v = —80.1 m/s = 80.1 m/s | Ans.
C 0 The negative root was chosen since the rocket is moving downward.
Similarly, Eq. 12-6 may also be applied between points A and Cic..
ot (+1) o=+ 2adsc — 54)

= (75 m/s)* + 2(—9.81 m/s*)(0 — 40 m)
¥ = —80.1 m/s = 80.1 m/s | Ans.

NOTE: [t should be realized that the rocket is subjected to a
deceleration from A to B of 9.81 m/s*. and then from B to C it is
accelerated at this rate. Furthermore, even though the rocket

momentarily comes Lo rest at B (vy = () the acceleration at B s still
0.81 m/s* downward!'
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12.10

EXAMPLE

¥
/y = 0.mlx2
» ol
100
m / 5

(2)

v, z].
a
10m / ? “
(b)
Fig. 12-19

For a short time, the path of the planc in Fig. 12-19a is described by
y = (0.001x%) m. If the planc is rising with a constant velocity of 10 m/s.
determine the magnitudes of the velocity and acceleration of the plane
whenitisat y = 100 m.

SOLUTION
When y = 100m, then 100 = 0.0012* or x = 3162 m. Also. since
vy = 10 m/s, then

y =l 100m = (10m/s) ¢ t=10s

Velocity. Using the chain rule (sce Appendix C) to find the

rclationship between the velocity components, we have
& g% - =
U=y = E(O.(X]lx ) = (0.002x)x = 0.002xv, (1)

10 m/s = 0.002(316.2 m)(xv,)
v, = 1581 m/s

The magnitude of the velocity is therefore

v= \/v,’ + o) = \/(15.81 m/sf + (10m/s)* = 187 m/s Anx

Acceleration. Using the chain rule, the time denvative of Eq. (1)
gives the relation between the aceeleration components.

a, = vy = 0.002xv, + 0.002x2, = 0.002(x; + xa,)
When x = 3162 m. v, = 1581 m/s. &, = a, = 0.

0 = 0.002((15.81 m/s)* + 316.2 m(a,))
a, = —0.791 m/s

The magnitude of the plane’s acceleration is therefore

a=\/a + & =\/ (-0 m/$F + (0 m/s*)?
= (.791 m/s® Ans.

These results are shown in Fig. 12-1956.
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EXAMPLE |12.14

When the skier reaches point A along the parabolic path in Fig. 12-27a,
he has a speed of 6 m/s which is increasing at 2 m/s®. Determine the
direction of his welocity and the direction and magnitude of his
acceleration at this instant. Neglect the size of the skier in the calculation.

SOLUTION

Coordinate System. Although the path has been expressed in terms
of its x and y coordinates, we can still establish the ongin of the n, t axes
at the fixed point A on the path and determine the components of v
and a along these axes, Fig. 12-27a.

Velocity. By definition. the velocity is always directed tangent to the
path. Since y = %x°. dy/dx = x. then at x = 10 m, dy/dx = 1.
Hence, at A, v makes an angle of @ = tan™'1 = 45” with the x axis,
Fg 12-27a. Therefore,

vu=6mfs 457 Ans

The acceleration is determined from a = #u, + (v%/p)u, . However,

it is first necessary to determine the radius of curvature of the path at
A (10 m, 5 m). Since d’y/dx* = . then

L+ dyda [V + (G P
P Pypd ] A

The acceleration becomes

=2828m

2, =vny +—n,
P

(6 m/s)?
B2Bm "
= {2u, + 1.273u,}m/s*

Asshown in Fig. 12-275,

=2u, +

a=\/2mi)P + (1273 m/s2) = 237 m/s?
¢ =t = 575

1.273
Thus, 45° + 90° + 57.5° — 180° = 12.5° so that,
a=23Tm/ss 125% Ans

NOTE: By using n, t coordinates, we were able to readily solve this
problem through the use of Eq. 12-18, since it accounts for the separate
changes in the magnitude and direction of v.

10m

(2)

\I.ermfs:

2m/s’

(b)
Fig. 12-27

/Ko
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12.9 Absolute Dependent Motion
Analysis of Two Particles

In some types of problems the motion of one particle will depend on the
corresponding motion of another particle. This dependency commonly
occurs if the particles, here represented by blocks, are interconnected by
mextensible cords which are wrapped around pulleys. For example, the
movement of block A downward along the inclined plane in Fig. 12-36
will cause a corresponding movement of block B up the other incline. We
can show this mathematically by first specifying the location of the blocks
using position coordinates s, and s 5. Note that cach of the coordinate axes
is (1) measured from a fixed point (Q) or fixed datum line, (2) measured
along cach inclined planc in the direction of motion of cach block, and
(3) has a positive sense from Cto A and D to B. If the total cord Jength is
It the two position coordinates are related by the equation

Satleptsy=1Ir
Here Ie-p 1s the length of the cord passing over arc CD.Taking the time

derivative of this expression, realizing that I and I remain constant,
while s, and s, measure the segments of the cord that change in length.

We have
ol
dt  dt

The negative sign indicates that when block A has a velocity downward,
ic.. in the direction of positive s4. it causes a corresponding upward
velocity of block B: i.c., B moves in the negative s direction.

In a similar manner. time differentiation of the velocities yields the
relation between the accelerations, Le..

=0 or wg=-v,

g = —a,4

A more complicated example is shown in Fig, 12-37a. In this case, the
position of block A is specified by s54. and the position of the end of the
cord from which block B is suspended is defined by s5. As above, we
have chosen position coordinates which (1) have their origin at fixed
points or datums, (2) arc measured in the direction of motion of cach
block. and (3) are positive to the right for 5, and positive downward for
5. During the motion, the length of the red colored segments of the cord
in Fig. 12-37a remains constant. If | represents the total length of cord
minus these segments, then the position coordinates can be related by
the equation

2’, + Il T S4= l
Since [ and h are constant during the motion. the two ime derivatives yield
2up=—v, 2ag=-—a,

Hence, when B moves downward (+55). A moves to the left (—s,) with
twice the motion.

Fig, 12-36

Fig. 12-37
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EXAMPLE |12.26

Planc A in Fig. 12-44a is flying along a straight-line path, whereas
plane B is flying along a circular path having a radius of curvature of
ps = 400 km. Determine the velocity and acceleration of B as
measured by the pilot of A.

SOLUTION

Velocity. The origin of the x and y axes are located at an arbitrary
fixed point. Since the motion relative to planc A is to be determined,
the translating frame of reference X', y' s attached to it, Fig. 12-44a.
{a) Applying the relative-velocity equation in scalar form since the velocity
vectors of both planes are parallel at the instant shown, we have

(+1) Ug = Uy + Uyy
600 km/h = 700 km/h + v,
'l,“ 'b’a"lA = _lm km/h ~ lm km/hl A"S.

ma=T0kmpl ooy The vector addition is shown in Fig. 12-445.

Acceleration. Planc B has both tangential and normal components
of acceleration since it is flying along a curved path. From Eq. 12-20),

(b) the magnitude of the normal component is
v (600 km/h)?
(ag)a =— = e = 900 km/h

Applying the relative-acceleration equation gives
ag=a,+ag,
0008 — 1005 = 50§ + g,
Thus,
ag = {900i — 1505} km/h?
From Fig. 12-44c. the magnitude and direction of a,, are therefore

150
900

NOTE: The solution to this problem was possible using a translating

0 frame of reference. since the pilot in plane A & “translating.”

By 4 Observation of the motion of plane A with respect to the pilot of

planc B, however, must be obtained using a rofating sct of axes

() attached to plane B. (This assumes. of course, that the pilot of B is

Fig. 12-44 fixed in the rotating frame. so he does not turn his eyes to follow the
’ motion of A.) The analysis for this casc is given in Example 16.21.

ag s = 912km/h? 0 = tan = 046" < Ans.

500 km &°

150 km b’
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EXAMPLE |16.2

The motor shown in the photo is used to turn a wheel and attached
blower contained within the housing. The details of the design are
shown in Fig. 16-6a. If the pulley A connected to the motor begins to
rotate from rest with a constant angular acceleration of a4 = 2 rad/s”,
determine the magnitudes of the velocity and acceleration of point P
on the wheel, after the pulley has turned two revolutions. Assume the
transmission belt does not slip on the pulley and wheel.

SOLUTION

Angular Motion. First we will convert the two revolutions to
radians. Since there are 2o rad in one revolution, then

27 rad
B, =2rey
| re

) = 1257 rad

Since a4 is constant. the angular velocity of pulley A is therefore

(C+) “’2="ﬁ2)+2at(0_00)
why =0+ 2(2rad/s*)(1257 rad — 0)
wy = 7(“) rad/s

The belt has the same speed and tangential component of
acccleration as it passes over the pulley and wheel. Thus,
v=wury = @prg. 100 rad/s (.15 m) = wg(04m)
wy = 2.63% rad/s
a4 = ayry = agrg: 2rad/s? (015 m) = ag(04m)
ay = 0.750 rad/s®

Motion of P. As shown on the kinematic diagram in Fig. 16-6b,
we have
vp = wyyg = 269 rad/s (04 m) = LO6m/s Ans.
(ap) = agrg = 0.750 rad/s* (0.4 m) = 03 m/s?
(ap)n = whryg = (2659 rad/s)*(0.4 m) = 2.827 m/s*

ap = V(03 m/s’f + 2827 m/s’) = 284 m/s*  Ans Fig. 16-6
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EXAMPLE |16.4

At a given instant, the cylinder of radius r, shown in Fig. 16-8, has an
angular velocity @ and angular acceleration a. Determine the
velocity and acceleration of its center G if the cylinder rolls without

slipping.

SOLUTION

Position Coordinate Equation. The cylinder undergoes gencral
planc motion since it simultancously translates and rotates. By
inspection, point & moves in a straight line Lo the left, from G 10 G, as
the cylinder rolls, Fig. 16-8. Consequently its new position G* will be
specificd by the horizontal position coordinate s, which is measured
from G to G'. Also. as the cylinder rolls (without slipping), the arc
length A"B on the rim which was in contact with the ground from
Ato B, is equivalent 1o s Conscquently, the motion requires the
radial line GA to rotate @ to the position G'A". Since the arc
A'B = r8, then G travels a distance

sg =rf

Time Denvatives. Taking successive time derivatives of this
equation, rcalizing that r is constant, @ = d8/dt. and e = dw/d!. gives

the necessary relationships:
g = 0
UG = re Ans
a; = ra Ans

NOTE: Remember that these relationships are valid only if the
cylinder (disk. wheel, ball, etc.) rolls without slipping.
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EXAMPLE |16.6

The link shown in Fig. 16-13a is guided by two blocks at A and B,
which move in the fixed slots If the velocity of A is 2 m/s downward,
determine the velocity of B at the instant 8 = 45°, va=2mjs| i

SOLUTION (VECTOR ANALYSIS)

Kinematic Diagram. Since points A and B are restricted to move
along the fixed slots and v 4 is directed downward, the velocity v must
be directed horizontally to the right, Fig. 16-135. This motion causes
the link to rotate counterclockwise; that is, by the right-hand rule the
angular velocity e is directed outward. perpendicular to the planc of
motion. Knowing the magnitude and direction of v, and the lines of
action of vy and e, il is possible to apply the velocity cquation
Yu =¥, + @ X 1y, to points A and B in order to solve for the two
unknown magnitudes vy and e. Since rg 4 is needed, it is also shown

G = 45° o

in Fig. 16-135.
Velocity Equation. Expressing cach of the vectors in Fig. 16-136 in ¥y
terms of their i, j. k components and applying Eq. 16-16 to A. the base
point, and B, we have ‘
X

Vg = Vat @ X Ty,
v = —2§ + |wk % (0.2 sin 45°1 — 0.2 cos 45%)|
v = —2j + 02w sin45% + 020 cos 4359
Equating the 1 and j components gives
vy = 02wcos 45"  0=-2+ 02wsin45°

Thus,
w = 141 rad/s?

vy =2m/s— Ans

Since both results are positive, the directions of vy and @ are indeed
correct as shown in Fig. 16-13b. It should be emphasized that these
results are valid only at the instant @ = 45°. A recalculation for
@ =44" yiclds vy =207 m/s and @ = 144 rad/s; whercas when
8 = 46" vy = 1.9 m/s and @ = 13.9 rad/s, ctc.

NOTE: Once the velocity of a point (A) on the link and the angular

veloaity are known, the velocity of any other point on the link can be

determined. As an exercise, see if you can apply Eq. 16-16 to points A
and C or to pomnts B and C and show that when @ = 45°,
v = 3.16 m/s, directed at an angle of 18.4° up from the horizontal.
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EXAMPLE |16.19

At the instant @ = 60°, the rod in Fig. 16-33 has an angular velocity of
3 rad/s and an angular acceleration of 2 rad/s”. At this same instant,
collar C travels outward along the rod such that when x = 0.2 m the
velocity is 2m/s and the acceleration is 3 m/s”, both measured
relative to the rod Determine the Coriolis acceleration and the
veloaty and acceleration of the collar at this instant.

SOLUTION

Coordinate Axes. The origin of both coordinate systems is located
at point O, Fg. 16-33. Since motion of the collar is reported relative to
the rod, the moving x, y, £ frame of reference is attached to the rod.

Kinematic Equations.
ve = Yo + l X 1go + (Yei0) ey ()
ac =20+ 0 X re0+ 0 X (@ X 1) + 20 % (Ycro)ey: + (3c/0) eyz

(2)
It will be simpler to express the data in terms of 1, j. k component
vectors rather than L J. K components. Hence,

Motion of Motion of C with respect
moving reference to moving reference
vo=10 feio = (021} m
ag =0 (Vc.o)xp: = (2i} m/s
1 = {-3k] rad/s (2c/0) 5y = {3i} m/s?

0 = {2k} rad/s®
The Coriolis acceleration is defined as
2coe = 200 X (Yio) ey = 2(-3k) X (%) = {-12j} m/s® Ans
This vector 1s shown dashed in Fig. 16-33. 1f desired. it may be resolved
into I, J components acting along the X and Y axes respectively.
The wvelocity and acceleration of the collar are determined by
substituting the data into Eqgs. | and 2 and evaluating the cross products,
which yiclds
Yo =Yoo + ﬂ x T'cio <+ ('C/O)jﬁ
=0+ (=3k) x (0.2i) + 2
= {2i — 06§} m/s Ans.
ac =25+ 0 Xrgo + 0 % (8 X 1g0) + 20 X (Vejo)aye + (8ci0)syz
=0+ (—=2k) x (0.21) + (-3k) x [(—=3k) x (0.21)] + 2(—3k) x (2) + 3i
=0-04; - 180 — 12 + 3;
= {1208 — 1245} m/s® Ang
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KINETICS

EXAMPLE |14.6

Blocks A and B shown in Fig. 14-14a have a mass of 10 kg and 100 kg,
respectively. Determine the distance B travels when it is released
from rest to the point where its speed becomes 2 m/s.

SOLUTION

This problem may be solved by considering the blocks separately and
applying the principle of work and encrgy to cach block. However, the
work of the {unknown) cable tension can be eliminated from the
analysis by considering blocks A and B together as a single system.
Work (Free-Body Diagram). As shown on the free-body diagram
of the system, Fig. 14-14b. the cable force T and reactions R; and R,
do no work. since these forces represent the reactions at the supports
and consequently they do not move while the blocks are displaced.
The weights both do positive work if we assume both move
downward, in the positive sense of direction of s, and s,

Principle of Work and Energy. Rcalizing the blocks are relcased
from rest, we have

I + U .= i1,
{%"M("Aﬁ ‘*‘%ma(l‘nﬁ} + (WyAs, + WyAsy) =
{‘%’”A['UA)% + %mu("a)g}
{0+ 0} + {981 N (Asy) + 981 N (Asy)} =
{310 kg)(va)3 + (100 kg)(2 m/s)*} (1)
Fig. 14-14 Kinematics. Using the methods of kinematics discussed in Sec. 12.9,
it may be seen from Fig. 14-14a that the total length [ of all the vertical

scgments of cable may be expressed in terms of the position
coordinatces s, and sz as

spFaAsy=1
Hence, a change in position yields the displacement equation
Asy +4Asp =10
As, = —4 Asy

Here we see that a downward displacement of one block produces an
upward displacement of the other block. Note that As, and Asg must
have the same sign convention in both Eqgs. 1 and 2. Taking the time

dernivative yields
vy = —4vg = —4(2mjs) = -8 m/s (2)
Retaining the negative sign in Eq. 2 and substituting into Eq. 1 viclds
Asy = 0883 m | Ans.
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EXAMPLE |15.4

The 15-Mg boxcar A is coasting at 1.5 m/s on the horizontal track
when it encounters a 12-Mg tank car B coasting at .75 m/s toward it
as shown in Fig. 15-8a. If the cars collide and couple together,
determine (a) the speed of both cars just after the coupling. and
(b) the average force between them if the coupling takes place in 0.8 s.

L3 mfs 0.75m/s

-—

=)

SOLUTION

Part (a) Free-Body Diagram.* Here we have considered both cars
as a single system, Fig, 15-8b. By inspection, momentum is conserved
in the x direction since the coupling force F is internal 1o the system
and will therefore cancel out. It is assumed both cars. when coupled,
move at v, in the positive x direction.

Conservation of Linear Momentum.

(=) my(vahy + mglvg)y = (my + mg)v,
(15000 kg)(1.5 m/s) — 12 000 kg(0.75 m/s) = (27 000 kg)w,
v =05m/s— Ans.

Part (b). The average (impulsive} coupling force, Fyyy, can be
determined by applying the principle of lincar momentum Lo either
one of the cars.

Free-Body Diagram. Asshown in Fig. 15-8¢c, by isolating the boxcar

the coupling force is external to the car.

Principle of Impulse and Momentum. Since [Fdt = F,yy At
= Fyy5(0.85), we have

(%) T / F o i s
(15000 kg) (L5 m/s) — Fug(085) = (15000 kg)(0.5 m/s)
Fivg = 188 KN Ans

NOTE: Solution was possible here since the boxcar’s final velocity
was obtained in Part (a). Try solving for Fy, by applying the principle
of impulse and momentum to the tank car.

*Oaly horizontal forces are shown oa the free-body diagram.
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EXAMPLE |17.4

The peadulum in Fig. 17-7 is suspended from the pin at O and consists

of two thin rods, cach having a weight of 10 1b. Determine the moment 2 —

of incrtia of the pendulum aboul an axis passing through (a) point O, —I—

and (b) the mass center G of the pendulum. ¥y

"

SOLUTION 1

Part (a). Using the table on the inside back cover, the moment of B A_I. c

inertia of rod OA about an axis pcr;x:ndicular to the page and passing

through point O of the rod is I = $ml*. Hence, |—l "—‘l—‘ “—I
1 » 1 10Ib g ) Fig. 17-7

(oslo = 5 = 5 (Fg1ez 107 = 014slug- ¢

This same value can be obtained using I; = & mi” and the parallcl-
axis theorem.

(Ioa)o = %m[’ + md? = '1'( i )(2 fi)? + (ﬂb——)[l ft)?

T2\ 322 1y 322 fr/s?
= (0414 slug- it*
For rod BC we have
1 1{ 100b 10 1b
R .- e
Uaclo =g3ml> + md™ = 7\ 222/ * 3252/ @™
= 1.346 slug -

The moment of inertia of the pendulum about O is therefore
Ip = 0414 + 1346 = 176 slug- i* Ans

Part (b). The mass ceater G will be located relative to point O.
Assuming this distance to be ¥, Fig. 17-7, and using the formula for
determining the mass center, we have

__3m _100222) + 200323
Y= 3m - Q0B322 + (0322 h

The moment of inertia I; may be found in the same manner as I,
which requires successive applications of the parallel-axis theorem to
transfer the moments of inertia of rods OA and BC to G. A more
direct solution. however, involves using the result for I, 1.e..

201b
Ip=1g+ md*, 1.76 slug‘ft2 = Jg + (m)(ljﬂfl}z
I; = 0362 slug - [ Ans.
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EXAMPLE |17.7

A uniform 50-kg crate rests on a horizontal surface for which the
cocfhicient of kinetic friction s gy = 0.2. Determine the acceleration
if a force of P = 600 N is applied to the crate as shown in Fig. 17-12a.

o

(2)

SOLUTION

Free-Body Diagram. The force P can cause the crate cither to slide
or to tip over. As shown in Fig. 17-125b. it is assumed that the crate
shides so that F = u, N = 0.2N-. Also, the resultant normal foroe N
acts at 0. a distance x (where ) < x = 05 m) from the crate’s center
line.* The three unknowns are N,-. x, and ag.

Equations of Motion.
S3IF, = mlag),: 600N — 02N = (S0kg)ag (1)
+TEF, = m(ag)y: Ne—4%05N=0 (2)

C+EIMg=10; —600N(03m) + N{x) — 02NA05m) =0 (3)

Solving,
e = 405N
x = 046Tm
a; = 100 mjs* — Ans
Since x = 046Tm < (L3 m, indeed the crate slides as originally Fig. 17-12
assumed.

NOTE: If the solution had given a value of x > 0.5 m, the problem
would have to be reworked since tipping occurs. If this were the casc,
N¢ would act at the corner point A and F = 0.2N..

* The Ene of action of N does not necessarily pass through the mass ceater G (x = 0),
since N must counteract the tendency for tipping caused by P. See Sec Kl of
Enpineering Mechanics: Statics.
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EXAMPLE |17.10

At the instant shown in Fig. 17-16a, the 20-kg slender rod has an
angular velocity of @ = 5 rad/s. Determine the angular acceleration
and the horizontal and vertical components of reaction of the pin on
the rod at this instant.

SOLUTION

Free-Body and Kinetic Diagrams. Fig. 17-16b. As shown on the
kinetic diagram, point G moves around a circular path and so it has
two components of acceleration. It is important that the tangential
component @, = ar; act downward since it must be in accordance
with the rotational sense of @. The three unknowns are O, O,. and a.

Equation of Motion.
EIF, = matrg: 0, = (20 kg)(5 rad/s)*(1.5m)
+13F = marg; -0 + 20(981)N = (20kg)(a){1.5m)
C+EMg = lpa:  Of15m) + 60N-m = [(20kg)(3m)}a
Solving

0,=70N 0,=1905N a=3%rad/ss Ans

A more dircct solution to this problem would be to sum moments
about point O to climinate O, and 0, and obtain a direct solution for
a. Here,

C+EIMp = Z(My)p;: 6ON-m + 20(981)N(15m) =

[%(20kg)(3 m)*a + (20 kg(a) (15 m)}(15 m)
a = 5.90 rad/s? oo
Also.since I = 2ml? for a slender rod, we can apply

C+EMp = o 60N+-m + 20(9.81) N(15m) = [{20 kg)(3 m)*]a
a = 5.9 rad/s* Ans

NOTE: By comparison. the last equation provides the simplest solution
for @ and does not require usc of the kinetic diagram.

maf;

(&)
Fig. 17-16
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EXAMPLE |18.1

The bar shown in Fig. 18-11a has a mass of 10 kg and is subjected to a
couple moment of M = 50 N+m and a force of P = 80N, which is
always applicd perpendicular 1o the end of the bar. Also, the spring
has an unstretched length of 0.5 m and remains in the vertical position
duc to the roller guide at B. Determine the total work done by all the

forces acting on the bar when it has rotated dowaward from 8 = (F 1o
8 = 90",

SOLUTION
First the free-body diagram of the bar is drawn in order to account for
all the forces that act on it, Fig. 18-11b.

Weight W. Since the weight 10{(U81)N = 081N is displaced
downward 1.5 m. the work 1s

Uy = BIN(15m) = 1472)
Why is the work positive?

Couple Moment M. The couple momenl rotates through an angle
of @ = 7/2 rad. Hence,

Uy = SON-m(w/2) = 78351
Spring Force F,. When @ = (FF the spring isstretched (0.75 m— 0.5 m)

= 025m, and when @ =%" the stretch 5 (2m + 0.75m)
—05m = 225 m.Thus,

U, = ~[2(30 N/m)(2.25 m)? — 1(30 N/m)(0.25 m)?] = ~75.01

By inspection the spring does negative work on the bar since F; acts in
the opposite direction to displacement. This checks with the result.

Force P. As the bar moves downward, the force is displaced through
a distance of (7/2)(3 m) = 4.712 m. The work is positive. Why?

Up = 80N(4712 m) = 377.0]

Pin Reactions. Forces A, and A, do no work since they are not
displaced.

Total Work. The work of all the forces when the bar is displaced is thus

U=1472) + T85) - 750 +3770) =528] Ans
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EXAMPLE |18.5

The 10-kg rod shown in Fig. 18-135a 15 constrained so that its ends
move along the grooved slots. The rod s initially at rest when @ = 0°.
— If the slider block at B is acted upon by a horizontal force P = SON,
"Dl A determine the angular velocity of the rod at the instant & = 45°
‘ Neglect friction and the mass of blocks A and B.

SOLUTION
Why can the principle of work and energy be used to solve this problem?

Kinetic Energy (Kinematic Diagrams). Two kincmatic diagrams of
the rod, when it is in the initial position | and final position 2, are

B shown in Fig. 18-15b. When the rod s in position |, T; = () since
(vg); = @y = . In position 2 the angular velocity is @, and the
(2) velocity of the mass center is (v;),. Hence, the kinetic energy is

P=50N

T; = im(ug)} + Hged
= 210 kg)(xe)} + 3[(10 kg) (08 m)?]o3
= 5(vg)i + 0.2667(w,)?
The two unknowns (v,; ), and e, can be related from the instantancous
center of zero velocity for the rod. Fig. 18-15b. It is seen that as A
moves downward with a velocity (v,);, B moves honizontally to the
left with a velocity (vg)>. Knowing these directions, the IC is located as
shown in the figure. Hence,
(l'c)z = rghicez = (0.4 tan 45° l'l'l)toz
= 04w,

(rc): =0 G

Therefore,
T, = 0802 + 0266762 = 1066702
Of course, we can also determine this result using T = 1 [0l

Work (Free-Body Diagram). Fig. 18-15¢. The normal forces Ny
and N do no work as the rod is displaced. Why? The 98.1-N weight is
displaced a vertical distance of Ay = (0.4 — (.4 cos 45°) m; whereas
the SO-N force moves a horizontal distance of s = (0.8 sin 45°) m.
Both of these forees do positive work. Why?
Principle of Work and Energy.
{T,} + (ZU,3} = (T3}
{Ti} + {(WaAy + Ps} = {I5}
{0} + {BIN(04m — 04 cos45°m) + SON(0.8sin 45° m) )

= {1.0667w3 J)

Solving for e, gives

wy = 6.11 rad/s ) Ans.
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EXAMPLE |19.1

At a given instant the 3-kg slender bar has the motion shown in
Fig. 19-3a. Determine its angular momentum about point & and
about the IC at this instant.

rA=2m/sl

8

SOLUTION
Bar. The bar undergoes general plane motion. The IC is established
in Fig. 19-3b, so that

_ 2mys
“- 4 m cos 30°
g = (05774 rad/s)(2m) = 1.155 m/s

= 5774 rad/s

Thus,
(C+) Hg=Icw=|%(5 kg)(4 m)*](0.5774 rad/s) = 3.85 kg - m’/s ) Ans

2m/s

Adding I ;e and the moment of mu; about the IC yiclds

(C+) Hye = lgw +d(mug)
= [-,%(5 ka)(4 m)2](05774 rad/s) +(2 m)(5 kg)(1.155 m/s)

=154 kg-m?/s) Ans.
We can also use
(C+) Hic = hicw
(®) = [ (5 kg)(d mP + (5 keg)(2 m)?] (05774 rad/s)
Fip. 19-3 =154 kg-m?/s) Ans.
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