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Summary This paper introduces the concepts of time-specific weak and strong cross-
section dependence, and investigates how these notions are related to the concepts of weak,
strong and semi-strong common factors, frequently used for modelling residual cross-section
correlations in panel data models. It then focuses on the problems of estimating slope
coefficients in large panels, where cross-section units are subject to possibly a large number
of unobserved common factors. It is established that the common correlated effects (CCE)
estimator introduced by Pesaran remains asymptotically normal under certain conditions on
factor loadings of an infinite factor error structure, including cases where methods relying on
principal components fail. The paper concludes with a set of Monte Carlo experiments where
the small sample properties of estimators based on principal components and CCE estimators
are investigated and compared under various assumptions on the nature of the unobserved
common effects.

Keywords: Common correlated effects (CCE) estimator, Panels, Strong and weak cross-
section dependence, Weak and strong factors.

1. INTRODUCTION

The problem of error cross-section dependence in panel regressions has attracted considerable
attention over the past decade. It is increasingly recognized that conditioning on variables specific
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to the cross-section units alone need not deliver cross-section error independence, and neglecting
such dependencies can lead to biased estimates and spurious inference. How best to account
for cross-correlation of errors in panels depends on the nature of the cross-dependence, and
the size of the time series dimension (7") of the panel relative to its cross-section dimension
(N). When N is small relative to 7, and the errors are uncorrelated with the regressors cross-
section dependence can be modelled using the seemingly unrelated regression equations (SURE)
approach of Zellner (1962). But when N is large relative to 7', the SURE procedure is not feasible.
In such cases, there are two main approaches to modelling cross-section dependence in panels: (i)
spatial processes pioneered by Whittle (1954) and developed further by Anselin (1988), Kelejian
and Prucha (1999) and Lee (2004); and (ii) factor models introduced by Hotelling (1933), and
first applied in economics by Stone (1947). Factor models have been used extensively in finance
(Chamberlain and Rothschild, 1983, Connor and Korajzcyk, 1993, Stock and Watson, 2002, and
Kapetanios and Pesaran, 2007), and in macroeconomics (Forni and Reichlin, 1998, and Stock and
Watson, 2003), as a data shrinkage procedure where correlations across many units or variables
are modelled by means of a small number of latent factors.

In this paper, we show that factor models can be employed more generally to characterize
other forms of dependence such as dependence across space or social networks. Initially, we
introduce the concepts of weak and strong cross-section dependence defined at a point in time
and with respect to a given information set. These concepts generalize the notions of weak
(or idiosyncratic) and strong cross-section dependence advanced in the literature. Forni and
Lippi (2001), building on Forni and Reichlin (1998), consider a double index process over both
dimensions (time and space) simultaneously, and define it as idiosyncratic (or weakly dependent)
if the weighted average of the process, computed over both dimensions, converges to zero in
quadratic mean for all sets of weights satisfying certain granularity conditions. The double index
process is said to be strongly dependent (again over both dimensions) if the weighted averages
do not tend to zero.! These concepts, that are applicable to dynamic factor models, provide a
generalization of the notions of weak and strong dependence developed by Chamberlain (1983)
and Chamberlain and Rothschild (1983) for the analysis of static factor models.

Our notions of weak and strong cross-section dependence are more widely applicable and
do not require the double index process to be stationarity over time, and allow a finer distinction
between strong and semi-strong cross-section dependence. Convergence properties of weighted
averages is of great importance for the asymptotic theory of various estimators and tests
commonly used in panel data econometrics, as well as for arbitrage pricing theory and portfolio
optimization with a large number of assets. It is clear that the underlying time series processes
need not be stationary, and concepts of weak and strong dependence that are more generally
applicable are needed. We also investigate how weak and strong cross-section dependence are
related to the notions of weak, strong and semi-strong common factors, which may be used to
represent very general forms of cross-section dependence.

We then turn our attention to the second main concern of this paper, namely the estimation
of slope coefficients in the context of panel data models with general cross-section error
dependence. Building on the first part of the paper, we show that general linear error dependence
in panels can be modelled in terms of a factor model with a fixed number of strong factors and
a large number of non-strong factors. We allow the number of non-strong factors to rise with N,
and establish that the common correlated effects (CCE) estimator introduced by Pesaran (2006)

! For further developments and discussions, see Anderson et al. (2009).
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remains consistent and asymptotically normal under certain conditions on the loadings of the
infinite factor structure, including cases where methods relying on principal components fail.

A Monte Carlo study documents these theoretical findings by investigating the small sample
performance of estimators based on principal components (including the recent iterative principal
component (PC) procedure proposed by Bai, 2009) and the CCE estimators under alternative
assumptions on the nature of unobserved common effects. In particular, we examine and compare
the performance of these estimators when the errors are subject to a finite number of unobserved
strong factors and an infinite number of weak and/or semi-strong unobserved common factors. As
predicted by the theory the CCE estimator performs well and show very little size distortions, in
contrast with the iterated PC approach of Bai (2009), which exhibit significant size distortions.
The latter is partly due to the fact that in the presence of weak or semi-strong factors the PC
estimates of factors need not be consistent. This problem does not affect the CCE estimator
because it does not aim at consistent estimation of the factors but deals with error cross-section
dependence generally by using cross-section averages to mop up such effects. As shown in
Pesaran (2006), the CCE estimator continues to be valid even if the number of factors is larger
than the number of cross-section averages. The present paper goes one step further and shows
that this property holds even if the number of weak factors tend to infinity with N. Note that
for variances of the observables to be bounded, the number of strong factors must be fixed and
cannot vary with N.

The plan of the remainder of the paper is as follows. Section 2 introduces the concepts of
strong and weak cross-section dependence. Section 3 discusses the notions of weak, semi-strong
and strong common factors. Section 4 introduces the CCE estimators in the context of panels
with an infinite number of common factors. Section 5 describes the Monte Carlo design and
discusses the results. Finally, Section 6 provides some concluding remarks. The mathematical
details are relegated to the appendices.

Notations. [1;(A)| > |[A2(A)] = --- > |1, (A)| are the eigenvalues of a matrix A € M"*",
where M"*" is the space of n x n complex-valued matrices. A" denotes the Moore—Penrose
generalized inverse of A. The column norm of A € M™*" is [|A|l; = max;<j<, » ., |a;;|. The
row norm of A is ||Alcc = maxi<i<, »_j_; |aj|. The spectral norm of A is | Al = [A1(AAN]'/2,
and ||A|> = [Tr(AA’)]'/2. K is used for a fixed positive constant that does not depend on N.
Joint convergence of N and T will be denoted by (N, T) - 0. For any random variable
x, Ixlz, = (E|x|?)YP, for p > 1, denotes L, norm of x. For any k x 1 vector of random

. 1/p L
variables x; = (x1, x2, ..., xz), ||Xk e, = (Zle E|x; |P> . We use — to denote convergence
in L, norm.

2. CROSS-SECTION DEPENDENCE IN LARGE PANELS

Consider the double index process {z;;,i € N,t € Z}, where z;, is defined on a suitable
probability space, the index ¢ refers to an ordered set such as time, and i refers to units of an
unordered population. Our primary focus is on characterizing the correlation structure of the
double index process {z;;} over the cross-sectional dimension at a given point in time, ¢. To this
end, we make the following assumptions:

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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ASSUMPTION 2.1. Let I, be the information set available at time t. For each t € T, 2y; =
(Z1sy - --» 2n:) has the conditional mean, E(zy:;|Z;—1) =0, and the conditional variance,
Var(zy;|Z,—1) = XNy, Where Xy, is an N x N symmetric, non-negative definite matrix. The
(i, j)th element of Xy;, denoted by oy ;j, is bounded such that 0 < oy ;i; < K, for i =
1,2,..., N, where K is a finite constant independent of N.

ASSUMPTION 2.2. Let Wy; = (W 115 ---» WN.Nt)s for t €T CZ and N € N, be a vector
of non-stochastic weights. For any t € T, the sequence of weight vectors {Wy,} of growing
dimension (N — 00) satisfies the ‘granularity’ conditions:

Wyl = O(N~7), @.1)

WN, jt

= O(N?) foranyj e N. (2.2)
Wl

Zero conditional mean in Assumption 2.1 can be relaxed to E(zy|Z;—1) = my ,_, with
iy .1 being a pre-determined function of the elements of Z,_;. Assumption 2.2, known in
finance as the granularity condition, ensures that the weights {wy ;;} are not dominated by a
few of the cross-section units. Although we have assumed the weights to be non-stochastic, this
is done for expositional convenience and can be relaxed by requiring that conditional on the
information set, Z;_;, the weights, wy,, are distributed independently of zy;. To simplify the
notations in the rest of the paper we suppress the explicit dependence of zy,, wy, and other
vectors and matrices and their elements on N.

In the following, we describe our notions of weak and strong cross-sectionally dependent
processes, and then introduce the related concepts of weak, strong and semi-strong factors.

2.1. Weak and strong cross-section dependence

Consider the weighted averages, Z,; = Z,N:1 WirZir = W, Z;, for t € T, where z, and w, satisfy
Assumptions 2.1 and 2.2. We are interested in the limiting behaviour of z,,, at a given point in
timet € 7,as N — oo.

DEFINITION 2.1 (Weak and strong cross-section dependence). The process {z;;} is said to
be cross-sectionally weakly dependent (CWD) at a given point in time t € T conditional on
the information set I,_1, if for any sequence of weight vectors {w,} satisfying the granularity
conditions (2.1) and (2.2) we have

ngnoo Var(w,z, | Z,_;) = 0. (2.3)
{zi:} is said to be cross-sectionally strongly dependent (CSD) at a given point in time t € T
conditional on the information set L;_y, if there exists a sequence of weight vectors {w,} satisfying

(2.1) and (2.2) and a constant K independent of N such that for any N sufficiently large (and as
N — o0)

Var(w,z,|Z,_1) > K > 0. (2.4)

The concepts of weak and strong cross-section dependence proposed here are defined
conditional on a given information set, Z,_;, which allows us to consider cross-section
dependence properties of {z;;} without having to limit the time series features of the process.

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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Various information sets could be considered in practice, depending on the application under
consideration. For dynamic (possibly non-stationary) models the information set could contain
all lagged realizations of the process {z;;}, that is Z,_; = {z,_1,2,—>,....}, or only the
starting values of the process. For stationary panels, unconditional variances of cross-section
averages could be considered. Conditioning information set could also contain contemporaneous
realizations, which might be useful in applications where a particular unit has a dominant
influence on the rest of the units in the system.

REMARK 2.1. Anderson et al. (2009) propose definitions of weak and strong cross-section
dependence for covariance stationary processes, with spectral density F,(w) (see also Forni and
Lippi, 2001). According to their definition, {z;,} is weakly dependent if the largest eigenvalue of
the spectral density matrix, A{(w), is uniformly bounded in w and N. {z;,} is strongly dependent
if the first m > 1 (m < K) eigenvalues (A{(w), ..., A, (w)) diverge to infinity as N — oo, for
all frequencies. In contrast to the notions of weak and strong dependence advanced by Forni
and Lippi (2001) and Anderson et al. (2009), our concepts of CWD and CSD do not require the
underlying processes to be covariance stationary and have spectral density at all frequencies.

REMARK 2.2. A particular form of a CWD process arises when pairwise correlations take
non-zero values only across finite subsets of units that do not spread widely as sample size
increases. A similar case occurs in spatial processes, where for example local dependency exists
only among adjacent observations. However, we note that the notion of weak dependence does
not necessarily involve an ordering of the observations or the specification of a distance metric
across the observations.

The following proposition establishes the relationship between weak cross-section
dependence and the asymptotic behaviour of the spectral radius of X, (denoted by A;(X;)).

PROPOSITION 2.1. The following statements hold: (a) The process {z;;} is CWD at a point in
timet € T, if A(X,) is bounded in N. (b) The process {z;;} is CSD at a point in timet € T, if
and only if for any N sufficiently large (and as N — o0), N~'A(%,) > K > 0.

Since A 1(X;) < || Z/]l;, it follows from (B.1) in the Appendix that both the spectral radius
and the column norm of the covariance matrix of a CSD process are unbounded in N.? A similar
condition also arises in the case of time series processes with long memory or strong temporal
dependence where the autocorrelation coefficients are not absolutely summable (Robinson,
2003).

REMARK 2.3. The definition of idiosyncratic process by Forni and Lippi (2001) differs from
our definition of CWD in terms of the weights used to construct the weighted averages. While
Forni and Lippi assume limy_, » [|W|| = 0, our granularity conditions (2.1) and (2.2) imply that,
foranyt € 7, limy_ oo N 3=e [lw,]| = Oforany e > 0. This difference in the definition of weights
has important implications for the cross-sectional properties of the processes. In particular, under
limy_ oo [[W:]| =0, it is possible to show that the idiosyncratic process (and hence also the

2 See Horn and Johnson (1985, pp. 297-98).
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definition of weak dependence a la Anderson et al., 2009) imply bounded eigenvalues of the
spectral density matrix. Conversely, under (2.1) and (2.2), it is clear that if A;(%,) = O(N'~¢)
for any € > 0, then, using (2.5),

ZVILI;I;O (W;wt))\'l(zt) =0,

and the underlying process will be CWD. Hence, the bounded eigenvalue condition is sufficient
but not necessary for CWD. According to our definition a process could be CWD even if its
maximum eigenvalue is rising with N, so long as its rate of increase is bounded appropriately.

One rationale for characterizing processes with increasing largest eigenvalues at the slower
pace than N as weakly dependent is that bounded eigenvalues is not a necessary condition
for consistent estimation in general, although in some cases, such as the method of principal
components, this condition is needed. In Section 4, we consider estimation of slope coefficients
in panels with an infinite factor structure, where eigenvalues of the error covariance matrix are
allowed to increase at a rate slower than N.

3. COMMON FACTOR MODELS

Consider the following N factor model for {z;}:
Zie = YirSu + Vo Su + -+ vin e+ e, i=1,2,...,N, (3.1)
or in matrix notations
7, =Tt +¢, (3.2)

where £, = (fi;, farr - s far), & = (614, €245 ..., €ny), and the common factors, fy,, and the
idiosyncratic errors, &;;, satisfy the following assumptions:

ASSUMPTION 3.1. The N x 1 vector f, is a zero mean covariance stationary process, with
absolute summable autocovariances, distributed independently of ¢;p for all i,t,t', and such
that E(f;|Zi-1) = 1 and E(fu fp|Zi-1) = 0, for € # p=1,2,..., N.

ASSUMPTION 3.2. Var(e;; |Z,—1) = Ol-z < K < 00,8 and €j, are independently distributed
foralli # j and for all t. Specifically, maxi(oi2) =02 <K <oo0.

max
The process z;; in (3.1) has conditional variance

N N
Var(z, | Z,—1) = Var (Z Viefu |I,1> + Var(ei | ) = Y _ v + 07

=1 =1
For the conditional variance of z;; to be bounded in N, as required by Assumption 2.1, we must
have
N
Zyii§K<oo, fori=1,2,..., N. 3.3)

=1

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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In what follows we also consider the slightly stronger absolute summability condition

N
Z|m|51{<oo, fori=1,2,...,N. (3.4)
=1

DEFINITION 3.1 (Strong and weak factors). The factor f, is said to be strong if

N
lim N! 2}: lviel = K > 0. (3.5)
The factor fy, is said to be weak if
N
ngnm; lyiel = K < o0. (3.6)

The literature on large factor models has focused on the case where the factors are strong.
The case of weak factors is recently considered by Onatski (2009). It is also possible to consider
semi-strong or semi-weak factors. In general, let « be a positive constant in the range 0 < o < 1
and consider the condition

N
Jim N~ D lyiel = K < oo, (3.7)

i=1

The strong and weak factors correspond to the two values of @ = 1 and o = 0, respectively. For
any other values of o € (0, 1), the factor f;, can be said to be semi-strong or semi-weak. It will
prove useful to associate the semi-weak factors with values of 0 < o < 1/2, and the semi-strong
factors with values of 1/2 < « < 1. In Section 4, we provide some practical examples where
such semi-strong factors may exist.

The relationship between the notions of CSD and CWD and the definitions of weak and
strong factors are explored in the following theorem.

THEOREM 3.1. Consider the factor model (3.2) and suppose that Assumptions 2.1-3.2 and
the absolute summability condition (3.4) hold, and there exists a positive constant « in the range
0 <« <1, such that condition (3.7) hold forany £ = 1,2, ..., N. Then the following statements
hold: (a) The process {z;;} is cross-sectionally weakly dependent at a given point in time t € T if
a < 1, which includes cases of weak, semi-weak or semi-strong factors fy, for =1,2,..., N.
(b) The process {z;;} is cross-sectionally strongly dependent at a given point in time t € T if and
only if there exists at least one strong factor.

Under (3.5) and (3.6), z;; can be decomposed as
Zit = 23, + 24 (3.8)

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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where
m N
7 = Z Vie fors Z) = Z Vie for + €ir, (3.9)
=1 =m+1

and y;, satisfy conditions (3.5) for £ =1, ..., m,and (3.6) for £ =m + 1, ..., N. In the light of
Theorem 3.1, it follows that z7, is CSD and z;}; is CWD. Also, notice that when m = 0, we have
a model with no strong factors and potentially an infinite number of weak factors.

REMARK 3.1. Consider the following general spatial process:
z, = Rv,, (3.10)

where R is an N x N matrix and v, is an N x | vector of independently distributed random
variables. Pesaran and Tosetti (2010) have shown that spatial processes commonly used in the
empirical literature, such as the spatial autoregressive (SAR) process, or the spatial moving
average (SMA), can be written as special cases of (3.10). Specifically, for an SMA process
R =1y + 8S, where § is a scalar parameter (|§] < K) and S is an N x N non-negative matrix
that expresses the ordering or network linkages across the units, while in the case of an invertible
SAR process, we have R = (Iy — 8S)~!. Standard spatial literature assumes that R has bounded
column and row norms. It is easy to see that under these conditions the above process can be
represented by a factor process with an infinite number of weak factors (i.e. with m = 0), and no
idiosyncratic error (i.e. &;, = 0). For example, by setting z;, = ng\;l Vit fer, where v,y = r;y and
for = vgr, fori, £ =1, ..., N. Under the bounded column and row norms of R, the loadings in
the above factor structure satisfy (3.6), and hence z;; will be a CWD process.

REMARK 3.2. Consistent estimation of factor models with weak or semi-strong factors may be
problematic. To see this, consider the following single factor model with known factor loadings:

Zie = Vifi +€in €1 ~ 1D, 02).

The least squares estimator of f;, which is the best linear unbiased estimator, is given by

N 2
A D s ViZi 2 o
Ji= %, Var(f;) = Py
Zi:l Vi Zi:l Vi

If, for example, ZIN:I )/1.2 is bounded, as in the case of weak factors, then Var( f,) does not vanish
as N — oo, for each z. See also Onatski (2009).

4. CCE ESTIMATION OF PANEL DATA MODELS WITH
AN INFINITE NUMBER OF FACTORS

In this section, we focus on consistent estimation of slopes in panel regression models where the
error terms have an infinite order factor structure. Let y;, be the observation on the ith cross-
section unit at time ¢, fori = 1,2,..., N, and ¢t = 1,2, ..., T, and suppose that it is generated
as

Yir = “;dt + ﬂ;xit + eir, 4.1)

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.



Weak and strong cross-section dependence and estimation of large panels C53

where d;, = (dy;, do, . .., dn,e) i an my x 1 vector of observed common effects, and x;, is a
k x 1 vector of observed individual specific regressors. The parameters of interest are the means
of individual slope coefficients, 8 = E(B;).> The error term, e;;, is given by the following general
factor structure:

my my
Cir = Z Yie for + Z Aiele + Eir, 4.2)
=1 =1

where we have distinguished between two types of unobserved common factors, f, =
(fies fors o - o fmf,)/ andn, = (ny,, ny, ..., Ny,,) . The former are strong factors that are possibly
correlated with the regressors Xx;,, while the latter are the weak, semi-weak or semi-strong factors
that are assumed to be uncorrelated with the regressors. The associated vectors of factor loadings
will be denoted by ¥; = (yi1, ¥i2, - - -» ¥im,) and X; = (A1, Ai2, - .., Aim,)', respectively. The
cross-section dependence of errors is modelled using the unobserved common factors, f; and n,,
and without loss of generality it is assumed that the idiosyncratic errors, ¢;;, are cross-sectionally
uncorrelated (although they can be serially correlated).

To model the correlation between the individual specific regressors, X;;, and the innovations
e;r, we suppose that x;, can be correlated with any of the strong factors, f;,

x; = Ald, + Tif, + vy, 4.3)

where A and I} are k x my and k x m ¢ factor loading matrices, and v;; is the individual
component of X;;, assumed to be distributed independently of the innovations e;;.

Similar panel data models have been analysed by Pesaran (2006), Kapetanios et al. (2010),
and Pesaran and Tosetti (2010). Pesaran (2006) introduced CCE estimators in a panel model
where m ¢ is fixed, m, = 0, and yf; represents a strong factor structure. Contrary to what Bai
(2009) (see p. 1231) suggests, CCE estimators are valid even in the rank deficient case where m ¢
could be larger than k + 1. Kapetanios et al. (2010) extended the results of Pesaran (2006) by
allowing unobserved common factors to follow unit root processes. In both papers, innovations
{ei;} are assumed to be cross-sectionally independent although possibly serially correlated. This
assumption is relaxed by Pesaran and Tosetti (2010) who assume that {¢;,} is a weakly dependent
process with bounded row and column norms of its variance matrix, which includes spatial MA
or AR processes considered in the literature as special cases. In this paper, we focus explicitly
on cross-correlations modelled by general factor structures—weak, strong or somewhere in
between. Our analysis is thus an extension of Pesaran (2006) to the case where there are an
infinite number of factors, a fixed number of which are strong and the rest are either weak, semi-
weak or semi-strong factors.

The special case where both m ; and m,, are fixed has already been analysed in the above
cited papers. The case where f1;, fo, ..., fu, are strongand my = my(N) — oo as N — oo,
is not that meaningful as it will lead to unbounded variances as N — oco. However, it would
be possible to let the number of non-strong factors to rise with N, while keeping the number
of strong factors fixed. We show below that the CCE-type estimators continue to be consistent
and asymptotically normal under these types of infinite-factor error structures. We use notations
m,(N) to emphasize the dependence of the number of non-strong factors on N in the remainder
of this paper.

3 We assume that individual slope coefficients are drawn from a common distribution with mean g.

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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Equations (4.1) and (4.3) can be written more compactly as

Xis

2, = (y ”) —B/d, + Cf, + uy, (4.4)

where

B,=(a; A)D, C=(y, T;)D,

1 01k )»Enz + &ir + ﬂ;Vir 4.5)
D; = , Wi = .
B; I, Vit

Stacking the T observations for each i we also have

yi =Da; + X;B; +e,
Xi = GH,‘ + vi, (46)
Z; =DB; +FC; + U,

where y; = (yi1, yi2, -, yir), D=(d},dy, ..., d7), X; = (X1, Xi2, ..., Xi7), G=(D,F),
F=.6, ..., f),vi=i Vo, oo vir) 2y = (2o, 2o, -, 2i7) , Uy = (g, g, o )
and IT; = (A}, T})).

For the development of the CCE estimators we need the cross-section averages of
the individual specific variables z; = (y;,x},)’, which we denote by Z,, = Z,N=1 w;Zis,
where w = (wy, wy,...,wy) is any vector of weights that satisfy the granularity
conditions (2.1) and (2.2). Further, let M, = I; — H,(H, H,)"H, . H, = (D, Z,), Z, =

(211)17 211)27 L) in)/v Mq = IT - Q(Q/Q)+Q/s Q = GPw’

Im(/ Ew
_ mgx(k+1)
P, = g , 4.7
(ma+m £)x(mg+k+1) 0 Cw

mygXmgy m g x(k+1)

N N
Ew = Z wiBi and aw = Z wj Ci- (48)
i=1 i=1

Also, define the matrices associated with Mq and P,, as M, =1 — G(G'G)"'G’ and

I,, B
r= o ¢ (4.9)
myXmg

where B = E(B;) and C = E(C;). As we shall see below, the asymptotic theory of the CCE-type
estimators depends on the rank of C,, both for a finite N, and as N — oo.

We make the following assumptions on the unobserved common factors f; and n, and their
loadings.

ASSUMPTION 4.1 (Common factors). The (mq +m ) x 1 vector g = (d;, £})' is a covariance
stationary process, with absolute summable autocovariances and finite second-order moments.

In particular, | X4|| < K for some constant K, where X, = E(g,g)) is a positive definite matrix.

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.
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Foreach{ =1,2,...,m,(N), common factor ny; follows a covariance stationary process with
absolute summable autocovariances, zero mean, unit variance and finite fourth-order moment
uniformly bounded in €. ny, is independently distributed of g, and of ny, for all £ # €' and t.

ASSUMPTION 4.2 (Factor loadings). (a) Factor loadings y;, and T'; are independently and
identically distributed across i, and of the common factors g;, n,, for all i and t, with fixed mean
y and T, and uniformly bounded second moments. In particular,

Yi=y+n,n,, ~1IDO,R,), fori=12...,N,
and
vec(T';) = vec(I') + npy, np; ~ 1ID(0, ) fori=1,2,..., N,

where S, and Qr are my x my and kmy x kmy symmetric non-negative definite matrices,
Iyl < K, 12,1l < K, IT|| < K and ||®r|| < K for some constant K. (b) Factor loadings X;¢,
fori=1,2,...,Nand £ = 1,2, ..., m,(N) are non-stochastic. For eachi = 1,2, ..., N, the
factor loadings, A, satisfy the following absolute summability condition

m,(N)

> lhiel < K. (4.10)
=1

REMARK 4.1. The absolute summability condition (4.10) is sufficient for ensuring bounded
variances of ¥; = Ajn, = Z’;(lN) Aieng, for each i =1,2,..., N, as m,(N) — oo. This
condition alone does not, however, rule out strong, semi-strong or semi-weak factor structures.
Additional requirements on the sum of absolute values of the loadings X;, across i will be
postulated in theorems below.

The following assumptions are similar to Pesaran (2006).

ASSUMPTION 4.3. The individual-specific errors ¢;; and v;; are independently distributed
across i, independently distributed of the common factors g, n, and of the factor loadings y ;, T,
foreachi,jandeacht. v, fori =1,2,..., N, follow linear stationary processes with absolute
summable autocovariances, zero mean and finite second-order moments uniformly bounded in i.
For each i,

E(viiV},) = Xy,

where X.,; is a positive definite matrix, such that sup; | X.;|| < K, for some positive constant
K. Errors €;;, fori =1,2,..., N, follow a linear stationary process with absolute summable
autocovariances, zero mean and finite second-order moments uniformly bounded in i.

ASSUMPTION 4.4.  Coefficient matrices B; are independently and identically distributed across
i, independently distributed of the common factors g, and n,, of the factor loadings y ; and T ;,
and of the errors €, and v, for all i, j and t, with fixed mean B, and uniformly bounded second
moments.
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ASSUMPTION 4.5.  The slope coefficients follow the random coefficient model
B;=B+v;, v, ~1IDO, ), fori=12,...,N,

where ||Bll < K, |Rgll < K, g is a symmetric non-negative definite matrix, and the random
deviations v; are distributed independently of the common factors g, and n,, of the factor
loadings y ; and T j, of the errors ¢j; and V;,, and of the coefficients in a; and A; for all i, j
and t.

ASSUMPTION 4.6. (a) The matrix limy_, o ZlN:] w; X, = W* exists and is non-singular, and
sup; | ;' < K, where ;g = X; + YT 00}, and T} = [1 — P(P'P)"P'I1;. (b) Denote the
tth row of matrix X, = MqX[ by X, = (Xj11, Xizes - - - -, Xike)- Individual elements of the vector
X, have uniformly bounded fourth moments, namely there exists a positive constant K such that
E(ff”) <K foranyt=1,2,...,T,i=1,2,...,Nand s = 1,2, ..., k. Furthermore, fourth
moments of fy, for £ =1,2,...,my, are bounded. (c) There exists Ty such that for all T >
T()(vaz1 w,'XQMwX,-/T)’1 exists. (d) There exists To and Ny such that for all T > Ty and N >
Ny, the k x k matrices (X;MWX,-/T)_1 and (X;MgX,-/T)_l exist for all i.

The CCE approach is motivated by the fact that, to estimate §, one does not necessarily
need to compute consistent estimates of the unobservable common factors. It is sufficient to
account for their effects by including cross-section averages of the observables in the regressions,
since such cross-section averages indirectly reflect the overall importance of the factors for the
estimation of B. Two types of CCE estimators are considered. The common correlated effects
mean group estimator (CCEMG), which is given by

~ 1 L
ﬂMGzﬁ;ﬂia @.11)

where B,- = (X;wai)’lX;Mwy[, and the common correlated effects pooled (CCEP) estimator
which is defined by

N
ﬁP = (Z w,X;MwX,) Z w[X;Mwyl‘- (412)
i=1

i=1

The following theorem establishes consistency of CCE estimators in case of panels with
(possibly) an infinite number of factors.

THEOREM 4.1 (Consistency of CCE estimators). Consider the panel data models (4.1) and
(4.3), and suppose that Assumptions 4.1-4.6 hold, and there exist constants « and K such that
O<ua<l,

N
Zm,ﬂ < K N® foreacht =1,2,...,my(N) (4.13)

i=1
and

. my(N)
Nh—I>noo m — 0. (414)
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Then common correlated effects mean group and pooled estimators, defined by (4.11) and (4.12),

. . . J
respectively, are consistent, that is as (N, T) — 0o we have

Buc—B >0, (4.15)
and
Br—B>0. (4.16)

Assumptions of Theorem 4.1 rule out the case where ¥;; = l;n, = ZZZ(IN) Aiglg; 18 a
strong factor structure, but allow for the possibility of semi-strong (1/2 < a < 1), semi-weak
(0 < o < 1/2) or weak factors (¢ = 0) so long as the number of factors m,(N) is appropriately
bounded. The sufficient bound for m,(N) is given by condition (4.14). Note that conditions
(4.13) and (4.14) and 0 < o < 1 ensure that Var(d,,) — 0, as N — oo, and therefore ¥;; is
CWD.

The following theorem establishes asymptotic distribution of CCE estimator in case of weak
(e = 0) and semi-weak (0 < @ < 1/2) infinite factor structures.

THEOREM 4.2 (Distribution of CCE estimators). Consider the panel data models (4.1) and
(4.3), and suppose that Assumptions 4.1-4.6 hold, and there exist constants o« and K such that
0<a<1l1)2,

N
Z [Miel < K N* foreacht =1,2,...,m,(N) 4.17)

i=1
and
mu(N) < K N'72%, (4.18)
Then, as (N, T) > oo,
VNBug —B) > N®. By, (4.19)

where ﬁMG is given by (4.11), and Xy is given by equation (B.30) in the Appendix.
Furthermore,

N —1/2
-~ d
(Z w?) Br—B) > NO. Zp), (4.20)
i=1
where ﬁp is given by (4.12), and X p is given by equation (B.24) in the Appendix.
REMARK 4.2. Following Pesaran (2006), it is also possible to provide semi-parametric
estimators of variances of f,,; and Bp. Consistent estimators of X and X p are given by
equations (58) and (69) of Pesaran (2006), respectively.
REMARK 4.3. As was mentioned earlier, CCE estimators are valid irrespective whether Ew
defined by (4.8) has full column rank, or is rank deficient, and therefore m ;, the number of

factors in f;, could be larger than k + 1. If assumption of full column rank of C,, (forany N € N,
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as well as N — o0) is satisfied, then Assumption 4.2(a) on factor loadings and Assumption
4.4 on coefficient matrices could be relaxed. In particular, it would be sufficient to assume
that factor loadings y; and I'; and the coefficients o; and A; are non-stochastic and uniformly
bounded.

Current factor literature assumes that eigenvalues of the spectral density matrix of the
underlying double-indexed processes either rise with N at the rate N or are bounded in N, while
they are not allowed to rise at any rate slower than N. As the sources of cross-section dependence
are generally unknown (factors are latent and in general not identified), such assumptions seem
to have been adopted for technical convenience rather than on grounds of their empirical validity.
However, in several empirical applications it seems reasonable to consider cases where the
eigenvalues of the spectral density rise at a rate slower than N. Semi-strong factors may exist
if there is a cross-section unit or an unobserved common factor that affects, rather than all units,
only a subset of them expanding at a rate slower than N. One can think of an unobserved common
shock that hits only a subset of the population; for example, a new law that affects only large
firms. As the number of firms, N, increases, one reasonable assumption is that the number of
large firms increases at a rate slower than N. Similarly, the performance of medium-sized firms
may have impact only on a subset of firms in the market. If we assume that the range of influence
of this firm is proportional to its dimension, then as N increases, the subset of units that is affected
by it expands at a rate slower than N.

We observe that practical difficulties encountered when estimating the number of factors in
large data sets could be related to the presence of semi-strong factors, as existing techniques for
determining the number of factors assume that there are no semi-weak (or semi-strong) factors
and that all factors under consideration are either weak or strong.

5. MONTE CARLO EXPERIMENTS

We consider the following data-generating process:
Yie = aidy + BirXine + BinXioe + wir, (.1

fori =1,2,...,Nandt=1,2,...,T. We assume heterogeneous slopes, and set g;; = B, +
nij, with n;; ~ 1IDN(1, 0.04), fori =1,2,..., N and j = 1, 2, varying across replications. The
errors, u;;, are generated as

3 my
Ujp = Z YVie for + Z)\iﬂ’léz + &its

=1 (=1

where ¢;; ~ N(O, aiz), 052 ~ [IDU(0.5, 1.5), fori = 1,2, ..., N (the MC results will be robust
to serial correlation in &;;), and unobserved common factors are generated as an independent
AR(1) processes with unit variance:

fu =05fu_t+vp, =123 1=-49,....0,1,....T,
vy, ~ IIDN(O, 1 — 0.5%), fr,_s0 = 0,
ng =05ng_14+v,,,=1,...,my;; t=-49,...,0,1,..., T,
Up,, ~ IIDN(O, 1 — 0.5%), ny, 59 = 0.
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The first three factors will be assumed to be strong, in the sense that the sum of the absolute
values of their loadings is unbounded in N, and are generated as

y;e ~ 1IDUQO, 1), fori=1,...,N,£=1,2,3.
The following two cases are considered for the remaining m,, factors ny;,:
Experiment A. {n,} are weak, with their loadings given by
_ Nit
S22 e

It is easily seen that for each ¢, ZlN:l |Ai¢l = O(1) and for each i, -, )»ize = O(m,/N?).
Therefore, asymptotically as N — oo, the Ri2 is only affected by the strong factors, even if
m, — 00.

Aig ,nie ~1IDUO, 1), foré=1,...,myandi=1,2,..., N.

Experiment B. As an intermediate case we shall also consider semi-strong factors where the
loadings are generated by

Nie

V3 ZIN=1 '71'211’

In this case, for each ¢, ZlN=1 [Aie] = O(N'/?), and for each i, Y ) A%, = O(m,/N), and the
signal-to-noise ratio of the regressions deteriorate as m,, is increased for any given N. In Section
5.1, we will investigate this issue further, to check if the effect of m, on R? for a given N impacts
on the performance of our estimators.

Aipg = fore=1,...,m,andi =1,2,..., N.

The remaining variables in the panel data model are set out as follows: regressors x;j; are
assumed to be correlated with strong unobserved common factors and generated as follows:

3

Xiji = aijidy + ajjody + Z VijeSu +vij, j=1,2,
=1

where
vije ~1IDUCO, 1), fori=1,...,N,£=1,2,3;j=1,2.
Viji = puyViji-1 + O, i=1,2,...,N;t =-49,...,0,1,..., T,
¥ij ~ IDN(O, 1 — pl%”_), vij,—s0 = 0, py;; ~ 1IDU(0.05, 0.95) for j =1, 2.
The observed common effects are generated as
di; = 1;dy; =05dyi—y +vge, t=-49,...,0,1,...,T,
vg ~ IIDN(0, 1 —0.5%), d_50 = 0.

When generating v;;; and the common factors f;, ng and d, the first 50 observations have been
discarded to reduce the effect on estimates of initial values. The factor loadings of the observed
common effects do not change across replications and are generated as

a; ~TIDN(1, 1), i=1,2,....N,
(@11, @21, @12, ai2z) ~ IIDN(0.574, 0.51),

where T4 = (1,1, 1, 1) and 1 is a 4 x 4 identity matrix.
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Each experiment was replicated 2000 times for all pairs of N and 7' = 20, 30, 50, 100 and
200. For each N we shall consider m, =0, N/5,3N /5, N. For example, for N = 100, we
consider m,, = 0, 20, 60, 100. We report bias, RMSE, size and power for six estimators: the FE
estimator with standard variance, the CCEMG and CCEP estimators given by (4.11) and (4.12),
respectively, the MGPC and PPC estimators proposed by Kapetanios and Pesaran (2007), and the
PC estimator proposed by Bai (2009). The MGPC and PPC estimators are similar to (4.11) and
(4.12) except that the cross-section averages are replaced by estimated common factors using the
Bai and Ng (2002) procedure to z;; = (y;;, X;,)’. Note that the PPC estimator coincides with the
factor augmented panel regression proposed by Giannone and Lenza (2010). In the PC iterative
estimator by Bai (2009), (I; pc, F) is the solution to the following set of non-linear equations:

N -1y N
. / , 1 X N
bpc = (E X,-MﬁXi> E X:Mgyi, NT E (yi — Xibpc)yi — Xibpo)F = FV,
im1 im1 i=1

where My =1Ir — F(F "Fy'F', and V is a diagonal matrix with the 71, largest eigenvalues
of the matrix # vazl(y,- — X,f) re)(yi — X,J; pc) arranged in decreasing order. The demeaning
operator is applied to all variables before entering in the iterative procedure, to get rid of the fixed
effects. The variance estimator of b pc 1S

Tov(h 1 —1 —1
Val'(bpc) = WDO DzD s

where Dy = (NT)"' SN Z/Z;, D, = N-' SN 6XT' Y], 2.47),), with 67 =T"'Y_,
82,2, =MX; — N' SN (pI(L'L/N) " § M X, and £ = (7, ..., 7)) is the matrix of

estimated factor loadings. When T/N — p > 0, b pc is biased and, following Bai (2009), we

estimate the bias as
R LAY, o 2% I 0 0 AN
bias=——D;'— Yy T [Z>2 .62,
N O Nizzl: T N | i

PN

where V; = N~! 2?;1 L L/N)’lfinj. The selection of the number of strong common
factors (m ) in the Kapetanios and Pesaran (2007) and in the Bai (2009) estimators has been
based on Bai and Ng (2002) IC, criterion.

5.1. Results

Results on the estimation of the slope parameters for the Experiments A and B are summarized
in Tables 1-5. In what follows, we focus on the estimation of 8;; results for 8, are very similar
and are not reported. Notice that the power of the various tests is computed under the alternative
H;: B =0.95.

We do not report results for the FE estimator since they show that, as expected, this estimator
performs very poorly, is substantially biased, and is subject to large size distortions for all pairs
of N and T, and for all values of m,. Tables 1 and 2 show the results for the CCE estimators.
The bias and RMSE of CCEP and the CCEMG estimators fall steadily with the sample size and
tests of the null hypothesis based on them are correctly sized, regardless of whether the factors,
{ng,£=1,2,...,m,}, are weak or semi-strong, and the choice of m,. Further, we notice that
the power of the tests based on CCE estimators is not affected by m,,, the number of weak (or
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Table 5. Results for Bai estimator.

Bias (x100) RMSE (x100) Size (x 100) Power (x 100)
m, N/T 20 100 20 100 20 100 20 100
Weak factor structure {A/n,}

0 20 0.47 —0.30 9.78 5.72 37.90 48.00 45.60 61.40

0 100 —0.01 0.02 3.57 2.50 21.50 47.20 58.70 91.10

4 20 0.62 —0.15 9.80 5.83 40.10 50.50 48.30 63.20
20 100 0.07 —0.09 3.48 247 21.40 44.90 56.20 91.50
20 20 0.30 0.09 9.91 6.07 37.90 52.40 46.50 64.20

100 100 0.10 0.03 347 242 21.10 45.30 59.80 91.90
Semi-strong factor structure {A'n,}

4 20 0.45 -0.23 9.40 6.08 35.50 52.10 42.70 65.10
20 100 —-0.09 -0.17 3.70 2.60 23.60 46.80 58.30 88.70
20 20 1.28 —0.28 10.47 6.27 41.70 52.40 49.40 60.50

100 100 0.02 0.03 3.50 2.46 20.90 44.50 56.20 90.20

Note: Experiments A and B: my =3 strong factors and m, weak or semi-strong factors.” Based on R = 1000
replications.

Three strong factors and varying Three strong factors and varying
number of weak factors number of semi-strong factors
100% - 100% -
80% 80% A
60% - 60% A
40% A 40% -
20% A 20% -
0% L B o O% L
0.9 0.95 1 1.05 1.1 0.9 0.95 1 1.05 1.1
=<0 —20 —40 —20 —40 60
60 —80 — 100 — 80 — 100

Figure 1. Power curves for the CCEP ¢-tests: N = 100, T = 100.

semi-strong) factors. This is also confirmed by Figure 1, which shows that the power curves
of tests based on the CCEP estimator do not change much with m, # The Monte Carlo results
clearly show that augmenting the regression with cross-section averages seems to work well not
only in the case of a few strong common factors, but also in the presence of an arbitrary, possibly
infinite, number of (semi-) weak factors.

Tables 3 and 4 report the findings for the MGPC and PPC. First notice that these estimators,
since they estimate the unobserved common factors by principal components, only work in the
case where the factors, {n,}, represent a set of weak factors, or when m,, = 0 (i.e. in Experiment

4 Similar curves were obtained for CCEMG estimators, which are not reported due to space considerations.
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A). In fact, in the case of a semi-strong factor structure the covariance matrix of the idiosyncratic
error would not have bounded column norm, a condition required by the principal components
analysis for consistent estimation of the factors and their loadings. However, as shown in
Table 1, even for Experiment A, these estimators show some size distortions for small values
of N (i.e. when N = 20, 30). One possible reason for this result is that the principal components
approach requires estimating the number of (strong) factors via a selection criterion, which in turn
introduces an additional source of uncertainty into the analysis. Therefore, not surprisingly, tests
based on MGPC and PPC estimators are severely oversized when a semi-strong factor structure
is considered.

Finally, Table 5 gives the results for the Bai (2009) PC iterative estimator. The bias and RMSE
of the Bai estimators are comparable to CCE-type estimators, but tests based on them are grossly
over-sized, even when m, = 0. The problem seems to lie with the variance of the Bai estimator,
an issue that clearly needs further investigation. In his Monte Carlo experiments, Bai does not
provide size and power estimates of tests based on his proposed estimator.

6. CONCLUDING REMARKS

Cross-section dependence is a rapidly growing field of study in panel data analysis. In this paper,
we have introduced the notions of weak and strong cross-section dependence, and have shown
that these are more general and more widely applicable than other characterizations of cross-
section dependence provided in the existing econometric literature. We have also investigated
how our notions of CWD and CSD relate to the properties of common factor models that are
widely used for modelling of contemporaneous correlation in regression models. Finally, we
have provided further extensions of the CCE procedure advanced in Pesaran (2006) that allow
for a large number of weak or semi-strong factors. Under this framework, we have shown that
the CCE method still yields consistent estimates of the mean of the slope coefficients and the
asymptotic normal theory continues to be applicable.
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APPENDIX A: STATEMENTS AND PROOFS OF LEMMAS
We state and prove a number of lemmas that we shall use in proofs of Theorems 4.1 and 4.2.

LEMMA A.1. Suppose Assumptions 4.1-4.5 hold and (N, T) EY Then,

T T
VN L
? g wt Oa T g tswt _l) 01 (Al)
T T
N 1 _
g Y ev,, 2o, T > Vil w3 0 uniformly in i, (A2)
t=1 t=1
f T
- Z Ewr Mo uniformly ini, —— ZV,, Vo Lo uniformly in i, (A3)
1 T
T Z D 5) 0 uniformly in i, g Z i1€we — O uniformly in i, (A4)
=1 =1
JN r B s — 1 . .
T Z iV L 0 uniformly in i, T ; € Owi — 0, uniformly in i, (A.5)
VN & L VN & L
- Z Bt — 0 uniformly ini and - Zs,-,?w, =30 uniformly in i, (A.6)

t=1

where g = (), £, T = Y0, widhs, O = Y gy Mieher, B = Yoy wiss and Vo = 3,0 wiviy. If in
addition there exist constants o and K such that 0 < a < 1 and conditions (4.13) and (4.14) hold, then

1 « L
> a1, =0, (A7)

where ,,; = Z[}V:, w;v;;, and w;, is defined by (4.5). If conditions (4.17) and (4.18) hold instead of
conditions (4.13) and (4.14), 0 < « < 1/2, and the remaining assumptions are unchanged, then

T T
NN _ N _
T Z D i) - Z \ L 0 uniformly in i, (A.8)
=1 t=1
VN ’ L VN ’ L
- Z % 0w — 0 uniformly ini and Ea Z 8110w — 0 uniformly in i. (A.9)

t=1

Proof: We use L, mixingale weak law to establish results (A.1)—(A.9). Let Ty = T(N) such that Ty — oo
as N — ooand let cy, = ﬁ forall N € N, and all ¢ € Z. To establish the first part of (A.1) define

mp(N)

Ky = — 80y = — Awellers
Nt TNgr t TNgr 22:1: eriee
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where X0 = 31| wiA;.. We have

Knk mu(N)
E(fu) -z, > R

where || X, || < K by Assumption 4.1. Consider the term Zm"(N) )sz Because absolute summablhty implies
square summability, a sufficient condition for the existence of an upper bound for Zm"(N)A ¢ 1s the
existence of an upper bound for Z'”"(N) [Awe|. But

mp(N) mu(N)

Z el = D

(=1

N

Zwkli

i=l

mu(N)
<Z|wz <Z Mill) <K,
=1

where 37" |5,,| < K by condition (4.10) of Assumption 4.2, and Y | |w;| is bounded by (2.1) and
(2.2). It follows that array {k y,/cy;} is uniformly bounded in L,-norm and therefore uniformly integrable.’
Furthermore, g, and n,, for £ =1,2,...,m,(N), are covariance stationary processes with absolute
summable autocovariances, and therefore |E(g; | Z,—s)|l., — 0 and |E(n¢y | Z,—5)|l, — 0, as s — o0,
and array {k y,} is uniformly integrable L,-mixingale with respect to the constant array {cy,}. Since we have
that limy o 31 ey = limy oo 31¥, Ty'' = 1 < 00, and limy_ oo 31, ¢%, = limy_oo 31¥, T2 = 0,
a mixingale weak law (Davidson, 1994, Theorem 19.11) can be applied, and we have

T 1 T L
Z’CM = TN Zgzﬂwx = 0,
=1 =1
as required. Similarly, to establish the first part of (A.8) define

\/ﬁ . x/ﬁ mn(N)i
Ky = TNg: wr = TNgr ; Aweler

- N
where as before A, = ) ":_, w; ;.. Hence

my(N)
TE e

CNt

and note that

mu(N)
3wy < KN*2m,(N) = O(N7),
=1

under conditions (4.17) and (4.18). Thus, same as before {ky,} is uniformly integrable L,-mixingale with
respect to a constant array cy,, and applying a mixingale weak law yields

T \/> T
N — L
;’CN! = ?N;grﬁw — 0.

Remaining results can also be established in a similar way. For example, in order to establish the second
part of (A.1) define Ky, = ?—Nﬁg,gw,, and note that

’ N
E (M) = N3,E () = N5, Y wlE () < K.

Nt i=1

3 Sufficient condition for uniform integrability is L;, uniform boundedness for any & > 0.
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The following four results, the second part of (A.3), the first part of (A.6), (A.7), and the first part of (A.9),
deserve more attention. In the case of the second part of (A.3), we have

Tn
ZV,, vV, = ?—NN Zw,—v,»,vgt + — ZV,, Zw Vi (A.10)
=1 =1

t=1 J#i

. . .. . _ L .

Note that since v;, is ergodic in variance then TNl ZtT[=V] Vi Vi, = Y., and since /Nw; - 0as N — o0
. L .

and sup; | X, || < K, it follows that g Z[TN L WiVirVy, =4 0. To establish convergence of the second term

on the right side of (A.10), define ky, = Vl, Z,#, j ]t, and note that

Kk,
HE (%) H <KNIIZuill Y willZyll < K.

Nt J#i

Using now the same arguments as in the proof of the first part of (A.1) we have Z,T MKy = 0, which
completes the proof of the second part of (A.3). The first part of (A.6) can be established along the same
lines followed to prove the second part of (A.3). To establish the first part of (A.9), consider

VN

KNt = ?ﬁzt wt — 1911 Zw/ jt+
N
We have
p N N
HE <ﬂ>H = ZZw weE (92004) s (A.11)
CN[ 1 k=
J=1 k=
where

myu(N) my (N) my(N) my(N)

/tﬁkt Z Z Z Z Aieg Aieyhjes Aoy E (g iy oy My ),

G=1 =1 f3=1 =1

in which E(ng n,:n¢yhy,,) is non-zero only in the following three cases: (i) £ = £, = €3 = €4, (i) £, = €5
and ¢3 = ¢4 and (iii) £; = £3 and ¢, = {4. It follows that

mp(N) mp(N) my(N)
2
E020;0) = Y MhjehaE (ng) + Y Y My ek + Y D Mg hieghje Meeys
=1 £=1 6324, O=1 220

(A.12)

where E(n2,) = 1,and E(n},) < K by Assumption 4.1. Using conditions (4.17) and (4.18), and the absolute
summability condition (4.10) of Assumption 4.2, we obtain

N N mu(N) mp(N)
NI ww (Z A2 h E (n;‘t)) =N Y B, <K, (A.13)

Jj=1 k=1 =1 =1
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N mp(N) mu(N)

N
2 2 72
D50 ST B o DYTRUEN ROV SRR
=1 k=1 0=l t320, =1 G0
N N mu(N) my(N)
NZijwk Z Z Aig higyhje Ake, | = N Z Aiey Awe,
=1 k=1 b=1 bl =1
mp(N)
: Z Ay Awe, < K, (A.14)
L)

Now substitute (A.12) in (A.11) for E (93,9 ), and use (A.13) and (A.14) to obtain

2
HE (@)H <K. (A.15)

Y
Using the same arguments as in the proof of the first part of (A.1), ky, is uniformly integrable L,-mixingale

with respect to the constant array cy,, and applying a mixingale weak law yields ZITQ’ L KN U 0, as required.
In order to establish (A.7) note that

N
ey — !
ﬂwt + Ewt + E wiﬂivit

u,, = i=1

th
2

Convergence of 7' Y| 51, can also be established using a mixingale weak law. Let ky, = Ty' &
note that

wr» and

2

N N N
E(Ej,,):E Sowii | =303 ww E@i0;0)

= i=1 j=1
N N mp(N)
:ZZwin Z)\.lg)\.J(
i=1 j=I =1
mp(N) N N

IA
]
\'M
&
=
]
&
>

IA

K -m,(N)N**72 - 0,

where |w;| < K/N under the granularity conditions (2.1) and (2.2), va:l [Xie]l < KN® by (4.13), and
m,(N)N**~2 — 0 by (4.14). Similarly as in the proof of the first part of (A.9), it can be shown that

E(x},/c%,) is bounded and that Z,Ti’l KNt 40. The convergence of the remaining elements of (A.7) can
be established using similar arguments as in Lemma 2 of Pesaran (2006), or by applying a mixingale weak
law. (]

LEMMA A.2. Suppose Assumptions 4.1-4.5 hold and (N, T) 2 . Then,

/

YN L s uniformly ini, 2 L 0 uniformly in i, (A.16)
{ GG ,
V’TQ L 0 uniformly in i, - 5%, (A.17)
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QG QQ
=== 0,1, === 0,(1), (A.18)
— » ) .. HH,
II, — I} — O uniformly ini, wT = 0,(1), (A.19)
H, 9 , . XQ : -
T = 0,(1) uniformly in i, T = O0,(1) uniformly in i, (A.20)
H,e H, X,
%e = 0,(1) uniformly in i, l; = 0,(1) uniformly in i (A.21)
and
H,F
T = 0,(1), (A.22)

where M = [1—P(PP)'P I, T, = [I—P,(P,P,) P, I, P, is defined by (4.7), P=E(P,),

w w

G=D,F),Q=GP, H, =D,Z,),and ¥; = O, 01, ..., 0ir) withy, = YN diong.

Proof: The first part of (A.16) follows directly by observing that the covariance stationary process v;,
is ergodic in variance. Since g, = (d}, f}) is also a covariance stationary process with absolute summable
autocovariances, it follows that

T
] /
T ZVngt 5 E (Virg;) =0,
=1
where the convergence is uniform in i since the second moments of v;, are uniformly bounded in i. This
establishes the second part of (A.16). The first part of (A.17) can be established using the same arguments.
The second part of (A.17) can be established similarly to the first part of (A.16) by noting that X, = E(g,g)).
In the same spirit,

1 1 e ,
T2 98 =7 Pag > E@,zg).
t=1 =1

as (N, T) 2 0. But E(F;)g,g;) =PX, and |[P'Z,|| < |[P[[|X;]| < K, where ||X,|| < K by Assumption
4.1 and ||P|| < K by Assumptions 4.2, 4.4 and 4.5, which completes the proof of the first part of (A.18).
Noting that Q = GP,, and that P,, S P, the second part of (A.17) implies

QQ
T

-Pz,P50,

as (N, T) EA 00. But, same as before, |[P'X,P|| < ||P||2||Eg|| < K and it follows that Q' Q/T = 0,(1), as
required. To establish the first part of (A.19) note that P,, — P £ 0as (N, T) EN 00, and

lim Pr [mnk (F;)Fw) = rank (P’P)] =1.

N—oo

It follows, using also Theorem 2 of Andrews (1987), that ﬁj — I % 0. The remaining results can be
established in a similar way, as results (A.16)—(A.18), using ergodicity in mean and variance of covariance
stationary series with absolute summable autocovariances and Lemma A.1. O
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LEMMA A.3. Suppose Assumptions 4.1-4.5 hold, (N, T) EN 00, and there exist constants o and K such
that 0 < a < 1, and conditions (4.13) and (4.14) hold. Then,

/

X;(H, — (—H,)¥
l(fQ) L 0 uniformly in i, (wa) 5 0 uniformly in i, (A.23)
oA\ [QQ\"
[(ww>_< )}AQ (A24)
T T
;o ﬁ, & - ﬁ/ F
u L 0 uniformly ini, and ( DL 0. (A.25)

If conditions (4.17) and (4.18) hold instead of conditions (4.13) and (4.14), 0 < a < 1/2, and the remaining
assumptions are unchanged, then

NX ﬁw_ p N ,—ﬁ/, ﬂi
w 2 0 uniformly in i, \F(qu) = O uniformly in i, (A.26)
HH\ (QQ\'
«/N|:< w w) _( ) i|_1’>0’ (A.27)
T T
N ;o ﬁ/ ; N — H/ F
M 2o uniformly ini, and \F(qu) 5 0. (A.28)

Proof: Using the notations in Section 4, we note that H, = Q+U,, where U = (0,T,), U, =
Z,{V:l w;U;. Also recall that X; = GII; 4 v;. Hence both parts of (A.23) and (A.25) directly follow from
results (A.1)—(A.3) of Lemma A.1. However, because Moore—Penrose inverse is not a continuous function

it is not sufficient that
H H, QQ
( T)—(T)=%m, (A29)

for (A.24) to hold. We establish (A.24) in a similarly way as Kapetanios et al. (2010). By Theorem 2 of
Andrews (1987), (A.29) is sufficient for (A.24), if additionally, as (N, T) 2 o0,

H H, '
lim Pr |:rank < a ) = rank (Q Q>i| =1, (A.30)
(N, T) 50 T T

where rank(A) denotes rank of A. But

7:0710 _ Q/Q + Q,ﬁz) + UU/Q U:;J/U:)
T T T T T ’
where
/ﬁ* ﬁ*/ ﬁ*/ﬁ*
lim Pr(HQ L o4 wQ+ B >e)=0
(N.T) 0 T T T
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for all € > 0. Also

rank <Q;,Q> = my + rank (éw> R

for all N and T, with rank(Q'Q/T) — my + rank(C) <my +my, as (N, T) £ oo. Using these results,
it is now easily seen that condition (A.30) in fact holds. Hence, the desired result (A.24) follows.
Results (A.26)—(A.28) can be established in a similar way as results (A.23)—(A.25). O

LEMMA A4.  Suppose Assumptions 4.1-4.6 hold, and (N, T) ESS Then,

X;MqE,'

T Lo uniformly in i, (A31)
and
X;MT,ﬂ?,— L 0 uniformly in i, (A.32)
where #; = (81, Vi, . .., Oir) and ¥y = Zm”( ) A
Proof: Consider
X;MTqﬂ X9 1 quﬁm

where f(i =M,1Xi. Let Ty = T(N) be any non-decreasing integer-valued functions of N such that
limy_,o Tv = 00 and define

1 1 mp(N)

Kyt = TNXtt it = th Z Aighg. (A.33)

Let {{cn: )2 oo 1%—; be a two-dimensional array of constants and set cy, = ﬁ for all t € Z and N € N.
We have

KN K ~ ~

£ (M ) = £ (5,07) = £ (X E ().
CNt

where the second equality follow from independence of X;; and ;. By Assumption 4.6 there exists a

constant K < oo such that sup, | E(X;X,)|| < K. Further, using independence of factors n,, and n,, for

any £ # ¢ and noting that E(n2,) = 1, we have

mu(N)
E®)= Y A, <K <oo.
=1

/
KN K
C

Nt

Result (A.34) established that {xy,/cy;} is uniformly bounded in L, norm, which implies uniform
integrability. Using similar arguments as in proof of Lemma A.1, {«y,} is L;-mixingale with respect to
the constant array {cy,}, and applying a mlxmgale weak law (Davidson, 1994, Theorem 19.11) establishes

SN K 4 0, thatis 77" Y X, 4 0, as (N, T) > oo. This completes the proof of (A. 32)
Result (A.31) can be established in a similar way, but this time we need to define k y, = Ty '%,,€;, and
noting that sup; E(¢) < K by Assumption 4.3. 0

It follows that

< K < o0. (A.34)
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LEMMA A.5. Suppose Assumptions 4.1-4.5 hold and (N, T) 2 0. Then

XM,X; » ) .

T — X4 uniformly in i (A.35)
and

XM,F ,

T — Qis uniformly ini, (A.36)

where X.;, is positive definite and given by

Y, =X, +O'% IO (A.37)
and
Qi = XS}, (A.38)
in which
I =[1-P@PP)PII,, St =M~ P(P'P)"P'IS;, (A.39)

= (AI/, r;),v Sf = (Omfxmdv Imf)/ and Eg = E(gtg;)
Proof: Since X; = GII; + v; then
X;qu,‘ _ v;MqV,- + V;M,IGH,'

T r T (A.40)
H;G’Mqv,- + H;G/MqGH,

T T

Consider the first term and note that,

ViMvi  vivi viQ (Q’Q)* Qv
T

T ~— 1 T N\T

£ %,; uniformly in i, (A41)

where the convergence directly follows from Lemma A.2 (the first part of (A.16), the first part of (A.17),
and the second part of (A.18)). Next we examine the second and the third elements (the latter is transpose
of the former). We have

vViM,GII; _ V6, _viQ (Q/Q)+ QG

= - M; 5 0 uniformly in i, (A42)

T T T T T
where we have used Lemma A.2, in particular the second part of (A.16), the first part of (A.17), and both
parts of (A.18). Finally, we examine the last summand on the right side of (A.40). Let Col(P,) denote a
linear space spanned by the column vectors of P,, and consider the following decomposition of matrix IT;:

I, = 0, + 1, (A.43)

where II; € Col(P,), and l'I belongs to the orthogonal complement of the space spanned by the column

vectors in Pu, The decomposition (A.43) is unique. Note that matrix M has the property M Gl'[ = Gl'[
and M, GII; = 0. It follows that

G'M,G GMMG  _.GG_.
n—"1, = n;#ni = =T,

Using now the second part of (A.17) yields

G'M,G

m, O, — 'S, T, 5 0 uniformly ini.
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But according to Lemma A.2, the first part of (A.19), ﬁ;k - ; Lo, uniformly in i, and therefore

GM,G

1 I, — 0%, 00 5 0 uniformly ini. (A.44)

Using (A.41), (A.42) and (A.44) in (A.40) establishes (A.35), as desired. X,; is positive definite by
Assumption 4.3 and matrix X, = E(g,g)) is non-negative definite. It follows IT}'X IT} is non-negative
definite. Sum of positive definite and positive semi-definite matrices is a positive definite matrix and
therefore X,, = X,; + II7'X II is positive definite.

Similarly to the proof of result (A.35), consider

XMF _ vMF  MGMF
T T T
vM,GS;, T,G'M,GS,

= T + T ) (A.45)

where F = GS; and Sy = (0,, rxmgs Iy ) is the corresponding selection matrix. Using similar arguments
as in (A.42) and (A.44), we obtain

'M,GS
V’qff £ 0 uniformly in i (A.46)
and
,G'M,GS
,qu — IIY'%,S% 5 0 uniformly in i, (A.47)

where II; and Sj» is defined by (A.39). Using (A.46), and (A.47) in (A.45) completes the proof of
(A.36). O

LEMMA A.6. Suppose Assumptions 4.1-4.5 hold, (N, T) EN 00, and there exist constants o and K such
that 0 < o < 1/2 and conditions (4.17) and (4.18) hold. Then,

X'M,, X; XM,X;

JNZ - JN= Tq L 0 uniformly in i, (A48)

X/-Mw i X{M i
VNZE T i _ VN= qu Lo uniformly in i, (A49)

X'M,,F X'M_F
VN2 e NZ Tq L 0 uniformly in i (A.50)

and

XM, #; XM, ¥

JNZ T —JNZ TI L 0 uniformly in i, (A5D)

where '}i = (ﬂil’ 191‘2, ooy l?iT), and ﬁit = ZZZ]N) )L,-gng,.
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Proof: We have

s o ua o / / + /
ﬂxémxi—@xqui VgLl (H H, ) X /n%Q (QQ> X
T T T T T T T
_ JNX/H, - Q) (H,H,\ HX
- T T T
X/Q (Q’Q) VN(Q -H,)X
T T T
X0 H,H, QQ\'|H.X,
Zudi A.52
f|:<T)(T>:|T (A.52)

We focus on the individual elements on the right side of (A.52). The second part of (A.19), the second part
of (A.21) and the first part of (A.26) imply

VNX/(H, — Q) (HH

+ —
HX . .
T — 0 uniformly in i.

T T
1 " 9,01
op(1) 0p(1) p(D)

The second part of (A.20), the second part of (A.18) and the first part of (A.26) imply

20 uniformly in i.

Q(Q Q)*f( H,)X;

T T T
N ————
0p() 0, op(1)

Finally, the second part of (A.20), the second part of (A.21) and result (A.27) imply

H H, Q\|HEX: ,
Qf|:< . ) (QTQ> i|l;_'>0uniformlyini,

——

1 1
Op(1) op(l) Op(1)

which completes the proof of (A.48).
To establish result (A.49), consider

ﬂ (XM, &; — X'M,&;)
T

N T T

XQ(Q0>*¢N«1—HQa
T T

— — + —
X;Q H,H, QQ\"|H,e;
+TVNK T>_<T)}7‘ (A.53)

P . -
— 0 uniformly in i,

where, similarly to the proof of (A.48), Lemmas A.2 and A.3 can be used repeatedly to establish the
convergence of the elements on the right side of (A.53).
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Results (A.50) and (A.51) can also be established in a similar way. In particular, Lemmas A.2 and A.3
imply

XM, F — L XIM,F =
T T T

VNo— . N JNX, (H, — Q) (HH)HF
T T

+T T T

—_ — + =
X/Q H H, QQ\" | H,F
tr ﬁ[( T ) _< T ) } T

P . .o
— 0 uniformly in i,

XQ (Q’Q)+ VN(Q -H,)F

and

XM, — XM, P, =
T

N
T

VNX/(H, — Q) <H H> 0,9,
T T

XQ (QQ\" VN (Q —H,)#
F(F) T

foK TH> _(Q}Q)*} H’WT#,-

P . ..
— 0 uniformly in i.

O

LEMMA A.7. Suppose Assumptions 4.1-4.6 hold, (N, T) EN 00, and there exist constants o and K such
that 0 < o < 1/2 and conditions (4.17) and (4.18) hold. Then,

1 X M,e; 1,
i ; =0 (A.54)
and
L XN: XiM, ; 50, (A.55)
\/ﬁ i=1 r
where #; = (81, Y2, . .., Oir) and ¥y = Zm”(m Aiely.

Proof: Proof of Lemma A.7 is similar to the proof of Lemma A.4. Let Ty = T(N) be any non-decreasing
integer-valued function of N such that limy_,», Ty = oo. Consider the following two-dimensional vector
array {«k .} defined by

Kn: = § X”&‘”
Tyv/N

Let {{cn: )2 _ o }3—; be two-dimensional array of constants and set cy, = ﬁ forallt € Zand N € N. Using
independence of X;;, and ¢, for any i, j € N, and independence of ¢;, and ¢, for any i # j, we have

p (S ) - ZE (%%,) E ()

CNt
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and

= ()
CNe

where sup; E(s -) < K by Assumption 4.3, and sup;, . [|EX;X,)|l < K by Assumption 4.6. Result (A.56)

implies uniform integrability of {ky;/cy.}. Since &; is covariance stationary process with absolute

summable autocovariances, it follows that array & y, is uniformly integrable L;-mixingale array with respect
to the constant array cy,, and using a mixingale weak law yields

Z Nt = Ty «/—ZZXuSzt—)O

t=1 t=1 i=1

ST et
<sup |E(®:X,)| — Z E(e}) <K, (A.56)
ieN N izl

This completes the proof of result (A.54). Result (A.55) is established in a similar way. This time, we define

=z

Kyt = i+

We have

1 N N
E(K”’”N’> = 5 2 E (X)) E0j0).

C
Nt i=1 j=I1

Noting that sup; ;. ||E('ii, ")l < K (by Assumption 4.6), and that J;, = Zm”(N) Aiehyg;, We obtain

ICNtKN; K N mn()
(55) £ 5 B

CN/ =1 j=1 ¢=1
ma(N) / N 2
K
=1 \i=I
Using conditions (4.17) and (4.18), and noting that 0 < « < 1/2 imply
HE (%) H < KN*'m,(N) < K.

CNt

Hence ||E(lcN,lc;V,/c,2Vt)|| is bounded in N € N. Using now the same arguments as in derivation of (A.54),
we have

)
- Kn: = thl?lr _> 0
Tyv/N

=1 =1 i=1
which completes the proof of result (A.55). O

LEMMA A.8. Suppose Assumptions 4.1-4.6 hold, (N, T) EA 00, and there exist constants o and K such
that 0 < a < 1 and conditions (4.13) and (4.14) hold. Then,

XM, X;  XM,X;
T T

20 uniformly in i, (A.57)

XM, F XM,F

- - L0 uniformly in i, (A.58)
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XM, ?: XM,
d - d T‘f L 0 uniformly in i (A.59)

and

X;MwE,' _ X:Mq &;
T T

) uniformly in i, (A.60)

where 1}1‘ = (ﬂil’ 791‘2, ey l?iT), and ﬁit = ZZ;"?N) )L,'U’lgt.

Proof: Results (A.57)—(A.60) can be established in a similar way as results (A.48)—(A.51) of Lemma
A.6, i.e. Lemmas A.2 and A.3 can be used repeatedly to work out orders of magnitude in probability of
individual elements in (A.57)—(A.60). 0

LEMMA A.9. Suppose Assumptions 4.1-4.6 hold, (N, T) EA 00, and there exist constants o and K such
that 0 < a < 1 and conditions (4.13) and (4.14) hold. Then,

YOXMX,
S w SRy, g, (A61)
i=1 r
Y XMF
3wty Lo (A.62)
i=1 T

and
I XM,F
T IE T b, (A63)
i=1

Proof: Granularity conditions (2.1) and (2.2) imply

(A.64)

K
wi| < —,
N

where constant K does not depend on N € Nnoroni =1,2,..., N. Using (A.64) and result (A.57) of
Lemma A.8 yields

N N N
X'M, X; X’MqX, p
w; : i i : i 0
But,
XM, X; 1 &
w; : i — 37 A iVi,
where
X'M, X;
Ayri = w,-* <'Tq) s

w; = Nw;, and (A.64) implies |w;| < K. Also (X;M,IX,- /T) has bounded second moments by Assumption
4.6 and, therefore E (Af\,ﬂ) < K. Furthermore, v; is independently distributed across i and independently
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distributed of X;M,X; /T . It follows that

N
1 p
N E ANT,"U,' L) 0
i=1

and
u X,{wai 4
Z w,——UV; —> 0,
. T
i=1
as required. Results (A.62) and (A.63) can be established in a similar way as (A.64). O

LEMMA A.10. Suppose Assumptions 4.1-4.6 hold, (N, T) —j> 00, and there exist constants o and K such
that 0 < « < 1 and conditions (4.13) and (4.14) hold. Then,

YOOXMLX )
Zwi# =0,(1). (A.65)

i=1

Proof: Result (A.57) of Lemma A.8 and result (A.35) of Lemma A.S5 imply

XM, X;
T

and therefore for any weights {w;} satisfying granularity conditions (2.1) and (2.2) we have

P . .
— X, uniformly in 7,

N N

Zw,@ _Zwiziq _p) 05

i=1 i=1

as (N, T) —J> 00. The limit limy_, o ZIN:1 wiXi, = W* exists by Assumption 4.6 and, furthermore, by the
same assumption, ¥* is non-singular. This implies (A.65). (]

APPENDIX B: MATHEMATICAL PROOFS

Proof of Proposition 2.1:  First, suppose 1,(X,) is bounded in N. We have
Var(w;z, |I,,1) —W3Iw, < (w;w,)kl():,), (B.1)
and under the granularity conditions (2.1) and (2.2) it follows that
1\}13;0 Var(w;z, |I,_1) =0,

namely that {z;,} is CWD, which proves (i). Now suppose that {z;,} is CSD at time ¢. Then, from (B.1), it
follows that A;(X;) tends to infinity at least at the rate N. Hence, under CSD N~'1,(X,) > K > Oforany N
sufficiently large. Note that 1, (X,) < Z,NZI oi; » Where, under Assumption 2.1, ;; , are finite, 1,(X,) cannot
diverge to infinity at a rate faster than N. To prove the reverse relation, first note that, from the Rayleigh—Ritz
theorem,®

2(Z) = max v, E,v, = VX,V (B.2)

v;v,:l
6 See Horn and Johnson (1985, p. 176).
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L

Letw; = 7%

v; and notice that w; satisfies (2.1) and (2.2). Hence, we can rewrite A;(X,) as

M(E)=N- Var(w;‘/z,ll,_l). (B.3)
It follows that if N~1A;(X,) > K > 0, then Var(w¥'z,|Z,_;) > K > 0, i.e. the process is CSD, which proves
(>ii). O

Proof of Theorem 3.1: Using (3.2), the covariance of z, is given by

Y =TT +A,.
where A, is a diagonal matrix with elements O'l-z. Since condition (3.7) holds for £ =1,2,..., N then
IT|l; = O(N%), and noting that |I’||; = |IT |lc = O(1) by (3.4) then
M(E) S ITT + Aclly < ITILIT [l + 0y = O(N®). (B.4)

But using (B.1),
Var(w’z,ﬂ,,]) — WEw < (WWA(T) < (WW)O(NY),
and when o < 1, we have,

lim Var(w’z,|I,,1) =0,
N—oo

for any weights w satisfying condition (2.1). It follows that {z;,} is CWD, which establishes result (i). Now
suppose that {z;,} is CSD. Then, noting that 2. < K < oo,

0< lim N7'A(®) < lim N7'Ty Ty 4+ lim N7'op, < lim N7'[T| T,
N—oo N—oo N—oo N—oo
Given that, by assumption, ||T’||; is bounded in N, it follows that limy_.o. N~!||T||; = K > 0, and there

exists at least one strong factor in (3.2). To prove the reverse, assume that there exists at least one strong
factor in (3.2) (i.e. limy_o N~!|T||; = K > 0). Noting that’

Ll

Wy = e > T (B.5)
1 1 \/N

it follows that limy_. N~ 'A;(£)=K >0 and the process is CSD, which establishes result

(ii). O

Proof of Theorem 4.1: We prove the theorem in two parts. First, we establish consistency of the CCEP
estimator and in the second part we establish consistency of the CCEMG estimator. Consider

N — -1 N —
o~ X;M ,X,' X;M ,(X['Ui +F i + 1’,’ +€,‘)
Br—B= (ZwiTw ) Y w = Ty : (B.6)

i=1 i=1

We focus on the individual elements on the right side of (B.6) below. Lemma A.10 established
_ -1
YOXIMLX,
Zwi# =0,(1). (B.7)
i=1

7 See Bernstein (2005, p. 368, eq. xiv).
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C87
According to result (A.61) of Lemma A.9, we have
YOXMX:
Z w; i . (B8)
4 T
i=1
Noting that p; can be written as y;, = ¥, +1; — 7,,, and that 31" | w,X;M,, = X M, = 0, and using
result (A.62) of Lemma A.9, we obtain
Y ;M YOXMF
Z Z w,——n; — 0. (B.9)
i=1 i=1 r
Result (A.59) of Lemma A.8 and result (A.32) of Lemma A.4 imply
It _
X/ Mw"i
Zw,-li 2. (B.10)
= T
Similarly, result (A.60) of Lemma A.8 and result (A.31) of Lemma A.4 yield
N
X Mﬂ) 1
Z Y (B.11)

Using (B.7)-(B.11) in (B.6) establishes (4.16).

Next we establish consistency of the CCEMG estimator. Consider

G XIMLF I et XM, 1 on et XM 65
Zv,+ Z 1 Vi N;‘I’ﬂ}#—’—ﬁ;‘l’ﬁl i

(B.12)
where W;; = T"'X'M,X;. v; is identically and independently distributed across i with zero mean and
bounded second moments, and therefore

i . (B.13)
i=1

But Fy, belongs to the space spanned by column vectors of Q, and therefore M,Fy;,
n — ﬁw) = M(ZF("I -7 n

M, F7,
that

q q )
M), where 7, = O,(N~'/?). Now using (A.63) of Lemma A.9 it follows

B.14
T (B.14)
i=1
Results (A.57) and (A.59) of Lemma A.8 and result (A.32) of Lemma A.4 imply
1 XM, %\ »
5 Z ( ) 20 (B.15)
i=1
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Similarly, results (A.57) and (A.60) of Lemma A.8, and result (A.31) of Lemma A.4 imply

1t (XM \ o
Nzwﬂ‘( 'T€>$o. (B.16)

Using (B.13)~(B.16) in (B.12) establish (4.15). O

Proof of Theorem 4.2: We prove the theorem in two parts. First, we establish asymptotic distribution of
the CCEP estimator and in the second part we establish asymptotic distribution of the CCEMG estimator.
Consider

N —1/2 N J— -1 N —
2 _ _ .X;wai L ~ X;MW(X,‘V,' + F)’, + 791' + si)
(;wi> @P ﬂ)— (ZWLT ) Jﬁ;w' T )

= (B.17)

—1/2
where ; = v Nw; (ZINZI wf) , and, by granularity conditions (2.1) and (2.2) there exists a real constant
K < oo (independent of i and ), such that

N —1/2
|W:] = |[vNw; <Z wf) <K. (B.18)
i=1

We focus on the individual terms on the right side of (B.17) below. Results (A.48) of Lemma A.6 and result
(A.35) of Lemma A.5 imply

XM, X;

T R X, uniformly in i,

and therefore for any weights {w;} satisfying granularity conditions (2.1) and (2.2) we have

as (N, T) EN 00. The limit limy_, va:l w; X, = ¥* exists by Assumption 4.6, and furthermore, by the
same assumption, ¥* is non-singular. It follows that

— -1
OXMLX
Z w; ———~ = gl (B.19)
i=1 r

as (N, T) 2 0. Next we focus on the individual elements in the second summation on the right side of

equation (B.17). Noting that y; can be written as y;, =y, + n; — 1,,, and that Z,N=1 w, XM, = X;Mw =
0, we have

N o 1 N o
Z T XM, Fy, = — Z W, XM, Fy,. (B.20)

N _ _
_ XM, F 1 _X'M,F
> = Vi——= > W=y > 0. (B.21)
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Equation (B.18) and result (A.51) of Lemma A.6 imply
NZ( M")Z( M">—>0
i=1
and, using result (A.55) of Lemma A.7, we have
i i, XMui g (B.22)
as (N, T) —/> oo. Similarly, result (A.49) of Lemma A.6 and result (A.54) of Lemma A.7 establish

X'M,¢e;
VN % 20 uniformly in i,

and therefore (noting that w; is uniformly bounded in i, see (B.18)),

N — N —
~ X;Mwsi 1 ~ X;.Mwe,- P

7Zw,- = NZw,— («/NT >—>0. (B.23)
Using (B.19), (B.21), (B.22), (B.23) and result (A.48) of Lemma A.6 in (B.17), we obtain

N -1z N

N - X/M,(X;v; +Fp,)
3 I R N
<,-1 ) VNS r

Assumption 4.6 is sufficient for the bounded second moments of X[’.MKIX,- /T and X;MqF /T . In particular,
condition E(X},) < K, fors = 1,2, ..., k, is sufficient for the bounded second moment of X;M,X;/T. To
see this, note that

and, by Minkowski’s inequality,

T
E zsrx,,;l

T
E }xmxwl )

Ly

for any s p=12,...,k. But by the Cauchy-Schwarz inequality, we have E(xmxlp,) <
[E(x ,”)E( it 172, and therefore bounded fourth moments of the elements of X;, are sufficient for

the existence of an upper bound for the second moments of X;MqX,» /T. Similar arguments can be used
to establish that XM F/T has bounded second moments. It therefore follows from Lemma 4 of Pesaran
(2006) and Lemma A.5 that

N —1/2
(Z w?) (Br—B) > NO.Zp),
i=1

as(N,T) EA 00, where
Yy = WIRWH (B.24)

© 2011 The Author(s). The Econometrics Journal © 2011 Royal Economic Society.



C90 A. Chudik, M. H. Pesaran and E. Tosetti

in which

=

¥ = lim Y w;X,, R"= lim —Zw (Zig@sZi0 + Qi R,Q;,) .

N—oo N

Qg = Var(B,), , = Var(y,), X,, is defined in Assumption 4.6 and Q;f is defined by (A.38). Next, we
consider asymptotic distribution of the CCEMG estimator. Consider

1 1 ~  X!M,F N XMu,#
‘/ﬁ(ﬁMc—ﬂ)=7szi+ﬁZ‘I’iTllT Z :

N INA )
3, XM, (B.25)

where (Il\,-r = T‘IXQM,UXI-. It follows from result (A.48) of Lemma A.6 and result (A.35) of Lemma A.5
that

Vr — %, = 0,(N"/%) uniformly in i. (B.26)

Using (B.26), result (A.51) of Lemma A.6 and result (A.55) of Lemma A.7, we have
1 Gl XM, #;
=y ¥, S (B.27)

Similarly, (B.26), result (A.49) of Lemma A.6 and result (A.54) of Lemma A.7 imply

N
= X Mw i
Z\I’ ! £ 2. (B.28)

Noting that Fy,, belongs to the linear space spanned by the column vectors of Q = GP,,. we have
M,Fy, =0,and XM Fy, =X M F(m; —7,). Using results (A.48) and (A.50) of Lemma A.6 and noting

that
%V > (X;I\;"X" )_] X;?qFﬁu, 20,
i=1
yields
—_ —_ —1 —_
\/Lﬁ ﬁ;@n} X;h;wai - LN ; (X;h:qxi> X;h;ani L. (B.29)

Using (B.27)—(B.29) in (B.25) yields

N e -1 <
INBre—B) 4 S 4 L (XquXi) XMF
Bue =0) 75 Z 75 &

It now follows that W(BMG — B) — N(0, X ), where

N
: 1 -1 / -1
Ty =R+ lim [N ; ¥, Q92,Q,%;, } : (B.30)

in which g = Var(8,), 2, = Var(y;), X;, is defined in Assumption 4.6 and Q;s is defined by
(A.38). O
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